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Abstract

Problem definition: With the rapid growth of the gig economy, on-demand staffing plat-
forms have emerged to help companies manage their temporary workforce. This emerging
business-to-business context motivates us to study a new form of supply chain coordina-
tion problem. We consider a staffing platform managing an on-demand workforce to serve
multiple firms facing stochastic labor demand. Before demand realization, each individual
firm can hire permanent employees, whereas the platform determines a compensation rate
for potential on-demand workers. After knowing the realized demand, firms in need can
request on-demand workers from the platform, and then the platform operator allocates the
available on-demand workforce among the firms. We explore how to maximize and distribute
the benefits of an on-demand workforce through coordinating self-interested parties in the
staffing system. Methodology/results: We combine game theory and online optimization
techniques to address the challenges in incentivizing and coordinating the online workforce.
We propose a novel and easily implementable fill rate-based allocation and coordination
mechanism that enables the on-demand workforce to be shared optimally when individual
firms and the platform operator make decisions in their own interest. We also show that the
proposed mechanism can be adapted to the cases when contract terms need to be identical
to all firms and when actual demand is unverifiable. Managerial implications: The pro-
posed contract mechanism is in line with the performance-based contracting commonly used
in on-demand staffing services. Our results suggest that under an appropriately designed
performance-based mechanism, individual firms and the platform operator can share the
maximum benefits of on-demand staffing.

1 Introduction

The Fourth Industrial Revolution is fundamentally transforming our lives and work through

innovative technologies. This shift is also evident in the staffing industry, where online platforms

are revolutionizing workforce recruitment and management. The 2020 Gig Economy and Talent

Platform Landscape report by Staffing Industry Analysts (SIA, 2020) reveals a 42% revenue

increase in online staffing firms in 2019. Besides the growth in conventional business-to-consumer
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(B2C) platforms like Uber and Lyft, the business-to-business (B2B) segment is steadily emerging,

with 267 B2B-focused talent platforms generating $9.4 billion in 2019. In 2020, the gross service

volume at B2B-focused talent platforms grew by 25% globally, according to an updated report

by SIA (2021b).

The B2B online staffing platforms deploy on-demand temporary workers to businesses to

fill their hourly or daily labor needs. For example, Jitjatjo provides on-demand workers to

various businesses, e.g., catering servers and dishwashers to restaurants, general cleaners, and

janitors to commercial facilities in the US and Australia; Instaff offers retail staff (e.g., cashiers

and stock replenishers), among many other roles, to firms in Germany; and Weploy provides

customer service and general administration roles to businesses in Australia.1 The ongoing global

pandemic of coronavirus disease 2019 (COVID-19) has significantly accelerated the growth of the

B2B online staffing platform. Specifically, the on-demand platforms for nurse staffing have been

“a lifesaver” to catch the increasing and unpredictable demand for healthcare workers (SIA,

2021a). For example, Jitjatjo started to provide dishwashers and janitors to healthcare facilities,

and it further expanded its range of services to supply patient transporters and disinfection

technicians, etc.2 Besides sourcing the workforce supplies at the tactic and operational levels,

companies have started integrating the on-demand workforce into their organizational structures

at strategic levels to increase flexibility and allow unified workforce management.

Unlike traditional job-advertisement platforms, these online staffing platforms manage em-

ployment online and price via marketplace mechanics (InStaff, 2016, p. 7).3 They prescreen

potential workers, allocate available workers to temporary positions posted by customers (i.e.,

employers) on an on-demand basis, and process payroll and insurance for their customers.

Compared to the conventional staffing channel, in which employers must hire a sufficiently

large regular workforce to meet demand in peak periods, the availability of an on-demand work-

force allows employers to meet peak demand with a relatively low level of regular employees,

thus reducing potential overstaffing costs during off-peak periods. However, the risk of not get-

ting sufficient manpower from an uncertain on-demand workforce poses a significant challenge

to employers in terms of how to ration staffing levels between these two channels. Gurvich et al.

(2019) investigated the setting of a single employer who must motivate the on-demand workforce

via the compensation rate and found that the employer’s staffing level and profit would decrease
1https://www.jitjatjo.com, https://en.instaff.jobs/sales-staff-germany, https://www.weployapp.

com/.
2https://www.jitjatjo.com/ondemand/healthcare-staffing.
3In practice, most on-demand staffing platforms determine wage rates for temporary workers and charge

their customers—i.e., employers—a service fee. For example, InStaff and Weploy have hourly wage rates posted
online; JitJatJo offers localized pricing to ensure the best deal for businesses. See https://en.instaff.jobs/
costs-and-benefits, https://au.jitjatjo.com/ondemand/staffing, https://www.weployapp.com/weployer/
pricing.
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compared to the conventional mode, by which the employer can order any number of agents to

work, even at the same compensation rate. The problem would be even more challenging for the

aforementioned platforms, which serve multiple employers and fill their demand with a common

pool of on-demand employees, in the sense that such platforms must design proper allocation

and contract mechanisms to coordinate and fulfill the staffing needs of multiple self-interested

employers. In this paper, we aim to address the following questions:

(1) When is it beneficial for employers to use an on-demand workforce, and to what extent?

(2) Given the fact that the platform operator and employers are independent businesses and

make decisions in their own interests, can we maximize the benefits of an on-demand work-

force through carefully designed allocation and contract mechanisms? If so, can the mecha-

nism lead to a win-win outcome in which the platform and employers are all better off with

on-demand staffing?

(3) An additional challenge arises if employers’ actual demands are not verifiable. Can we

ensure each employer truthfully report their demand under some coordination mechanism?

To this end, we study a system that consists of multiple firms as employers and an on-demand

staffing platform with a pool of self-scheduling workers. Firms can either recruit permanent

employees from a traditional staffing channel or hire on-demand workers via the platform to

satisfy their labor demand. On-demand workers have heterogeneous preferences for work, which

are uncertain to the platform operator. Therefore, the platform operator must encourage on-

demand workers to work by offering an appropriate compensation rate. On the other hand,

the platform operator also needs to design appropriate contracts to engage the firms to use

the platform’s service. The design of the contract is further complicated by how the platform

operator allocates on-demand workers to satisfy the staffing needs of the firms. In such a system,

employers, as independent business owners, would choose staffing strategies to suit their own

interests; at the same time, the platform operator aims to maximize its profit. The incentives

of different parties are affected by both the service contracts and the allocation policy. The

problem becomes more challenging when firms’ actual demands are unverifiable. Despite the

increasingly prevalent collaborations between on-demand platforms and employers, to the best

of our knowledge, there appears to be no systematic study of the incentive issues for this one-to-

many staffing system. In this paper, we focus on developing the optimal mechanism—including

contracts and workforce allocation policy—that induces all self-interested players to make system-

wide optimal decisions, thereby maximizing the benefits of an on-demand workforce.

To understand the first-best solution, we characterize system-wide optimal staffing strategies

3
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whereby the benefits of an on-demand workforce are maximized from the perspective of the overall

system. This also tells us when it is beneficial to use an on-demand workforce compared to a

traditional workforce. For the general problem, we first explicitly address workforce allocation

among multiple employers, because it determines the actual service level, measured by fill rate4—

proportion of demand filled by supply—delivered to each customer, which in turn influences

each employer’s staffing strategy, i.e., to what extent they would hire on-demand workers. Using

techniques from online optimization, we characterize the optimal target fill rates that should

be delivered to each employer, and show that these desired fill rates can be implemented under

a proper allocation policy. Next, we propose a novel contract mechanism contingent on actual

job fulfillment relative to the designed fill rate, and demonstrate that the proposed mechanism

induces the system-wide optimal outcome. Moreover, we discuss how the proposed mechanism

can be adapted to the cases when contract terms need to be identical to all firms and when

actual demand is unverifiable.

Our study thus makes the following contributions: (1) To our knowledge, this is the first

paper to study service contracts for on-demand staffing platforms that serve multiple employers.

We characterize the conditions under which it is optimal for a one-to-many staffing system to

use (or partially use) an on-demand workforce. (2) We propose a novel fill rate-based allocation

and contract mechanism to coordinate self-interested parties and induce system-wide optimal

solutions. Our results have profound managerial implications: it offers guidance for the use of fill

rate—one of the most important performance metrics widely used by staffing companies (Taylor,

2017)—as a protocol for workforce allocation and incentive alignment. Broadly speaking, our

work contributes to the capacity pooling literature in that we demonstrate how the risk-pooling

benefit can be maximized and redistributed to all self-interested parties, although the literature

has often observed that risk pooling may not benefit everyone in various decentralized supply

chain settings (e.g., Anupindi and Bassok, 1999; Dong and Rudi, 2004). (3) Additionally, the

proposed mechanism after some slight modification provides a novel approach to ensure employers

truthfully report their demand, in case actual demands are unverifiable.

2 Related Literature

The literature on operations management in the sharing economy is rapidly growing. For in-

stance, Gurvich et al. (2019) consider a service platform that hires self-scheduling agents to

satisfy customers’ demand. They model the service provider as a newsvendor who cannot dic-
4Staffing companies view fill rate as an essential metric for understanding their firm’s efficiency. If the fill rate

begins to decline, this is taken as a warning sign (Taylor, 2017).
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tate the number of workers, but must offer a compensation rate such that agents will decide

whether to work based on their individual availability. Cachon et al. (2017) consider a similar

newsvendor model, in which the platform can dynamically adjust the price to customers and

wages to workers. Taylor (2018) considers the situation in which customers’ utility (and thus

the demand rate) is affected by the congestion level of the service system, and examines the

impact of such system dynamics on the platform operator’s optimal price and wage. Chen and

Hu (2019) further consider a platform to match multiple supply types to multiple demand types

over a planning horizon, in which the optimal match policy is derived based on the priorities of

demand-supply pairs. Benjaafar et al. (2020), Benjaafar et al. (2021) and Lin et al. (2022) ex-

plore the welfare implications under the on-demand service context. We refer interested readers

to Benjaafar and Hu (2019) and references therein. In this paper, we adopt a newsvendor-type

platform with self-scheduling workers, as in Gurvich et al. (2019) and Cachon et al. (2017).

However, unlike their ride-hailing setting, we model the platform’s customers as independent,

cost-minimizing businesses motivated by B2B staffing practices. We identify optimal staffing

strategies and examine how to coordinate self-interested firms in such a system.

Our paper is relevant to the literature on service and supply chain contracting. In the

literature of supply chain coordination, various contracts such as buy-back (Pasternack, 1985)

and revenue sharing (Cachon and Lariviere, 2005) have been studied. We refer interested readers

to Cachon’s (2003) review of this literature and recent papers such as Chen et al. (2016) and

Chen and Lee (2016) and references therein. The supply chain coordination literature primarily

focuses on supply chains in which a supplier sells to a newsvendor retailer and the retailer places

orders before demand realization. In our problem, it is the platform operator (like a common

supplier) who controls the on-demand capacity level, whereas employers (like retailers) determine

their own permanent staffing levels and submit job orders after demand is realized. Moreover, we

consider a one-to-many staffing system with short-term contracts5, whereas existing studies on

service contracts examine relatively long-term contracts based on queueing models in different

contexts such as call centers (e.g., Hasija et al., 2008; Ren and Zhou, 2008).

The staffing system studied in this paper can be viewed as a two-echelon distribution system

consisting of a supplier (analog to the platform) and multiple retailers (analog to the hiring

firms) (Section 8.5 in Zipkin, 2000). Inventory (analog to the workforce) can be held at each

location, including both the supplier and retailer sites. Existing inventory literature has explored

two-echelon inventory systems with various focuses, such as coordination of retailers competing
5In health care and humanitarian literature, some studies investigate mechanism design problems for the

allocation of randomly arriving resources to recipients (see Zhang et al., 2020, and references therein). Our
staffing system, however, is very different from theirs.
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in an end market with a deterministic demand function (Chen et al., 2001), performance analysis

of echelon inventory policies (Gallego and Zipkin, 1999), and competitive selection of inventory

policies by decentralized players (Cachon, 2001). Unlike those papers, we consider a single period

model where demand is a general multivariate random variable and the inventory held by the

supplier is allocated after demand at each retailer is realized. Thus, closer to our study is the

literature on inventory pooling and allocation. It is well-known that using a common pool of

inventory yields benefits because of the risk-pooling effect (Eppen, 1979). Some recent papers

study how to allocate common capacity from a supplier to fulfill random demand from multiple

retailers/customers (e.g., Swaminathan and Srinivasan, 1999; Zhang, 2003; Alptekinoglu et al.,

2013; Asadpour et al., 2020). In particular, Zhong et al. (2017) propose a randomized allocation

policy to satisfy given fill rate requirements from multiple customers. In their paper, however,

the incentive issue arising from self-interested firms is not considered.

Existing papers have observed that due to the incentive conflicts among self-interested parties,

inventory pooling systems (in a broad sense) may not operate in a system-wide optimal fashion

under various contexts such as lateral transshipments (Dong and Rudi, 2004), contract manufac-

turing (Ülkü et al., 2007), and pooling purchases (Hu et al., 2013). In particular, Anupindi and

Bassok (1999) consider a supply chain consisting of a supplier and two retailers where retailers

can jointly hold a centralized inventory. Among many other differences, their setting differs from

ours in that retailers place orders before demand realization, rather than requesting allocations

in an on-demand fashion. Cachon and Lariviere (1999) consider an on-demand allocation of a

supplier’s capacity to multiple retailers. However, they focus on the impact of pre-announced

allocation rules under price-only contracts and do not address the supply chain coordination

problem. More similar to our setting, Netessine and Rudi (2006) allow the supplier and retailers

to determine their own inventory levels before demand realization, while, if needed, retailers can

receive an allocation of the supplier’s inventory on demand. They focus on wholesale price con-

tracts and characterize the equilibrium of the noncooperative game among supply chain parties.

Unlike the above papers, our work considers a staffing system with different model features. More

importantly, none of the existing papers has explored coordinating contracts for a decentralized

inventory pooling system with on-demand allocation, which is the focus of our study.

3 The Model

We consider a staffing system consisting of a set of n firms (“he”) as potential employers, denoted

by I = {1, 2, . . . , n}, and an on-demand staffing platform (“she”) that hires and provides an

on-demand workforce. Throughout the paper, the terms “firm” and “employer” will be used

6
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interchangeably.

We focus on homogeneous workers and a single type of job so that the jobs offered by each firm

can be filled by any potential workers in the market. This is a reasonable assumption for staffing

services provided by many platforms in practice, which fill nonspecialized job positions such as

dishwashers in restaurants and cashiers in retail stores (e.g., Jitjatjo, InStaff). For example, a

dishwasher can work for any restaurant, and a cashier can be assigned to work for most retail

stores. Firm i (i ∈ I) faces a stochastic demand Xi for the workforce, which can be measured

by the number of workers needed for the business.6 Let Fi(x) denote the marginal distribution

of Xi, and F̄i(x) = 1− Fi(x). For technical convenience, we assume that Xi is a continuous and

nonnegative random variable with Fi(0) = 0, for all i ∈ I. The demands for different firms are

not necessarily independent or identical. We assume that the first moment of Xi is finite for all

i ∈ I. The distributions Fi are common knowledge to the platform operator and all firms, but

individual workers do not need to know this demand information.

Firms can recruit permanent workers from a traditional channel before demand is realized.

We denote by Qi the permanent staffing level of Firm i. Once recruited, permanent workers

cannot be laid off. The wage rate for the permanent workforce is exogenously given by c. We

assume c to be identical for all firms, since we consider the same type of labor and c represents

a standard wage rate in the (permanent) labor market.7 Since the staffing level of each firm

may not exactly match the demand, an understaffing cost will be incurred at a rate p when the

number of workers available for an employer is less than his demand. The value of p can, for

instance, represent the overtime pay rate required by labor laws.8

Firms may request on-demand workers from a staffing platform to cover personnel shortfalls,

denoted by X̂ = (X̂1, X̂2, · · · , X̂n), where X̂i = (Xi − Qi)
+ := max{0, Xi − Qi} for all i ∈ I.

For ease of exposition, in the main text we assume that there is a population of infinitesimal

self-scheduling workers with size N who decide whether to work via the platform based on their

own availability.9 In Appendix E, we show that the proposed coordination mechanism remains

valid even when the assumption of infinitesimal workers is relaxed. An on-demand worker is

willing to work only if his earnings are greater than or equal to his availability threshold. The
6For example, if one worker’s regular number of hours worked per day is 8, and in a single day Firm i has a

task requiring 12 hours of labor, then the firm’s demand on that day equals 1.5.
7Our results can be readily extended to the case in which firms have heterogeneous staffing cost for hiring

permanent workforce.
8According to the Fair Labor Standards Act (FLSA) the overtime pay rate for eligible employees is at least one

and one-half times their regular wage rate (see https://www.dol.gov/whd/flsa/). Therefore, the understaffing
cost due to overtime compensation in this case is given by p = 1.5c.

9By the nature of infinitesimal workers, there are infinitely many workers each of who offer an infinitely small
amount of labor supply that adds up to a total supply of N . Such an assumption is quite common in the literature
(e.g., Gurvich et al., 2019). In the rest of the paper, more precisely, the notation of one on-demand worker means
one unit of on-demand labor supply.
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availability threshold τ for each worker is drawn independently from an identical distribution

G. We assume that G is continuous and log-concave (Bagnoli and Bergstrom, 2005), and the

density function g is strictly positive on a given support [τ , τ̄ ]. Let Ḡ(τ) = 1−G(τ). We assume

that permanent workers and the on-demand workforce have similar capabilities for the job10 and

the total amount of labor supply from on-demand workers, N , is sufficiently large. To encourage

enough workers to work, the platform announces a compensation rate η to potential workers

at the beginning,11 and then allocates the available on-demand workforce, denoted by S, to

fill the firms’ job vacancies X̂. By the assumption of infinitesimal workers, S = NG(η) if the

compensation rate is set as η. Note that the above model setup implies that in the main paper

we will focus on a setting in which workers get paid based on their on-call time, instead of their

actual working time. This assumption is in line with Gurvich et al. (2019) and corresponds to

the practical situations in which on-demand workers who have agreed to be available are subject

to certain restrictions while waiting for assignment.12 In reality, some platforms may adopt an

alternative compensation scheme under which on-demand workers are paid based on their actual

working time (see, e.g., Cachon et al., 2017)). In Appendix F, we discuss this alternative setting

and show that the proposed coordination mechanism is still applicable.13

We denote byAi(X̂, S) the number of on-demand workers allocated to Firm i. The allocations

A(X̂, S) = (A1(X̂, S), A2(X̂, S), · · · , An(X̂, S)) may depend on each firm’s job vacancies and

the number of available workers. We allow the platform to randomize her allocation policy, i.e.,

A(X̂, S) does not need to be a deterministic function of X̂ and S. In general, an allocation

policy should satisfy the following restrictions:

∑
i∈I

Ai(X̂, S) ≤ S, and 0 ≤ Ai(X̂, S) ≤ X̂i, almost surely, ∀X̂ ∈ Ω, (1)

where Ω denotes the set of all realizations of X̂, and these conditions must be satisfied almost

surely if the allocation policy is not deterministic. That is, the total amount of on-demand

workers allocated cannot exceed the available workforce level S, and each firm receives a non-
10This assumption may depend on the types of jobs, yet it is reasonable for nonspecialized jobs as we consider

in the paper.
11On-demand staffing platforms often post the wage rate on their websites. For instance, InStaff and

Weploy have hourly wage rates posted online; see https://en.instaff.jobs/costs-and-benefits, https:
//www.weployapp.com/weployer/pricing.

12For instance, when on-call workers are required to respond quickly to calls or stay within a limited distance
from work, they would be entitled to be paid while on call. See a detailed discussion about on-call compensation at
https://www.shrm.org/resourcesandtools/tools-and-samples/hr-qa/pages/cms_020208.aspx. Moreover, in
some areas it is considered to violate labor laws if on-demand workers will not be paid when they do not get the
opportunity to work (Strauss Law Blog, 2015).

13When temporary workers are paid based on actual working time, they will decide whether to participate
based on the rational expectation of future earnings. This will only complicate the computation of the system-
wide optimal solution, but one can still use the form of contracts proposed in our paper to coordinate the system.
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negative allocation that is not greater than his request. We define A as the set of all allocation

policies that satisfy (1). To use the on-demand workforce, each firm makes a transfer payment

wi(A, X̂) to the platform operator, which may generally depend on firms’ requests X̂ and the

actual allocations A(X̂, S).14 For ease of notation, we will sometimes suppress the dependence

of Ai on (X̂, S) and use A(·) to emphasize the policy nature of the allocation as a function, and

similarly for wi and w(·).

In line with the literature on supply chain coordination (see, e.g., Cachon, 2003; Chen et al.,

2016), we adopt the Nash equilibrium as our solution concept and assume that all parties are risk-

neutral. For any given transfer payment scheme, w(·) = (w1(·), w2(·), . . . , wn(·)), the platform

operator chooses the allocation policy A(·) and the compensation rate η to maximize her expected

profit by solving the following problem:

max
η,A(·)

Π(η,A (·) |Q) =
∑
i∈I

E
[
wi

(
A, X̂

)]
− ηNG(η)

s.t. A(X̂, S) ∈ A, S = NG(η)

(2)

whereas each Firm i determines the permanent staffing level Qi to minimize his expected staffing

cost as follow:

min
Qi≥0

hi(Qi|Q−i,A(·), η) = E
[
p
(
(Xi −Qi)

+ −Ai

)+
+ wi(A, (X −Q)+)

]
+ cQi. (3)

where Q−i represents the vector of all the other firms’ staffing levels and ((Xi −Qi)
+ −Ai)

+

is the final understaffing level of Firm i after using the on-demand workforce. Note that the

expectation is taken over both X and A if the allocation is randomized. To rule out trivial

solutions, we assume p > c > 0 such that firms will maintain some permanent workers without

any on-demand workforce, and p > τ > 0 such that it is profitable to utilize the on-demand

workforce without any permanent workers.

The sequence of events is summarized as follows. (a) Under a payment scheme w(·), the

platform operator sets and announces her allocation policy A(·), and compensation rate η; si-

multaneously, each firm determines his permanent staffing level Qi. (b) Knowing the compensa-

tion rate, each worker decides whether to work based on an availability threshold τ , drawn from

distribution G, and receives compensation η, if available. Meanwhile, each firm’s labor demand

Xi is realized, and firms post unmet demand X̂i = (Xi−Qi)
+ on the platform. (c) Given realized

labor supply and demand posted on the platform, the platform operator carries out the allocation
14In practice, platforms sometimes quote this transfer payment in two parts: compensation to the temporary

workers plus a commission fee. For ease of exposition, we do not model the commission fee explicitly, but one can
easily find the corresponding commission cost by subtracting workers’ wage from the transfer payment.

9
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according to the announced policy. Then the understaffing cost p((Xi −Qi)
+ − Ai)

+ occurs to

each firm, and firms make transfer payments w(A, X̂) to the platform operator. Notationwise,

we will use X̂i to simplify expressions as much as possible, but we will expand it as (Xi −Qi)
+

if we want to emphasize its dependence on Qi.

Remark 1. We make the following remarks on the sequence of events and modeling assumptions.

(1) The platform operator does not need to observe each firm’s permanent staffing level, and

each firm does not need to observe other firms’ staffing levels or the platform operator’s

decisions. In effect, the firms’ staffing decisions and the platform operator’s decision on the

allocation policy and compensation rate constitute a simultaneous-move game. However,

our proposed coordination mechanism will be valid even when either the platform or the

firms move first.

(2) In the above model, we have assumed that firms’ vacancies X̂i = (Xi−Qi)
+ are verifiable.

In practice, this assumption is often satisfied, because the assigned workers can eventually

verify the actual working time. If the actual working time is different from the requested

time, the platform may intervene.15 Nevertheless, we will relax this assumption in Section 7

and show that the proposed mechanism can be adapted to ensure that firms will truthfully

report their job vacancies.

(3) In line with the supply chain coordination literature, in the analysis we consider the pay-

ment scheme w(A, X̂) to be determined by a central planner. As we show later, both

the platform operator and individual firms will be willing to adopt the proposed payment

scheme, as it can flexibly distribute the benefit of coordination among all players and make

every player better off.

In what follows, we will first characterize the system-wide optimal solution (η∗,A∗(·),Q∗)

which minimizes the total expected cost of the staffing system, and then propose a payment

scheme w(·) such that under the payment scheme the system-wide optimal solution (η∗,A∗(·),Q∗)

constitutes a Nash equilibrium in the game the platform operator and n firms. Formally,

(η∗,A∗(·),Q∗) is a Nash equilibrium if

(i) given Q∗, (η∗,A∗) ∈ argmaxη,AΠ(η,A(·)|Q∗) as defined in problem (2); and

(ii) for all i ∈ I, given (η∗,A∗(·)) and Q∗
−i, Q

∗
i ∈ argminQi≥0 hi(Qi|Q∗

−i,A
∗(·), η∗) as defined

in problem (3).
15For example, in case the actual working time is much shorter than previously estimated, InStaff requires that

employers pay 80% of the previously estimated amount. See https://en.instaff.jobs/terms.
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That is, given firms’ staffing levels fixed at Q∗, the system-wide optimal compensation rate

η∗ and allocation rule A∗(·) maximize the platform’s payoff; given the platform choosing the

compensation rate η∗ and allocation rule A∗(·) and other firms choosing staffing level Q∗
−i, Q

∗
i

minimizes each Firm i’s staffing cost. Moreover, the proposed payment scheme makes all the

parties better off with on-demand staffing. For readability, we will discuss the main ideas and

sketch the proofs of some key results in the main text, but refer interested readers to Appendix

A for the details.

4 System-wide Optimal Staffing Strategies: When Is an On-demand

Workforce Beneficial?

In this section, we investigate when, from a system-wide point of view, an on-demand workforce

can offer cost-saving benefits compared with a traditional staffing solution. This is equivalent

to analyzing how the benefits of an on-demand workforce can be maximized when there are no

conflicts of incentives from different parties in a centralized system. The results of this section

will serve as a benchmark when we analyze the original problem, i.e., the decentralized system,

in the next section.

From a system-wide perspective, the transfer payments are irrelevant in this analysis. For

any feasible allocation policy, the system-wide optimization problem over Q = (Q1, Q2, . . . , Qn),

η, and A(·) can be written as

min
Q,η,A(·)

p
∑
i∈I

E
[
(Xi −Qi)

+ −Ai

(
(X −Q)+ , S

)]
+ ηNG(η) + c

∑
i∈I

Qi

s.t. A(·) ∈ A

S = NG(η)

Qi ≥ 0, ∀i ∈ I

It is straightforward to see that the following no-waste condition holds in the optimal solution;

otherwise, one can always reduce the understaffing cost by filling more job vacancies:

∑
i∈I

Ai

(
X̂, S

)
= min

{
S,
∑
i∈I

(Xi −Qi)
+

}
, almost surely, ∀X ∈ Ω. (4)

Together with the relation min{x, y} = y − (y − x)+, we can simplify the objective function as

C(Q, η) := pE

[(∑
i∈I

(Xi −Qi)
+ − S

)+]
+ ηNG(η) + c

∑
i∈I

Qi. (5)
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Thus, the allocation policy A(·) is irrelevant to the system-wide optimization. However, the

allocation policy matters when the system is decentralized, and it is one of the key challenges in

coordinating the system.

To characterize the structure of the solution in the general setting, we first consider two

special cases in which only the permanent or on-demand workforce is available, and then derive

the optimal staffing strategy when there is a mix of workforce. First, suppose that firms have no

access to an on-demand staffing platform, and thus must rely solely on the permanent workforce.

Minimizing (5) is reduced to minQ≥0
∑

i∈I
{
pE
[
(Xi −Qi)

+]+ cQi

}
. It is easy to see that the

optimal permanent staffing level without on-demand workforce, denoted by Qp
i , is determined

by the first-order condition pF̄i(Q
p
i ) = c. Second, suppose instead that the system can only use

the on-demand workforce via the platform. By the log-concavity of G, it can be shown that the

system-wide optimal compensation rate, denoted by ηo, is determined by

1− F∑
X (NG(ηo)) =

1

p

(
ηo +

G(ηo)

g(ηo)

)
, (6)

where F∑
X represents the cumulative distribution function of

∑
i∈I Xi.16

The following theorem shows that the system-wide optimal staffing strategy can be charac-

terized with two thresholds ϕo and ϕp defined as ϕo = ηo +G(ηo)/g(ηo), and ϕp = p(1−P(Xi ≤

Qp
i , ∀i ∈ I)) = pP(Xi > Qp

i , for some i ∈ I). In general, the optimal staffing strategy can use

either the on-demand or permanent workforce exclusively, or a combination of both.

Theorem 1. (System-wide Optimality) (i) If τ ≥ ϕp, it is optimal to exclusively use per-

manent workers: η∗ = τ , and Q∗
i = Qp

i for all i ∈ I where Qp
i = F−1

i (p− c/p).

(ii) If c ≥ ϕo, it is optimal to exclusively use the on-demand workforce: Q∗
i = 0 for all i ∈ I, and

η∗ = ηo as defined in (6).

(iii) Otherwise, mixed use of the permanent and on-demand workforces is optimal; optimal

staffing levels and compensation rates satisfy the following optimality conditions:

pP

(
NG(η∗) <

∑
i∈I

(Xi −Q∗
i )

+

)
= η∗ +

G(η∗)

g(η∗)
,

pP

(
Q∗

i < Xi, NG(η
∗) <

∑
i∈I

(Xi −Q∗
i )

+

)
= c, ∀i ∈ I.

Theorem 1 shows that the on-demand workforce complements permanent employees unless

the workers’ minimum availability threshold is too high, i.e., τ ≥ ϕp. Specifically, the system
16Because we have assumed that N is sufficiently large and p > τ , there exists a unique ηo ∈ (τ , τ̄) that satisfies

equation (6).
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should use the on-demand workforce exclusively if the permanent staffing cost c exceeds ϕo. Due

to the self-scheduling behavior of on-demand workers, a higher compensation rate is required

to attract more of them. Therefore, a mixed workforce can be optimal to balance the use of

on-demand workforce with some permanent employees.

Whether the on-demand workforce benefits the system depends on the critical threshold

ϕp. Analogous to the wisdom of inventory pooling (Eppen, 1979), an important benefit of the

on-demand workforce lies in the risk-pooling effect as multiple random demands are filled by

a common pool of on-demand workers. Therefore, the on-demand workforce would be more

favorable, as the risk-pooling effect is stronger, as formalized below. Let X and X′ be two n-

dimensional random vectors. Then, X is said to be smaller than X′ under the supermodular order,

denoted by X ≤SM X ′, if E[ψ(X)] ≤ E[ψ(X′)] for all supermodular functions ψ : Rn → R. The

supermodular order is a multivariate positive dependence order, which compares distributions

exclusively based on their dependence (see, e.g., Corbett and Rajaram, 2006; Mak and Shen,

2014, and references therein). For example, let X and X ′ have the same (but arbitrary) marginal

distributions with Normal copulae C and C ′ characterized by covariance matrices ΣX and ΣX′ ,

respectively. If ΣX ≤ ΣX′ componentwise, that is, X ′ has a higher pairwise dependence than

X, then X ≤SM X ′ (see Proposition 5 and its proof in Corbett and Rajaram, 2006).

Corollary 1. (i) Suppose that Xi’s are independent across i. Then ϕp is increasing in n, and

ϕp → p as n → ∞. That is, on-demand staffing always survives when there are sufficiently

many employers with independent demands. (ii) For any two demand vectors X and X ′ such

that X is smaller than X ′ in the supermodular order, written as X ≤SM X ′, the corresponding

thresholds satisfy ϕp(X) ≥ ϕp(X ′).

The on-demand workforce will be always beneficial if the number of employers is sufficiently

large and their demands are independent. This is because as n goes to infinity, the probability

P(Xi > Qp
i , for some i ∈ I) will tend to one such that ϕp ≈ p > τ . Moreover, the on-demand

workforce would be more attractive as firms’ demands are less dependent across each other.

Corollary 2. Q∗
i ≤ Qp

i for all i ∈ I.

Not surprisingly, with access to the on-demand workforce, firms should hire (weakly) fewer

permanent employees than they would with the traditional staffing mode from a system-wide

perspective. Corollary 2 highlights the importance of attracting individual firms to use the on-

demand workforce with certain mechanisms. Self-interested firms may refuse to risk using the

on-demand workforce unless a proper allocation of the on-demand workforce can be ensured and

also aligned with the platform operator’s incentive.
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5 Coordination Mechanisms for the Decentralized System: Max-

imizing the Benefits of an On-Demand Workforce

We now consider a decentralized system in which the platform operator and n firms are self-

interested. To exclude the uninteresting case in which the on-demand workforce should never

be used (i.e., Part (i) of Theorem 1), we will henceforth assume τ < ϕp. In such a system,

the platform operator has to determine both the allocation policy and service contracts, and

simultaneously, the firms decide their staffing strategies. The problem is challenging because the

coordination here relies on the allocation policy and the payment scheme, A(X̂, S) and w(A, X̂),

both of which can distort each firm’s incentive. The allocation policy affects the labor supply

that each firm is expected to get from the platform, and the payment scheme affects the cost

of using the on-demand workforce. The two mechanisms need to be designed in the way that

collectively, they induce all the firms to choose the optimal staffing strategies as in the centralized

system to maximize the benefits of the on-demand workforce. To tackle this problem, we first

discuss the allocation policy and then turn to the service contract design. We will show that our

proposed mechanisms coordinate the decentralized system to achieve the first-best solution.

5.1 Allocation through Target Fill Rates

Although the allocation policy is irrelevant to the system-wide optimization, it will crucially

influence how individual firms determine their optimal staffing levels in the decentralized system.

In the existing literature on capacity pooling and allocation, a widely studied policy is called the

relaxed linear allocation rule (see, e.g., Cachon and Lariviere, 1999; Netessine and Rudi, 2006),

defined as

Alin
i

(
(X −Q)+, S

)
= min

{
(Xi −Qi)

+, (Xi −Qi)
+ − 1

n

(
n∑

k=1

(Xk −Qk)
+ − S

)}
∀i ∈ I. (7)

Under the above allocation rule (and many others discussed in the literature), a firm’s expected

allocation depends on other players’ staffing levels, leading to a noncooperative game among all

the players. In Appendix B, we analyze our staffing system under the relaxed linear allocation

rule along with a price-only contract—a typical setting considered in the literature. We show

that due to the gaming effect, the equilibrium and system efficiency can substantially deviate

from the system-wide optimality.

To resolve the above challenges, the ideal allocation policy should make each Firm i’s expected

allocation E[Ai] independent of the other firms’ job vacancies or permanent staffing levels. In

what follows, we will first show that a novel fill rates-based allocation policy A∗(·) can resolve the
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above gaming effect, and then propose a form of contracts with target fill rates which induces the

system-wide optimal solution in the decentralized system (and also incentivizes the self-interested

platform operator to implement the proposed allocation policy).

By drawing the similarities between the inventory allocation in a pooling system and our

on-demand workforce allocation, we leverage the Randomized Priority List policy developed in

Zhong et al. (2017) based on online optimization to address the challenges in our context. For

completeness, we summarize the allocation policy and describe it in our context as Algorithm 1

below. We name the policy as Target Fill Rate-Based (TFRB) policy to highlight the importance

of target fill rates in coordinating the on-demand workforce system. Note that the policy has to be

announced before the demand realization, and the firms can expect the received workforce levels

based on their demand distribution and the announced policy. With slight abuse of notation,

we use X̂ to denote the realized demand requests from the firms, and Algorithm 1 derives the

amounts of workforce allocated to each firm. The policy takes in the target fill rate for each

firm, denoted as βi ∈ [0, 1]. We will show in Lemma 1 that if the allocation follows Algorithm

1, the target fill rates for all the firms can be satisfied in expectation and that the system-wide

optimality can be achieved when the set of target fill rates are optimally chosen by solving a

simple linear program (LP).

Lemma 1. The system achieves the minimum staffing cost C(Q∗, η∗) if the n firms set their

permanent staffing levels as Q∗ and the platform operator offers a wage rate η∗ and allocate the

available on-demand workforce according to the TFRB policy A∗(·) with a set of target fill rates

β∗, where Q∗ and η∗ are as described in Theorem 1 and β∗ = (β∗1 , β
∗
2 , . . . , β

∗
n) is an optimal

solution to the linear program below:

max
β

∑
i∈I

βi E[(Xi −Q∗
i )

+]

s.t.
∑
i∈U

βi E[(Xi −Q∗
i )

+] ≤ E

[
min

{
S∗,
∑
i∈U

(Xi −Q∗
i )

+

}]
, ∀U ⊆ I

βi ≥ 0, ∀i ∈ I

(8)

Moreover, the expected allocation satisfies E[A∗
i ((X − Q∗)+, S∗)] = β∗i E[(Xi − Q∗

i )
+], for all

i ∈ I.

The first set of constraints in problem (8) describes the feasibility conditions of the system.

Given the workforce level S and the demand profiles, there are upper limits on the fill rates that

can be satisfied through the allocation policies, which are captured by this set of inequalities.

The last part of the above lemma shows that the expected amount of on-demand workers received
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Algorithm 1 Target Fill Rate-Based (TFRB) Policy

* Input: Realization of requested demand X̂; distribution of X̂; workforce level S; target
service level β = (β1, β2, · · · , βn).

1. Simulate T samples of realized requested demand using the distribution of X̂, where T is a
large number. This gives rise to T realized requested demand vectors for the firms, denoted
as X̂(1), X̂(2), . . . , X̂(T ). Treat these as the requested demands for T periods, i.e., X̂(t)
is the requested demand in simulated period t for t = 1, 2, . . . , T . Assume the allocation
problem is repeated T times with S amount of workforce to allocate in each period.

a. Initiate t = 1. Allocate the workforce arbitrarily for requested demand X̂(1). The
initial allocation will not affect the convergence results of the policy. Set t = 2.

b. In the simulated period t, for t > 1, allocate the workforce, S, based on a priority
rule that firms with higher priorities will be satisfied fully before those with lower
priorities. The allocation ends either when the workforce is depleted or all the requested
demands are satisfied. The priority of Firm i is based on the gap between the expected
allocation in the past (t− 1) simulated periods and the actual allocation received, i.e.,
(t − 1)βi E[X̂i] −

∑t−1
s=1Ai(s), where with a little abuse of notation, Ai(s) represents

the actual workforce allocated to Firm i in simulated period s. Firms with larger gaps
in the past have higher priorities in the current period. Let [i] denote the index of the
firm at the ith position in the priority list. There are two possible scenarios:

• Scenario 1:
∑

i∈I X̂[i](t) > S, i.e., the workforce is not sufficient to satisfy the
requested demands of all firms. Define i′ = min{j :

∑j
i=1 X̂[i](t) > S}. Then

the allocation stops at Firm [i′] with A[i](t) = X̂[i](t), for all i < i′, and Firm [i′]

receives the remaining amount of workforce, i.e., A[i′](t) = S−
∑i′−1

j=1 X̂[j](t). The
remaining firms receive zero allocation.

• Scenario 2:
∑

i∈I X̂[i](t) ≤ S, i.e., the workforce is sufficient to satisfy the re-
quested demands of all firms. Then A[i](t) = X̂[i](t), for all i ∈ I.

Set t = t+ 1.

c. Repeat Step b until t > T . Denote the priority list used in simulated period t
as L(t), for t > 1. By this step, we have generated (T − 1) priority lists, i.e.,
L(2), L(3), . . . , L(T ). Each priority list corresponds to a ranking of n firms.

2. Randomly draw one priority list from the set of (T − 1) priority lists generated in Step 1,
{L(2), L(3), . . . , L(T )}.

3. Allocate X̂i amount of workforce to Firm i following the priority list obtained in Step 2
until reaching the end of the list, or the available workforce is depleted.

* Output: An allocation of on-demand workforce A(X̂, S) obtained from Step 3.
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by Firm i is independent of the other firms’ requests if the optimal target fill rate β∗i is specified

in a contract beforehand. This can therefore resolve the gaming effect discussed earlier.

We note that there are generally multiple solutions of β∗ to the LP problem (8). Under a

corner solution of the LP, some firms may be offered with much lower fill rates than others. To

refine the solution such that the offered fill rates are close to each other as much as possible, we

can follow the procedure below.

Algorithm 2 Refinement of Target Fill Rates

* Input: System-wide optimal S∗ and Q∗ and distribution of X to evaluate E[(Xi − Q∗
i )

+]
for all i ∈ I and E

[
min

{
S∗,
∑

i∈U (Xi −Q∗
i )

+
}]

for all U ⊆ I.

1. Solve the following LP to maximize the lower bound of all feasible fill rates:

max
β,b

b

s.t.
∑
i∈U

βi E[(Xi −Q∗
i )

+] ≤ E

[
min

{
S∗,
∑
i∈U

(Xi −Q∗
i )

+

}]
, ∀U ⊆ I

βi ≥ b, ∀i ∈ I.

(9)

Obtain b∗ as the optimal objective value of problem (9).

2. Solve problem (8) with an additional set of constraints:

βi ≥ b∗, ∀i ∈ I. (10)

* Output: Target fill rates β∗ = the optimal solution from Step 2.

In Algorithm 2, we first find the maximum lower bound of all feasible fill rates by solving

problem (9). Then, using the maximum lower bound b∗, we refine the feasible set of the original

problem (8) by requiring all the βi’s not less than b∗. Thus, solving the refined LP will help

avoid assigning an extremely low fill rate to any firm.17 If the original LP has an optimal solution

such that all the β∗i ’s are equal (which may not be true in general), then we have β∗i = b∗ for

all i ∈ I and Algorithm 2 will identify that solution. Our extensive numerical study suggests

that using Algorithm 2, one can significantly reduce the difference in the optimal target fill

rates associated with each firm. Moreover, in 83% of the instances we tested (including ones

with highly asymmetric firms), the refined fill rates by Algorithm 2 are identical18 to all firms.

Detailed numerical results are reported in Appendix C.
17We are grateful to the anonymous Associate Editor for suggesting this approach.
18The refined fill rates are said to be identical if we observed the difference between the maximum and minimum

fill rates offered is less than 10−6.

17

Electronic copy available at: https://ssrn.com/abstract=2783617



5.2 Coordination Contract

We first propose a form of contracts based on the optimal target fill rates β∗ and then verify that

it coordinates the system when contract parameters are appropriately chosen. We say a contract

w(·) coordinates the decentralized system if (i) under the proposed contract, the system-wide

optimal permanent staffing levels Q∗ and compensation rate η∗ along with the TFRB policy

A∗(·) constitute a Nash equilibrium defined in Section 3, and (ii) the proposed contracts provide

the platform operator with a nonnegative expected profit and not render individual firms worse

off by joining the platform.

We consider the following form of service contracts between the platform operator and each

Firm i, which consists of a membership fee ri, a fixed rate wF
i and a contingent payment

wC
i (Ai, X̂i) based on the target fill rate β∗i . Note that the values of β∗i ’s can be generated

according to Lemma 1 beforehand.

• Membership Fee. To enjoy the platform’s on-demand staffing services, each firm pays a

membership fee for registration, denoted by ri, to the platform operator.

For the other contract terms, we introduce a set of parameters mi’s; as will be shown later, the

value of each mi can be properly chosen to coordinate the system.

• Fixed Rate. For each unit of an on-demand workforce allocated, Firm i pays a fixed rate

to the platform

wF
i = p

(
1− mi

β∗i

)
. (11)

• Contingent Payment. Depending on the actual allocation Ai and job vacancy X̂i =

(Xi −Qi)
+, Firm i makes a contingent payment defined as

wC
i (Ai, X̂i) =

pmi(Ai − β∗i X̂i)

β∗i
. (12)

The above contingent payment wC
i (Ai, X̂i) has an intuitive interpretation. If the actual allocation

oversatisfies the fill-rate based target, i.e., Ai > β∗i X̂i, the term wC
i (Ai, X̂i) serves as a price

premium. If the delivered allocation is below the target, i.e., Ai < β∗i X̂i, then wC
i (Ai, X̂i)

is negative and can be viewed as a subsidy to Firm i. From the practical perspective, the

proposed contingent payment is in line with the concept of performance-based contracting used

in the on-demand staffing industry, among many other service industries, in that it separates

the customer’s expectations of service and the service provider’s actual performance (Kim et al.,

2007). Based on our interview with a leading staffing platform in the Netherlands that provides
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on-demand workers to, e.g., warehouses owned by retailers and logistics providers, performance-

based contracts are commonly used. For example, its service contracts with clients are contingent

on the actual number of picks performed at a warehouse relative to a target number with each

client; a bonus or minus payment can be applied depending on whether the delivered number

is higher or lower than the target.19 Another example is call center staffing services, for which

the contract terms often depend on the number of calls answered compared to a target number

specified in the service agreement (Robbins and Harrison, 2011).

5.2.1 Platform Operator

We first consider the platform operator’s problem under the proposed contract. The platform

operator must pay ηS = ηNG(η) to compensate the on-demand workers available and deploy

them in an on-demand fashion. She will thus incur an overstaffing cost whenever the number

of available on-demand workers exceeds aggregate demand
∑

i∈I X̂i. Therefore, the platform

operator may target a lower on-demand staffing level than the system-wide optimal level S∗

unless the payment scheme penalizes her appropriately in the event of a staffing shortfall. As

will be shown below, the contingent term wC
i (Ai, X̂i) exactly plays this role in balancing the

platform operator’s overage and underage risks.

Given individual firms’ permanent staffing levels fixed as Q, under the proposed payment

scheme the platform operator’s problem (2) can be reduced to

max
η,A(·)

Π(η,A(·)|Q) = −ηNG(η) +
∑
i∈I

E
[
wF
i Ai + wC

i

(
Ai, X̂i

)
+ ri

]
= −ηNG(η) + p

∑
i∈I

E [Ai]− p
∑
i∈I

mi E
[
X̂i

]
+
∑
i∈I

ri

= −ηNG(η) + pE

[
min

{
S,
∑
i∈I

X̂i

}]
− p

∑
i∈I

mi E
[
X̂i

]
+
∑
i∈I

ri,

where S = NG(η). The first equality follows by the definitions of wF
i and wC

i (·). The second

equality follows by invoking the no-waste condition (4) for the allocation policy. We can further

19In our model, β∗
i X̂i and Ai represent the amounts of the workforce (e.g., total working hours by the on-

demand workforce) targeted and delivered; they can be readily converted to some productivity measures, e.g., the
number of picks, by multiplying the total hours by the average productivity per worker per hour.
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rewrite the platform operator’s profit as

Π(η,A(·)|Q) = −ηNG(η)− c
∑
i∈I

Qi − pE

[(∑
i∈I

X̂i − S

)+]
+ c

∑
i∈I

Qi + pE

[(∑
i∈I

X̂i − S

)+]

+ pE

[
min

{
S,
∑
i∈I

X̂i

}]
− p

∑
i∈I

mi E
[
X̂i

]
+
∑
i∈I

ri

= −C(Q, η) + p
∑
i∈I

(1−mi)E
[
(Xi −Qi)

+]+ c
∑
i∈I

Qi +
∑
i∈I

ri,

where the last equality follows by the definition of C(Q, η), i.e., the system’s cost function as

defined in (5), the relation (x−y)++min{y, x} = x, and X̂i = (Xi−Qi)
+. Thus, maximizing Π

over η is equivalent to minimizing C(Q, η) when permanent staffing levels are being fixed as Q.

Therefore, given Q = Q∗, the platform operator will set η to be the system-wide optimal value

η∗ in the same manner as we did in Section 4.

Furthermore, it is easy to see that the platform operator is indifferent among all allocation

policies that satisfy the no-waste condition, and so it will be optimal for the platform to assign

the on-demand workforce according to the TFRB policy.20

Lemma 2 below summarizes the above discussion and concludes that the proposed contract

aligns the platform operator’s incentive with the system.

Lemma 2. Suppose that the permanent staffing levels are fixed as Q∗. The payment schemes

wF
i and wC

i , defined in (11) and (12), incentivize the platform operator to choose the system-

wide optimal compensation rate η∗ and to voluntarily allocate the on-demand workforce via the

TFRB policy A∗(·) such that the optimal target fill rates β∗ as characterized in Lemma 1 are

warranted in expectation.

5.2.2 Individual Employers

Next, we turn to the incentive issue for individual firms. The decentralized system can be

coordinated only if the system-wide optimal permanent staffing levels Q∗ are chosen by self-

interested firms. We should ensure that under the proposed contracts, Q∗
i minimizes hi(Qi), as

defined in (3) for each Firm i, given that the platform operator chooses the system-wide optimal

compensation rate η∗ and follows the TFRB policy A∗(·).

Generally, firms may engage in a noncooperative game when choosing Q. The proposed

mechanism eliminates this issue and dramatically simplifies each firm’s problem. Under the
20Here, we invoke the conventional assumption that when facing a set of indifferent allocation policies, the

platform operator will choose the one that favors the system. In our setting, this can be justified because the
platform operator may encourage firms’ participation and accrue goodwill by following the desired allocation
policy.
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contract mechanism, Firm i’s expected payment to the platform is E[wF
i Ai+wC

i (Ai, X̂i)+ ri] =

pE[Ai −mi(Xi −Qi)
+] + ri, and its expected understaffing cost is pE[(Xi −Qi)

+ −Ai]. Thus,

Firm i’s problem can be reduced to

min
Qi≥0

hi(Qi) = p (1−mi)E
[
(Xi −Qi)

+]+ cQi + ri. (13)

The formulation highlights the critical impact of contract parametermi on Firm i’s permanent

staffing level. The following lemma demonstrates that with a properly chosenmi, Firm i’s optimal

permanent staffing level aligns with the system-wide optimal value of Q∗
i .

Lemma 3. Under the contract (ri, wF
i , w

C
i ), each Firm i will choose the system-wide permanent

staffing level Q∗
i if parameters mi’s are chosen such that

mi =
pF̄i(Q

∗
i )− c

pF̄i(Q∗
i )

, ∀i ∈ I. (14)

Note thatmi is decreasing in Q∗
i—or, equivalently, increasing in the expected usage of on-demand

workforce—which indicates that to achieve coordination, the platform should share more of the

cost, as the on-demand workforce contributes more to the system.

5.2.3 Individual Participation

It remains to address the participation issue. Under our proposed allocation and contract mech-

anism, the platform operator receives an expected profit Π∗:

Π∗ = p
∑
i∈I

(1−mi)E
[
(Xi −Q∗

i )
+]− C (Q∗, η∗) +

∑
i∈I

ri, (15)

where the values of mi’s are set according to (14). As the values of mi’s must be large enough to

incentivize employers, the first two terms can be negative. Nevertheless, the platform operator

can leverage membership fees to collect a positive surplus. Clearly, membership fees ri’s should

be chosen such that

∑
i∈I

ri ≥ C (Q∗, η∗)− p
∑
i∈I

(1−mi)E
[
(Xi −Q∗

i )
+] . (16)

On the other hand, let hpi = pE[(Xi − Qp
i )

+] + cQp
i , representing the staffing cost incurred

by Firm i when he declines to join the platform. From the discussion in Section 5.2.2, it is

straightforward to see that to ensure each firm’s participation, the membership fee ri should be
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less than Firm i’s cost reduction by on-demand staffing, i.e.,

ri ≤ hpi −
{
p (1−mi)E

[
(Xi −Q∗

i )
+]+ cQ∗

i

}
. (17)

Lastly, since the system attains optimality, the overall staffing cost is reduced by the on-

demand workforce. Thus, there exists a set of membership fees ri’s that satisfy (16) and (17).

Together with Lemmas 2 and 3, we have shown that under the proposed contract, the platform

operator and the n individual firms will voluntarily choose the system-wide optimal solution in

equilibrium and that all parties benefit from the on-demand workforce. Note that the proposed

mechanism cannot lead to any other Nash equilibrium that is strictly worse than the system

optimality. This is because by Lemma 3, Q∗
i is a dominant strategy of Firm i, and so the

platform operator will always consider her problem with all Qi = Q∗
i , which results in system

optimality by Lemma 2. Therefore, we can conclude Section 5’s main result in Theorem 2 below.

Theorem 2. (System Coordination) The contracts (ri, wF
i , w

C
i ) coordinate the system when

parameters mi’s are chosen according to (14) and membership fees ri’s satisfy (16) and (17).

To recap the intuition behind our coordination contracts, note that summing up the three

contract terms results in a total payment of ri + p(Ai − miX̂i), which is linear in the actual

allocation and job vacancy. Broadly speaking, our problem can be viewed as a double-sided

moral hazard problem (e.g., Bhattacharyya and Lafontaine, 1995) in the sense that the platform’s

decisions η and A(·) and each firm’s permanent staffing level Qi jointly determine the system

cost but none of these decisions is contractible.21 The term p(Ai−miX̂i) essentially determines a

risk-sharing rule between each firm and the platform operator. As job vacancy X̂i = (Xi −Qi)
+

depends on each firm’s decision on Qi, a set of properly chosen mi’s will incentivize firms to

choose the system-wide optimal staffing levels Q∗, which in turn aligns the platform operator’s

incentive with the system-wide optimality. Additionally, the membership fees in the contract

not only guarantee individual participation but also enable the gain from coordination to be

flexibly redistributed among all parties in the system. As ri decreases, Firm i will enjoy more

benefit from coordination, whereas the platform operator will surrender more surplus. Thus,

the platform operator and individual firms can bargain over membership fees to divide the total

surplus without affecting system efficiency.

Finally, we close this section by noting that the possible contract terms are affected by

the benefit of inventory pooling. Corollary 3 below shows that the system can be coordinated

without any membership fees if maintaining permanent workers is costly, and such membership-
21Our problem departs from the classic double-sided moral hazard framework (e.g., Bhattacharyya and La-

fontaine, 1995) as it involves (n+ 1) players and the allocation of a common resource.
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free contracts are more likely to achieve coordination as demands are less positively dependent

(i.e., the risk pooling effect is stronger).

Corollary 3. Assuming that exclusively using the on-demand workforce is system-wide optimal,

i.e., Q∗ = 0, the system can be coordinated without membership fees, i.e., ri = 0 for all i ∈ I as

long as c
∑

i∈I E[Xi] ≥ C(0, ηo). Furthermore, C(0, ηo) decreases as X becomes smaller in the

supermodular order.

6 Firm-Independent Contracts

6.1 Exchangeable Demands

We have so far allowed the contract terms to be firm-dependent. In some situations, it may

be easier to implement a contract if the contract terms are identical to all firms. In fact, the

firm-dependent feature of the proposed contract is due to that firms’ demands may follow dif-

ferent marginal distributions, and their dependency may not be symmetric. We say random

demands (X1, X2, . . . , Xn) are exchangeable if the joint distribution of (X1, X2, . . . , Xn) is the

same as that of (X(1), X(2), . . . , X(n)) for any permutation {(1), (2), . . . , (n)} of {1, 2, . . . , n}. The

exchangeability of (X1, X2, . . . , Xn) implies that the marginal distribution Xi is identical across

firms and that the dependence structure of each firm’s demand on the others’ is the same. It

is a weaker condition than requiring the Xi’s to be independent and identically distributed. In

what follows, we establish that there will be a firm-independent contract that can coordinate the

system as long as firms’ demands are exchangeable.

By Theorem 1, under the exchangeability condition, the system-wide optimal staffing levels

Q∗
i for each firm are the same. Let Q∗ denote the system-wide staffing level of individual firms.

The following proposition characterizes the firm-independent contract in closed form, provided

the exchangeability condition. Notably, in such a contract, there is an identical target fill rate

β∗ applied to all firms.

Proposition 1. Assuming that random demands (X1, X2, . . . , Xn) are exchangeable with an

identical marginal distribution F (x), there exists a firm-independent contract (r, wF , wC) that co-

ordinates the system. In the contract, we have wF = p(1−m/β∗), wC(Ai, X̂i) = pm(Ai − β∗X̂i)/β
∗,

and any membership fee r satisfying (16)–(17), where the firm-independent target fill rate is given

by

β∗ =
E
[
min{S∗,

∑
i∈I(Xi −Q∗)+}

]
n
∫∞
Q∗(x−Q∗)dF (x)

. (18)

and the contract parameter m = 1− c/(pF̄ (Q∗)).
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Note that the firm-independent target fill rate in (18) implies that the expected allocation

of each Firm i is given by E[A∗
i ] = E[min{S∗,

∑
i∈I(Xi − Q∗)+}]/n. That is, firms will equally

likely share the on-demand workforce. This is because when all target fill rates are equal and

demands are exchangeable, the priority list used in the TFRB policy will be equally likely drawn

from all the firm permutations.

6.2 Nonexchangeable Demands

When demands are not exchangeable but the contract terms need to be firm-independent for

practical reasons, it is worth exploring whether a firm-independent contract can achieve a rea-

sonably good performance. We consider a firm-independent contract constructed in the following

manner. Notice that the proposed contract terms wF
i and wC

i (·) defined in (11)–(12) depend on

each specific firm’s demand distribution only through the optimal target fill rate β∗i and param-

eter mi, where mi as defined in (14) depends on F̄i(Q
∗
i ), i.e., Firm i’s understaffing probability

without on-demand staffing. To make contract terms firm-independent, (i) we use the best lower

bound of feasible fill rates, i.e., b∗ obtained by solving problem (9), instead of the exact optimal

target fill rates β∗i ’s, to calculate payment terms and, (ii) set

mi = m̄ = 1− c

p
(∑

i∈I F̄i(Q∗
i )/n

) , ∀i ∈ I. (19)

That is, we approximate parameter mi with the average probability
∑

i∈I F̄i(Q
∗
i )/n. As such,

the firm-independent contract terms are given by wF = p(1− m̄/b∗) and wC(Ai, X̂i) = pm̄(Ai −

b∗X̂i)/b
∗ along with any membership fee r satisfying (16)–(17). Note that b∗ is a nominal fill

rate used only for the calculation of the firm-independent contract terms. It can be different

from the fill rates delivered by the platform in equilibrium, as explained below.

The proposed firm-independent contract has the same contractual form as the coordination

contract analyzed in Section 5.2 except that parameter m̄ differs from mi. Following the same

approach as in Section 5.2, we can verify that two appealing properties of the original coordination

contract are preserved: (1) The platform operator is incentivized to minimize the system cost

C(Q, η) over η for any given Q while being indifferent among all the no-waste allocation policies;

(2) each Firm i’s problem reduces to a simple cost minimization over Qi independent of the

actions of other firms and the platform. The resulting equilibrium is summarized below.

Lemma 4. Under firm-independent contract terms, wF = p(1− m̄/b∗), wC(Ai, X̂i) = pm̄(Ai −

b∗X̂i)/b
∗, and any membership fee r satisfying (16)–(17), in equilibrium, each firm chooses a

permanent staffing level QI
i that minimizes its staffing cost hi(Qi) = p(1 − m̄)E[(Xi −Qi)

+] +
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cQi+r, whereas the platform operator sets a compensation rate ηI that minimizes the system cost

given Qi = QI
i for all i ∈ I, and voluntarily adopts the TFRB policy to allocate the on-demand

workforce. The equilibrium leads to a system cost C(QI , ηI).

The target fill rates of the TFRB policy in equilibrium, denoted by βI = (βI1 , · · · , βIn), can

be determined by Algorithm 2 but with the equilibrium staffing levels QI and SI = NG(ηI)

as input. Since every firm now has identical contract terms, the platform can randomize firm

indexes so that each firm will be assigned with any target fill rate βIi from Algorithm 2 with

equal probability. Then, β̄I =
∑n

i=1 β
I
i /n will be the uniform fill rate expected to be delivered

to all firms. Note that β̄I or βIi ’s are not necessarily equal to b∗ in Algorithm 2, which is used

only to calculate contract terms. A more detailed discussion on the equilibrium outcome under

firm-independent contracts can be found in the proof of Lemma 4.

Because m̄ is not generally equal to mi, the QI
i ’s chosen by each firm can deviate from

the system-wide optimal solution Q∗
i , so can the platform’s compensation rate ηI . Note that

the approximation m̄ is exact when Q∗
i = 0 for all i ∈ I. It follows immediately that the

aforementioned firm-independent contract coordinates the system if the system-wide solution

entails exclusive use of the on-demand workforce, as summarized in Proposition 2.

Proposition 2. Suppose that the on-demand workforce should be used exclusively in the system-

wide optimal solution, i.e., Q∗
i = 0 for all i ∈ I. Then, a firm-independent contract (r, wF , wC)

coordinates the system with wF = p(1 − m̄/b∗), wC(Ai, X̂i) = pm̄(Ai − b∗X̂i)/b
∗ and any

membership fee r satisfying (16)–(17), where b∗ is the optimal objective value to problem (9)

and m̄ = (p− c)/p.

For cases where Q∗
i > 0 for some i ∈ I, however, the firm-independent contract could lead

to some inefficiency. We define the loss of efficiency (due to restricting to the firm-independent

contract) as (C(QI , ηI)−C(Q∗, η∗))/C(Q∗, η∗). Below we numerically investigate the efficiency

loss under different parameter settings.

We consider four firms (n = 4) with parameters p = 10, N = 1000, and G ∼ Uniform(3, 9).

To simulate the asymmetric demand distributions, we set random demands as follows. Assume

the mean of total demand to be fixed at 400. Let the mean demand of Firm 1 be 400γ, and

the mean demands of other firms be 400(1− γ)/3, where γ ∈ (0, 1). That is, γ represents the

(average) demand share of Firm 1, while the mean demands of the other three firms are equal.

For example, when γ = 0.25, all the mean demands are equal; when γ = 0.9 (= 0.1), Firm 1

represents an exceptionally big (small) customer of the platform. The marginal distributions

of the Xi’s are chosen from Gamma, log-normal, and uniform distributions with coefficient of
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variation (CV) in {0.5, 1, 1.5}. For uniformly distributed demand, we restrict to a CV of 0.5 to

guarantee nonnegative support.

The joint distribution of (X1, X2, X3, X4) is constructed based on a Gaussian copula with cor-

relation matrix Σ, where Σii = 1 and Σij = ρ for all i, j ∈ {1, 2, 3, 4} and i ̸= j. Here, ρ captures

the demand correlation across firms. For any Firm 1’s demand share γ ∈ {0.05, 0.1, 0.4, 0.6, 0.9, 0.95},

any permanent staffing cost c ∈ {4, 5, 6} and any correlation ρ ∈ {0, 0.5}, we evaluate the loss

of efficiency in the following four sets of experiments: (1) all marginal distributions are Gamma

with an equal CV varied in {0.5, 1, 1.5}; (2) all marginal distributions are log-normal with an

equal CV varied in {0.5, 1, 1.5}; (3) all marginal distributions are uniform with an equal CV

= 0.5; (4) the marginal distribution and CV of each Xi are randomly drawn from {Gamma,

log-normal, uniform} and {0.5, 1, 1.5} respectively with equal probabilities. Note that in the

fourth set of experiments, we test 10 randomly generated mixtures of marginal distributions for

any parameter combinations. In total, there are 714 instances tested.
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Figure 1: [Color online] Performance of firm-independent contracts

Our numerical results are summarized in Figure 1, where we plot the average loss of efficiency

along with error bars showing its maximum and minimum. The firm-independent contract

performs very well with a loss of efficiency less than 1% if γ ≤ 0.4, i.e., Firm 1’s demand share is
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not too different from others (which echos Proposition 1 we established earlier for exchangeable

demands). Even when Firm 1’s demand accounts for 60% of the total demand, in most instances,

the loss of efficiency is below 2%. However, the loss of efficiency becomes larger if Firm 1’s demand

share is extremely large; the worst case we observed has a loss of efficiency of 8.70%, which occurs

when Firm 1’s demand accounts for 95% of the total demand and the marginal distributions are

mixed (see the bottom-right panel of Figure 1). Moreover, we observe that the loss of efficiency

is close to zero for c = 6 because with large permanent staffing cost c, the system-wide optimal

solution uses the on-demand workforce almost exclusively, thus making the firm-independent

contract near-optimal as proved in Proposition 2. We also note that for the instances with c = 4,

most workers used in the system-wide optimal solution are permanent; thus, the selected range of

c is wide enough to cover most possible scenarios, including ones where the on-demand workforce

is not a primary source of labor.

In summary, our numerical study confirms that a firm-independent contract can induce near-

optimal system performance when (1) firms’ demands are fairly similar or (2) the on-demand

workforce is significantly cost-efficient compared to the permanent workforce. Furthermore,

customizing contracts for exceptionally large customers is valuable. Since wF
i decreases with un-

derstaffing probability without an on-demand workforce, F̄i(Q
∗
i ), firms needing more on-demand

workers should get lower fixed rates in the coordinating contract. In practice, it is not uncommon

to offer discounts to big customers.

7 Unverifiable Job Vacancies

In our basic model, we have assumed that job vacancies can be verified (e.g., by on-demand work-

ers performing the job) so that firms would always report their actual demand to the platform.

This is true for some but not all settings in reality. In this section, we show how the proposed

mechanism in Section 5 can be adapted to elicit truthful demand information.

Suppose now that X̂i = (Xi−Qi)
+ is Firm i’s private information. Firms may potentially lie

about their actual demands to the platform. Note that it is the contingent term wC
i (Ai, X̂i) which

induces firms to lie, since firms can receive extra compensation by exaggerating X̂i. Inspired by

this observation, we propose introducing a third party to manage contingent payment wC
i (·) such

that each firm only pays a membership fee and the fixed rate for each unit of the on-demand

workforce. The third party can be an independent industry body set up by the government

or management services providers. The idea of having a third party to manage cash flows is

reminiscent of Shang et al. (2009); see more examples of potential third parties therein.

We consider the subgame in which permanent staffing levels Qi’s and the platform’s com-
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pensation rate η have been settled. The sequence of events is as follows: (1) Xi’s are realized,

but only observed privately by each firm; (2) Firm i reports its job vacancies as X̌i; (3) the on-

demand workforce is then allocated to each firm based on the TFRB rule, according to reported

X̌i; and (4) payments are transferred under the following fixed-rate scheme.

• Fixed-Rate Payment. For each unit of allocated on-demand workforce, Firm i pays the

platform operator a fixed rate wF
i = p(1−mi/β

∗
i ) along with a membership fee ri;

• Third-Party Transfer. Based on each actual allocation Ai and reported demand X̌i,

ti = r0 − wC
i (Ai, X̌i) is transferred from the platform operator to a third party, where

r0 ≥ 0.

Lemma 5. If realized job vacancies X̂i’s are not verifiable, the fixed-rate payment scheme induces

firms to truthfully report their job vacancies, i.e., X̌i = X̂i, for all i ∈ I provided wF
i ≥ 0.

The lemma establishes that the fixed-rate payment scheme induces truth-telling. Intuitively,

with a fixed-rate payment, when the on-demand workforce is sufficient, a firm incurs overstaffing

costs if overreporting X̂i. When the on-demand workforce is insufficient, overreporting does not

help increase the firm’s allocation due to the TFRB policy. Hence, firms cannot benefit from

exaggerating actual job vacancies. To ensure truthful-telling, we need a mild condition wF
i ≥ 0,

or equivalently, mi ≤ β∗i .
22 This condition is satisfied in around 90% of the instances of our

numerical study reported in Section 6. Moreover, a sufficient condition for wF
i ≥ 0 ∀i is derived

in Appendix D. For cases of wF
i < 0, we can easily modify the above mechanism to ensure

truth-telling at little efficiency loss, as discussed at the end of this section.

Notably, removing contingent term wC
i (Ai, X̂i) from each firm’s payment will not affect their

incentives in choosing the permanent staffing level, as the TFRB allocation rule guarantees

E[wC
i (Ai, X̂i)] = 0. On the other hand, the third-party transfer ensures that the contingent term

wC
i (·) applies to the platform as before such that the platform operator’s incentive is aligned

with the system-wide optimality. As E[wC
i (Ai, X̂i)] = 0, the fixed amount r0 in the third-party

transfer is used to engage the third party by providing it with a nonnegative expected payoff.

We therefore have the following proposition.

Proposition 3. If job vacancies are unverifiable, provided wF
i ≥ 0 (or equivalently, mi ≤ β∗i )

for all i ∈ I, the contracts (ri, w
F
i ), i.e., a membership fee plus a fixed-rate payment, coordinate

22In general, wF
i could be negative if a firm needs to be provided with a very strong incentive to use the

on-demand workforce. In Appendix D we have proved that given exchangeable demands and exclusive use of
on-demand staffing in the system-wide optimal solution, wF

i ≥ 0 ∀i as long as the aggregate demand has a log-
concave density with no probability mass at zero. Our numerical study shows that wF

i ≥ 0 is satisfied in most
cases, even for nonexchangeable demands and mixed staffing strategies.
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the system when (i) the platform transfers a contingent payment ti = r0−wC
i (Ai, X̂i) to a third

party, (ii) contract parameters mi’s are chosen according to (14), and (iii) membership fees ri’s

and r0 ≥ 0 satisfy (17) and

∑
i∈I

ri − nr0 ≥ C (Q∗, η∗)− p
∑
i∈I

(1−mi)E
[
(Xi −Q∗

i )
+] . (20)

Furthermore, the third party receives an expected payoff of nr0.

Inequality (20) is a simple modification of the platform’s participation constraint (17) since the

platform operator pays an extra amount of nr0 to engage the third party. If the third party

is a nonprofit organization, one can set r0 = 0 such that all the benefits of coordination are

distributed among the platform operator and firms.

For the cases with wF
i < 0 for some i ∈ I, we propose a simple modified fixed-rate mechanism:

We use max{wF
i , 0} as an approximate fixed rate instead of wF

i while the third party transfer is

modified to ti = r0 − wC
i (Ai, X̌i) − min{wF

i , 0}. This modification ensures that each firm will

truthfully report as all the fixed rates are kept nonnegative and that the platform’s cash flow is

unchanged so that its incentive remains aligned with the system optimality. The modification

has some impact on Firm i’s staffing decision, as it is equivalent to modifying parameter mi to

min{mi, β
∗
i }. Nevertheless, the impact appears rather minor. We have resolved our numerical

instances with wF
i < 0 under this modified fixed-rate mechanism and observed that the loss of

system efficiency due to the above modification is only 0.04% on average and 0.40% in the worst

case. Such a minor loss also provides sufficient gain from implementing our mechanism for the

system to engage a third party through an extra payment r0.

8 Discussion and Conclusion

In this paper, we study the management of an on-demand workforce via a B2B staffing platform,

serving cost-minimizing companies. We show that employers can reduce permanent workers and

lower staffing costs with access to an on-demand platform. Despite the platform’s need to inter-

act with self-interested employers, we prove that the benefits of an on-demand workforce can be

maximized at the system-wide optimal level through novel contracts based on fill-rate targets.

The proposed contract mechanism shares key features of the performance-based contracting used

in temporary staffing services, among many other service industries such as healthcare, public

sector services, and aircraft after-sale services (Petersen et al., 2006; Heinrich and Choi, 2007;

Guajardo et al., 2012). Our results suggest that to coordinate an on-demand workforce sharing

system, the contracts should anchor on the fill rates—a key measure of service level in such
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system—which decide the fixed per-unit labor rates. There should also be a contingent payment

scheme that rewards exceptional service and penalizes underperformance according to contracted

service levels. These are exactly the features of performance based-contracting, which shows that

our proposed contract mechanism is practically feasible and should be considered for on-demand

staffing services. Moreover, since many on-demand staffing platforms have realized the value of

high fill rates for their clients and started to advertise this as a key advantage, it is in the plat-

forms’ interest to explore the proposed fill-rate based contract and allocation mechanisms. Our

results provide preliminary analysis and support for these mechanisms in on-demand workforce

services while also contributing to the literature on performance-based contracting by considering

multiple clients and incorporating a fill-rate-based allocation mechanism.

Throughout the paper, we have assumed that the platform operator can only control the

compensation rate. If the platform can influence the size of potential on-demand workers (e.g.,

by imposing a cap on the number of active workers), the system-wide optimal strategy could be

more involved. However, provided the system-wide optimal solution can be evaluated beforehand,

the proposed coordination mechanism remains valid because, under the proposed contract, the

platform operator’s profit-maximizing problem is aligned with the system-wide cost-minimizing

problem (Section 5.2.1), whether the size of potential workers is a decision variable or not. We

have made some other assumptions in the model, which suggest potential directions for future

research. We have focused on a homogeneous workforce and job positions, suitable for jobs

requiring similar skills. In some cases, platforms may offer specialized workers for different job

positions. An interesting extension would be to consider multiple types of jobs and a pool of

heterogeneous workers; each worker can perform a subset of job types. Then, the staffing system

would resemble a network of flexible capacity studied in the literature (e.g., Lyu et al., 2019),

making the allocation and contracting problem more challenging. We have also assumed that the

on-demand and permanent workforce yields the same level of productivity. However, for tasks

requiring significant proficiency or commitment, permanent employees’ productivity may differ

from on-demand workers, as empirically studied by Kesavan et al. (2014). This could be modeled

by vertically differentiated workers with varying productivity levels. Lastly, we considered risk-

neutral firms and assumed cost parameters as common knowledge. Coordinating a system with

private cost information or risk-averse firms remains an open question for future research.
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Appendices for “Maximizing the Benefits of an On-Demand Work-

force: Fill-Rate-Based Allocation and Coordination Mechanisms"

In this document, we present some supplemental content referenced in the main paper. The detailed

proofs of all our results are given in Appendix A.

A Technical Proofs

A.1 Proof of Theorem 1

In general, C(Q, η) is not convex in η. We therefore change the decision variable η to S by invoking the

relation S = NG(η). We define

Ĉ(Q, S) = Ĉ

(
Q, G−1

(
S

N

))
= pE

(∑
i∈I

(Xi −Qi)
+ − S

)+
+G−1

(
S

N

)
S + c

∑
i∈I

Qi,

and the problem is transformed to
min
Q,S

Ĉ(Q, S)

s.t. Qi ≥ 0, ∀i ∈ I

0 ≤ S̄ ≤ N

The following claim is true by the log-concavity of G.

Claim 1. Ĉ(Q, S) is jointly convex in Q and S.

Proof of Claim 1. The term G−1(S/N)S̄ is convex in each S. To see this, taking the derivative with

respect to S yields
∂

∂S

[
G−1

(
S

N

)
S

]
= G−1

(
S

N

)
+
S

N

1

g
(
G−1

(
S
N

)) .
Define ϕ(x) := x + G(x)/g(x). By the log-concavity of G, ϕ(x) is increasing x. The convexity of

G−1(S/N)S follows by noticing that ∂[G−1(S/N)S]/∂S = ϕ(G−1(S/N)) and G−1(S/N) is an increasing

function of S.

It remains to show that the first term of function Ĉ(Q, S) is jointly convex, since the last term is

linear. Note that
∑

i∈I(Xi −Qi)
+ − S̄ is clearly jointly convex in Q and S. Furthermore, the operator

(x)+ is nondecreasing and convex. It is well known that their composition is still convex. As convexity

is preserved under expectation and summation, the first term of function Ĉ(Q, S) is indeed jointly

convex.

From Lemma 1, the first-order conditions are necessary and sufficient for optimality. It then suffices

to verify that in the optimal solution Qi = Q∗
i and S = S∗ = NG(η∗) as described in Theorem 1, the

first-order conditions hold, i.e., ∂Ĉ/∂S = 0 (or ∂Ĉ/∂S ≥ 0, if S∗ = 0) and ∂Ĉ/∂Qi = 0 (or ∂Ĉ/∂Qi ≥ 0,

if Q∗
i = 0).

1

Electronic copy available at: https://ssrn.com/abstract=2783617



For part (i), we verify that S = 0 and Q = Qp satisfy:

∂Ĉ

∂S

∣∣∣∣∣
S=0,Q=Qp

= −pP

(
0 <

∑
i∈I

(Xi −Qp
i )

+

)
+ τ

= −pP (Xi > Qp
i , for some i ∈ I) + τ ≥ 0,

(A.1)

and
∂Ĉ

∂Qi

∣∣∣∣∣
S=0,Q=Qp

= −pP

(
Qp

i < Xi, 0 <
∑
i∈I

(Xi −Qp
i )

+

)
+ c

= −pP (Qp
i < Xi) + c = 0.

(A.2)

Inequality (A.1) holds if and only if the condition in part (ii) is satisfied: τ ≥ ϕp = p{1−P (Xi ≤ Qp
i , ∀i)},

and equality (A.2) holds by the definition of Qp
i .

For part (ii), by the optimality condition, we need to verify that Q = 0 and S = NG(ηo) are such

that
∂Ĉ

∂S

∣∣∣∣∣
S=NG(ηo),Q=0

= −pP

(
NG(ηo) <

∑
i∈I

Xi

)
+ ϕ(ηo) = 0, (A.3)

where ϕ(x) := x+G(x)/g(x), and

∂Ĉ

∂Qi

∣∣∣∣∣
S=NG(ηo),Q=0

= −pP

(
NG(ηo) <

∑
i∈I

Xi

)
+ c ≥ 0. (A.4)

Equality (A.3) holds by the definition of ηo. Moreover, it implies that pP
(
NG(ηo) <

∑
i∈I Xi

)
= ϕ(ηo) =

ηo +G(ηo)/g(ηo). Substituting this equality into ∂Ĉ/∂Qi, one can see that inequality (A.4) holds if and

only if c ≥ ϕo, which completes the proof of part (ii).

Note that the proofs of parts (i) and (ii) provide the sufficient and also necessary conditions for the

optimality of boundary solutions S∗ = 0 and Q∗ = 0, respective. Therefore, if c < ϕo or τ ≥ ϕp, the

interior solution must be attained and the equations in part (iii) follow immediately by equating the

first-order derivatives of Ĉ with respect to S and the Qi’s to zero.

A.2 Proof of Corollary 1

When Xi’s are independent across i, we have

ϕp = p

(
1−

∏
i∈I

Fi

(
QP

i

))
= p

[
1−

(
p− c

p

)n]
.

The statements in Part (i) immediately follow. By Theorem 1, the on-demand workforce will always be

used in the optimal solution as long as τ < p—i.e., it is profitable by itself, as we have postulated.

Note that X ≤SM X ′ implies that X and X ′ have the same univariate marginals. Hence, the

values for Qp
i ’s are the same for two demand vectors (Shaked and Shanthikumar, 1997). By definition,

X ≤SM X ′ if and only if E[f(X)] ≤ E[f(X)] for all supermodular functions f such that the expectations

exist. Note that 1 − P{Xi ≤ Qp
i , ∀i} = 1 − E

[∏
i∈I I(Xi ≤ Qp

i )
]
, where I(·) represents the indicator
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function. Thus, it suffices to show that the function f(x1, x2, . . . , xn) =
∏

i∈I I(xi ≤ Qp
i ) is supermodular

in (x1, x2, . . . , xn).

To see this, one can verify that the following inequality holds for any two vectors x and x′,

f(x) + f(x′) ≤ f(x ∧ x′) + f(x ∨ x′),

where

x ∧ x′ = (min{x1, x′1},min{x2, x′2}, . . . ,min{xn, x′n}), and

x ∨ x′ = (max{x1, x′1},max{x2, x′2}, . . . ,max{xn, x′n}).

If f(x) = f(x′) = 1, then xi ≤ Qp
i and x′i ≤ Qp

i for all i ∈ I. Thus, f(x ∧ x′) = f(x ∨ x′) = 1. If

f(x) = 1 and f(x′) = 0, then xi ≤ Qp
i for all i ∈ I, but there exists some j such that x′j > Q′p

j . As

a result, f(x ∧ x′) = 1 and f(x ∨ x′) = 0. The inequality holds with equality for the above two cases.

Finally, if f(x) = f(x′) = 0, the inequality always hold and can sometimes be strict. For instance, when

n = 2, x1 ≤ Qp
1, x2 > Qp

2, x
′
1 > Qp

1 and x2 ≤ Qp
2, we have f(x ∧ x′) = 1 and f(x ∨ x′) = 0.

A.3 Proof of Corollary 2

Note that Ĉ(Q, S) is supermodular in S and Qi (for any i), or equivalently, ∂2C/(∂S∂Qi) ≥ 0. In a

convex minimization problem, it follows that the optimal choice of Qi is nonincreasing in S, and therefore

Qp
i ≥ Q̂∗

i .

A.4 Proof of Lemma 1

We prove this lemma in three steps. In the first step, we derive a property of the allocation from the

TFRB policy when the target fill rates satisfy the constraints of problem (8) under any given workforce

level S and firms’ permanent staffing levels Q. Next, we show that the system-wide minimum staffing cost

can be achieved by the TFRB policy when the workforce level and firms’ permanent staffing levels are

set to the optimal ones in the centralized system (as in Theorem 1). Lastly, we strengthen the property

shown in the first step for optimal target fill rates from solving problem (8).

A.4.1 Step 1 in Proof of Lemma 1

We first prove that the expected allocation satisfies E[Ai((X −Q)+, S)] ≥ βi E[(Xi −Qi)
+] for all i ∈ I

for any feasible β of problem (8) under any given S and Q. The proof in this step follows from Theorem

3 in Zhong et al. (2017). For completeness, we adapt the proof to our context and present it below.

To this end, we first show that the TFRB policy is able to deliver the expected fill rates in the multi-

period setting as described in Algorithm 1. Specifically, we will show that the TFRB policy satisfies the

sufficient condition of Blackwell’s approachability theorem (Blackwell, 1956) such that the target fill rates

are approachable in the multi-period setting.

At the beginning of simulated period t, the TFRB policy uses the gap between the expected al-

location in the past (t − 1) simulated periods and the actual allocation received,denoted as A(t) =
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(A1(t), A2(t), . . . , An(t)), to determine the allocation sequence in simulated period t, Following the termi-

nology of Blackwell’s approachability theorem, the reward gained by Firm i in simulated period t, Ri(t),

is defined as βi E[X̂i]−Ai(t). The reward of Firm i is negative when the current-period allocation exceeds

the target fill rate βi, and it is positive when the target fill rate is not satisfied. The debt of Firm i at

the beginning of simulated period t before allocation, ri(t − 1), is the gap described in Algorithm 1 to

prioritize the allocation in each period, i.e.,

ri(t− 1) := (t− 1)βi E
[
X̂i(t)

]
−

t−1∑
k=1

Ai(k).

The time-average debt from period 1 up to period (t − 1) is ρi(t − 1) = ri(t − 1)/(t − 1). After the

allocation in period t, the time-average debt of Firm i becomes

ρi(t) =
ri(t)

t
=
ri(t− 1) +Ri(t)

t
.

Let D denote the set of nonpositive orthant in Rn. According to Blackwell’s approachability theorem, we

want the time-average debt to approach D := {z = [z1, z2, . . . , zn] | zi ≤ 0, ∀i ∈ I} to ensure that Firm i

receives an expected fill rate of at least βi.

Suppose that at the beginning of some period t, the time-average debt, ρ(t− 1) = (ρ1(t− 1), ρ2(t−

1), . . . , ρn(t − 1)) is not in D. For ease of notation, let α = ρ(t − 1). Without loss of generality, we

assume that α1 ≥ α2 ≥ · · · ≥ αm > 0 ≥ αm+1 ≥ αm+2 ≥ · · · ≥ αn. The point in D closest to

α is γ = (0, 0, . . . , 0, αm+1, αm+2, . . . , αn). The hyperplane perpendicular to the line segment αγ is

H := {z ∈ Rn :
∑m

i=1 ziαi = 0}. Note that α ∈ H+ := {z ∈ Rn :
∑m

i=1 ziαi > 0}. We only need show

that when the allocation follows the TFRB policy, the mean reward (E[R1(t)],E[R2(t)], . . . ,E[Rn(t)])

lies in H−⋃H := {z ∈ Rn :
∑m

i=1 ziαi ≤ 0}, where H− := {z ∈ Rn :
∑m

i=1 ziαi < 0}. We make the

following claim and continue the proof first.

Claim 2.

ϖj :=

j∑
i=1

E [Ri(t)] = E

[
j∑

i=1

βi E[X̂i]−
j∑

i=1

Ai(t)

]
≤ 0, ∀j = 1, 2, . . . ,m.

From the above claim, we have ϖjαj ≤ 0, for all j = 1, 2, . . . ,m. Therefore,

m∑
i=1

E [Ri(t)]αi = ϖ1α1 +

m∑
i=2

(ϖi −ϖi−1)αi

≤ ϖ1α1 +

m∑
i=2

ϖiαi −
m∑
i=2

ϖi−1αi−1

= ϖmαm

≤ 0,

where the second inequality follows from αi−1 ≥ αi and Claim 2. By Blackwell’s approachability the-

orem, our allocation policy makes the time-average debt to approach D. Hence, the long-run average

performance of the TFRB policy attains the desired expected fill-rate requirements for all firms, i.e.,

4
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lim infT→∞
∑T

t=1Ai(t)/T ≥ βi E[X̂i] almost surely for all i ∈ I.

Following Step 1 of the TFRB policy, the priority list L is randomly drawn from the priority lists

used in the multi-period setting, i.e., L(2), L(3), . . . , L(T ). Then the expected amount received by Firm

i following the priority list L in our original single-period problem satisfies

E
[
AL

i (X̂, S)
]
= E

[∑T
t=2A

L(t)
i (X̂, S)

T − 1

]
= E

[∑T
t=2A

L(t)
i (t)

T − 1

]
≥ βi E

[
X̂i

]
, for large enough T,

where the superscripts are used to highlight the specific priority lists used in the allocation; the first

equality follows from the random draw of the priority list; the second equality holds because the multi-

period stochastic demands are independent and identically distributed and follow the same distribution

as X̂; and the last inequality is the approachability result just shown above for the multi-period setting.

Note that the allocation for the first period does not affect the limiting behavior of the average allocation

as T goes to infinity.

Proof of Claim 2. Now we are left to prove the claim. There are two possible cases when the allocation

process stops, which we discuss separately. In the first case, the allocation stops at the (k + 1)th firm

in the priority list. According to the TFRB policy, this will happen only when the remaining capacity,

S −
∑k

i=1Ai(t), is less than 0, i.e., Ak+1(t) = 0 if
∑k−1

i=1 Ai(t) ≤ S and
∑k

i=1Ai(t) ≥ S. For any

i ≤ min{k,m}, Ai(t) = X̂i(t). Then we have

E

[
j∑

i=1

Ai(t)

]
=

j∑
i=1

E[X̂i] ≥
j∑

i=1

βi E[X̂i], ∀j = 1, 2, . . . ,min {k,m} .

If m ≤ k, the claim is proved. If m > k,

j∑
i=1

Ai (t) ≥ S ≥ min

{
S,

j∑
i=1

X̂i (t)

}
, ∀j = k + 1, k + 2, . . . ,m.

Taking the expectations on both sides of the above inequality and applying the constraints in problem

(8), we have

E

[
j∑

i=1

Ai(t)

]
≥ E

[
min

{
S,

j∑
i=1

X̂i (t)

}]
≥

j∑
i=1

βi E[X̂i], ∀j = k + 1, k + 2, . . . ,m,

which implies the inequalities stated in the claim.

In the second case, the allocation process does not stop after going through all of the firms on the

priority list once. According to the TFRB policy, it is obvious that for any Firm i, Ai(t) ≥ βiX̂i(t). The

claim follows immediately after taking the expectations.

A.4.2 Step 2 in Proof of Lemma 1

To demonstrate that the system-wide optimality is achieved when the TFRB policy is implemented and

when Q and η are set as the system-wide optimal solution, refer to Section 4, where the objective is to

5
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minimize the total cost expressed as:

p
∑
i∈I

E
[
(Xi −Qi)

+ −Ai

(
(X −Q)

+
, S
)]

+ ηNG(η) + c
∑
i∈I

Qi.

According to the TFRB policy, the allocation process stops either when the workforce S is depleted or

when all demands are met. Consequently, the no-waste condition in (4) is fulfilled, i.e.,
∑

i∈I Ai((X −

Q)+, S) = min{S,
∑

i∈I(Xi−Qi)
+}. As explained in Section 4, this equation causes the allocation terms,

Ai(·)’s, to cancel out in the total cost function. Therefore, the system-wide staffing cost is minimized

when Q = Q∗ and η = η∗.

A.4.3 Step 3 in Proof of Lemma 1

Lastly, we prove the “moreover” part of the lemma. That is, the inequalities shown in Step 1 are actually

tight for the optimal β∗ of problem (8), i.e., E[Ai((X −Q)+, S)] = β∗
i E[(Xi −Qi)

+] for all i ∈ I under

any given S and Q, which is a stronger version of the last part of Lemma 1.

To deal with the set of constraints in problem (8), we introduce several useful concepts. Given a

finite set Ω, define the power set of Ω as 2Ω = {U : U ⊆ Ω}. A set function g : 2Ω → R is submodular if

g(A∪B)+g(A∩B) ≤ g(A)+g(B) for all A,B ⊆ Ω. The function g : 2Ω → R is called a rank function if it

satisfies (1) g(∅) = 0, (2) g(A) ≤ g(B) whenever A ⊆ B ⊆ Ω, and (3) g is submodular. The polyhedron,

P (g,Ω) =

{
x ∈ R|Ω|

+ :
∑
i∈U

xi ≤ g(U), ∀U ⊆ Ω

}
,

is called a polymatroid if g is a rank function, where |Ω| denotes the cardinality of Ω. We recall the follow-

ing result from Edmonds (1970), which states that when optimizing a linear function over a polymatroid,

an optimal solution can be found using a greedy method.

Claim 3 (Edmonds (1970)). Let n = |Ω|. For any vector a ∈ Rn, where aj(1) ≥ aj(2) ≥ . . . aj(k) >

0 ≥ aj(k+1) · · · ≥ aj(n) for some permutation {j(1), j(2), . . . , j(n)} of Ω.
∑

i∈I aixi is maximized over

x ∈ P (g,Ω) by the vector x∗ defined as follows:

x∗j(1) = g({j(1)}),

x∗j(i) = g({j(1), j(2), . . . , j(i)})− g({j(1), j(2), . . . , j(i− 1)}), 2 ≤ i ≤ k,

x∗j(i) = 0, for k + 1 ≤ i ≤ n.

Define a set function g(U) = E[min{S,
∑

i∈U (Xi − Qi)
+}]. It is straightforward to verify that: (1)

g(∅) = 0; (2) g(U) is nondecreasing in U ; and (3) g(U) is submodular. Since E[(Xi − Qi)
+]’s are

nonnegative constants given Qi’s, problem (8) is equivalent to maximize over β̂i’s, where β̂i = βiE[(Xi −

Qi)
+]; that is, we can replace the original decision variables βi’s with β̂i’s. By Claim 3, the optimal β̂∗

i
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can be found in a greedy manner. Consequently, we have

∑
i∈I

β∗
i E[(Xi −Qi)

+] = E

[
min

{
S,
∑
i∈I

(Xi −Qi)
+

}]
. (A.5)

Recall that
∑

i∈I Ai((X − Q)+, S) = min{S,
∑

i∈I(Xi − Qi)
+} on any sample path under the TFRB

policy. Therefore, (A.5) implies
∑

i∈I β
∗
i E[(Xi − Qi)

+] =
∑

i∈I E[Ai((X − Q)+, S)]. Together with

E[Ai((X−Q)+, S)] ≥ βi E[(Xi−Qi)
+] for each i from the first step, we deduce that E[Ai((X−Q)+, S)] =

β∗
i E[(Xi −Qi)

+] for all i ∈ I.

A.4.4 Remark: Refined Fill Rates by Algorithm 2

We note that our results remain unaffected if we use Algorithm 2 in Section 5.1 to refine the optimal fill

rates.

Step 1 of the proof above establishes that the TFRB policy can achieve any feasible fill rates from

problem 8 under given S and Q. Algorithm 2 ensures that the refined fill rates β∗
i ’s are feasible under S∗

and Q∗, and thus the TFRB policy guarantees that the target fill rates are met, i.e., E[Ai((X−Q)+, S∗)] ≥

β∗
i E[(Xi−Q∗

i )
+] for all i. Step 2 of the proof remains unchanged, as the TFRB policy satisfies the no-waste

condition, irrespective of whether the refined fill rates are used or not. Consequently, the system-wide

optimality can be achieved as before. Step 3 of the above proof merely demonstrates that the fill rate

guarantee E[Ai((X −Q)+, S)] ≥ β∗
i E[(Xi −Qi)

+] holds with equality. Recall that the refined fill rates

are the solution to a linear maximization over a polymatroid with side constraints βi ≥ b∗ as studied

in Lu and Yao (2008). The grouping algorithm in Lu and Yao (2008) implies that, in the optimal

solution, the polymatroid constraint for the entire set holds with equality, i.e.,
∑

i∈I β
∗
i E[(Xi −Qi)

+] =∑
i∈I E[Ai((X −Q)+, S)]. Since the TFRB policy ensures E[Ai((X −Q)+, S∗)] ≥ β∗

i E[(Xi −Q∗
i )

+] for

all i as shown in Step 1 of the proof, it follows that E[Ai((X −Q)+, S)] = β∗
i E[(Xi −Qi)

+] for all i.

A.5 Proof of Lemma 2

The proof follows the discussion in Section 5.2.1 and Lemma 1.

A.6 Proof of Lemma 3

The proof follows the discussion in Section 5.2.2. The characterization of mi’s is obtained by equating

the first-order derivative of hi(Qi) at Qi = Q∗
i to zero.

A.7 Proof of Theorem 2

The proof follows by invoking the notion of Nash equilibrium and Lemmas 2 and 3, as well as the

discussion of participation issues in Section 5.2.3.
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A.8 Proof of Corollary 3

Given Q∗ = 0, the platform operator’s profit is given by

Π = −C(0, ηo) + p
∑
i∈I

(1−mi)E[Xi] = −C(0, ηo) + c
∑
i∈I

E[Xi],

where mi is chosen according to (14). If c
∑

i∈I E[Xi] ≥ C(0, ηo), the platform operator has collected a

nonnegative profit without membership fees.

When Q = 0, the realized cost function is supermodular in X by Lemma 2.6.2 of (Topkis, 1998).

Therefore, for any two demand vectors X ′ ≥sm X, let ηo
′
and ηo denote the system-wide optimal com-

pensation rates corresponding to X ′ and X, respectively. It follows that C(0, ηo
′
;X ′) ≥ C(0, ηo

′
;X) ≥

C(0, ηo;X), where the first inequality is due to the definition of supermodular order and the second

inequality holds by the optimality of ηo.

A.9 Proof of Proposition 1

By Theorem 1, when the Xi’s are exchangeable, the system-wide optimal staffing level of each firm is

identical, i.e., Q∗
i = Q∗ for all i ∈ I. By the definitions of wF

i and wC
i , i.e., (11)–(12), and the range of

membership fees ri’s, i.e., (16)–(17), the parameters that make the contract firm-dependent are the mi’s

and β∗
i ’s. It suffices to show that mi and β∗

i can be firm-independent.

Per Lemma 3, the value of mi reduces to a firm-independent value, m = (pF̄ (Q∗) − c)/(pF̄ (Q∗)) =

1− c/(pF̄ (Q∗)), since the marginal distributions are identical.

It remains to show that we can find a set of identical fill rates, β∗
i = β∗ for all i ∈ I, which is

system-wide optimal. By Lemma 1, it is equivalent to proving that problem (8) has an optimal solution

such that β∗ = (β∗, β∗, . . . , β∗).

Lemma 1 implies that the optimal objective value of problem (8) is equal to
∑

i∈I β
∗
i E[(Xi−Q∗)+] =∑

i∈I E[A∗
i ((X − Q∗)+, S∗)] = E[min{S∗,

∑
i∈I(Xi − Q∗)+}], where the last equality follows from the

no-waste condition (4).

Now, we restrict the decision variables to βi = β for all i ∈ I and solve the restricted version of problem

(8). If the firm-independent optimal solution β∗ leads to the same objective value E[min{S∗,
∑

i∈I(Xi −

Q∗)+}], then β∗ is optimal to the original LP. Since Xi’s have an identical marginal distribution, we can

write H := E[(Xi −Q∗)+] =
∫∞
Q∗(x−Q∗)dF (x). Then, the restricted LP can be written as follows:

max
β

nβH

s.t. |U |βH ≤ E

[
min

{
S∗,
∑
i∈U

(Xi −Q∗)+

}]
, ∀U ⊆ I

β ≥ 0, ∀i ∈ I

(A.6)

Clearly, the optimal solution is given by

β∗ =
1

H
min
U⊆I

E
[
min

{
S∗,
∑

i∈U (Xi −Q∗)+
}]

|U |
,
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where |U | represents the cardinality of set U . In what follows, we prove that E[min{S∗,
∑

i∈U (Xi −

Q∗)+}]/|U | is nonincreasing in U , thus being minimized when U = I.

Consider two sets U = {1, 2, . . . , k} and U ′ = {1, 2, . . . , k + 1} for any given k ≤ n − 1. We need to

evaluate the following difference:

E
[
min

{
S∗,
∑

i∈U ′(Xi −Q∗)+
}]

|U ′|
−

E
[
min

{
S∗,
∑

i∈U (Xi −Q∗)+
}]

|U |

=
E
[
kmin

{
S∗,
∑k+1

i=1 (Xi −Q∗)+
}
− (k + 1)min

{
S∗,
∑k

i=1(Xi −Q∗)+
}]

k(k + 1)
.

In total, three possible events, denoted by e1,e2 and e3, could happen for the numerator above.

(i) Conditional on event e1 = {S∗ ≤
∑k

i=1(Xi −Q∗)+}, the numerator = −S∗ ≤ 0.

(ii) Conditional on event e2 = {
∑k

i=1(Xi−Q∗)+ < S∗ ≤
∑k+1

i=1 (Xi−Q∗)+}, the numerator = E[kS∗−

(k + 1)
∑k

i=1(Xi −Q∗)+|e2] ≤ E[k
∑k+1

i=1 (Xi −Q∗)+ − (k + 1)
∑k

i=1(Xi −Q∗)+|e2] = (k(k + 1) −

k(k + 1))E[(Xi −Q∗)+|e2] = 0. Note that the last equality holds because Xi’s are exchangeable.

(iii) Conditional on event e3 = {
∑k+1

i=1 (Xi−Q∗)+ < S∗}, the numerator = E[k
∑k+1

i=1 (Xi−Q∗)+− (k+

1)
∑k

i=1(Xi −Q∗)+|e3] = (k(k + 1)− (k + 1)k)E[(Xi −Q∗)+|e3] = 0.

In summary, as the numerator is nonpositive under all the possible events, its total expectation is

nonpositive. Hence, E[min{S∗,
∑

i∈U ′(Xi −Q∗)+}]/|U ′| − E[min{S∗,
∑

i∈U (Xi −Q∗)+}]/|U | ≤ 0. Note

that we can arbitrarily re-number the firms, so the above argument applies to any sets U,U ′ ⊆ I such

that U ′ = U ∪ {j} where j /∈ U . Therefore, E[min{S∗,
∑

i∈U (Xi − Q∗)+}]/|U | is minimized when

U = I. It follows that the optimal solution β∗ = E[min{S∗,
∑

i∈I(Xi − Q∗)+}]/(nH). Substituting β∗

into the objective function of the restricted problem (A.6), we have the optimal objective value equal to

E[min{S∗,
∑

i∈I(Xi − Q∗)+}], which is the same as that of the original LP without any restriction on

(β1, β2, . . . , βn). Therefore, the firm-independent fill rate β = (β∗, β∗, . . . , β∗) also solves the original LP

and is thus system-wide optimal.

Invoking mi = m and β∗
i = β∗ for all i ∈ I leads to the closed-form expressions of the contract terms.

A.10 Proof of Lemma 4

Similar to the coordination contract discussed in Section 5.2, summing up the contract terms, we have

the total payment from Firm i to the platform as r + p(Ai − m̄X̂i), for any allocated amount Ai and
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request X̂i = (Xi −Qi)
+. For the platform operator, we can transform its expected profit as follows:

Π(η,A(·)|Q) = −ηNG(η) + nr + p
∑
i∈I

E [Ai]− pm̄
∑
i∈I

E
[
X̂i

]
= −ηNG(η) + nr + pE

[
min

{
S,
∑
i∈I

X̂i

}]
− pm̄

∑
i∈I

E
[
X̂i

]

= −ηNG(η)− c
∑
i∈I

Qi − pE

(∑
i∈I

X̂i − S

)+
+ c

∑
i∈I

Qi + pE

(∑
i∈I

X̂i − S

)+


+ nr + pE

[
min

{
S,
∑
i∈I

X̂i

}]
− pm̄

∑
i∈I

E
[
X̂i

]
= −C(Q, η) + p(1− m̄)

∑
i∈I

E
[
(Xi −Qi)

+
]
+ c

∑
i∈I

Qi + nr.

The second equality above follows from the no-waste property of allocation policies; in the third equality,

we rearrange the terms to obtain the system cost C(Q, η) = ηNG(η)+c
∑

i∈I Qi+pE[(
∑

i∈I X̂i−S)+] in

the expression; the fourth equality follows because (
∑

i∈I X̂i−S)++min{S,
∑

i∈I X̂i} =
∑

i∈I X̂i. From

the above expression of Π(η,A(·)|Q), it can be seen that given any Q, the platform operator will choose

an η that minimizes the system cost while being indifferent among all the no-waste allocation policies.

Firm i’s cost function can be written as

hi(Qi|Q−i,A(·), η) = pE
[(

(Xi −Qi)
+ −Ai

)+]
+ pE [Ai]− pm̄E

[
(Xi −Qi)

+
]
+ r + cQi

= p(1− m̄)E[(Xi −Qi)
+] + cQi + r.

Hence, Firm i’s optimal permanent staffing level, denoted byQI
i , is the one that minimizes p(1−m̄)E[(Xi−

Qi)
+] + cQi + r. Similar to the case with the coordination contract in Section 5.2, QI

i is a dominant

strategy of Firm i regardless of the other players’ actions (including the platform’s allocation policy).

Combining the platform operator’s and every firm’s best response strategies, we can conclude that in

any Nash equilibrium, each Firm i will chooseQI
i , whereas the platform operator will set the compensation

rate as ηI = argminη C(Q
I , η) while being indifferent among all the no-waste allocation policies.

Let SI = NG(ηI) denote the on-demand staffing level induced by ηI . Similar to the case with

our coordination contract, the platform operator will voluntarily adopt the proposed TFRB policy in

equilibrium. However, the target fill rates used in the TFRB policy, denoted by βI = (βI
1 , β

I
2 , . . . , β

I
n),

need to be calculated based on the equilibrium staffing levels QI and SI = NG(ηI), as these staffing

levels are different from the system-wide optimal solution. Recall that in the proof of Lemma 1, Steps 1

and 2 are valid for any given Q and S and thus also applicable to QI and SI . Hence, βI can be found
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by solving the following linear program:

max
β

∑
i∈I

βi E
[
(Xi −QI

i )
+
]

s.t.
∑
i∈U

βi E
[
(Xi −QI

i )
+
]
≤ E

[
min

{
SI ,
∑
i∈U

(Xi −QI
i )

+

}]
, ∀U ⊆ I

βi ≥ 0, ∀i ∈ I

(A.7)

Next, we can use Algorithm 2 to minimize the differences among the βI
i ’s. Note that the parameter b∗

in Algorithm 2 serves as a nominal fill rate used only for the calculation of firm-independent contract

terms. It differs from the βI
i ’s, the target fill rates used in equilibrium. Since every firm is under the

same contract terms in firm-independent contracts, the platform can randomize firm indexes such that

each firm will be assigned with any target fill rate βI
i with equal probability. Then, β̄I =

∑
i∈I β

I
i /n will

be a uniform fill rate expected to be delivered to all firms.

A.11 Proof of Proposition 2

The proposition follows by noticing that mi = (p − c)/p for all i ∈ I and that using b∗ instead of

firm-dependent fill rates β∗
i ’s does not affect the platform’s staffing and allocation decisions.

A.12 Proof of Lemma 5

Let Ai(X̌i) denote the amount of workforce allocated to Firm i when he reports X̌i, and hi(X̌i, X̂i)

represent the staffing cost incurred if Firm i reports X̌i when his actual demand is X̂i. We omit the

membership fee ri in the proof as it is irrelevant to firms’ reporting decisions. Then, under the fixed-rate

payment scheme, we have

hi

(
X̌i, X̂i

)
= p

(
X̂i −Ai(X̌i)

)+
+ wF

i Ai(X̌i).

Under the allocation policy, Ai(X̌i) ≤ X̌i almost surely. Then,

hi(X̂i, X̂i) = pX̂i − (p− wF
i )Ai(X̂i),

which represents Firm i’s cost if he truthfully reports X̂i.

We show by contradiction that Firm i will be (weakly) worse off either overreporting or underreporting

X̂i.

No Overreporting. Suppose that Firm i overreports, i.e., X̌i > X̂i. Under our allocation policy,

there are two possible scenarios: either Ai(X̌i) = X̌i or Ai(X̌i) < X̌i.

• Scenario (i): Ai(X̌i) = X̌i. Under this scenario, the available workforce is sufficient to fulfill the

request X̌i. We have hi(X̌i, X̂i) = wF
i X̌i. If truthfully reporting X̂i instead, Firm i will be fully

satisfied as well, i.e., Ai(X̂i) = X̂i, as X̂i < X̌i. So, hi(X̂i, X̂i) = wF
i X̂i ≤ hi(X̌i, X̂i) = wF

i X̌i

provided wF
i ≥ 0. That is, truthful reporting is optimal under Scenario (i).
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• Scenario (ii): Ai(X̌i) < X̌i. Under this scenario, Firm i’s request is not fully satisfied, implying

that the available workforce is equal to Ai(X̌i). Depending on whether Ai(X̌i) is sufficient to cover

the true demand X̂i, we have

hi(X̌i, X̂i) =

 wF
i Ai(X̌i), if X̂i ≤ Ai(X̌i) < X̌i,

pX̂i − (p− wF
i )Ai(X̌i), if X̂i > Ai(X̌i).

In the first case, the available workforce Ai(X̌i) is sufficient to cover true demand X̂i, and so

truthful reporting leads to Ai(X̂i) = X̂i. Thus, hi(X̂i, X̂i) = wF
i X̂i ≤ hi(X̌i, X̂i) = wF

i Ai(X̌i), i.e.,

the firm is better off by truthful reporting.

In the second case, the available workforce Ai(X̌i) is less than true demand X̂i. By truthful report-

ing, Firm i will receive the same amount as it would by overreporting, i.e., Ai(X̂i) = Ai(X̌i). Hence,

hi(X̂i, X̂i) = hi(X̌i, X̂i) and the firm is indifferent between truthful reporting and overreporting.

Summarizing the above discussion, on all sample paths, Firm i’s cost under truthful reporting is lower

than or equal to that under overreporting.

No Underreporting. Suppose Firm i underreports, i.e., X̌i < X̂i. Then, we must have Ai(X̌i) ≤

X̌i < X̂i and so hi(X̌i, X̂i) = pX̂i−(p−wF
i )Ai(X̌i). Truthful reporting will weakly increase its allocation,

i.e., Ai(X̂i) ≥ Ai(X̌i) such that hi(X̂i, X̂i) = pX̂i−(p−wF
i )Ai(X̂i) ≤ hi(X̌i, X̂i) = pX̂i−(p−wF

i )Ai(X̌i).

Therefore, the firm has no incentive to underreport.

A.13 Proof of Proposition 3

Lemma 5 guarantees that each firm truthfully reports the actual vacancy (Xi − Qi)
+. In what follows,

we verify that, provided each firm truthfully reports his demand, the proposed mechanism induces the

system-wide optimal solution as a Nash equilibrium.

Individual Firms. Given that the platform chooses the system-wide optimal η∗ and allocates the

workforce per the TFRB policy A∗(·), Firm i’s expected cost function is adapted to

hi(Qi|Q−i,A
∗(·), η∗) = wF

i E
[
A∗

i

(
(X−Q)+, S∗)]+ pE

[(
(Xi −Qi)

+
)+ −A∗

i

(
(X−Q)+, S∗)]

+ cQi + ri

= p(1−mi)E
[
(Xi −Qi)

+
]
+ cQi + ri,

where the equality holds due to E[A∗
i ] = β∗

i E[(Xi − Qi)
+] (by Lemma 1). As such, the expected cost

function hi remains the same as in Section 5.2.2, and so choosing mi per (14) ensures that Firm i will

set Qi = Q∗
i .

Platform Operator. Under the proposed mechanism, the platform operator will in total receive an

income wF
i Ai +wC

i (Ai, X̂i)− r0 if allocating Ai to Firm i. That is, her expected profit remains the same

as in Section 5.2.1 except paying an extra amount nr0 to the third party. Since the extra payment is

constant, the platform’s incentive is still aligned with the system when deciding on η and the allocation

rule. Thus, given all firms choosing Qi = Q∗
i , it is optimal for the platform to choose the system-wide
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optimal η∗ and allocate according to the TFRB policy.

In summary, the system-wide optimal solution is a Nash equilibrium under the proposed mechanism.

To ensure participation, we modify (16) to (20) to take into account the extra amount nr0 the platform

pays to the third party. As E[wC
i (Ai, X̂i)] = 0 under the TFRB policy, the third party’s expected payoff

is nr0.

B Discussion on Price-Only Contracts

We have shown that the staffing system can be coordinated with a three-parts payment scheme. One

may wonder what happens under our context if we use a simple price-only contract under which each

firm pays only a fixed rate, denoted by wF , for each unit of allocated on-demand labor.

Under the price-only contract, the platform maximizes the following expected profit by choosing η

and allocation policy A(·) ∈ A:

Π(η,A(·)|Q) = wF E

[
min

{∑
i∈I

(Xi −Qi)
+, NG(η)

}]
− ηNG(η). (B.8)

Given other players’ decisions, Firm i minimizes his cost function below:

hi(Qi|Q−i,A(·), η) = pE
[(
(Xi −Qi)

+ −Ai

)+
+ wFAi

]
+ cQi

= pE
[
(Xi −Qi)

+
]
− (p− wF )E[Ai] + cQi,

(B.9)

where Ai depends on all firms’ job vacancies (X−Q)+ and on-demand staffing level S = NG(η). Unlike

the case under our proposed contract, allocation Ai is not canceled out in Firm i’s problem. Thus, the

platform operator can potentially manipulate the allocation rule to its own interest. As the allocation

rule can be almost arbitrary, the problem of finding a Nash equilibrium for the game appears not very

well-defined.

In the literature on inventory allocation, to bypass the above issue, existing papers assume that the

platform can commit to a prespecified allocation rule and then analyze a noncooperative game under the

given allocation rule (e.g., Cachon and Lariviere, 1999; Netessine and Rudi, 2006).

Hence, we follow a similar approach as adopted in the literature to analyze our staffing system under

the price-only contract. Nonetheless, we emphasize that for all the results presented in our main paper

to hold, we need not assume any commitment power for the platform.

Following the extant literature, we consider a widely studied allocation rule—the relaxed linear allo-

cation (RLA) rule, which is defined as

Alin
i

(
(X −Q)+, S

)
= min

{
(Xi −Qi)

+, (Xi −Qi)
+ − 1

n

(
n∑

k=1

(Xk −Qk)
+ − S

)}
, ∀i ∈ I. (B.10)

Under the RLA rule, each firm receives his request minus a common deduction. The literature has

demonstrated the merits of the above allocation rule; we refer to interested readers to Cachon and
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Lariviere (1999) and Netessine and Rudi (2006) for the detailed justifications of the RLA rule. In

particular, the RLA ensures the existence of a pure-strategy Nash equilibrium in their problems, which

is also true for our problem.23

Under any given price-only contract with wF < p and the RLA rule, Firm i’s cost function is reduced

to

min
Qi≥0

hi(Qi|Q−i,A
lin(·), S) = pE

[
(Xi −Qi)

+
]
− (p− wF )E

[
Alin

i ((X −Q)+, S)
]
+ cQi

= wL E
[
(Xi −Qi)

+
]
+ (p− wL)E

( 1

n

n∑
k=1

(Xk −Qk)
+ − S

)+
+ cQi.

(B.11)

On the other hand, the platform operator maximizes (B.8) by choosing η, while committing the

RLA rule given by (B.10). It is convenient to change the platform operator’s decision variable from η to

on-demand staffing level S. The platform’s problem is thus given by

max
S≥0

Π(S|Q) = wL E

[
min

{∑
i∈I

(Xi −Qi)
+, S

}]
− SG−1

(
S

N

)
(B.12)

Hence, the platform and n firms engage in a simultaneous-move game in which the platform operator

chooses S and Firm i decides on Qi.

Proposition B.1. Given any price-only contract with τ < wF < p, under the RLA rule, a pure-strategy

Nash equilibrium (SN ,QN ) exists. The game is submodular in the sense that the best response functions

Qbr
i (Q−i, S) for all i ∈ I and Sbr(Q) are decreasing. Moreover, any interior Nash equilibrium (QN , SN )

must satisfy the following set of optimality conditions:

wLF̄i

(
QN

i

)
+
p− wL

n
P

(
SN <

1

n

n∑
k=1

(
Xk −QN

k

)+
, QN

i < Xi

)
= c, ∀i ∈ I,

wLP

(
SN <

n∑
k=1

(Xk −QN
k )+

)
= G−1

(
SN

N

)
+
SN

N

1

g
(
G−1

(
SN

N

)) .
Proof. The existence of a pure-strategy Nash equilibrium follows immediately by the convexity of hi and

concavity of Π. The submodularity of the game can be proved by checking the cross partial derivatives.

Notice that ∂2hi/(∂Qi∂S) ≥ 0 because ∂hi/∂S = −(p−wL)P(S < (1/n)
∑n

k=1(Xk −Qk)
+), which is in-

creasing inQi, and ∂2hi/(∂Qi∂Qj) ≥ 0 as ∂hi/∂Qj = −(p− wL)/nP
(
S < 1

n

∑n
k=1(Xk −Qk)

+, Qj < Xj

)
,

which is increasing in Qi. By the convexity of hi in Qi, the minimizer Qbr
i (Q−i, S) is decreasing in S and

Q−i. Furthermore, it follows that ∂2Π/(∂S∂Qi) ≤ 0 by observing that ∂Π/∂S = wLP (S <
∑n

k=1(Xk −Qk)
+)−

G−1(S/N) + S/(Ng(G−1(S/N))) is decreasing in each Qi. As Π is concave in S, the maximizer Sbr(Q)

is decreasing in each Qi. Optimality conditions follow immediately from the first-order conditions.

The above proposition implies that the staffing decisions of the (n + 1) players in the game are

23Because of the term (p− wF )E[Ai] in (B.9), each firm’s cost function hi may not be quasiconvex in general.
Under the RLA rule, hi is convex in Qi and therefore, the existence of a Nash equilibrium is guaranteed.
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strategic substitutes: As a firm or the platform increases its staffing level, the other players will choose a

lower staffing level in equilibrium. This result contrasts with the coordinated system under our proposed

mechanism in which the n firms’ problems are decoupled into n independent problems.
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Figure 2: Price-only contract (with the RLA rule) versus the system-wide optimality

We consider a numerical example to illustrate how the equilibrium under the price-only contract and

RLA allocation can deviate from the system-wide optimal solution.

For illustrative purposes, we consider four firms (n = 4) with identical and independently distributed

demands. We can thus focus on the equilibrium symmetric to the four firms (i.e., the equilibrium where

the QN
i ’s are equal). Their demand distribution is assumed to be Gamma with mean = 100 and coefficient

of variation = 0.5. Other parameters are set as p = 10, c = 6, N = 1000, and G is a uniform distribution

between [2, 8]. With the fixed rate wF varied from 3.5 to 9.5 with an increment of 0.5, we compute the

equilibrium (SN ,QN ) under the price-only contract and RLA rule and compare it against the system-

wide optimal solution. Results are plotted in Figure 2. Because of the gaming effect among the players,

the staffing levels under the price-only contract and RLA rule can be substantially different from the

system-wide optimal level. In particular, we observe that with price-only contracts, the platform will

choose an on-demand staffing level lower than the system-wide optimal (see the middle panel of Figure

2), suggesting that the price-only contract does not provide sufficient incentive for the decentralized

system to make the best use of on-demand staffing. As a consequence, the system cost under the price-

only contract and RLA rule can be much higher than that under a coordinated system (see right panel

of Figure 2).

C Effect of Fill Rate Refinement

C.1 Effect of Fill Rate Refinement (Algorithm 2)

Algorithm 2 presented in the main paper describes an approach to refine the optimal target fill rates

such that the target fill rates offered to each firm are as close as possible. To demonstrate the power of

Algorithm 2, for every instance in our numerical experiment reported in Section 6, we obtain two sets

of fill rates by solving problem (8) with a greedy method based on its polymatroid structure (Edmonds,

1970) and by applying Algorithm 2, respectively. (For a detailed description of our numerical setup, see

Section 6.2.) For each instance and each method, we calculate the maximum difference between any pair
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of fill rates: maxi,j |β∗
i − β∗

j |. As reported in Table 1, on average, Algorithm 2 can reduce the maximum

difference in fill rates from 0.435 to 0.035 compared to the greedy method. Furthermore, in 83.1% of

tested instances, the refined fill rates are nearly equal (with maxi,j |β∗
i − β∗

j | less than 10−6).

Table 1: Effect of Fill Rate Refinement (Algorithm 2)

Marginal dis-
tribution

Demand share
of Firm 1

max |β∗
i − β∗

j |
by greedy

max |β∗
i − β∗

j |
by Algorithm 2

% of Instances with
max |β∗

i − β∗
j | <

10−6

Gamma 0.05 0.682 0.000 100.0%
0.1 0.659 0.000 100.0%
0.25 0.539 0.000 100.0%
0.4 0.408 0.000 100.0%
0.6 0.277 0.030 83.3%
0.9 0.216 0.145 44.4%
0.95 0.212 0.151 33.3%

LogNormal 0.05 0.672 0.000 100.0%
0.1 0.641 0.000 100.0%
0.25 0.515 0.000 100.0%
0.4 0.387 0.000 100.0%
0.6 0.263 0.032 77.8%
0.9 0.205 0.131 50.0%
0.95 0.200 0.136 44.4%

Uniform 0.05 0.588 0.000 100.0%
0.1 0.590 0.000 100.0%
0.25 0.598 0.000 100.0%
0.4 0.586 0.000 100.0%
0.6 0.444 0.000 100.0%
0.9 0.197 0.041 66.7%
0.95 0.181 0.046 66.7%

Mix 0.05 0.650 0.010 91.7%
0.1 0.589 0.002 96.7%
0.25 0.589 0.000 100.0%
0.4 0.465 0.003 96.7%
0.6 0.379 0.054 70.0%
0.9 0.230 0.078 56.7%
0.95 0.214 0.111 48.3%

Average 0.435 0.035 83.1%

C.2 Suboptimality of Equal Target Fill Rates

Example 1. (Suboptimality of Equal Target Fill Rates) Consider two firms. Firm 1’s demand

follows a two-point distribution as follows:

X1 =

 5, with probability 1/5,

0, with probability 4/5.
(C.13)

Firm 2’s demand follows a uniform distribution between 0 and 2, i.e., X2 ∼ Uniform(0, 2). Assume that

X1 and X2 are independent. Suppose the model parameters are such that S∗ = 1 and Q∗
1 = Q∗

2 = 0.

We have E[(X1 − Q∗
1)

+] = E[(X2 − Q∗
2)

+] = 1, E[min{S∗, X1}] = 1/5, E[min{S∗, X2}] = 3/4, and
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E[min{S∗, X1 +X2}] = 4/5. Problem (8) reduces to

max β1 + β2

s.t. β1 + β2 ≤ 4/5

β1 ≤ 1/5

β2 ≤ 3/4

The optimal objective value is 4/5, which can be attained by an optimal solution (β∗
1 , β

∗
2) = (1/5, 3/5).

This solution is also one in which the minimum fill rate is maximized, as β∗
1 has achieved its upper bound

1/5. However, if we restrict to a firm-independent fill rate (i.e., β1 = β2), the solution will be (1/5, 1/5),

which leads to an objective value of 2/5, much lower than the actual optimal value 4/5.

D A Sufficient Condition for wF
i ≥ 0

Proposition D.2. If Xi’s are exchangeable and exclusive use of on-demand staffing is system-wide opti-

mal, provided that the aggregate demand
∑

i∈I Xi is a log-concave random variable with no probability

mass at zero, then β∗
i ≥ mi and wF

i ≥ 0 for all i ∈ I.

Proof. For exchangeable demands, Proposition 1 applies, and therefore we have

β∗
i =

E
[
min{S∗,

∑
i∈I Xi}

]
nE[Xi]

= 1−
E
[
(
∑

i∈I Xi − S∗)+
]

nE[Xi]
.

On the other hand, mi = 1− c/p as Q∗
i = 0 for all i ∈ I. Thus, it suffices to show

c

p
≥

E
[(∑

i∈I Xi − S∗)+]
nE[Xi]

.

Claim 4. If Y is a nonnegative random variable with a continuous log-concave distribution F and

F (0) = 0, then for any given scalar S ≥ 0, we have P(Y > S) ≥ E[(Y − S)+]/E[Y ].

Proof of Claim 4. To prove this claim, it is convenient to avail of the following result, which is proved

in Proposition 1 of Heckman and Honore (1990): If Y is a log-concave random variable, then 0 ≤

∂ E[Y |Y > s]/∂s ≤ 1.

It follows that −1 ≤ ∂ E[Y − s|Y > s]/∂s ≤ 0, so E[Y − s|Y > s] is decreasing in s. Thus, since

F (0) = 0, we have

E[Y ] = E[Y |Y > 0] ≥ E[Y − S|Y > S], for any scalar S.

As E[(Y −S)+] = E[Y −S|Y > S]P(Y > S), multiplying P(Y > S) on both sides of E[Y ] ≥ E[Y −S|Y > S]

and rearranging the terms lead to the desired inequality.
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Following the assumption on
∑

i∈I Xi and the above claim, we have

P

(∑
i∈I

Xi > S∗

)
≥

E
[
(
∑

i∈I Xi − S∗)+
]

nE[Xi]
.

By the optimality condition given in Theorem 1, when on-demand staffing is exclusively used in the

system-wide optimal solution, we have c ≥ ϕo = pP(
∑

i∈I Xi > S∗), i.e., c/p ≥ P(
∑

i∈I Xi > S∗). These

two inequalities together imply that c/p ≥ E[(
∑

i∈I Xi − S∗)+]/(nE[Xi]), which completes the proof.

E When On-demand Workers Are Not Infinitesimal

We have assumed that on-demand workers are infinitesimal such that the amount of labor supply from the

available on-demand workforce induced by a given compensation rate η is a deterministic number, NG(η),

where N is the total amount of potential labor supply. In fact, our main results on system coordination

do not rely on this assumption. We can relax the assumption of infinitesimal workers to a finite number

of potential on-demand workers, each of whom offers K units of labor supply and consequently S/K

follows a binomial distribution with parameters N/K and G(η), where K is a constant such that N/K

is an integer. As K goes to zero, the system becomes close to the one with infinitesimal workers.

The analysis of system coordination hinges on showing that the objective function in the problem

faced by the self-interested platform operator coincides with the system-wide objective function, C(Q, η)

in (5). The analysis remains unchanged by treating S in E[(
∑

i∈I(Xi−Qi)
+−S)+] as a random variable

and taking the expectation over both Xi’s and S. Then the two objective functions are still aligned with

each other, and consequently the platform operator will be incentivized to set the system-wide optimal

compensation η∗. For the allocation policy and firm’s incentive compatibility analysis, we can also treat

S as a random variable in the constraints of problem (8) and in optimal target fill rate computation

(see Appendix A.4.3), and take the expectations over both Xi’s and S. Therefore, by setting contract

parameter mi’s according to Lemma 3, the individual firm’s incentive will still be aligned with the

centralized system and be willing to choose the system-wide optimal permanent staffing level Q∗. To

summarize, the proposed contract scheme and allocation policy can still lead to system coordination

in the decentralized system under stochastic labor supply S, i.e., Theorem 2 still holds. Therefore, all

insights on the contract design remain valid.

The only issue arises when one is interested in numerically calculating some contract parameters, in

particular, mi’s. Note that for another set of contract parameters, βi’s, one can still easily compute using

Lemma 1. The calculation of mi’s with (14) in Lemma 3, however, requires the value of Q∗, the system-

wide optimal permanent staffing level, which is the solution to the system-wide problem with objective

function (5). When S becomes a random variable such that S/K follows a binomial distribution with

parameter N/K and G(η), the system-wide problem is generally not jointly convex in η and Q. One

solution approach is to approximate the objective function using the infinitesimal-worker assumption by

replacing S with its mean NG(η). Note that by Jensen’s inequality, the approximated objective function

is a lower bound to the original one. For any given η, we can derive a bound on the gap between the
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approximation and original object function as follows:

E

(∑
i∈I

(Xi −Qi)
+ − S

)+
− E

(∑
i∈I

(Xi −Qi)
+ −NG (η)

)+


≤E

(∑
i∈I

(Xi −Qi)
+ −NG (η)

)+

+ (NG (η)− S)
+

− E

(∑
i∈I

(Xi −Qi)
+ −NG (η)

)+


=E
[
(NG (η)− S)

+
]
= K E

[(
N

K
G (η)− S

K

)+
]

≤K · 1
2

N

K
G (η)− E

[
S

K

]
+

√(
N

K
G (η)− E

[
S

K

])2

+ V ar

(
S

K

)
=
K

2

√
N

K
G (η) [1−G (η)] =

1

2

√
KNG (η) [1−G (η)],

where the second inequality in the third last row follows the well-known distribution-free bound by Scarf

(1958), and V ar(S/K) denotes the variance of random variable S/K. We can further develop a bound

independent of η by replacing G(η) with 1/2 and obtain
√
KN/4. The bound will converge to zero at a

rate in the order of square root of K as K approaches zero. Under such approximation, the system-wide

optimal solution remains the same as stated in Theorem 1, as the approximated objective function is the

same as the one in the base model under the assumption of infinitesimal workers.

F Workers Being Paid Only When They Get Actual Jobs

Thus far, we have assumed that workers are paid as long as they are on call (i.e., wiling to work). An

alternative wage scheme—in which workers are paid only when they complete an actual job—has been

nicely modeled by Cachon et al. (2017) for a platform facing uncertain demand. In this appendix, we

will show that our coordination mechanism is still valid when this alternative wage scheme is adopted in

a decentralized system consisting of a platform operator and multiple self-interested employers.

Similar to Cachon et al. (2017), let θ denote the fraction of labor supply offered by participating

workers used to fill job positions. θ = 1 if total demand exceeds the total labor supply, whereas θ < 1

if supply is rationed and there are participating workers who are not assigned to any job positions.

The N temporary workers on the platform would therefore decide to participate according to rational

expectations. The value of θ in equilibrium is determined by the recursive relation:

θ =

 1, if NG(η) ≤
∑

i∈I(Xi −Qi)
+,∑

i∈I(Xi−Qi)
+

NG(θη) , if NG(η) >
∑

i∈I(Xi −Qi)
+.

(F.14)
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The system-wide optimal solution can thus be obtained by solving the following problem.

min
Q,η

pE

(∑
i∈I

(Xi −Qi)
+ −NG(θη)

)+
+ ηNG(θη) + c

∑
i∈I

Qi

s.t. θ and η satisfy (F.14)

Qi ≥ 0, ∀i ∈ I

(F.15)

Computing exact optimal compensation rates becomes more challenging, as (F.14) should be satisfied

on any sample path. Nevertheless, it can be shown without explicitly solving problem (F.15) that the

mechanism proposed in Section 5 can still induce system optimality in decentralized systems. When the

staffing level of Firm i is fixed as Q∗
i , following the same derivation in Section 5.2, the platform operator’s

problem can be reduced to

max
η

− ηNG(θη)− pE

(∑
i∈I

(Xi −Q∗
i )

+ −NG(θη)

)+


− p
∑
i∈I

(1−m∗
i )E

[
(Xi −Q∗

i )
+
]
+
∑
i∈I

ri

s.t. θ and η satisfy (F.14)

which is aligned with the objective of the entire system. Thus, the platform will set η as the system-wide

optimal level and assign the on-demand workforce using the desired allocation rule. On the other hand,

individual employers’ problems remain intact under this alternative wage scheme, since each has been

guaranteed a given fill rate no matter how temporary workers are being paid. Therefore, the proposed

coordination mechanism is still applicable. To implement it, one can first numerically find the system-

wide optimal η∗ and Q∗
i by solving problem (F.15), and then construct the incentive contracts as in

Section 5.2.

G Alternative Allocation under Verifiable Job Vacancies

The TFRB policy described in Algorithm 1 allocates full requested amounts to the firms at the top of

the priority list until the total amount of on-demand workforce is depleted or every firm’s requested

demand is satisfied. As shown in Section 7, such allocation induces true-telling behavior from the firms

when the demand is not verifiable. One key behind the results is the full demand allocation, which will

hurt any firm that overreports his demand. In practice, when the supply of on-demand workforce is

limited, such a full demand allocation rule will lead to extreme situations in which some firms’ requested

demands are fully satisfied while others receive zero on-demand workers. The platform may want to make

the allocation “fairer”24 by assigning on-demand workers to as many firms as possible. We present an

24Note that fairness is a complicated issue with various versions of definitions. We only use the term very
loosely here to describe the allocation that allows more firms to enjoy on-demand workers. It is beyond the scope
of the current paper to discuss fairness in the on-demand workforce allocation, which could be a potential future
research direction.
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alternative allocation policy by adjusting the allocation mechanism in the TFRB policy and show that

such an adjusted allocation mechanism could still coordinate the system when the demands are verifiable.

The setup of the alternative allocation is the same as the TFRB policy presented in Algorithm 1,

and the adjustments are made to Step 1b and Step 3 during the demand allocation. The priority lists

are derived in the same manner as stated in Step 1b and Step 2. In Step 1b, instead of allocating full

demand, the alternative approach allocates β[i]X̂[i](t) to the ith firm on the priority list and then moves

to the next firm on the list. This ensures the target fill rates of the firms are met in the single period as

much as possible. The two scenarios in Step 1b are revised to:

• Scenario 1:
∑

i∈I β[i]X̂[i](t) > S, i.e., the workforce is not sufficient to satisfy the target fill rates

of all firms. Define i′ = min{j :
∑j

i=1 β[i]X̂[i](t) > S}. Then the allocation stops at Firm [i′] with

A[i](t) = β[i]X̂[i](t), for all i < i′, and Firm [i′] receives the remaining amount of workforce, i.e.,

A[i′](t) = S −
∑i′−1

j=1 X̂[j](t). The rest firms receive zero allocation.

• Scenario 2:
∑

i∈I X̂[j](t) ≤ S, i.e., the workforce is sufficient to satisfy the target fill rates of all

firms. Any remaining amount of workforce can be allocated arbitrarily among the firms. Then

A[i](t) ≥ β[i]X̂[i](t), for all i ∈ I.

Similarly, Step 3 in Algorithm 1 is revised accordingly to: “Allocate βiX̂i amount of workforce to Firm i

following the priority list obtained in Step 2 until reaching the end of the list, or the available workforce

is depleted; remaining on-demand workers, if any, can be arbitrarily allocated to satisfy unmet demands.”

Note that in such an allocation scenario, the remaining on-demand workers can still be utilized as the

priority allocation stage only fulfills βiX̂i amount of demands from Firm i and Firm i’s remaining demand

(1−βi)X̂i is still unsatisfied. This is different from our base model, in which the priority allocation stage

fulfills the full demand requests from the firms. We refer to the revised allocation policy as Alternative

Target Fill Rate-Based (ATFRB) policy.

To see that Lemma 1 holds with the ATFRB policy, it suffices to verify Step 1 in the proof of Lemma

1. To this end, the only change happens in the proof of Claim 2.

Proof of Claim 2 Under the ATFRB Policy. There are two possible cases when the allocation pro-

cess stops, which we discuss separately. In the first case, the allocation stops at the (k + 1)th firm

in the priority list. According to the ATFRB policy, this will happen only when the remaining ca-

pacity, S −
∑k

i=1Ai(t), is less than 0, i.e., Ak+1(t) = 0 if
∑k−1

i=1 Ai(t) ≤ S and
∑k

i=1Ai(t) ≥ S.

For any i ≤ min{k,m}, Ai(t) = βiX̂i(t). Then we have E[
∑j

i=1Ai(t)] =
∑j

i=1 βi E[X̂i], for all j =

1, 2, . . . ,min {k,m}. If m ≤ k, the claim is proved. If m > k,
∑j

i=1Ai(t) ≥ S ≥ min{S,
∑j

i=1 X̂i(t)}, for

all j = k + 1, k + 2, . . . ,m. Taking the expectations on both sides of the above inequality and applying

the constraints in problem (8), we have

E

[
j∑

i=1

Ai(t)

]
≥ E

[
min

{
S,

j∑
i=1

X̂i (t)

}]
≥

j∑
i=1

βi E[X̂i], ∀j = k + 1, k + 2, . . . ,m,

which implies the inequalities stated in the claim.
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In the second case, the allocation process does not stop after going through all of the firms on the

priority list once. According to the ATFRB policy, it is obvious that for any Firm i, Ai(t) ≥ βiX̂i(t).

The claim follows immediately after taking the expectations.

Finally, the system coordination result in Theorem 2 follows from Lemma 1 that the ATFRB policy
can also deliver the target fill rates to all firms in expectation, i.e., E[A∗

i ] ≥ β∗
i E [(Xi −Qi)

+], for all
i ∈ I, and the ATFRB policy also satisfies the no-waste condition. These properties of the allocation
policy are the key behind the individual incentive result established in Lemma 3. To summarize, as the
ATFRB policy has the same properties as the TFRB policy when demands are verifiable, it can achieve
system coordination under the same contract mechanism developed in Section 5.2.
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