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Abstract: Problem definition: In the blood-donor-management problem, the blood bank incentivizes donors to 

donate, given blood inventory levels. We propose a model to optimize such incentivization schemes under the 

context of random demand, blood perishability, observation period between donations, and variability in donor 

arrivals and dropouts. Methodology/results: We propose an optimization model that simultaneously accounts 

for the dynamics in the blood inventory and the donor’s donation process, as a coupled queueing network. We 

adopt the Pipeline Queue paradigm, which leads us to a tractable convex reformulation. The coupled setting 

requires new methodologies to be developed upon the existing Pipeline Queue framework. Numerical results 

demonstrate the advantages of the optimal policy by comparing it with the commonly adopted and studied 

threshold policy. Our optimal policy can effectively reduce both shortages and wastage. Managerial 

implications: Our model is the first to operationalize a dynamic donor-incentivization scheme, by determining 

the optimal number of donors of different donation responsiveness to receive each type of incentive. It can serve 

as a decision-support tool that incorporates practical features of blood supply-chain management not addressed 

thus far, to the best of our knowledge. Simulations on existing policies indicate the dangers of myopic 

approaches and justify the need for smoother and forward-looking donor-incentivization schedules that can 

hedge against future demand variation. Our model also has potential wider applications in supply chains with 

perishable inventory.  

Keywords: Pipeline Queues, blood collection, donor management, humanitarian operations, perishable 

inventory management 

 

1. Introduction 

Blood transfusion is an essential aspect of many medical treatments. In the United States alone, approximately 

21 million blood components are transfused every year, saving over 4 million lives annually in the process 

(Satyavarapu and Wagle 2020). The global demand for blood is also on an upward trajectory, fueled primarily 

by increased complexities in medical procedures and aging populations. Consequently, blood donation and its 

management remain an integral part of the medical infrastructure. In addition to traditional difficulties in the 

management of blood, like its short shelf life and variability in its demand and supply, recent trends also 

exacerbate the challenges, such as shrinking eligible donor populations observed in many countries (Greinacher 

et al. 2010, Müller-Steinhardt et al. 2017). These pressures on both the demand and supply side call for more 

effective blood-supply management to meet growing demand, while minimizing wastage. 

In managing the supply of blood, the decision maker possesses two main control levers: recruiting new donors 

and ensuring the regularity of donation amongst existing donors (i.e., donor retention) (Mugion et al. 2021). 

Our study is motivated by Singapore’s blood-donation landscape, where there are significant challenges to the 

recruitment of new donors, rendering the first lever less effective (Health Sciences Authority 2020). This is also 

observed in other developed states (World Health Organization 2017). Consequently, the central blood bank will 

need to focus on the management of the existing donor pool. This is often conducted through donor 

incentivization, with the goal of increasing the regularity of donations and preventing dropouts. 

Funding: This study was funded by the Singapore Management University through a research [Grant 20-C207-SMU-015] 

from the Ministry of Education Academic Research Fund Tier 1. 



In general, incentivization can be implemented with 
or without monetary rewards. Despite ample discussion 
in both literature and practice on the adoption of eco-
nomic rewards to motivate blood donations (e.g., Lace-
tera et al. 2013, 2014, and Sun et al. 2019), many nations 
still adopt the World Health Organization’s (WHO) 
stance against monetary incentives (World Health Orga-
nization 2020). This is based on the fact that economic 
rewards may spur donations for the wrong reasons and, 
in some cases, the withholding of important health infor-
mation that can compromise blood-inventory safety. Sin-
gapore adopts a similar stance. Regardless of whether 
the economic reward is disbursed, the management of 
blood supply continues to remain less controllable than 
other goods, and supply-demand matching depends on 
an effective incentivization scheme.

Designing an effective incentivization strategy is not a 
unique challenge in blood supply-chain management. It 
has been well studied in other domains, such as cus-
tomer acquisition and retention (e.g., Afeche et al. 2017), 
queue management (e.g., Lingenbrink and Iyer 2019), 
service management (e.g., Choudhary et al. 2022), 
etc. Various forms of incentivization schemes are also 
adopted in practice. The goal of such incentivization 
schemes is to alter the behavior of the targeted indivi-
duals to take desired actions. In the context of donor 
management, formulating an effective incentivization 
scheme can be difficult. In practice, many blood banks 
today adopt threshold policies to manage their blood 
inventory (Lee et al. 2008, Shi et al. 2014, Sun et al. 2016); 
in other words, they start reaching out to their donors 
whenever the existing inventory falls below a certain 
point. At that point, the blood bank reaches out to as 
many donors as they can within limitations of man-
power of volunteers and time. For example, the Singa-
pore Red Cross will call up donors and encourage them 
to donate when there are shortages. Other indirect mea-
sures are also implemented, such as publishing real-time 
blood-inventory levels of different blood groups on their 
website, so as to incentivize donors of specific blood 
groups to donate. This also has the added effect of dis-
couraging donations when supply is ample. Other forms 
of blood-donor-incentivization schemes have also been 
studied and discussed in the literature. For example, 
Aravindakshan et al. (2015) studied marketing tools to 
encourage blood donations. More recently, in Heger et al. 
(2020), the authors proposed a mechanism called a 
“Registry,” where donors can volunteer to join and are 
called up when there is a shortage. The empirical study 
found that donors who chose to be placed on the Regis-
try have a significantly different probability of donation, 
pre-incentivization and postincentivization.

We note that the overall effect of all the above- 
mentioned incentivization mechanisms, implemented 
in practice or studied in the literature, is to alter the 
donors’ donation behavior via changing the probability of 

donation. Despite all the findings that illustrate how those 
proposed mechanisms achieve blood supply-demand 
matching outcomes, the question remains whether they 
are optimal (i.e., minimize blood shortage and wastage 
in the long run). To this end, we consider a general 
incentivization mechanism that changes the probability of 
donation and aim to provide a decision-support tool to 
optimize such a mechanism, so as to minimize blood 
shortage and wastage.

To design a decision-support tool that is effective in 
the practical context, the framework needs to address 
unique challenges and capture realistic features of the 
blood supply chain. Firstly, the demand and supply of 
blood can vary over time. For example, in Singapore, 
donation rates are observed to fall during the Lunar 
New Year period due to cultural beliefs. This leads to 
periodic shortages of supply during festivities and cul-
tural celebrations. Planning for such variations is crucial, 
as seen in the scale-up of incentivization weeks before 
such periods (Shi et al. 2014). Secondly, there are critical 
hard time-based constraints that must be observed. Spe-
cifically, donors must observe a fixed duration of time 
between consecutive donations for health and safety rea-
sons. This is termed the “observation window” and 
is commonly three months in most countries (Health 
Sciences Authority 2019, National Health Service 2020). 
However, blood units have an expiration window of 
42 days, which is significantly shorter than the three- 
month observation period. The longer timescale in the 
supply than the demand indicates intrinsic bottlenecks 
in mustering enough supply to meet demand at short 
notice. As such, forward planning becomes critical. The 
combination of this and the previous challenge of time- 
variability dictates the need for a multiperiod model 
that is both forward-looking and reacts dynamically 
to the existing and expected inventory levels. Conse-
quently, in our paper, we shall specifically study the 
donor-management problem in the transient, multiper-
iod setting that incorporates blood expiry windows and 
fixed observation windows between donations. Lastly, 
although the ultimate goal of incentivization optimiza-
tion is to change the supply and inventory to the desired 
levels, it can be challenging to explicitly characterize 
the impact of incentivization on the eventual blood sup-
ply and inventory. This is because incentivization alters 
donors’ donation patterns and their probability of dona-
tion. This uncertainty in how donors react to the in-
centivization, in turn, influences future incentivization 
decisions. The complex endogenous interaction between 
the decision to incentivize and the uncertainty in the 
donations needs to be carefully modeled to arrive at an 
accurate description of the blood inventory.

1.1. Key Approaches in the Literature
Blood supply-chain management has been studied 
widely and extensively (Karaesmen et al. 2011, Beliën 



and Forcé 2012, Gunpinar and Centeno 2015). Here, we 
review the most related literature on both donor man-
agement and blood-inventory management, which will 
be relevant to our work, as we attempt to model both 
aspects. Broadly, we shall discuss the literature based on 
the adopted methodologies in three streams—namely, 
dynamic programming approach, queueing approach, 
and mechanism design—where we highlight the most 
related framework, Bayesian persuasion in queues (Lin-
genbrink and Iyer 2019).

1.1.1. Dynamic Programming Approach. Dynamic pro-
gramming is frequently seen in the literature, as it can 
be applied to model the perishable inventory process. 
Nahmias and Pierskalla (1973) studied the setting of a 
perishable product with a two-period product life and 
characterized optimal ordering policy facing random 
demand. This was extended to m periods (Nahmias 
1976). Prastacos (1981) developed an optimal policy to 
allocate perishable inventory to demand from n loca-
tions, minimizing both expected shortages and outdates 
under random supply and demand. Chen et al. (2019) 
considered a blood center facing two different demand 
streams with different freshness requirements and char-
acterized the structure of the optimal blood-collection 
quantities and inventory policies. Ayer et al. (2019) 
studied blood-collection operations and obtained near- 
optimal blood-collection schedules through a two-interval 
Markov decision process (MDP) formulation.

In our setting of donor incentivization, it would be dif-
ficult to implement a dynamic programming approach. 
The presence of finite time windows necessitates the 
tracking of the age of blood and donor observation times 
in the state space, drastically increasing its complexity. 
Together with the complex dynamics of donor eligibility, 
it would be difficult to avoid tractability challenges.

1.1.2. Queueing Approach. The other common approach 
in the literature is to model the dynamics as a queueing sys-
tem. Graves (1982) studied a single queue and server 
inventory system with constant replenishment and expo-
nential demand stream. The authors postulate that the life-
time on the oldest unit in stock is equivalent to a virtual 
waiting time of an M/M/1 queue under a first-in-first-out 
(FIFO) policy. Goh et al. (1993) considered a model with 
two classes of demands, where each of the classes repre-
sents separate demand streams. Sarhangian et al. (2018) 
extended the literature by incorporating inventory fresh-
ness within the system and evaluating a threshold-based 
blood-allocation policy that considered the age of the 
blood units.

These studies mainly focus on characterizing and 
evaluating the queueing process. Hence, they are not 
readily amenable to the question of policy design. The 
assumption of the steady state, although useful in 
the analysis of the queueing system, does not gel with 

the fundamentally transient and state-dependent nature 
of the problem we intend to consider.

1.1.3. Mechanism-Design and Bayesian Persuasion 
Approach. The mechanism-design approach is one of 
the most classical methodologies widely used to model 
incentivization problems. Many other frameworks have 
been developed based on mechanism-design models 
to incorporate unique features of the problem of interest. 
One of the most relevant frameworks is Bayesian per-
suasion, proposed by Kamenica and Gentzkow (2011), 
which models a single informed principal choosing 
information to convey to an uninformed agent to moti-
vate (persuade) him to take a certain action that favors 
the principal. This framework has been applied to study-
ing different problems, such as price discrimination 
(Bergemann et al. 2015), medical testing or treatment 
(Schweizer and Szech 2018), and auctions (Bergemann 
et al. 2017). Although Bayesian persuasion might be 
promising to model donor incentivization in our study, to 
capture the inventory-dependent donor-incentivization 
feature, the Bayesian persuasion model must be embed-
ded in the stochastic processes of blood donors and inven-
tory. Along this line, the most related work, Lingenbrink 
and Iyer (2019), considered revealing information to par-
ticipants within an unobservable queueing system to 
encourage or discourage participation. This proposed 
model integrates Bayesian persuasion with stochastic pro-
cesses and studies behavioral responses to incentives and 
signals in queues and inventory networks. Relying on 
steady-state assumptions, the authors designed a state- 
dependent policy while considering behavioral patterns. 
However, this approach will be difficult for accommodat-
ing the blood-donation features, particularly the safety 
observation window and the perishable nature of blood 
inventory. Similar to the queueing literature, the reliance 
on steady-state assumption leaves little room for opti-
mization in the transient setting. Furthermore, as our 
research aims to provide a practical decision-support tool 
for blood management, we do not intend to adopt a 
mechanism-design approach, given that it generally im-
poses strong assumptions on utility functions and behav-
ioral rationality.

1.2. Main Approach and Contributions
The review of existing methodologies underscores their 
limitations in terms of tractability and reliance on various 
assumptions, such as steady-state analysis and specifica-
tions of the utility function. In addition, the literature is 
particularly scant on how donor dynamics affect the sup-
ply of blood. Blood supply is often either modeled as sto-
chastic, with a known distribution or as a decision 
variable. The omission of donor dynamics fundamen-
tally renders it challenging to examine the impact of 
donor incentivization, and, hence, extending the existing 
models in the literature is untenable.



To this end, we instead adopt the paradigm recently 
introduced in Pipeline Queues (P-Queues, for short; 
Bandi and Loke 2018). In this paper, the authors intro-
duced a new framework specifically targeting problems 
that involve the optimization of flows within a queueing 
network. The framework is introduced in the transient set-
ting, leads to state-dependent policies, and is polynomial- 
time solvable. We believe this fits the needs of our intended 
problem. The technique is also adopted in two works 
within the literature—namely, Tang et al. (2020), which 
studied the vehicle-repositioning problem as a transient 
queueing network; and Zhou et al. (2022), which examined 
the patient scheduling problem under patient re-entry. In 
both cases, they involve feedback loops in the network, 
which is especially relevant to our work—where, similarly, 
donors return for multiple donations. Despite the com-
plexity, both works arrived at tractable models that also 
perform strongly against benchmarks.

In our paper, we present a model for optimizing donor 
incentivization using a P-Queue model that aims to 
reduce the risk of blood shortages and wastage. We 
make the following contributions: 

a. Practical and tractable decision-support tool to blood- 
donor management: To the best of our knowledge, our 
paper is the first to consider optimizing donor incentiviza-
tion that responds to the inventory level dynamically. 
Unlike related works in the literature that present theoreti-
cal analysis with elegant structural results, but focus only 
either on (i) the inventory problem, where the supply is 
assumed to be exogenous, or (ii) the donor-management 
problem, where demand is ignored, we examine specifi-
cally how to make donor-management decisions as a 
function of the present inventory levels. Our approach 
allows us to build a decision-support tool, requiring fewer 
restrictive assumptions, incorporating challenging fea-
tures usually omitted and simplified in other works, and 
analyzing the problem in a dynamic and transient setting. 
We adopt the novel P-Queue framework, which is tracta-
ble (polynomial-time-solvable; Theorem 1) and generates 
the optimal state-dependent donor-incentivization policy.

b. Model flexibility and applicability: Our base model 
can be easily adapted to address multiple incentiviza-
tion schemes, multiclass donors, and multiple blood 
types (discussion in Section 2.7), or different time- 
dependent structures (Online Appendix B), without 
implications on the overall tractability. We also believe 
that our work has wider relevance to supply incentivi-
zation and perishability, such as in two-sided markets 
(e.g., home-sharing) and supply chains with social 
impacts (e.g., charity organizations and food dona-
tions). In particular, our coupled network model is able 
to handle both demand and supply dynamics sepa-
rately, and the P-Queue technique can easily handle 
hard temporal cut-offs, such as perishability.

c. Theoretical extensions: Our paper advances the tech-
nique of P-Queue in three aspects. First, we propose a 

modification that allows relaxing some independence 
assumptions in the original framework (Propositions 6
and 7). Second, we introduce the novel concept of reduc-
ing the one-period delay that exists between the queues 
and servers (discussion after Equation 3). Finally, our 
model involves a coupled queueing system, for which is 
not immediately clear how it could be executed from the 
original framework.

d. Superior performance: We compare the optimal 
P-Queue policy with threshold-type policy benchmarks 
in the numerical experiments (Section 3). Our optimal 
policy can effectively reduce both shortages and wast-
age. Our optimal policy also exhibits features such as 
differentiated incentivization strategies for different 
classes of donors, forward-looking and risk-averse plan-
ning, and smoothing of interventions to maintain stabil-
ity in the inventory levels, leading to its superior 
performance over the benchmarks. Specifically, the 
insights derived from the numerical study are summa-
rized as follows: 

a. Our model outperforms threshold policies 
because it is able to account for nonstationary 
future demand and uses more real-time informa-
tion about the state; and

b. We highlight several features of a good 
donor-/inventory-management policy that can 
serve as high-level guidance for practitioners. The 
policies obtained from our model possess these 
three properties compared with the benchmark. 

i. Maintaining a high level of inventory 
helps to fulfill demand, but entails better 
management of old blood to reduce wastage.

ii. Incentivizing low-responsive donors 
during times of surpluses helps maintain a 
high level of active donors and reduces 
dropouts amongst low-responsive donors.

iii. Maintaining a minimum pool of eligi-
ble high-responsive donors grants the greater 
capacity to react to prolonged shortages.

1.3. Organization of the Paper
The remainder of this paper is organized as follows. In 
Section 2, we introduce the main model setup and pre-
sent tractable reformulation. We also briefly discuss 
potential extensions that capture more features in practi-
cal blood-donation settings. In Section 3, we design a 
numerical simulation study and showcase the novelty 
and advantages of our framework against benchmark 
policies. We conclude the paper in Section 4 and discuss 
possible future research. To keep the discourse succinct, 
we relegate all the proofs to Online Appendix A.

1.4. Convention
We adopt the convention min∅ �∞, where ∅ is the 
empty set and log 0 �max∅ ��∞. For brevity, for a 
given indexed variable pt, s, we abuse the notation 



(1� p)t, s to mean 1� pt, s. Let P(X) be defined as the 
space of probability distributions on X.

2. Basic Blood-Donation Model
In this section, we present an integrated model of blood sup-
ply and demand with a particular focus on donation behav-
ior and dynamics. Our model is broadly motivated by the 
technique of Pipeline Queues (Bandi and Loke 2018). To see 
the technique in action in other problem settings, readers 
are referred to Zhou et al. (2022) and Tang et al. (2020).

2.1. Sequence of Events
Our proposed model is a series of three queue-server 
dyads, representing the blood inventory, donors before 
incentivization, and incentivized donors, as illustrated in 
Figure 1. They organize into two queuing networks, one 
modeling the eligibility of donors for donation and the 
incentivization process, and the other, the blood inven-
tory. The two networks are related via the process of 
blood donation—for each donor who successfully com-
pletes a donation, that corresponding blood packet trig-
gers an inflow for the inventory network. We term this 
setting a tandem network.

Let T be the last modeling time and S be the largest 
“present delay” for index s, which we later introduce. 
Define [T] as {1, : : : , T} and [T]0:�{0}S [T]; [S] and [S]0 
are defined analogously. Consider a finite time horizon 
t ∈ [T]0, where t�T is the last modeling time period, and 
t�0 represents the initial state. In the P-Queue frame-
work, time-in-node is also tracked. We use the index s ∈
[S]0 to track the present delay of each job in a server or a 
queue. It is assumed that S>T.

We first describe the network for donors. In the 
“eligible donors” server, each job represents a donor 

who has completed their safety observation window 
(i.e., is at present eligible for donation). Specifically, let 
yt, s, t ∈ [T]0, s ∈ [S]0 be the random variable represent-
ing the number of eligible donors in the server, who have 
yet to donate by time t after s periods of completing their 
observation window. Donors can donate without incen-
tivization. This is modeled by the direct feedback from 
the eligible donors server to the observation queue. For 
those donors who receive incentivization, they will be 
routed to the loop of the incentivized donors. More 
details on incentivization will be discussed later. Dona-
tion is modeled as service completion in the servers. 
After donation, the donor returns to the observation 
queue, where they must observe a So(< S) safety obser-
vation period before they are next eligible for donation. 
We denote the state of the observation queue with the 
random variable zt, s, t ∈ [T]0, s ∈ [S]0 representing the 
number of donors who have observed exactly s periods 
of the So observation window at time t. Once the observa-
tion window is completed, the donor may rejoin the pool 
of eligible donors in the server. The movement of donors 
who have observed s periods by time t into the server is 
modeled by the auxiliary decision variables qt, s, t ∈ [T], 
s ∈ [S]0. Here, by definition, qt, s � 0, ∀s < So. Note that 
the dynamics are not defined for s>S. Donors who stay 
past s�S are assumed to have left the donor pool as 
dropouts.

We also model new donors to the system via an inflow 
into the observation queue. In practice, the blood bank only 
knows that the donor is a new donor when they make their 
first donation. As such, our assumption here is that every 
inflow has just made their first donation and, hence, enters 
the observation queue to complete their observation win-
dow before being allowed to donate again. We denote 
inflow as the random variable λt at time t.

Figure 1. Blood Donation Network with Incentivization 



In our model, we describe incentivization as an out-
flow decision variable from the eligible donor server yt, s. 
Keeping with the primitives of a P-Queue, we define this 
outflow as an adaptive decision: Let the decision variables 
αt, s ∈ [0, 1] represent the proportion of donors who have 
been eligible since s periods ago at time t, who are to 
receive the incentivization. After receiving this incentivi-
zation, the donors, represented by this outflow, would 
go into a new server, which we term the “incentivized 
donors” server, with state variables ut, s, representing the 
number of donors who at time t have yet to donate, after 
s periods since incentivization. Adhering to the structure 
of P-Queues, we model an intermediate and auxiliary 
queue, termed the “holding queue,” with state variables 
vt, s, which receives the incentivized donors and dis-
patches them to the invited donors server via auxiliary 
decision variable, rt, s, similar to the observation window. 
Like the other donors, upon successful donation, incentiv-
ized donors will return to the safety observation queue.

In the other network, we track the donated blood pack-
ets until they have expired or are used to fulfill the time- 
nonhomogeneous stochastic demand dt. Here, each job in 
the network represents one blood packet. Denote the ran-
dom variable xt, s, t ∈ [T]0, s ∈ [S]0 as the number of blood 
packets at time t that have spent s periods in the blood 
inventory queue. Amongst these blood packets, the auxil-
iary decision variables pt, s, t ∈ [T], s ∈ [S]0 of them will be 
used to fulfill demand dt. Let Se(< S) represent the shelf life 
of blood. Hence, xt, s for any s ≥ Se would contribute to 
wastage as a result of expired blood. The parameters and 
notations used in the model are detailed in Table 1.

We remark that the push variables qt, s and rt, s are aux-
iliary variables to model the emptying of the queue into 
the servers. They are needed solely for model construc-
tion and do not correspond to any decisions in practice. 
As such, although they are solved as decision variables 
in the model, in reality, they will not be implemented.

2.2. Effect of Incentivization and Model 
Assumptions

Before defining the dynamics of our model, let us state 
clearly the assumptions that we make on the random 
variables—namely, the inflow, demand, and the service- 
time distributions of both incentivized and nonincenti-
vized donors.

Assumption 1. Inflow λt ~Λt and demand dt ~ Dt distri-
butions can be time-nonhomogeneous, but are independent 
across t. We assume that their moment-generating func-
tions exist.

These assumptions are relatively loose. Time nonho-
mogeneity can capture seasonal patterns, and if there is a 
need to observe nonindependent distributions across 
time, the model may still be solved on a rolling horizon 
manner, where the information of the new distribution is 
updated when new data are realized. We also consider 

the setting where inflow and demand are bounded, 
which guarantees that their moment-generating function 
exists.

Assumption 2. The decision of each donor to donate is 
independent of any other donor. Furthermore, we assume 
that at any time t ≥ 0, the probability of whether the donor 
will donate in the next time period (without incentiviza-
tion), conditional on the fact that they had not donated s ≥ 0 
periods since they became eligible, is the same for all donors; 
and this is denoted by ωt+1, s+1.

Independence is a reasonable assumption in our set-
ting of blood donation. At first glance, requiring the con-
ditional probabilities of donation to be the same appears 
restrictive. However, this representation is, in fact, 
general—any nonstationary discrete-time service-time 
distribution can be represented in the form of ωt, s (Dai 
and Shi 2017). Moreover, as we shall see later, due to the 
structure of our model, its tractability is not influenced 
by adding an index i to the conditional probabilities to 
model heterogeneous donors; in other words, this 
assumption can be relaxed when we define different con-
ditional probabilities ωt, s

i on subpopulations i of donors.

Assumption 3.
a. Incentivization can occur at any time point t or period 

since eligibility s;
b. For any donor, upon incentivization, the probability of 

donation is independent of the probability of donation prior 
to incentivization;

c. The probability of donation in the next time period, 
given incentivization, is independent across donors. This 
probability, at any time t(≥ 0), is the same for all donors con-
ditional on the time since they were incentivized at s(≥ 0); 
and we denote this probability by φt+1, s+1; and

d. The act of incentivization occurs prior to the act of 
donation at each time period.

We wish to consider incentivization mechanisms that 
influence donors’ probability of donation, as opposed to 
modeling incentivization as an inclusion or exclusion 
policy. This allows us to cover a large range of incentivi-
zation mechanisms, such as (i) incentivizing donors to 
return to donate or to hasten their donations, (ii) incen-
tivizing donors to delay their donations, and (iii) dis-
pensing different incentives to different subpopulations 
of donors. We discuss this more in Section 2.7 and also in 
Section 3. This is also in line with literature on mecha-
nism design and Bayesian persuasion, where the effect 
of incentivization is modeled by the change in the agent’s 
probability distribution of taking actions. For example, 
the Bayesian persuasion framework models agents as 
expected utility maximizers. The incentivization scheme 
works as a mechanism that alters agents’ beliefs on 
unknown system states via a Bayesian updating process, 
subsequently changing the postincentivization expected 
utility and the probability of taking certain actions. Given 



that our paper aims to provide a practical decision- 
support tool, we do not intend to incorporate utility 
models or belief-updating processes to detail the inter-
action between donors and an incentivization scheme 
to avoid stylized assumptions on utility functions and 
donors’ rationality. Instead, we take the model-free, 
but data-driven, approach that treats the overall effect 
of the incentivization mechanism, captured by the dif-
ference between ω�(i.e., probability of donation prior to 
incentivization) and φ�(i.e., probability of donation 
after incentivization), as inputs, which can be esti-
mated from the data. The benefit is that our model can 
work with any specific incentivization scheme, as long 
as the data support estimating the donation probabili-
ties before and after the incentivization.

Assumption 3(a) allows the mechanism to be general 
in time. Assumption 3(b) sets up a setting similar to those 
in the mechanism design and Bayesian persuasion 
domain, where donors act differently postincentiviza-
tion and independently of their prior decision to donate. 
This assumption is also analogous to, but more general 
than, the Markov property in MDPs, which require the 
process to be memoryless, hence requiring current states 
to capture all relevant information that affects the future. 

There is also empirical evidence from studies in Heger et al. 
(2020) supporting the assumption that the effect of events 
before incentivization is not as significant as the incentivi-
zation itself. Assumption 3(c) is the incentivized analog to 
Assumption 2. Finally, Assumption 3(d) just describes the 
staging of the events and does not have any real implica-
tions on the model. The setup of Assumption 3 motivates 
our approach to model incentivization as an outflow deci-
sion variable from the eligible donor server yt, s.

One may question why the time since the last donation 
is not a factor that determines the probability of donation 
postincentivization. In Heger et al. (2020), the authors do 
not find empirical evidence that the time since the last 
donation is a significant factor. Nonetheless, to illustrate 
the flexibility of our framework and in other cases where 
the time since the last donation indeed matters, we have 
put in an extension where we consider time since the last 
donation as a factor in Online Appendix B.

2.3. Dynamics
We begin by describing the dynamics of the donors and 
start with the server consisting of eligible donors. Specifi-
cally, at time t, inflow into the server, which is equiva-
lently all donors who have spent zero periods in the 

Table 1. List of Parameters and Variables

Parameter or variable Definition

Dimensions
T Last modeling time
Se Shelf life of blood packets
So Safety observation period of donors
S Index upper bound of the present delay in each server or queue; also the point at which donors are 

considered dropouts
Parameters
ωt, s Probability of donation for donors who waited for s periods after completing safety observation 

period at time t
φt, s Probability of donation for donors who have yet to donate s periods after incentivization at time t
W Target on total wastage by the last time period, T, that the decision maker hopes to keep within

Primary random variables
λt Random arrivals of first-time donors at time t
dt Demand for blood at time t

Random state variables
yt, s Random variable of the number of eligible donors at time t, completed observation period, and yet to 

donate for s periods
zt, s Random variable of the number of donors observing safety observation for s periods at time t
xt, s Random variable of the number of blood units in inventory queue for s periods at time t
ut, s Random variable of the number of invited donors who have yet to donate for s periods at time t
vt, s Random variable of the number of registered and invited donors in holding queue for s periods at 

time t
Decision variables

qt, s Push variable of donors dispatched to donor pool after spending s periods in the observation queue 
at time t

pt, s Push variable of blood units dispatched to fulfill demand after spending s periods in blood inventory 
queue at time t

rt, s Recourse variable of invited donors dispatched to the server after waiting for s periods at time t
αt, s Decision variable of proportion of donors to approach



server so far, is represented by yt, 0. This is fully made up 
of donors who have completed their safety observation 
period: yt, 0 �

PS
s�0 qt, s, ∀t ∈ [T].

For s> 0, the dynamics of yt, s only involve outflows. 
There are three key groups within the cohort of yt, s. By 
Assumption 3(d), incentivization occurs before dona-
tion; in other words, we first identify αt, syt�1, s�1 of them 
as targets for incentivization and route them to the hold-
ing queue, whose dynamics we will describe in a bit. Of 
the remaining (1� αt, s)yt�1, s�1 of them, the identical and 
independence assumption in Assumption 2 justifies the 
definition for all t ∈ [T], s ∈ [S],

yt, s � Bin((1� αt, s)yt�1, s�1, 1�ωt, s), 

who are the donors that did not donate at time t and 
continue to remain in the server. Consequently, f t, s �

Bin((1� αt, s)yt�1, s�1, ωt, s) number of donors would 
complete their donation and return to the observation 
queue. For convenience later, we denote Ωt, s :�

Qmin{s, t}�1
τ�0 

(1�ωt�τ, s�τ), the cumulative probability that the donor’s 
donation time is at least s.

Notice here that, in keeping with the P-Queue frame-
work, we have decided to model the incentivization 
decision as a proportion of the state, a, rather than as a 
deterministic number. This ensures that the incentiviza-
tion is always an adaptive decision, reacting to the state y.

Proposition 1 (Independence of Pipelines). For a fixed 
time t ∈ [T], for any s, s′ ∈ [S] such that s ≠ s′, yt, s and 
yt, s′ are independent.

Proposition 1 is the culmination of the fact that the 
dynamics are organized by “pipelines” {yt�τ, s�τ}

min{t, s}
τ�0 , 

which trace back to either y0, s�t, some initial condition, 
or inflow yt�s, 0, which is the sum of decision variables. In 
other words, the dynamics essentially play out within 
cohorts.

This concludes the dynamics for the eligible donors 
server. The dynamics in the incentivized donors server 
follow along similar lines. First, inflow is given by 
ut, 0 �

PS
s�0 rt, s, ∀t ∈ [T]. Next, Assumption 3(c) being 

identical to Assumption 2 allows us also to define a Bino-
mial distribution on the state ut, s � Bin(ut�1, s�1, 1�φt, s). 
The absence of the decision variables here enables us to 
state a stronger result:

Proposition 2.
a. Let Φt, s :�

Qmin{s, t}�1
τ�0 (1�φt�τ, s�τ); then, ∀t ∈ [T],

ut, s �
Bin(ut�s, 0,Φt, s) for 0 < s < t,
Bin(u0, s�t,Φt, s) for t ≤ s ≤ S:

�

b. Independence of Pipelines: For a fixed time t ∈ [T], for 
any s, s′ ∈ [S] such that s ≠ s′, ut, s and ut, s′ are independent.

We move on to the dynamics of the queues, starting 
with the holding queue. As previously mentioned, the 
αt, syt�1, s�1 donors earmarked for incentivization leave 
the eligible donors server and enter this queue. Thus, the 
inflow into the holding queue can be defined by

vt, 0 �
XS

s�1
αt, syt�1, s�1� rt, 0: (1) 

Here, the term rt, 0 represents the donors who may imme-
diately be pushed into the incentivized donors server. 
This term is critical, as it is previously absent in the origi-
nal P-Queue framework. Without it, the newly incentiv-
ized donors must minimally wait for at least one time 
period before donating, which defeats the purpose of 
incentivization. There are more serious consequences of 
this additional term for the other queues, which we 
explain when we arrive at that point.

The rest of the dynamics of the holding queue com-
prises the outflows, and the only outflows from the hold-
ing queue are the dispatches into the incentivized 
donors server. Hence, for t ∈ [T],

vt,s � vt�1,s�1� rt,s �

vt�s,0�
Xs�1

τ�0
rt�τ,s�τ for 0< s< t,

v0,s�t�
Xt�1

τ�0
rt�τ,s�τ for t≤ s≤S:

8
>>>><

>>>>:

We also describe the dynamics of the observation queue, 
which is more complicated. Notice that the inflow into 
the observation queue is all donors who have just 
donated blood, and there are three sources of them— 
namely, the new donors, the donors who donated with 
incentivization, and those who did so without. Thus, one 
can respectively state the dynamics as

zt, 0 � λt +
XS

s�1
Bin(ut�1, s�1,φt, s)

+
XS

s�1
Bin((1� αt, s)yt�1, s�1,ωt, s): (2) 

Notice that here, we could have added a term �qt, 0 like 
in (1), but qt, 0 � 0, by definition of the observation period. 
Similar to the case for v, the outflow is written as, 
∀t ∈ [T],

zt, s �

zt�s, 0�
Xs�1

τ�0
qt�τ, s�τ for 0 < s < t,

z0, s�t�
Xt�1

τ�0
qt�τ, s�τ for t ≤ s ≤ S:

8
>>>><

>>>>:



Finally, we describe the dynamics of the blood packets in 
the blood inventory. Note that every inflow into the 
observation queue is marked by a donation. Hence, the 
inflow of blood packets into the blood-inventory queue 
is exactly equal to the inflow of donors into the observa-
tion queue. As such, the inflow dynamics into the blood 
inventory x would be the same as that for the blood 
donors z. Indeed, for all t ∈ [T],

xt, 0 � λt +
XS

s�1
Bin(ut�1, s�1,φt, s)

+
XS

s�1
Bin((1� αt, s)yt�1, s�1,ωt, s)� pt, 0: (3) 

Here, the additional term pt, 0 is included to ensure that 
newly donated blood packets can be immediately dis-
patched to fulfill demand. This avoids the minimal wait 
time of one period, which is undesirable in a high- 
demand setting.

Finally, the outflow from the blood inventory corre-
sponds to the blood packets utilized to fulfill the 
demand: For all t ∈ [T],

xt, s �

xt�s, 0�
Xs�1

τ�0
pt�τ, s�τ for 0 < s < t,

x0, s�t�
Xt�1

τ�0
pt�τ, s�τ for t ≤ s ≤ S:

8
>>>><

>>>>:

2.4. Constraints
Before listing the constraints, let us first caveat that 
we will be describing the constraints as if they were 
deterministic. However, the constraints essentially are 
functions of random variables, and, thus, we would 
need some measure to evaluate these constraints later. In 
the next subsection, we will provide a chance constraint 
interpretation and our rationale for proposing our 
model.

The main objective of a blood bank is to fulfill the 
demand for blood, while minimizing wastage. To handle 
this multiobjective problem, although it may be possible 
to write a combined objective that quantifies the trade- 
off for blood shortages against the cost of wastage, we 
avoid this, as it is generally difficult to prescribe such a 
trade-off. Instead, in the P-Queue framework, both objec-
tives are modeled as constraints with the aim of finding a 
feasible policy that runs a high probability of meeting the 
demand and keeping wastage below a certain level.

At time t, demand is fulfilled by blood allocated from 
the inventory pt, s of different age s:

XSe�1

s�0
pt, s ≥ dt ∀t ∈ [T]:

Here, the limits run till Se� 1, as expired blood cannot be 
used to fulfill the demand. This leads to pt, s � 0, ∀s ≥ Se. 

Demand fulfillment is modeled at every time period sep-
arately, as opposed to summed over all time periods t. 
This is because the latter can potentially result in large 
shortages at a particular time point in exchange for low 
or no shortages at other times. The blood bank also has to 
limit the total wastage of blood over the planning hori-
zon under some level W:

XS

s�Se

xT, s +
XT

t�1

XSe�1

s�0
pt, s� dt

 !

≤W:

The first term represents the total expired blood pack-
ets, while the second term captures the total number of 
excess blood packets that were overcommitted to ful-
filling the demand, summed over all time periods 
t ∈ [T].

On servers, we can impose capacity constraints, whereas 
for queues, constraints can be imposed to ensure that the 
queue does not build up when there is spare capacity in the 
server. In both cases, such constraints can be written in Lin-
ear Forms (4). This is done by as

n � 1, n ∈ {x, y, z, u, v}, 
where the left-hand side (LHS) of (4) represents the total 
number of donors or blood packets in the server or 
queue at any given time t. The corresponding linear 
forms give rise to capacity constraints and queue- 
clearing constraints. Note that those linear forms in (4) 
can also represent other types of constraints required to 
control the system, such as waiting time in the queue 
and a blood-demand fulfillment policy. Specifically, 
when as

n �max{0, s� So}, the LHS gives rise to the total 
waiting time after completing the observation window 
and before being dispatched to the eligible donors 
server, which are situations that we seek to reduce. Com-
monly adopted blood-demand fulfillment policies 
include the FIFO policy, where demand is fulfilled by 
the least fresh blood packet to ensure little wastage, or 
the last-in-first-out (LIFO) policy, which allocates the 
freshest blood packet to the demand (Sarhangian et al. 
2018). The linear forms can specify both types of policies, 
and there may be many ways to model them. In our 
paper, we adopt the FIFO demand-fulfillment policy as 
a demonstration that is enforced by constraint as

n � s2. 
LIFO can be similarly modeled (e.g., as

n � 1=(s+ 1)2).

XS

s�0
as

nnt, s ≤ bt
n, n ∈ {x, y, z, u, v}: (4) 

We introduce a budget that restricts the maximum num-
ber of incentivized donors. Here, we can consider the 
constraint 

PS
s�0 ct, syt, s ≤ Bt, where ct, s is the per-donor 

cost of dispensing the incentive to donors who have yet 
to donate for s periods by time t, and Bt is the budget at 
time t. For example, to impose a constraint on the maxi-
mum number of donors that can be called up in any 



period, one can adopt ct, s ≡ 1. Notice that this is also of 
the form (4).

We also have the feasibility constraints on push vari-
ables to ensure that there will not be more donors made 
eligible than there are donors already in the observation 
queue: zt, s, xt, s ≥ 0, ∀t ∈ [T], s ∈ [S]0, which are equiva-
lent to qt, s ≤ zt�1, s�1, pt, s ≤ xt�1, s�1. This is a special case 
of (4), where as ��1 for some s, and zero otherwise. As 
we see in the next section, this does not hinder our 
attempts to arrive at a tractable formulation.

Lastly, after donation, donors must observe the safety 
period and cannot be pushed into the eligible donors 
server: qt, s � 0, ∀t ∈ [T], s < So. For demand fulfillment, 
expired blood packets cannot be used: pt, s � 0, ∀t ∈ [T], 
s ≥ Se.

Most critically, note that the constraints introduced 
above are all linear in the state variables xt, s, zt, s, yt, s, 
decision variables pt, s, qt, s, and exogenous uncertainties 
λt, dt. This will help us achieve tractable reformulations.

2.5. Model and Reformulation
In the P-Queue framework, stochastic constraints ζ̃ ≤ 0 
are modeled via their corresponding surrogates defined 
under the Aumann and Serrano (2008) riskiness index, 
Ck,θ[ζ̃](:� k log E[exp(ζ̃=kθ)]) ≤ 0. These surrogate con-
straints control the probability of violation of the original 
constraint, as Proposition 3 details.

Proposition 3. Let k,θ > 0. For a random variable ζ̃, 
define Ck,θ[ζ̃] � k log E[exp(ζ̃=kθ)].1 If Ck,θ[ζ̃] ≤ 0, then,

P[ζ̃ ≥ ∆] ≤ exp(�∆=kθ) ∀∆ > 0:

Proposition 3 is a standard result from the literature on 
Satisficing (Brown and Sim 2009, Brown et al. 2012) and is 
a direct application of Markov’s inequality. From Propo-
sition 3, we can see that both k and θ�control the probabil-
ity of constraint violation—the smaller k or θ, the sharper 
the guarantees. In the literature, k is treated as the global 
risk level, which we attempt to minimize, whereas θ�is 
viewed as an idiosyncratic parameter that controls the 
tightness of each constraint. Here, we label each θ�
according to the constraint type “n” and time t, denoted 
as θn, t. Indexing by t allows the decision maker to flexi-
bly vary the tightness of the constraint in time t. For 
example, if demand shortages at early times are more 
critical than later times, the decision maker may make 
θd, t smaller for small t. In this paper, we consider two 
levels of tightness, θhard, for hard constraints that should 
never be violated (e.g., capacity constraints) and θsoft for 
soft constraints that can be violated, but should only be 
done so infrequently (e.g., waiting time). The value of 
θhard is much smaller than that of θsoft (e.g., θhard � 0:01 
versus θsoft � 1). In practice, the decision maker would 

calibrate θ�based on the probability exp(�∆=kθ) of 
incurring violation ∆.

Proposition 3 motivates the following optimization 
problem:

min
k>0, p, q, r,α k

s:t: Ck,θd, t

"

dt �
XSe�1

s�0
pt, s

#

≤ 0,

∀t ∈ [T] [Demand]

Ck,θW, t

"
XS

s�Se

xT, s +
XT

t�1

 
XSe�1

s�0
pt, s � dt

!

�W

#

≤ 0,

[Wastage]

Ck,θn, t

"
XS

s�0
as

nnt, s � bt
n

#

≤ 0, n ∈ {x, y, z, u, v},

∀t ∈ [T]

Capacity, Budget

Queue-clearing

Waiting-time, FIFO

2

6
6
4

3

7
7
5

Ck,θn, t[�nt, s] ≤ 0, n ∈ {x, z, v},

∀t ∈ [T], ∀s ∈ [S]0 [Push Constraints]

qt, s � 0, ∀t ∈ [T], ∀s < So and pt, s � 0

∀t ∈ [T], ∀s ≥ Se [Logic Constraints]

nt, s ≥ 0, n ∈ {p, q, r}, and αt, s ∈ [0, 1],

∀t ∈ [T], ∀s ∈ [S] [Decisions]

:

(5) 

In the rest of this section, we will show that the above 
surrogate constraints Ck,θn, t[

PS
s�0 as

nnt, s� bt
n] ≤ 0 can be 

reformulated for each of n ∈ {x, y, z, u, v} into computa-
tionally tractable forms that are jointly convex in the 
decision variables. The reformulations for each of them 
differ due to the different dynamics at each of the nodes. 
Because of the additive nature of the operator Ck,θ[·], 
even if the right-hand-side terms bt

n are decision vari-
ables, such as in the wastage constraint that is linear in x 
with push variables pt, s in bt

n, they would lead to exactly 
the same expressions had we treated them as constants. 
Additionally, additivity also allows the demand terms 
dt, which are conditionally independent of the rest of 
the dynamics, to be separated—for example, Ck,θd, t[dt 

�
PSe�1

s�0 pt, s] � Ck,θd, t[dt] +Ck,θd, t[�
PSe�1

s�0 pt, s]—leaving 
a linear expression in the state variables. Thus, it suffices 
to provide reformulations for Ck,θn, t[

PS
s�0 as

nnt, s� bt
n] ≤

0 alone. As such, we omit their reformulations for brev-
ity. Also note that in the following propositions, if index 
sets are empty, the corresponding terms or constraints 



are understood to be omitted. Define the function ρt, s
π (ζ) :

� log(1�πt, s +πt, sexp(ζ)).

Proposition 4. For a given t ∈ [T],

Ck,θu,t

"
XS

s�0
as

uut,s�bt
u

#

�k
Xt�1

s�0

XS

s′�0
rt�s,s′ρt,s

Φ (a
s
u=kθu,t)

+ k
XS

s�t
u0,s�tρt,s

Φ (a
s
u=kθu,t)�bt

u=θu,t:

(6) 

What we can see in this proposition is the effect of the 
risk correction at risk level k. Notice that if ζ > 0, then 
kρt, s
π (ζ=k) → πt, sζ�as k→∞; thus, one recovers 

Pt�1
s�0 PS

s′�0 rt�s, s′Φt, sas
u=θu, t and 

PS
s�t u0, s�tΦt, sas

u=θu, t for the 
first and second terms in (6), which are just the 
expected value of the LHS of the constraint, split 
between contributions from the inflow (decision vari-
ables r) and the initial conditions, respectively. However, 
because kρt, s

π (ζ=k) is convex and decreasing in k, a lower 
risk level k thus increases the right-hand side of (6), conse-
quently tightening the constraint. Zhou et al. (2022) dive 
more deeply into this, and the interested reader is directed 
there.

Proposition 5. For any t ∈ [T], Ck,θy, t[
PS

s�0 yt, sas
y� bt

y] ≤ 0 
is equivalent to the collection of the following constraints:

yt, 0a0
y=θy, t + k

Xt�2

τ�0
ξt�τ, 1 + k

XS

τ�t
ξ1,τ�t+1 ≤ bt

y=θy, t

ξt, s ≥ βt, sρt, s
1�ω(a

s
y=kθy, t) ∀s ∈ [S]

ξt�τ, s�τ ≥ βt�τ, s�τρt�τ, s�τ
1�ω (ξt�τ+1, s�τ+1=βt�τ, s�τ)

∀τ ∈ [t� 1], s ∈ [S] \ [τ]:

Unlike Proposition 4, the dynamics of y involve the deci-
sion variables α. Hence, a closed form in the sense of (6) 
is no longer possible. In its place, we introduce the auxil-
iary variables ξ, which are dependent on the optimal 
auxiliary decision variables β, which we defined as a sub-
stitute for representing the original incentivization deci-
sion αt, s via 1� αt, s � βt, s=βt�1, s�1. These perspective 
functions βρt, s

1�ω(ξ=β) are jointly convex in β�and ξ, which 
is the point of the substitution. Because this representa-
tion uses more decision variables (β’s) than there origi-
nally are (α’s), it grants us the degree of freedom to 
determine the boundary values as βt, 0 � yt, 0 :�

PS
s�0 qt, s 

and initial conditions β0, s :� y0, s.

Proposition 6. For any t ∈ [T], Ck,θv, t[
PS

s�0 as
vvt, s� bt

v]

≤ 0 is equivalent to the collection of the following 

constraints:

Xt�1

j�1

βj,0�βj+1,1

θv,t=at�j�1
v
+
XS�1

j�t

β0,j�t�β1,j�t+1

θv,t=at�1
v

+
XS�1

j�S�t

β0,j�β1,j+1

θv,t=at�1
v

+ k
Xt�1

j�2
ηt�j+1,1+

XS�1

j�t
η1,j�t+1+

Xt+S�2

j�S
η1,j�t+1

0

@

1

A

�
1
θv,t

Xt�1

s�0

Xs

τ�0
as

vrt�τ,s�τ+
1
θv,t

XS

s�t
as

v v0,s�t�
Xt�1

τ�0
rt�τ,s�τ

 !

≤bt
v=θv,t

ηt�1,j�1≥βt�1,j�1ρt�1,j�1
1�ω

a0
v(β

t�1,j�1�βt,j)

kθv,tβ
t�1,j�1

 !

∀j∈[S�1]\ 1{ }

ηt�τ,j�τ≥βt�τ,j�τρt�τ,j�τ
1�ω

βt�τ,j�τ�βt�τ+1,j�τ+1

kθv,tβ
t�τ,j�τ=aτ�1

v
+
ηt�τ+1,j�τ+1

βt�τ,j�τ

 !

∀τ∈[t�2]\ 1{ },j∈[t�1]\[τ]

ηt�τ,j�τ≥βt�τ,j�τρt�τ,j�τ
1�ω

βt�τ,j�τ�βt�τ+1,j�τ+1

kθv,tβ
t�τ,j�τ=aτ�1

v
+
ηt�τ+1,j�τ+1

βt�τ,j�τ

 !

∀τ∈[t�1]\ 1{ },j∈[S�1]\[t�1]

ηt�j,S�1≥βt�j,S�1ρt�j,S�1
1�ω

βt�j,S�1�βt�j+1,S

kθv,tβ
t�j,S�1=aj�1

v

 !

∀j∈[t�1]

ηt�j�τ,S�τ≥βt�j�τ,S�τρt�j�τ,S�τ
1�ω

βt�j�τ,S�τ�βt�j�τ+1,S�τ+1

kθv,tβ
t�j�τ,S�τ=aj+τ�1

v
+
ηt�j�τ+1,S�τ+1

βt�j�τ,S�τ

 !

∀τ∈[t�1]\{1},j∈[t�τ�1]0:
(7) 

The reformulations for the queues are visibly much 
more complicated than the servers. This is because, 
unlike the servers, the inflows into the queues are 
themselves random variables, as opposed to decision 
variables. In the case of the dynamics of v, the inflow, as 
given in (1), involves the incentivized donors 

PS
s�1 

αt, syt�1, s�1. Moreover, despite Proposition 1, because we 
are additionally summing over t over this expression, 
the summand does not simply decompose into mutually 
independent terms. To give an example, consider two 
donors who are in the holding queue at time t�3, where 
both arrived at the eligible donors server at time t�1, but 
one stayed for one time period before being incentivized, 
and the other for two time periods. Either way, donors 
from both of these routes belong to the same cohort y1, 0, 
and, hence, their contributions to 

PS
s�0 as

vvt, s cannot 
be independent. In the original P-Queue framework, this is 
ignored, and the framework instead assumes that cohorts 
arriving at vt, 0 are independent, which, as explained, is 
clearly violated. In Proposition 6 and subsequently also in 



Proposition 7, we introduce a novelty in the technique to 
avoid this assumption and to evaluate the surrogate con-
straints. This is a significant improvement because the 
expressions obtained are very different, and it helps fur-
ther refine the P-Queue framework in preserving its con-
struct of having the greatest possible generality in terms of 
the class of queueing networks it can model.
Proposition 7. For any t ∈ [T], Ck,θz, t[

PS
s�0 as

zzt, s� bt
z] ≤ 0 

is equivalent to

Ck,θz, t

 
Xt�1

s�0
as

zλ
t�s

!

�
1
θz, t

Xt�1

s�0

Xs�1

τ�0
as

zqt�τ, s�τ

+
1
θz, t

XS

s�t
as

z z0, s�t�
Xt�1

τ�0
qt�τ, s�τ

 !

+Zt(k)

+ k

 
Xt�1

j�1
ψt�j+1, 1 +

Xt+S�1

j�t
ψ1, j�t+1

!

≤ bt
z=θz, t

ψt, j ≥ βt, jρt, j
ω (a

0
z=kθz, t) ∀j ∈ [S� 1]
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ω (aτz=kθz, t,ψt�τ+1, j�τ+1=βt�τ, j�τ)

∀τ ∈ [t� 2], j ∈ [t� 1] \ [τ]

ψt�τ, j�τ ≥ βt�τ, j�τσt�τ, j�τ
ω (aτz=kθz, t,ψt�τ+1, j�τ+1=βt�τ, j�τ)

∀τ ∈ [t� 1], j ∈ [S� 1] \ [t� 1]

ψt�j�τ, S�τ ≥ βt�j�τ, S�τσt�j�τ, S�τ
ω

aj+τ
z

kθz, t
, ψ

t�j�τ+1, S�τ+1

βt�j�τ, S�τ

 !

∀τ ∈ [t� 1], j ∈ [t� τ� 1]0, 

where Zt(k) :� k
Pt�1

j�1
PS

s′�0 rt�j, s′Υ
t, j
1, j + k

PS�1
j�t u0, j�tΥ

t, j
j�t+1, j 

+ k
Pt+S�1

j�S u0, j�tΥ
t, j
j�t+1, S, Υt, j

l, h :� log(1+
Ph

s′�l(exp(aj�s′
z =kθz, t)

�1)Φt�j+s′, s′
), Φt, s

:� φt, sQmin{s, t}�1
τ�1 (1�φt�τ, s�τ), and 

σt, s
p (ζ,ζ

′) :� log(pt, sexp(ζ) + (1� pt, s)exp(ζ′)):

In this proposition, we similarly introduce further 
novelties for avoiding independence assumptions, as 
earlier explained for Proposition 6. In this case, the inno-
vations occur for the term Zt(k) and the nested ψ�terms. 
Notice that all of these novel techniques introduce a new 
index of j, which splits into three summations. These 
summations actually arise out of a change of summation, 
which splits the space into three regions, depending on 
the boundary conditions. The reader may refer to the 
proofs in Online Appendix A for more details.

As mentioned previously, the dynamics of xt, s is anal-
ogous to zt, s; consequently, its reformulation is also simi-
lar and is omitted for brevity.

2.6. Tractability
Note that in all of the above reformulations, we obtain 
constraints that are jointly convex in all decision 

variables (auxiliary or otherwise). This preserves model 
tractability.

Theorem 1 (Reformulation). Problem (5) has a reformula-
tion into a convex optimization problem with O(ST3) con-
straints. Moreover, it can be solved via a sequence of convex 
subproblems.

We summarize in Table 6 in Online Appendix C.4 
how each of the reformulations contribute to the even-
tual total number of constraints.

2.7. Practical Settings in Applications
At this point, we would like to present two ways that the 
model can be easily extended and subsequently discuss how 
this might be applicable to model practical settings better.

First, by adding an additional class index i on every 
state variable and decision variable, we can model the 
general situation of different donor classes, such as in the 
case of different blood groups. Because of the additivity 
(under independence) of the surrogate constraints, 
adding an index i for each class will lead to analogous 
reformulations and does not fundamentally alter the trac-
tability guaranteed in Theorem 1. For the case of blood 
groups, the dynamics on the part of donors remain the 
same, except now divided into different blood groups. 
The only change occurs in the inventory, where we allow 
the blood of a particular type i to be used to fulfill the 
demand for another type j. This still leads to a set of 
dynamics that is linear in xt, s

i and pt, s
i, j ; hence, the analysis 

remains. We may further impose more penalties on using 
the wrong blood groups, as long as these penalties can be 
represented linearly in pt, s

i, j . Another important example 
of a multiclass context is one where there are two distinct 
groups of high- and low-responsive donors, and the deci-
sion maker might be interested in incentivizing them dif-
ferently. We explore this setting later in Section 3.

Second, our model also extends to the situation where 
the planner has multiple different incentives that would 
change the probability of donation in different ways and 
needs to decide on which incentives to use (or in combi-
nation or none at all). For example, a two-tiered system 
might include one option to incentivize donors to hasten 
their donation and the other to delay the donation. Our 
model can be altered trivially to handle such a situation 
by adding more layers, one for each type of incentive, 
similar to how the incentivization component of the 
donors’ system is an added queue-server dyad. As the 
dynamics of the model are defined additively, doing so 
has no implications on the tractability of the model.

3. Numerical Studies
In this section, we present our numerical study, where 
we compare our model against benchmark policies in 
the context of Heger et al. (2020), which we shall refer to 
as the reference literature henceforth, and use their empiri-
cal results as the parameters for our model.



3.1. Context and Setup
In the reference literature, the authors conducted an 
empirical study, where in the first round, donors may 
sign up for a Registry and are informed that they would 
be contacted during times of blood shortages. In the sub-
sequent round, the effect of participation in the Registry 
is tested in terms of their subsequent time-to-donation, 
based on whether the participants are exposed to a speci-
fic appeal for blood or not. The setting of their work gels 
with the setting of our model via a two-donor-class prob-
lem, which, as we have discussed in Section 2.7, does not 
lead to additional formulation complexities in our 
model. Here, donors who are in the Registry belong to 
one class, henceforth termed “high-responsive donors,” 
and donors who are not in the Registry belong to another 
class, termed “low-responsive donors.” Specifically, as 
the reference literature studies the donation likelihoods 
pre-incentivization and postincentivization of both clas-
ses of donors (as a function of time prior to donation or 
incentivization), their results naturally translate as the 
time-to-donation probabilities in our model, from which 
the probabilities ωt, s and φt, s can be computed (Figure 8 
in Online Appendix C.4). Other information, such as the 
relative proportions of the two classes of donors, can also 
be inferred from their study. For further details, please 
refer to Online Appendix C.2.

In this study, we consider the setting of a blood bank 
making donor-incentivization decisions under planning 
horizon T� 5, where one unit of time is three weeks. This 
choice is commensurate with the time interval between 
incentivization, which does not occur too frequently 
in practice, though the polynomial complexity of our 
model does allow us to model at finer time scales and 
retain tractability. Consequently, the safety observation 
period translates to So� 4 time periods (12 weeks), and 
the lifetime of blood packets is Se� 2 time periods 
(6 weeks). The maximum donation time considered is 
S� 12 time periods (36 weeks), which is the definition 
used in the reference literature. In line with the model, if 
a donor has yet to donate within the 12 time periods since 
incentivization or eligibility, they are assumed to have 
dropped out of the donor pool.

The blood bank is assumed to possess information 
about the new donors inflow distribution Λt and the 
demand distribution Dt. These distributions pertain to 
the dynamics in the blood inventory and, thus, are not 
considered in the reference literature. As such, we had 
separately chosen these parameters. New donor inflow 
(set at mean 53) is chosen in such a way that the mean 
size of the donor pool remains roughly consistent over 
time. The mean demand was chosen to be slightly larger 
than the combined mean donation rate of new and 
repeat donors without incentivization, which forces the 
model to make incentivization decisions to avoid 
shortages. The decision maker is also assumed to know 
the initial states x0, s, y0, s, and z0, s. The reference literature 

contains information on the proportion of the total 
donors in each class, but not its distribution across the 
time-in-node, s. To resolve this, we warm-started our 
simulations by running them over 100 time periods with-
out incentivization and using their final states as the ini-
tial states for our simulations. This allows the system to 
arrive near the no-incentivization steady state, facilitat-
ing comparisons with the benchmark policies, which 
might perform poorly in transient regimes. This allows 
us to examine the reasons why the Pipeline Queues (PQ) 
model may result in a superior policy.

The goal of the blood bank is to determine the number 
of donors to be incentivized as a decision rule αt, s, for each 
of the classes of donors. They aim to keep the wastage 
low, while meeting demand. It is expected that the blood 
bank would implement only the decision at t�1, allow-
ing the new uncertainty to materialize, and then resolve 
the model thereafter, in a rolling-horizon manner. In this 
numerical study, the decision maker obtains the optimal 
incentivization decision rule via the proposed model, 
Problem (5). We shall not impose any capacity con-
straints on the servers, except only keeping the total 
number of incentivized donors under some budget, aris-
ing out of financial or capacity restrictions, of 80 donors 
per period. If the budget is set higher, forward planning 
is unnecessary; if it is set lower, the model might not be 
feasible in expectation. For any policy, if the intended 
number of incentivized donors exceeds 80, donors are 
incentivized on a FIFO basis, as donors with a longer 
time-since-last-donation have higher likelihood of drop-
ping out.

We conduct numerical simulations on the perfor-
mance of our model against benchmark policies (more 
details are in Online Appendix C.3). We run each simula-
tion to 50 time periods, with the model solved on a roll-
ing horizon basis. They are repeated a total of 160 times 
with the same initial condition, but different sample 
paths to compute the metrics at end of each time period: 
(i) occurrence of shortage or wastage and (ii) the degree 
of these shortages or wastage. Hence, results presented 
below will consist of the above metrics, averaged over 
160 × 50 � 8, 000 values.

3.2. Discussion of Benchmarks
For our simulations, we have chosen to benchmark 
against the threshold (TH) policy, which incentivizes 
donors whenever blood inventory falls below a particu-
lar threshold, Q. First, as explained in Section 1, this is the 
existing policy that blood banks often use today (Lee et al. 
2008, Shi et al. 2014, Sun et al. 2016). Second, in many 
other inventory-control problems, threshold-type poli-
cies are known to be optimal under certain conditions. 
Third, to the best of our knowledge, we do not know of 
any other method in the literature that can be used to 
solve our model. The threshold policy is the closest adap-
tive policy that would constitute a good candidate.



Searching for an optimal TH policy over a general 
decision space would likely be computationally inten-
sive. We focus on calibrating two parameters—namely, 
the threshold, Q (in step sizes of 10), and α�(in step sizes 
of 0.1), which represents the proportion of eligible high- 
responsive donors incentivized. It is applied uniformly 
over all times-since-donation, s. Here, TH policy only 
incentivizes high-responsive donors because incentivi-
zation is triggered when the current inventory is low, 
and incentivizing low-responsive donors might not gar-
ner a sufficient response to address inventory shortages. 
We assume that the threshold policy, (Q,α), is held con-
stant over time.

We iterate the TH policy over multiple values of Q and 
α�and examine their performance on an efficiency fron-
tier. We also identify two contender TH policies—SW 
policy (for “similar wastage”) is chosen such that it has 
the lowest occurrence of shortage, given that it runs a 
similar occurrence of wastage as our Pipeline Queues 
policy; and SS policy (for “similar shortage”), which has 
the lowest occurrence of wastage, given that it runs a 
similar occurrence of shortage as our PQ policy.

The PQ policy was solved via interval bisection on the 
risk level k, the objective of our optimization model. The 
details can be found in Online Appendix C.1.

3.3. Performance Comparisons
We examine the performance of the various models 
under three demand patterns: (i) a time-homogeneous 
demand pattern; (ii) a periodic high- and low-demand 
pattern, alternating every three periods between a mean 
of 20 higher and then lower than the long-time average; 
and (iii) the same pattern as the first, except that with epi-
sodic instances of a large demand burst for a single 
period.

In Figure 2, we plot the efficiency frontiers of the TH 
policy (Q,α) in terms of the occurrences and magnitude 
of shortage and wastage, vis-à-vis the PQ policy, for all 

three different demand patterns. In Table 2, we zoom 
into the two benchmark cases selected based on their 
performance in the time-homogeneous demand setting 
(in Panel A). Panels B and C reflect their performance 
when the underlying demand is not time-homogeneous, 
but follows the other two patterns. Online Appendix C.4 
provides the equivalent tables (Tables 7 and 8) for the 
cases where the two benchmark policies are selected 
based on their performance under the other demand 
patterns.

It is evident that the PQ policy lands squarely outside 
the efficiency frontier of the TH policy in all three cases— 
that is, the PQ policy systematically achieves a lower rate 
of shortage and wastage. Head-to-head comparisons 
against the benchmark TH policies indicate that this dif-
ference is significant. More precisely, the comparison 
against benchmark policies SW and SS shows that the 
TH policy needs to pay the price of at least a 16% increase 
in blood wastage or at least 32% as much blood shortage 
as wastage in order to match the PQ policy for the similar 
amounts of shortage and wastage, respectively, in the 
time-homogeneous case. For the other demand patterns, 
the difference is even more pronounced. Panels B and C 
indicate that the TH policies on the efficiency frontier for 
Panel A rapidly decay in performance once the demand 
pattern changes, indicating that there is no single stable 
threshold policy that would work well under an evolv-
ing environment. In comparison, the PQ policy will 
always be able to adapt to future demand information 
supplied to the model.

We attribute the effectiveness of the PQ policy to two 
reasons. First, the PQ policy is more general than the TH 
policy, as it solves a far greater number of decision vari-
ables, via an optimization model. The TH policy is simi-
lar to a PQ policy, where αt, s � α�for all t, s when 
inventory is lower than Q; otherwise, zero. As such, the 
gains made by the PQ policy can be interpreted as the 
difference when we optimize for every αt, s. In contrast, 

Table 2. Comparison of Performance for Best Candidate TH Policies under Time-Homogeneous Demand Patterns

Policies Shortage occurrence (%) Average shortage Wastage occurrence (%) Average wastage

Panel A: Time-homogeneous demand
SW 0:73 (0.24) 3:18 (1.08) 2.25 (0.24) 33.9 (1.12)
SS 0:1 (0.08) 0:46 (0.42) 2:59 (0.25) 36:3 (1.56)
PQ 0 0 2.23 33.9

Panel B: Alternating periods
SW 0:83 (0.23) 5:35 (2.11) 4:36 (0.29) 95:8 (1.97)
SS 0:63 (0.17) 3:49 (1.21) 4.84 (0.3) 98.5 (2.01)
PQ 0.04 0.04 5.1 99.7

Panel C: Bursty demand
SW 3:56 (0.56) 63:4 (10.7) 2:26 (0.53) 33:9 (3.98)
SS 2:14 (0.4) 31:8 (6.39) 2:69 (0.54) 37:3 (4.32)
PQ 0.31 3.24 4.48 49.3

Notes. The SW and SS policies used parameters (Q � 100,α � 0:2) and (Q � 120,α � 0:2), respectively. Bold indicates that PQ is significantly 
different from TH at significance level of 0.05, and the numbers in parentheses are half-widths of a 95% confidence interval for all measures.



to the best of our knowledge, we do not know how 
to construct a formulation to solve for the optimal 
threshold-policy parameters using an optimization 
model that avoids the curse of dimensionality in the tran-
sient setting. Second, the TH policy instead only uses 
information about the current total inventory. In con-
trast, the PQ policy is privy to information at a more 
granular level of the distribution of time-to-expiry of the 
blood packets. Moreover, it also has the current time- 
since-donation information of its donors. Once again, it 
will be impractical to expect the TH policy to be extended 
to incorporate such information, as it rapidly increases 
the dimensions of the problem.

By incorporating future demand information, the PQ 
policy is forward-looking. A closer scrutiny across the 
different demand patterns in Figure 2 reveals that the 
scales of shortages and wastages increase drastically 
when the demand is no longer time-homogeneous—that 
is, the scale of improvement of the PQ policy grows more 
prominent. This difference arises because the TH policy 
is passive and reactionary—it incentivizes donors only 
when there is a shortage, which is likely a result of the 
onset of higher demand. The PQ policy instead is 
forward-looking and is able to make use of future infor-
mation or anticipated changes in the inventory to decide 
on its incentivization strategy.

3.4. Policy Structure
In this subsection, we attempt to explain how the differ-
ent policies behave in situ and relate these differences to 
policy performances. In general, however, it is difficult 
to make such analyses because the PQ policy is a 

function mapping from a large dimensional space to the 
decision space also of a large dimension. It is infeasible to 
analyze how each dimension contributes to the differ-
ences in policy performances. Instead, we decide to gen-
erate the eventual number of donors incentivized over 
each sample path and compare this single metric across 
different policies. For this particular analysis, we have 
chosen one particular sample path at random. We have 
checked and confirmed that the insights remain the 
same for other sample paths.

In Figure 3, we plot the number of incentivized donors 
over a particular sample path. Each chart in the figure 
refers to a different TH policy benchmark (SW and SS). 
Under the PQ policy, which incentivizes both high- and 
low-responsive donors, the number of high-responsive 
donors is plotted as “PQ high”; the total number of 
incentivized donors is plotted as “PQ policy”; the differ-
ence is the number of low-responsive donors incentiv-
ized. The sample path of the blood demand at every 
period is given in Figure 9 in Online Appendix C.4 to 
facilitate the discussion.

First, notice that the PQ policy starts incentivizing 
donors earlier and stops incentivizing donors later vis- 
à-vis the TH policy, but incentivizes donors in lower 
numbers at every one of these time points. We can see 
this as a sign that the PQ policy is attempting to smooth 
the demand fluctuations to reduce wastage. Moreover, 
the fact that the PQ policy starts incentivizing before the 
TH policy indicates that the former is forward-looking, 
which is the benefit when solving a multiperiod model, 
as opposed to the TH policy, which is passive and 
reactionary.

Figure 2. (Color online) Comparison with Different Threshold Policies with Call Budget 80 



Secondly, the PQ policy incentivizes a mixture of low- 
and high-responsive donors. This proportion varies 
depending on the inventory state. At early times (first 15 
time periods), the PQ model believes that the initial 
inventory is relatively full and conserves the high- 
responsive donor pool and starts by incentivizing the 
low-responsive donors. As the inventory levels begin to 
stabilize, the PQ policy starts to incentivize a higher 
proportion of high-responsive donors. In other words, 
the PQ policy is risk-pooling between incentivizing 
low-responsive donors in larger numbers and preserv-
ing high-responsive donors to tackle future urgent 
shortages. Also, high-responsive donors are more likely 
to donate blood of their own accord, and, thus, the rela-
tive gains from incentivizing them are lower in the lon-
ger term.

3.5. Analysis of the Average State
In this subsection, we compare the average inventory 
levels (Figure 4); the average number of donors in the 
observation queue—that is, noneligible donors (Figure 
5); and the average number of eligible donors (Figure 6) 
under each policy for the time-homogeneous demand 
setting. Table 3 further shows the ratios between the 
number of noneligible donors and eligible donors. Here, 
the average states are computed by averaging the states 

in the last 25 time periods of the simulations across all 80 
iterations.

From Figure 4, we can see that the PQ policy maintains 
the highest amount of blood inventory (about 20% more 
than the next highest) compared with the TH policies. 
This is largely due to the PQ policy’s forward-looking 
nature that it can maintain higher inventory levels with-
out leading to higher wastage, even with a higher level 
of old blood. In contrast, the TH policy is reactionary and 
cannot actively increase the inventory until a shortage 
occurs. The PQ policy also maintains a larger number of 
active eligible donors (as in Figure 6(a)). This is coupled 
with the fact that it also has a lower proportion of high- 
responsive donors than the TH policy, as seen in Figure 
6(b). This implies that the larger number of eligible 
donors arises under the PQ policy because of its ability to 
retain more low-responsive donors as active donors. It 
happens because incentivization serves as a reminder to 
the low-responsive donors to donate, which is part of the 
strategy of keeping them in the donor pool. Given that 
high-responsive donors naturally have a high chance of 
donating without incentivization, the PQ policy sees 

Figure 4. (Color online) Average State of Blood Inventory, x 

Note. s � 1(s � 0) refers to “old (new) blood.”

Figure 3. (Color online) Comparison of a Number of Incen-
tivized Donors over Time between Different TH Policies SW 
(Top) and SS (Bottom) Against the PQ Policy in the Time- 
Homogeneous Case 

Note. The budget is 80; thus, incentivized donors are capped at 80 
donors, even if the stipulated number is higher.

Figure 5. (Color online) Average State of Observation 
Queue, z 



fewer donor dropouts. This observation is also corrobo-
rated by Figure 5, which shows twice as many low- 
responsive donors in the observation queue than the TH 
policies. As entry to the observation queue directly corre-
sponds to blood donation, the PQ policy receives twice 
as many donations from low-responsive donors as the 
TH policies. This cross-subsidizes the donations required 
from the high-responsive donors; consequently, more 
high-responsive donors are eligible under the PQ policy 
(see Table 3). Therefore, the PQ policy can better react to 
short-term shortages by having a larger group of eligible 
high-responsive donors.

These insights reveal reasons behind the superiority of 
the PQ policy and shed light on what constitutes a good 
inventory and incentivization policy. Namely, (i) main-
taining a high level of inventory helps to fulfill demand, 
but entails better management of old blood to reduce 
wastage; (ii) incentivizing low-responsive donors during 
times of surpluses helps maintain a high level of active 
donors and reduces dropouts amongst low-responsive 
donors; and (iii) maintaining a minimum pool of eligible 

high-responsive donors grants greater capacity to react 
to prolonged shortages.

4. Conclusion
In this paper, we proposed an optimization framework 
to solve the donor-incentivization policy in the blood- 
donor-management problem. Our framework is novel in 
that it simultaneously models the dynamics of both the 
blood inventory and the donor-flow process in a manner 
that can tractably solve the incentivization decisions. 
The numerical experiments demonstrate the advantages 
of our policy compared with structured policy bench-
marks, such as the threshold policy, in reducing both 
shortages and wastage. The optimal policy gives rise to a 
smoother incentivization schedule that plans forward 
to avoid future starvation in case of demand surges. It 
also supports the implementation of a flexible and 
dynamic multiclass donor-incentivization policy. More-
over, our framework can be easily extended to practical 
situations, particularly in operationalizing an optimiza-
tion decision-making support system for the proposed 
strategy of managing high- and low-responsive donors.

Work has begun in Singapore to classify blood donors 
into high- and low-responsive classes. It has opened the 
opportunity for blood-donor-management and is the 
basis for the application of our proposed framework. We 
hope to collaborate with the local authorities as part of 
our future work. Another area is to examine ways to 
establish the donation probabilities postincentivization. 
Future work can examine whether modern machine- 
learning methods can be applied for this purpose.
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Endnote
1 We adopt the convention in the literature: Ck,θ[ζ̃] � ess sup{ζ̃=θ}
as k→ 0 and E[ζ̃=θ] as k→∞.
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whole blood donor population in south-west Germany: 2010 
vs. 2016. Transfusion Med. Hemotherapy 44(4):217–223.

Nahmias S (1976) Myopic approximations for the perishable inven-
tory problem. Management Sci. 22(9):1002–1008.

Nahmias S, Pierskalla WP (1973) Optimal ordering policies for a 
product that perishes in two periods subject to stochastic 
demand. Naval Res. Logist. Quart. 20(2):207–229.

National Health Service (2020) Who can give blood. Accessed Janu-
ary 6, 2021, https://www.blood.co.uk/who-can-give-blood/.

Prastacos GP (1981) Allocation of a perishable product inventory. 
Oper. Res. 29(1):95–107.

Sarhangian V, Abouee-Mehrizi H, Baron O, Berman O (2018) Thresh-
old-based allocation policies for inventory management of red 
blood cells. Manufacturing Service Oper. Management 20(2):347–362.

Satyavarapu A, Wagle D (2020) Improving the fragile US supply of 
blood. Accessed January 8, 2021, https://www.mckinsey.com/ 
industries/public-and-social-sector/our-insights/improving- 
the-fragile-us-supply-of-blood.

Schweizer N, Szech N (2018) Optimal revelation of life-changing 
information. Management Sci. 64(11):5250–5262.

Shi L, Wang J, Liu Z, Stevens L, Sadler A, Ness P, Shan H (2014) 
Blood donor management in China. Transfusion Med. Hemother-
apy 41(4):273–282.

Sun T, Gao G, Jin GZ (2019) Mobile messaging for offline group for-
mation in prosocial activities: A large field experiment. Manage-
ment Sci. 65(6):2717–2736.

Sun T, Lu SF, Jin GZ (2016) Solving shortage in a priceless market: 
Insights from blood donation. J. Health Econom. 48:149–165.

Tang Q, Zhang Y, Zhou M (2020) Robust vehicle repositioning with 
entropic risk measure. Preprint, submitted June 17, https://dx. 
doi.org/10.2139/ssrn.3612626.

World Health Organization (2017) The 2016 global status report on 
blood safety and availability. World Health Organization. Accessed 
January 8, 2021, https://apps.who.int/iris/handle/10665/254987.

World Health Organization (2020) Blood safety and availability. 
Accessed December 28, 2022, https://www.who.int/news-room/ 
fact-sheets/detail/blood-safety-and-availability.

Zhou M, Loke GG, Bandi C, Zi QGL, Wang W (2022) Intraday 
scheduling with patient re-entries and variability in behaviours. 
Manufacturing Service Oper. Management 24(1):561–579.

https://dx.doi.org/10.2139/ssrn.3190874
https://www.hsa.gov.sg/blood-donation/types-of-blood-donations
https://www.hsa.gov.sg/blood-donation/types-of-blood-donations
https://www.hsa.gov.sg/docs/default-source/bsg/big-blood-picture-2020.pdf
https://www.hsa.gov.sg/docs/default-source/bsg/big-blood-picture-2020.pdf
https://www.blood.co.uk/who-can-give-blood/
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/improving-the-fragile-us-supply-of-blood
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/improving-the-fragile-us-supply-of-blood
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/improving-the-fragile-us-supply-of-blood
https://dx.doi.org/10.2139/ssrn.3612626
https://dx.doi.org/10.2139/ssrn.3612626
https://apps.who.int/iris/handle/10665/254987
https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability
https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability

