
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2022

Fed-LTD: Towards cross-platform ride hailing via federated Fed-LTD: Towards cross-platform ride hailing via federated

learning to dispatch learning to dispatch

Yansheng WANG
Beijing University of Aeronautics and Astronautics (Beihang University)

Yongxin TONG

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Ziyao REN

Yi XU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, Software

Engineering Commons, and the Transportation Commons

Citation Citation
WANG, Yansheng; TONG, Yongxin; ZHOU, Zimu; REN, Ziyao; XU, Yi; WU, Guobin; and LV, Weifeng. Fed-LTD:
Towards cross-platform ride hailing via federated learning to dispatch. (2022). KDD '22: Proceedings 28th
ACM SIGKDD Conference On Knowledge Discovery And Data Mining, Washington, DC, August 14-18.
4079-4089.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7255

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yansheng WANG, Yongxin TONG, Zimu ZHOU, Ziyao REN, Yi XU, Guobin WU, and Weifeng LV

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7255

https://ink.library.smu.edu.sg/sis_research/7255

Fed-LTD: Towards Cross-Platform Ride Hailing via
Federated Learning to Dispatch

Yansheng Wang
SKLSDE Lab, Beihang University

Beijing, China
arthur_wang@buaa.edu.cn

Yongxin Tong
SKLSDE Lab, Beihang University

Beijing, China
yxtong@buaa.edu.cn

Zimu Zhou
Singapore Management University

Singapore, Singapore
zimuzhou@smu.edu.sg

Ziyao Ren
SKLSDE Lab, Beihang University

Beijing, China
ziyaoren@buaa.edu.cn

Yi Xu
SKLSDE Lab, Beihang University

Beijing, China
xuy@buaa.edu.cn

Guobin Wu
Didi Chuxing Inc.
Beijing, China

wuguobin@didiglobal.com

Weifeng Lv
SKLSDE Lab, Beihang University

Beijing, China
lwf@buaa.edu.cn

ABSTRACT
Learning based order dispatching has witnessed tremendous suc-
cess in ride hailing. However, the success halts within individual
ride hailing platforms because sharing raw order dispatching data
across platforms may leak user privacy and business secrets. Such
data isolation not only impairs user experience but also decreases
the potential revenues of the platforms. In this paper, we advocate
federated order dispatching for cross-platform ride hailing, where
multiple platforms collaboratively make dispatching decisions with-
out sharing their local data. Realizing this concept calls for new
federated learning strategies that tackle the unique challenges on
effectiveness, privacy and efficiency in the context of order dis-
patching. In response, we devise Federated Learning-to-Dispatch
(Fed-LTD), a framework that allows effective order dispatching by
sharing both dispatching models and decisions while providing
privacy protection of raw data and high efficiency. We validate
Fed-LTD via large-scale trace-driven experiments with Didi GAIA
dataset. Extensive evaluations show that Fed-LTD outperforms
single-platform order dispatching by 10.24% to 54.07% in terms of
total revenue.

CCS CONCEPTS
• Applied computing→ Transportation.

KEYWORDS
Ride Hailing; Order Dispatching; Federated Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539047

ACM Reference Format:
Yansheng Wang, Yongxin Tong, Zimu Zhou, Ziyao Ren, Yi Xu, Guobin Wu,
and Weifeng Lv. 2022. Fed-LTD: Towards Cross-Platform Ride Hailing via
Federated Learning to Dispatch. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3534678.3539047

1 INTRODUCTION
Ride hailing has become a prevailing means of transport and there
have been increasing numbers of ride hailing platforms including
Didi, Uber, Lyft, etc. The central problem for these platforms is
how to assign successive taxi orders to appropriate taxi drivers,
also known as order dispatching. Typically modeled as bipartite
graph matching, order dispatching is conventionally solved by
combinatorial optimization [8, 18, 19, 23]. More recently, the status
quo has shifted to data-driven solutions like reinforcement learning
(RL) due to its high adaptability in handling real-world mobility
dynamics [14, 15, 20, 24, 28].

Despite the success of learning based order dispatching, we
argue that its effectiveness is still restricted by the data isolation
problem in real-world ride hailing applications. It is common that
multiple ride hailing platforms operate in the same city, and a large
platform may consist of several affiliated taxi companies. Each
company or platform often functions and manages its own data
independently. Their data may contain private information of their
own customers such as positions and travel records, or business
secrets such as their order and driver distributions. Accordingly,
these data cannot be aggregated or shared across platforms freely,
resulting in the dispatching models trained and the corresponding
dispatching decisions made in isolation. For example, a passenger
hails a ride on platformA during the rush hour, but there is no driver
nearby, and the order is canceled. However, another platform Bmay
have idle drivers at her position. Due to the data isolation problem,
the order cannot be taken by B and its excess supply resources
are simply wasted. In summary, the data isolation problem impairs

https://doi.org/10.1145/3534678.3539047
https://doi.org/10.1145/3534678.3539047

KDD ’22, August 14–18, 2022, Washington, DC, USA Yansheng Wang et al.

not only the potential revenues of the platforms but also the user
experience in ride hailing.

To break the data isolation problem in ride hailing, we introduce
federated order dispatching (FOD), a federated learning formulation
dedicated to cross-platform ride hailing, where multiple ride hailing
platforms collaboratively make dispatching decisions without shar-
ing their raw data. However, realizing this concept faces unique
challenges over general FL [12, 29] in terms of effectiveness, privacy,
and efficiency.

• Challenge 1: how to maximize the total utility (e.g., revenue)
of order dispatching in cross-platform ride hailing? As we
will show in Sec. 2, the effectiveness of cross-platform ride
hailing relies heavily on a global view of dispatching deci-
sions. General FL schemes aim to aggregate local models
e.g., gradients to jointly learn a model. It is unknown how to
effectively aggregate local dispatching decisions, which are
often bipartite graphs, in a federated setting.
• Challenge 2: how to achieve privacy-preserving and high-
efficiency in federated order dispatching? Although sharing
dispatching decisions increases total utility, it also poses ex-
tra privacy risks and computation/communication workload,
which may impair the user experience in ride hailing. There-
fore, we need dedicated privacy mechanisms and efficiency
optimization for federated order dispatching.

To address the above challenges, we propose a novel solution
framework named Federated Learning-to-Dispatch (Fed-LTD). It
tackles the first challenge with a federated learning pipeline that
shares not only the dispatching models but also the dispatching de-
cisions, where the decisions are aggregated in the form of residual
bipartite graphs. Furthermore, Fed-LTD handles the second chal-
lenge with a series of privacy protection and efficiency optimization
techniques for both model and decision aggregation such that the
distributions of orders and drivers cannot be inferred across plat-
forms and the order requests can be responded in time. Evaluations
on real data show that our solution has an improvement of 10.24%
~54.07% in terms of total revenue compared with single-platform
order dispatching, and our privacy preservation scheme runs 10x
faster than homomorphic encryption based approach. The main
contributions of this paper are as follows.

• We are the first to formally define the federated order dis-
patching (FOD) problem for cross-platform ride hailing.
• We devise the novel solution framework, Fed-LTD. It fo-
cuses on aggregating the information from local dispatching
models and dispatching decisions simultaneously. Novel pri-
vacy preserving and efficiency optimization techniques are
designed to make Fed-LTD a practical solution.
• To evaluate ourmethod, we build a simulator based on DiDi’s
real data and conduct extensive experiments on it. Results
validate the effectiveness and efficiency of Fed-LTD.

The rest of the paper is organized as follows. We formally define
the federated order dispatching problem in Sec. 2. The details of the
proposed solution framework Fed-LTD are presented in Sec. 3. We
report our experimental results in Sec. 4. Finally, we review related
work in Sec. 5 and conclude in Sec. 6.

2 PROBLEM STATEMENT
In this section, we will first introduce some preliminaries of tra-
ditional order dispatching. Then we will introduce the federated
order dispatching (FOD) problem.

2.1 Order Dispatching
We will give some general definitions first.

Definition 1 (Driver Set). 𝑈 is a set of drivers where each
element 𝑢 ∈ 𝑈 represents a driver. 𝑢.𝑙𝑜𝑐 is the location of the driver.

Definition 2 (Order Set). 𝑉 is a set of orders where each element
𝑣 ∈ 𝑉 represents an order. 𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑣 .𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 are the current
position and destination of the order respectively. 𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 is the
revenue of the order.

The driver set and order set can form a bipartite graph 𝐺 =

(𝑈∪𝑉 , 𝐸), where each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 has edgeweight𝑤 (𝑢, 𝑣) =
𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 . The edges will be pruned when the distance between
𝑢.𝑙𝑜𝑐 and 𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛 exceeds a threshold 𝑅.

Definition 3 (Matching Allocation). M is a matching al-
location (or order dispatching results) over a bipartite graph 𝐺 =

(𝑈 ∪𝑉 , 𝐸). It is a set of driver-order pairs where each element (𝑢, 𝑣)
has to satisfy: (1). 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , (2). 𝑢 and 𝑣 only appear once inM.
We further define the utility function which calculates the sum of
edge weights inM, i.e.,

𝑆𝑈𝑀 (M(𝐺)) =
∑︁

(𝑢,𝑣) ∈M
𝑤 (𝑢, 𝑣).

Given the bipartite graph 𝐺 , to find a matching allocationM
that can maximize 𝑆𝑈𝑀 (M(𝐺)) is the classical maximum bipartite
matching problem, which can be solved by the Hungarian method
[11] in polynomial time. In real order dispatching scenarios, the
orders and drivers arrive in an online manner [19]. Batch-based
model is commonly used in such scenario [8, 24, 28], and the order
dispatching problem can be defined as follow.

Definition 4 (Order Dispatching Problem). Given a batch
sequence ⟨1, 2, · · · ,𝑇 ⟩, in each batch 𝑡 , the arrived drivers and orders
since the last batch can form a bipartite graph 𝐺 (𝑡) . The order dis-
patching problem is to decide matching allocationsM (𝑡) for each
batch to maximize the sum of utility, i.e.,

max
𝑇∑︁
𝑡=1

𝑆𝑈𝑀 (M (𝑡) (𝐺 (𝑡))).

A simple solution is to conduct maximum bipartite matching in
each batch. With the help of large-scale historical data, reinforce-
ment learning (RL) based solutions [14, 15, 20, 24, 28] are commonly
applied to achieve better performance. In these approaches, a value
function is usually learned as the dispatching model, and decisions
are made according to it. We adopt the state-of-the-art order dis-
patching approach in [20] as the local operator in our solution, and
focus on aggregating the local dispatching models and decisions
simultaneously in the federated setting. Next, we will define the
problem of federated order dispatching.

Fed-LTD: Towards Cross-Platform Ride Hailing via Federated Learning to Dispatch KDD ’22, August 14–18, 2022, Washington, DC, USA

2.2 Federated Order Dispatching
We first define some basic concepts of federated setting. A feder-
ation of ridesharing platforms consists of 𝐾 platforms (or parties)
𝑃1, 𝑃2, · · · , 𝑃𝐾 and a server 𝑆 . The server can play as either a co-
ordinator without any data or one of the parties. We assume that
each party is semi-honest and the server 𝑆 is untrusted. Party 𝑃𝑘
has a local bipartite graph 𝐺𝑘 = (𝑈𝑘 ∪ 𝑉𝑘 , 𝐸𝑘) where the nodes
are its own drivers and orders. We denote 𝐺 as the global bipartite
graph in the non-federated setting. Next, we introduce the concept
of global optimum.

Definition 5 (Global Optimum). Given the bipartite graph 𝐺
and a batch sequence, the global optimum is defined as

𝜇 (𝐺) = max
⟨M (𝑡) ⟩

𝑇∑︁
𝑡=1

𝑆𝑈𝑀 (M (𝑡) (𝐺 (𝑡))) .

Global optimum can be considered as the optimal matching
results in non-federated setting. Correspondingly, we can define
the summation of local optimum as below.

Definition 6 (Summation of Local Optimum). Given a feder-
ation of 𝐾 parties, the summation of local optimum is defined as

𝜇 (𝐺𝐿𝑆) =
𝐾∑︁
𝑘=1

𝜇 (𝐺𝑘),

where𝐺𝐿𝑆 can be considered as the union of all local bipartite graphs.

The purpose of federated order dispatching is to find a point
between the summation of local optimum and the global optimum
with privacy-preserving information sharing. The information shar-
ing strategy of each party can be defined as a sequence of subgraphs
⟨G1, · · · ,G𝐾 ⟩ with G = ∪𝐾

𝑘=1G𝑘 . For the global optimum, G𝑘 = 𝐺𝑘
and for the summation of local optimum, G𝑘 = ∅. Finally the prob-
lem of federated order dispatching can be defined as:

Definition 7 (Federated Order Dispatching Problem (FOD)).
Given a federation with𝐾 parties and a batch sequence. Each party has
a local bipartite graph 𝐺𝑘 . The federated order dispatching problem
(FOD) is to find some information sharing strategy ⟨G1, · · · ,G𝐾 ⟩ with
𝐺𝐹𝑒𝑑 = 𝐺𝐿𝑆 ∪ G, so that

𝜇 (𝐺𝐹𝑒𝑑) − 𝜇 (𝐺𝐿𝑆) > Δ. (1)

Our objective is that Δ should be as large as possible, so that
federated order dispatching can achieve similar performance to the
global optimum. The privacy constraint should also be satisfied, i.e.,
each party’s local data of orders and drivers should not be leaked
to others. Meanwhile, we expect that the solution should run with
high efficiency to support real-time response.

Next, we will introduce our solution framework, Fed-LTD.

3 FED-LTD FRAMEWORK
In this section, we first give an overview of the proposed Federated
Learning-to-Dispatch (Fed-LTD) framework, then introduce the
details of each step respectively.

3.1 Overview
The Fed-LTD framework is illustrated in Fig. 1. It takes orders
and drivers in each batch as the input and iteratively conducts the

Server

Party 1 Party k Party K… …Local Learning and Dispatching
Residual Bipartite Graph

Aggregation of Dispatching Models Aggregation of Dispatching Decisions

Encode

Decode…
Global Dispatching

…

Global Value

Mask

Figure 1: Overview of the Fed-LTD framework.

learning and dispatching procedures with collaboration between
the server and all parties. It mainly has the following 3 steps.
• Local learning and dispatching. It follows the scheme in [20].
Each party will learn a value function locally and make
dispatching decisions based on it.
• Aggregation of dispatching models. In this step, federated
learning is applied to aggregate the dispatching models (i.e.,
value functions). We also consider privacy preservation and
efficiency optimization techniques during this procedure.
• Aggregation of dispatching decisions.Only sharing the models
is not sufficient as the dispatching decisions play a more
important role in order dispatching. They can also be shared
via the aggregation of local residual bipartite graphs (i.e.,
unmatched nodes by each party). In this step we will propose
novel algorithms to ensure the privacy and efficiency during
the aggregation of decisions.

Next, we will present the technical details of each step respec-
tively. The algorithm for one batch is shown in Algorithm 1.

3.2 Local learning and dispatching
We adopt the state-of-the-art dispatching algorithm in [20] as the
local dispatching operator in Fed-LTD. It plays the same role as
local SGD in FedAvg [12], which can also be replaced by other
RL-based dispatching algorithms [14, 15, 28].

It models the drivers as agents, their geometrical locations (rep-
resented by hexagon grids) as states, deciding which order to take
or remaining idle as actions, and the value function is the expected
accumulated rewards from some state, i.e.,

V(𝑠 (𝑡)) = E[
∑︁
𝑡

𝑟 (𝑡) |𝑠 (𝑡)],

where 𝑠 (𝑡) is the state vector and 𝑟 (𝑡) is the sum of rewards in batch
𝑡 . The value function is updated by the following Bellman equation:

V(𝑠 (𝑡)) ← V(𝑠 (𝑡)) + 𝛼𝑙 ·
∑︁
𝑢

(𝑟 (𝑡)𝑢 + 𝛾V(𝑠 (𝑡+1)𝑣) − V(𝑠 (𝑡)𝑢)), (2)

where 𝑢 and 𝑣 are the driver and the order, 𝛼𝑙 is the learning rate
and 𝛾 is the discounting factor. Afterwards, dispatching decisions
are made by each party based on the learned values. The expected
rewards in the future can be encoded into the edge weights of

KDD ’22, August 14–18, 2022, Washington, DC, USA Yansheng Wang et al.

Algorithm 1: Fed-LTD Algorithm: One Batch
input :Bipartite graphs 𝐺1, · · · ,𝐺𝐾 of this batch;

Global value functionV of this batch;
output :Matching allocations of this batch;

1 Party 𝑘 :
2 //Local learning and dispatching
3 Update local value functionV𝑘 according to (2) ;
4 ΔV𝑘 ←V

(𝑡)
𝑘
−V (𝑡−1)

𝑘
;

5 ΔṼ𝑘 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (ΔV𝑘) according to (4);
6 Update the edge weights according to (3) ;
7 Conduct matching algorithm and obtainM(𝐺𝑘) ;
8 𝐺Δ𝑘 ← 𝐺𝑘 −M(𝐺𝑘) ;
9 𝐺̃Δ𝑘 ← 𝐸𝑛𝑐𝑜𝑑𝑒𝑅𝐵𝐺 (𝐺Δ𝑘);

10 Send ΔṼ𝑘 , 𝐺̃Δ𝑘 to Server;
11 Server:
12 //Aggregation of dispatching models
13 if Synchronization happens then
14 ΔV ← ∑𝐾

𝑘=1 ΔṼ𝑘 ;
15 V ← V + ΔV;
16 //Aggregation of dispatching decisions
17 𝐺Δ ← 𝐷𝑒𝑐𝑜𝑑𝑒𝑅𝐵𝐺 (𝐺̃Δ1 , · · · 𝐺̃Δ𝐾);
18 Conduct matching algorithm and obtainM ′(𝐺Δ);
19 SendV ,M ′(𝐺Δ) to each party;

bipartite graphs by adding the TD error:

𝑤 (𝑢, 𝑣) = 𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾V(𝑠 (𝑡+1)𝑣) − V(𝑠 (𝑡)𝑢) . (3)

After rebuilding the bipartite graph, a Hungarian method based
maximum weighted bipartite matching [11] can be conducted and
the local dispatching decisions can be finally made.

Each party can run the local step independently and the server
will make a summation of their rewards, which becomes the base-
line (i.e., LocalSum) in our experiments. Next we will introduce the
key steps of Fed-LTD, i.e., the aggregation of dispatching models
and dispatching decisions, which aims to improve the performance
in the federated setting via privacy-preserving collaboration.

3.3 Aggregation of Dispatching Models
This step aims to aggregate the dispatching models, i.e., the learned
value functions of each party by the server. A very simple aggre-
gating method is to take the average of each party’s value table.
However, it ignores the following two problems: (1). The privacy of
each party may be leaked during aggregation; (2). The communication
cost can be high as the value table is large. To solve the problems, we
design a random masking based private aggregation scheme with
delayed synchronization. The details are described as follows.
Private aggregation with randommasking.We notice that if all
the updating values are uploaded to the server without any preser-
vation, the server can simply infer which grid has been updated.
And the location distribution of drivers and orders may be leaked.
To obfuscate which grid has been updated, we use random mask-
ing [2] to preserve the privacy of value updates. More specifically,
suppose ΔV𝑘 is the updated value table of party 𝑘 . The proposed

(a) ΔV𝑘 (without masking) (b) ΔṼ𝑘 (with masking)

Figure 2: Example of value updates with/without masking.

random masking approach will perturb values in ΔV𝑘 by:

ΔṼ𝑘 = ΔV𝑘 +
∑︁
𝑘′<𝑘

𝑃𝑅𝐺 (𝑠𝑑𝑘,𝑘′) −
∑︁
𝑘′>𝑘

𝑃𝑅𝐺 (𝑠𝑑𝑘′,𝑘), (4)

where 𝑃𝑅𝐺 (·) is a pseudorandom generator and 𝑠𝑑𝑘,𝑘′ is a random
seed generated by party 𝑘 and 𝑘 ′ with a key agreement algorithm
(e.g., Diffie-Hellman key agreement). The approach is lossless for
value aggregation as we have

∑
𝑘 ΔṼ𝑘 =

∑
𝑘 ΔV𝑘 . We illustrate

the updated values of a party with and without random masking
(i.e., ΔṼ𝑘 and ΔV𝑘) in Fig. 2. We can observe that without random
masking it is easy to infer which grid has been updated. But after
the random masking, sensitive information can hardly be inferred.
Delayed synchronization. Another major challenge is the high
communication cost between the server and each party. We opti-
mize the communication efficiency by delayed synchronization of
values. Although all parties update their local values in each batch,
it is unnecessary to aggregate the values with the same frequency,
as the values predict future trends approximately and their effects
can be in delay. By this intuition, we suppose that the server can
make a delayed synchronization of values for every 𝑡𝑑 batches, so
that the communication cost can be effectively reduced by 1/𝑡𝑑 .

3.4 Aggregation of Dispatching Decisions
In this part, we further investigate how the parties can collabo-
ratively make the dispatching decisions together under privacy
preservation. The basic idea is very simple. After the local dispatch-
ing step at the end of a batch, there will be some unmatched nodes
in each party, which we call the Residual Bipartite Graph (RBG). We
expect to aggregate them by an additional round of global matching
and the orders will belong to the party of their matched drivers. In-
tuitively, the aggregation of decisions can increase the total revenue
of each party. But sharing each party’s local RBGs directly may
result in leaks of privacy like the positions of orders and drivers.
Next we will present our solution with two steps: rebuilding global
bipartite graph and obfuscating the edge weights.
Rebuilding global bipartite graph with private hashing.We
first need to build the global bipartite graph from multiple local
RBGs while the location privacy of them should be preserved. Ex-
isting works to preserve location privacy in bipartite matching
[16, 17] usually apply Geo-indistinguaishability (Geo-I) [1]. As they
perturb a node to nearer locations with higher probability, its ap-
proximate location can still be inferred. Also the noise will influence
the connectivity of the bipartite graph and there is no guarantee on
accuracy loss. Another alternative is to apply secure multi-party
computation (SMC) to calculate the Euclidean distances [9] between

Fed-LTD: Towards Cross-Platform Ride Hailing via Federated Learning to Dispatch KDD ’22, August 14–18, 2022, Washington, DC, USA

Algorithm 2: EncodeRBG
input :𝐺 = {𝑈 ∪𝑉 }: a bipartite graph

ℎ: a family of 𝜅 LSH hash functions;
V:the local value function; 𝛾, 𝜖𝑝 :parameters;

output :𝐺̃ = {𝑈̃ ∪ 𝑉̃ }: the encoded bipartite graph;
1 𝑈̃ , 𝑉̃ ,𝑊̃ ← ∅;
2 for 𝑢𝑖 ∈ 𝑈 do
3 𝑢̃𝑖 .𝑙𝑜𝑐 ← 𝑆𝑆𝑖𝑔(𝑢𝑖) = 𝑀𝐷5(𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ(𝑢𝑖))) ;
4 𝑈̃ ← 𝑈̃ ∪ {𝑢̃𝑖 };
5 for 𝑣𝑖 ∈ 𝑉 do
6 𝑣𝑖 .𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑆𝑆𝑖𝑔(𝑣𝑖) = 𝑀𝐷5(𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ(𝑣𝑖))) ;
7 𝑉̃ ← 𝑉̃ ∪ {𝑣𝑖 };
8 𝑣𝑖 .𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑤̃ (𝑣𝑖) from (6);

9 return 𝐺̃ = {𝑈̃ ∪ 𝑉̃ }

Algorithm 3: DecodeRBG

input : {𝐺̃𝑘 = {𝑈̃𝑘 ∪ 𝑉̃𝑘 }}: encoded bipartite graphs from
𝐾 parties;

output :𝐺 = {𝑈 ∪𝑉 , 𝐸}: the decoded global bipartite graph;
1 𝑈 ,𝑉 , 𝐸 ← ∅;
2 for 𝑘 = 1, 2, · · · , 𝐾 do
3 𝑈 ← 𝑈 ∪ 𝑈̃𝑘 , 𝑉 ← 𝑉 ∪ 𝑉̃𝑘 ;
4 for 𝑢 ∈ 𝑈 do
5 for 𝑣 ∈ 𝑉 do
6 if isEqual(𝑢.𝑙𝑜𝑐 , 𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛) then
7 𝑒 ← (𝑢, 𝑣), 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 ;
8 𝐸 ← 𝐸 ∪ {𝑒};

9 return 𝐺 = {𝑈 ∪𝑉 , 𝐸}

all pairs of orders and drivers, but the time consumption can be
intolerable (which is also validated in Sec. 4).

Therefore we devise a novel approach based on locality sensi-
tive hashing (LSH) [6], which can reach a better trade-off between
privacy and efficiency. It maintains the approximate nearest neigh-
bours set after the hashing (we abuse𝑢 and 𝑣 for𝑢.𝑙𝑜𝑐 and 𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛):

• If 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝑅, then 𝑃𝑟 [ℎ(𝑢) = ℎ(𝑣)] ≥ 𝑝1,
• If 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≥ 𝑐 · 𝑅, then 𝑃𝑟 [ℎ(𝑢) = ℎ(𝑣)] ≤ 𝑝2,

where 𝑑𝑖𝑠𝑡 (·, ·) is the Euclidean distance, 𝑅 is the threshold of con-
nectivity (e.g., 3km in real applications), ℎ is the hash function and
𝑝1/𝑝2 is expected to be large. As the distance metric here is 𝑙2-
norm, the L2LSH function [4] can be used: ℎ(𝑣) = ⌊ ®𝑎·®𝑣+𝑏𝑟 ⌋, where
each element 𝑎𝑖 in ®𝑎 is I.I.D. drawn from the standard Gaussian
distributionN(0, 1) and 𝑏 is uniformly randomly drawn from [0, 𝑟].
By using the LSH codes, we can generate the signature of a node
𝑣 represented by 𝜅 hash functions, 𝑆𝑖𝑔(𝑣) = ⟨ℎ1 (𝑣), · · · , ℎ𝜅 (𝑣)⟩.
We further use MD5 cryptographic hash functions to preserve the
relative positions in LSH codes and the secure signature will be
𝑆𝑆𝑖𝑔(𝑣) = 𝑀𝐷5(𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ(𝑣))), where the seed𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ(𝑣)) is the
concatenation of the 𝜅 binary hash codes.

The algorithms of encoding and decoding local RBGs are shown
in Algorithm 2 and Algorithm 3. The encoding algorithm (Algo-
rithm 2) generates the secure signatures of the nodes to be shared
locally, and the server can rebuild the bipartite graph by Algo-
rithm 3, which only takes one round of communication.
Obfuscating edge weights with differential privacy. After we
recover the global bipartite graph structure, we need to calculate the
edge weights which are generated by RL. We only need to consider
the edge between a connected pair of order 𝑣 and driver 𝑢, thus
𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑢.𝑙𝑜𝑐 are nearby to each other. Due to the continuity
of the value function, we haveV(𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛) ≈ V(𝑢.𝑙𝑜𝑐). So we can
rewrite (3) as:

𝑤 (𝑢, 𝑣) ≈ 𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾V(𝑣 .𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) − V(𝑣 .𝑜𝑟𝑖𝑔𝑖𝑛), (5)

which is only correlated to order 𝑣 . We apply differential privacy
(DP) [5] to perturb𝑤 (𝑢, 𝑣) so that the server cannot infer the posi-
tion of orders and drivers through grid values. We inject the Laplace
noise to the edge weights (𝑣 .𝑟𝑒𝑤𝑎𝑟𝑑 is taken as constant so that the
results will not be sensitive to different grid values) and the sensi-
tivity is calculated by ΔV = 𝛾V𝑚𝑎𝑥 −V𝑚𝑖𝑛 − (𝛾V𝑚𝑖𝑛 −V𝑚𝑎𝑥) =
(1 + 𝛾)𝑑𝑖𝑎𝑚(V), where 𝑑𝑖𝑎𝑚(V) = V𝑚𝑎𝑥 − V𝑚𝑖𝑛 , so the pertur-
bation is

𝑤̃ (𝑣) = 𝑤 (𝑢, 𝑣) + 𝐿𝑎𝑝 ((1 + 𝛾)𝑑𝑖𝑎𝑚(V)
𝜖𝑝

), (6)

where 𝜖𝑝 is the privacy budget. Suppose 𝑣 and 𝑣 ′ are two orders with
the same reward but arbitrary origins and destinations. According
to the Laplace mechanism, we have that
𝑃𝑟 [𝑤̃ (𝑣) = 𝑤]
𝑃𝑟 [𝑤̃ (𝑣 ′) = 𝑤] ≤ exp(

𝜖𝑝

(1 + 𝛾)𝑑𝑖𝑎𝑚(V) |𝑤 (𝑣) −𝑤 (𝑣
′) |) ≤ 𝑒𝜖𝑝 .

It indicates that any two orders are indistinguishable after the
perturbation. Therefore, the server cannot infer which order does
the edge belong to from the edge weights. After the injection of
noise, each party will upload the perturbed edge weights which are
binding with the orders. Finally a global matching will be conducted
by the server with the greedy algorithm and each party will get
additional orders that are matched to their own drivers.
Analysis.We make an analysis to further verify the effectiveness
of aggregating the dispatching decisions. Given a bipartite graph
𝐺 = {𝑈 ∪ 𝑉 , 𝐸}, |𝑈 | = 𝑛, |𝑉 | = 𝑚, the objective is to prove that
the gap between 𝜇 (𝐺𝐹𝑒𝑑) and 𝜇 (𝐺𝐿𝑆) is large, as (1) indicates. By
assuming that all nodes in𝑈 have the same degree𝑑 with uniformly
distributed neighbours and all nodes are uniformly partitioned into
𝐾 subsets in the federated setting, we have the following conclusion
for unweighted bipartite matching.

Theorem 1. If we set 𝑑 = 1, 𝛿0 = 1
1+𝑚 (𝑒−𝛼−𝑒−2𝛼)2 and 𝛾0 =

1
2 (𝑒
−𝛼 − 𝑒−2𝛼) where 𝛼 = 𝑛/𝑚, we have

𝑃𝑟 [𝜇 (𝐺𝐹𝑒𝑑) − 𝜇 (𝐺𝐿𝑆) ≥ 𝛾0𝑚] ≥ 1 − 𝛿0 .

It can further be extended to weighted bipartite matching with
any node degree 𝑑 , and the proof details are in Sec. A.1.

We also explain why we use the greedy algorithm for global
matching. In this way the incentive compatibility can be achieved
so that all parties are willing to share all of their unmatched nodes.
The proof details are in Sec. A.2.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yansheng Wang et al.

Table 1: Main results of average rewards per day

Method 3 Parties 5 Parties
Setting 1 Setting 2 Setting 3 Setting 4 Setting 1 Setting 2 Setting 3 Setting 4

Global 61.1198 55.1719 30.7068 26.3471 61.1198 55.1719 30.7068 26.3471
Greedy 52.2754 44.3217 24.7275 19.6522 48.5105 39.1956 21.8402 16.4044

LocalSum 54.3376 45.8270 25.1841 19.9402 49.7560 40.1255 22.0754 16.6361
V-Only 54.2211 45.8521 25.2039 19.9549 49.7584 40.1233 22.1554 16.6119

Fed-LTD-N 59.9310 54.0201 29.8512 25.7160 59.5628 53.6723 29.6873 25.5830
Fed-LTD 59.9029 54.0068 29.8271 25.6853 59.6439 53.6558 29.6341 25.6320

Accuracy Loss 0.05% 0.02% 0.08% 0.12% -0.14% 0.03% 0.18% -0.19%
Δ+ 10.24% 17.85% 18.44% 28.81% 19.87% 33.72% 34.24% 54.07%
Δ− 1.99% 2.11% 2.86% 2.51% 2.41% 2.75% 3.49% 2.71%

4 EXPERIMENTS
4.1 Experimental Settings
Dataset and Simulation Environment.We use the real dataset
from Didichuxing’s GAIA initiative 1. It contains both order request
data and driver trajectory data from 11/01/2016 to 11/30/2016 in
Chengdu, China. Each day has about 200K order requests in average.
We build a simulator based on the dataset. It adopts the batch-based
dispatching framework with batch size of 2 seconds. In each batch,
the simulator generates the available order requests and drivers and
sends them to the dispatching agent. After receiving the dispatching
decisions from the agent, it will simulate the dynamics of the system,
including the pick-up and delivery behaviours, random walks, log-
on and log-off behaviours of the drivers until the next batch. In
the federated setting, the simulator generates orders and drivers
for each party independently. All parties run a dispatching agent
by themselves and return the dispatching results to the simulator
iteratively. The number of parties we have set is 3 and 5.
Comparing Methods.We report the experimental results of the
following methods.
• Global: it represents the global setting, where the dispatching
algorithm is conducted with full data. It uses the SOTA RL-
based order dispatching algorithm from [20].
• Greedy: it takes the sum of rewards by single-platform order
dispatching in the federated setting. The local dispatching
algorithm is the naive greedy algorithm.
• LocalSum: it also takes the sum of rewards by single-platform
order dispatching while the local dispatching algorithm is
the same as Global. It is also the baseline in (1).
• V-Only: it is a simple extension to LocalSum, where each
party can only share their learned values, but the dispatching
decisions are not shared.
• Fed-LTD-N: it is the proposed Fed-LTD framework without
any privacy preservation measures. We compare this method
to show the privacy loss of our approach.
• Fed-LTD-HE: it replaces private hashing by homomorphic
encryption (HE) to calculate the Euclidean distances accord-
ing to [9]. We only show its efficiency as the effectiveness
results are the same with Fed-LTD-N.

1https://outreach.didichuxing.com/research/opendata/

• Fed-LTD: it is the proposed approach.

Parameter Settings and Implementation. To evaluate the meth-
ods with different demand and supply conditions and different
graph sparsity, we mainly use the following 4 settings.
• Setting 1: The total number of drivers 𝑛 = 6𝐾 and the maxi-
mal radius of picking orders 𝑅 = 3𝑘𝑚.
• Setting 2: 𝑛 = 6𝐾, 𝑅 = 1𝑘𝑚. In this setting it will be harder
for a driver to take orders so the graph will be more sparse.
• Setting 3: 𝑛 = 2𝐾, 𝑅 = 3𝑘𝑚. In this setting it will be in short
supply (i.e., lack of drivers).
• Setting 4: 𝑛 = 2𝑘, 𝑅 = 1𝑘𝑚. It represents the worst situation.

For other common parameters, we set the learning rate and discount
factor in RL to 0.025 and 0.9 as [20] does. For LSH, we set 𝜅 = 𝑟 =

3. For differential privacy, we set 𝑑𝑖𝑎𝑚(V) = 10, 𝜖 = 1.0. The
synchronization of value is performed every 30 batches (i.e., 60
seconds). We use the data from 11/01 to 11/05 for training and
show the testing results from 11/06 to 11/30. We implement all the
methods with Python 3.8. The experiments were conducted on five
Intel(R) Xeon(R) Platinum 8269CY 3.10GHz CPUs each with 4 cores.
Evaluation Metrics.We compare the performance of all the meth-
ods via the following metrics.
• Rewards: the sum of revenue of the completed orders. We
also show the average of rewards for the 25 testing days.
• Answering Rate (AR): the ratio between the number ofmatched
orders and the number of all order requests. It can measure
the user experience in ride hailing.
• Running Time: the average time consumed for calculating
the dispatching results per batch.
• Δ+: 𝑅𝐹𝑒𝑑−𝑅𝐿𝑆

𝑅𝐿𝑆
× 100%, where 𝑅𝐹𝑒𝑑 and 𝑅𝐿𝑆 are the average

rewards of Fed-LTD and LocalSum.
• Δ−: 𝑅𝐺𝑙𝑜𝑏𝑎𝑙−𝑅𝐹𝑒𝑑

𝑅𝐺𝑙𝑜𝑏𝑎𝑙
× 100%, where 𝑅𝐺𝑙𝑜𝑏𝑎𝑙 is the average re-

wards of Global.

4.2 Results
4.2.1 Effectiveness Results. The main results of average rewards
per day are shown in Table 1. We vary the 4 settings in a 3-party
federation and a 5-party federation respectively. The orders and
drivers are evenly partitioned for each party. We can observe that
the rewards decrease significantly in federated setting compared

Fed-LTD: Towards Cross-Platform Ride Hailing via Federated Learning to Dispatch KDD ’22, August 14–18, 2022, Washington, DC, USA

6 Nov. 13 Nov. 20 Nov. 27 Nov.
Day

5.0

5.5

6.0

6.5

To
ta

l R
ew

ar
ds

1e5
Fed-LTD
Global
Greedy
LocalSum

(a) Total rewards (Setting 1)

6 Nov. 13 Nov. 20 Nov. 27 Nov.
Day

4.0

4.5

5.0

5.5

6.0

To
ta

l R
ew

ar
ds

1e5
Fed-LTD
Global
Greedy
LocalSum

(b) Total rewards (Setting 2)

6 Nov. 13 Nov. 20 Nov. 27 Nov.
Day

2.4

2.6

2.8

3.0

3.2

To
ta

l R
ew

ar
ds

1e5

Fed-LTD
Global
Greedy
LocalSum

(c) Total rewards (Setting 3)

6 Nov. 13 Nov. 20 Nov. 27 Nov.
Day

1.8

2.0

2.2

2.4

2.6

2.8

To
ta

l R
ew

ar
ds

1e5

Fed-LTD
Global
Greedy
LocalSum

(d) Total rewards (Setting 4)

8:00 12:00 16:00 20:00 24:00
Time

0

2000

4000

6000

8000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(e) Average rewards (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

0.4

0.6

0.8

1.0

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(f) Average AR (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

0

2000

4000

6000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(g) Average rewards (Setting 2)

8:00 12:00 16:00 20:00 24:00
Time

0.2

0.4

0.6

0.8

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(h) Average AR (Setting 2)

8:00 12:00 16:00 20:00 24:00
Time

0

1000

2000

3000

4000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(i) Average rewards (Setting 3)

8:00 12:00 16:00 20:00 24:00
Time

0.2

0.4

0.6

0.8

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(j) Average AR (Setting 3)

8:00 12:00 16:00 20:00 24:00
Time

0

1000

2000

3000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(k) Average rewards (Setting 4)

8:00 12:00 16:00 20:00 24:00
Time

0.2

0.4

0.6

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(l) Average AR (Setting 4)

Figure 3: Effectiveness results of 3 parties varying the 4 settings. The shaded areas represent the range between the minimal
and maximal rewards of LocalSum and Fed-LTD. The results of 5 parties are similar and we move them to Sec. B.

with non-federated setting (i.e., Global). LocalSum can still show
advantages over Greedy, which verifies the effectiveness of apply-
ing RL. We also notice that V-Only only has subtle improvement
compared with LocalSum, which validates that sharing the deci-
sions can be indispensable. We can observe from the results that
Fed-LTD has obvious advantages over LocalSum. The increase is
from 10.24% to 54.07% while the decrease from Global is within 4%.
It proves that the proposed framework can achieve near-optimal
results compared with non-federated setting. The row of accuracy
loss records the relative error brought by privacy preservation in
Fed-LTD. It shows that the proposed privacy-preserving techniques
have very slight influence on the effectiveness. We also observe

from the different settings that with the bipartite graph becoming
more sparse (i.e., Setting 2), the advantage of Fed-LTD becomes
larger, which is consistent with the theoretical results. When the
market is in short supply (i.e., Setting 3), the leading advantage
of Fed-LTD is widened, which proves that our approach suits the
imbalanced supply and demand scenarios better. In Fig. 3 we also
plot the curves of the rewards and answering rate by day and by
hour. We can see that the performances of Fed-LTD and Global are
very close to each other while their advantages over LocalSum are
still obvious.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yansheng Wang et al.

LocalSum Fed-LTD-N Fed-LTD Fed-LTD-HE

100

101

102

103

R
un

ni
ng

 T
im

e
pe

r B
at

ch
 (m

s)

(a) Average running time (Setting 1)

LocalSum Fed-LTD-N Fed-LTD Fed-LTD-HE
10−1

100

101

102

103

R
un

ni
ng

 T
im

e
pe

r B
at

ch
 (m

s)

(b) Average running time (Setting 3)

8:00 12:00 16:00 20:00 24:00
Time

100

101

102

103

R
un

ni
ng

 T
im

e
pe

r B
at

ch
 (m

s) Fed-LTD
Fed-LTD-HE
Fed-LTD-N
LocalSum

(c) Running time curves (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

10−1

100

101

102

103

R
un

ni
ng

 T
im

e
pe

r B
at

ch
 (m

s) Fed-LTD
Fed-LTD-HE
Fed-LTD-N
LocalSum

(d) Running time curves (Setting 3)

Figure 4: Efficiency Results. (a) and (b) show the average run-
ning time per batch, also with the minimal and the maximal
running time. (c) and (d) plot the curves of running time of
all batches in a day.

4.2.2 Efficiency Results. The efficiency results are shown in Fig. 4.
We use logarithmic axis to illustrate the results more clearly. We
observe that without privacy preservation, the average running
times of Fed-LTD-N and LocalSum are nearly the same, both around
10ms per batch. With private hashing, the efficiency of Fed-LTD
will inevitably decrease to about 100ms per batch. However, if
homomorphic encryption (HE) is used as a replacement, the running
time of Fed-LTD-HE will be 10x larger than Fed-LTD in Setting
1 and 3, reaching the same magnitude of the batch size. It will
be unacceptable for the real-time response in order dispatching.
The results verify that the proposed privacy preserving techniques
can significantly reduce the time consumption and reach a better
trade-off between privacy and efficiency.

4.2.3 A Case Study with Skewed Data. We further investigate how
the skewed demand and supply distributions can affect the dispatch-
ing performance with a case study. We first partition the orders and
drivers into 3 parties with the same proportion of 1 : 3 : 6 as the
balanced case. We observe from Fig. 5a and Fig. 5c that Fed-LTD
can increase the rewards by about 10%, which is similar to the main
results. Next, we reverse the distribution of demand (number of
orders) with a proportion of 6 : 3 : 1 as the skewed case. In this
case, Party 3 has many redundant drivers while Party 1 has too
many orders that cannot all be served. With the aggregation of
dispatching decisions in Fed-LTD, we find from Fig. 5b and Fig. 5d
that the rewards of Party 3 are increased by over 300% and the
excess supply resources are not wasted. From the visualization of
orders in Fig. 5e and Fig. 5f, we also find that Fed-LTD can take
many additional orders (yellow dots) that would have been canceled
by LocalSum and raise the answering rate from 0.4 to 0.8, which
can significantly improve user experience in ride hailing.

Party 1 Party 2 Party 30

1

2

3

4

Av
er

ag
e

R
ew

ar
ds

1e5

LocalSum
Fed-LTD

(a) Rewards of 3 parties (balanced)

Party 1 Party 2 Party 30.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

R
ew

ar
ds

1e5

LocalSum
Fed-LTD

(b) Rewards of 3 parties (skewed)

8:00 12:00 16:00 20:00 24:00
Time

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
LocalSum

(c) Rewards of Party 3 (balanced)

8:00 12:00 16:00 20:00 24:00
Time

0

1000

2000

3000

4000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
LocalSum

(d) Rewards of Party 3 (skewed)

(e) Order distribution (LocalSum) (f) Order distribution (Fed-LTD)

Figure 5: A case study of 3 parties with balanced/skewed
demand and supply distributions. (a) and (b) show the average
rewards of 3 parties in the balanced/skewed case. (c) and (d)
plot the reward curves of Party 3 in the two cases. (e) and
(f) illustrate the order distributions in the skewed case with
LocalSum and Fed-LTD as the dispatching approach, at 10:00
- 10:01, 11/06/2016. The green dots represent the served orders
while the red ones are the canceled orders. The yellow dots
are the additional orders taken by Fed-LTD.

5 RELATEDWORK
We review related work on order dispatching and federated learning
respectively.
Order dispatching. Order dispatching is the central problem in
ride hailing applications, also a typical task assignment problem [3]
in spatial crowdsourcing [8, 23]. The most commonly used model
of the problem is online bipartite graph matching [18, 19, 22], with
various objectives like maximizing the total utility, minimizing the
total waiting time, etc. Existing solutions to order dispatching can
be divided into two categories: combinatorial optimization based
approaches and reinforcement learning based approaches.

Traditional combinatorial optimization based approaches [8, 19,
21, 27] can perform well in relatively small and simple scenarios.
However, they may have efficiency problems and may also lose
effectiveness when their assumptions are violated in large-scale

Fed-LTD: Towards Cross-Platform Ride Hailing via Federated Learning to Dispatch KDD ’22, August 14–18, 2022, Washington, DC, USA

settings. Reinforcement learning (RL) [13] based solutions are be-
coming popular recently due to the great power on solving sequen-
tial decision making problems. For example, Q-learning is applied
to estimate the value of decisions in different states, in the form
of both tabular values [24, 28] or deep neural networks [14, 15]. A
recent work [20] combines combinatorial optimization with rein-
forcement learning and obtains SOTA results in large-scale order
dispatching. We use it as our local dispatching operator and devise
novel global aggregation schemes in the federated setting.
Federated learning. Federated learning [10, 12] is a new learning
paradigm that collaboratively trains models among multiple parties
without sharing their raw data. It has attracted much attention in
recent years due to the increasing concerns on data privacy. It has
two typical application scenarios [7], the cross-device FL where
each party can be an edge device, and the cross-silo FL where each
party is an enterprise or organization. We focus on the cross-silo
setting as each party is a ride hailing platform or taxi company in
our problem.

Privacy preservation is the most widely recognized issue in FL
[29]. To preserve the privacy of gradients, some work designs se-
cure multi-party computation protocols based on secret sharing
[2] or homomorphic encryption [29]. Differential privacy [5] is
another popular technique that can perturb the intermediates in FL
by injecting noise [25, 26]. Another major challenge is the efficiency
problem. To reduce communication overhead, sampling and gradi-
ent compression techniques are usually applied [12]. Some work
also uses special data structures (like sketches) to reduce the time
cost [26]. However, existing FL techniques to address the challenges
above do not fit our problem as they are commonly designed for
gradient descent in general supervised learning. But in our prob-
lem, the intermediates can be value functions or even the bipartite
graphs, which brings novel challenges.

6 CONCLUSION
This paper introduces federated order dispatching for cross-platform
ride hailing, where multiple platforms can make dispatching de-
cisions together without sharing their local data. To address the
challenges on effectiveness, privacy and efficiency, we propose
a novel solution framework named Fed-LTD, which allows shar-
ing of both dispatching models and dispatching decisions. Privacy
preservation and efficiency optimization techniques have also been
devised to make our solution more practical. Experimental results
based on real data show that the proposed solution has obvious
advantages in terms of total revenue and running time.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their constructive
comments. This work is partially supported by the National Key
Research and Development Program of China under Grant No.
2018AAA0101100, the National Science Foundation of China (NSFC)
under Grant Nos. U21A20516, U1811463 and 62076017, the State Key
Laboratory of Software Development Environment Open Funding
No. SKLSDE-2020ZX-07,WeBank Scholars Program, Didi Collabora-
tive Research Program and the Lee Kong Chian Fellowship awarded
to Zimu Zhou by Singapore Management University. Yongxin Tong
is the corresponding author.

REFERENCES
[1] Miguel E. Andrés, Nicolás Emilio Bordenabe, Konstantinos Chatzikokolakis, and

Catuscia Palamidessi. 2013. Geo-indistinguishability: differential privacy for
location-based systems. In CCS. 901–914.

[2] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
ACM, 1175–1191.

[3] Rainer E. Burkard, Mauro Dell’Amico, and Silvano Martello. 2009. Assignment
Problems. SIAM.

[4] Mayur Datar, Nicole Immorlica, Piotr Indyk, et al. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In SCG. 253–262.

[5] Cynthia Dwork. 2006. Differential Privacy. In ICALP. 1–12.
[6] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In STOC. 604–613.
[7] Peter Kairouz, H. Brendan McMahan, Brendan Avent, et al. 2021. Advances and

Open Problems in Federated Learning. Found. Trends Mach. Learn. 14, 1-2 (2021),
1–210.

[8] Leyla Kazemi and Cyrus Shahabi. 2012. GeoCrowd: enabling query answering
with spatial crowdsourcing. In SIGSPATIAL. 189–198.

[9] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Im-
proved Garbled Circuit Building Blocks and Applications to Auctions and Com-
puting Minima. In CANS, Vol. 5888. 1–20.

[10] Jakub Konecný, H. BrendanMcMahan, Felix X. Yu, et al. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. CoRR abs/1610.05492 (2016).

[11] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS. 1273–1282.

[13] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press.

[14] Xiaocheng Tang, Zhiwei (Tony) Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai
Ma, Hongtu Zhu, and Jieping Ye. 2019. A Deep Value-network Based Approach
for Multi-Driver Order Dispatching. In SIGKDD. 1780–1790.

[15] Xiaocheng Tang, Fan Zhang, Zhiwei (Tony) Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing Platforms. In
SIGKDD. 3605–3615.

[16] Qian Tao, Yongxin Tong, Zimu Zhou, et al. 2020. Differentially Private Online
Task Assignment in Spatial Crowdsourcing: A Tree-based Approach. In ICDE.
517–528.

[17] Hien To, Cyrus Shahabi, and Li Xiong. 2018. Privacy-Preserving Online Task
Assignment in Spatial Crowdsourcing with Untrusted Server. In ICDE. 833–844.

[18] Yongxin Tong, Jieying She, Bolin Ding, et al. 2016. Online Minimum Matching in
Real-Time Spatial Data: Experiments and Analysis. PVLDB 9, 12 (2016), 1053–
1064.

[19] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
mobile Micro-Task Allocation in spatial crowdsourcing. In ICDE. 49–60.

[20] Yongxin Tong, Dingyuan Shi, Yi Xu, Weifeng Lv, Zhiwei (Tony) Qin, and Xi-
aocheng Tang. 2022. Combinatorial Optimization Meets Reinforcement Learning:
Effective Taxi Order Dispatching at Large-Scale. IEEE Trans. Knowl. Data Eng.
(2022). https://doi.org/10.1109/TKDE.2021.3127077.

[21] Yongxin Tong, Libin Wang, Zimu Zhou, et al. 2017. Flexible Online Task Assign-
ment in Real-Time Spatial Data. PVLDB 10, 11 (2017), 1334–1345.

[22] Yongxin Tong, Yuxiang Zeng, Bolin Ding, et al. 2021. Two-Sided Online Micro-
Task Assignment in Spatial Crowdsourcing. IEEE Trans. Knowl. Data Eng. 33, 5
(2021), 2295–2309.

[23] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, et al. 2020. Spatial crowdsourcing: a
survey. VLDB J. 29, 1 (2020), 217–250.

[24] Yansheng Wang, Yongxin Tong, Cheng Long, Pan Xu, Ke Xu, and Weifeng Lv.
2019. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning
Approach. In ICDE. 1478–1489.

[25] Yansheng Wang, Yongxin Tong, and Dingyuan Shi. 2020. Federated Latent
Dirichlet Allocation: A Local Differential Privacy Based Framework. In AAAI.
6283–6290.

[26] Yansheng Wang, Yongxin Tong, Dingyuan Shi, and Ke Xu. 2021. An Efficient
Approach for Cross-Silo Federated Learning to Rank. In ICDE. 1128–1139.

[27] Pan Xu, Yexuan Shi, Hao Cheng, et al. 2019. A Unified Approach to Online
Matching with Conflict-Aware Constraints. In AAAI. 2221–2228.

[28] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan,
Chunyang Liu, Wei Bian, and Jieping Ye. 2018. Large-Scale Order Dispatch in
On-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In
SIGKDD. 905–913.

[29] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine
Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019),
12:1–12:19.

https://doi.org/10.1109/TKDE.2021.3127077.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yansheng Wang et al.

A ADDITIONAL PROOFS
A.1 Proof of Theorem 1
We first prove the following lemma.

Lemma 1. If we set𝑑 = 1,𝛾 = (1
𝑒 −𝜖)

𝛼𝐾−(1
𝑒)
𝛼−𝛽 and𝛿 = 1

1+2𝛽2𝑚
,

where 𝛼 = 𝑛/𝑚, 𝜖 and 𝛽 are small numbers, we have
𝑃𝑟 [𝜇 (𝐺) − 𝜇 (𝐺𝐿𝑆) ≥ 𝛾 ·𝑚] ≥ 1 − 𝛿.

Proof. Suppose 𝑆 = {𝑣 ∈ 𝑉 |𝑑𝑒𝑔(𝑣) ≥ 1}. We have 𝜇 (𝐺) ≤ |𝑆 |.
Since the degree of nodes in 𝑈 is 1, it means every two nodes in 𝑆
will have distinct neighbours. So every node in 𝑆 can be matched,
i.e., 𝜇 (𝐺) = |𝑆 |.

The probability that a node 𝑣 ∈ 𝑉 is in 𝑆 is:

𝑃𝑟 [𝑣 ∈ 𝑆] = 1 − 𝑃𝑟 [𝑑𝑒𝑔 (𝑣) = 0] = 1 − (1 − 1
𝑚
)𝑛 .

Let 𝑛 = 𝛼 ·𝑚. Without loss of generality, we suppose 𝛼 ≥ 1, and
we get

E[𝜇 (𝐺)] = E[|𝑆 |] =𝑚 −𝑚 [(1 − 1
𝑚
)𝑚]𝛼 ,

𝑉𝑎𝑟 [𝜇 (𝐺)] =𝑚 · (1 − (1 − 1
𝑚
)𝛼𝑚) · (1 − 1

𝑚
)𝛼𝑚 .

So we have𝑚 −𝑚(1
𝑒)
𝛼 ≤ E[𝜇 (𝐺)] ≤ 𝑚 −𝑚(1

𝑒 − 𝜖)
𝛼 , and 𝜖 → 0

when𝑚 → +∞. We also have𝑚(𝑒−𝛼 − 𝑒−2𝛼) ≤ 𝑉𝑎𝑟 [𝜇 (𝐺)] ≤ 𝑚
4 .

In the federated setting, graph𝐺 is partitioned into 𝐾 subgraphs
𝐺1,𝐺2, · · · ,𝐺𝐾 . Similarly we can define 𝑆𝑘 = {𝑣 ∈ 𝑉𝑘 |𝑑𝑒𝑔(𝑣) ≥ 1}
and get 𝜇 (𝐺𝑘) = |𝑆𝑘 |. We further have 𝑃𝑟 [𝑣 ∈ 𝑆𝑘] = 1

𝐾
· (1 − (1 −

1
𝑚)

𝑛𝑘 , where 𝑑𝑒𝑔𝑘 (𝑣) is the degree of node 𝑣 ∈ 𝑉𝑘 in graph𝐺𝑘 , and
𝑛𝑘 = |𝑈𝑘 | = 𝑛

𝐾
. Therefore, E[𝜇 (𝐺𝑘)] = E[|𝑆𝑘 |] = 𝑚

𝐾
· (1 − (1 −

1
𝑚)

𝛼𝑚
𝐾), 𝑉𝑎𝑟 [𝜇 (𝐺𝑘)] = 𝑚 · (1 − (1 − 1

𝑚)
𝛼𝑚
𝐾) · (1 − 1

𝑚)
𝛼𝑚
𝐾 . Since

E[𝜇 (𝐺𝐿𝑆)] =
∑𝐾
𝑘=1 E[𝜇 (𝐺𝑘)], we obtain

𝑚 −𝑚 (1
𝑒
)
𝛼
𝐾 ≤ E[𝜇 (𝐺𝐿𝑆)] ≤𝑚 −𝑚 (

1
𝑒
− 𝜖)

𝛼
𝐾 ,

𝑚 (𝑒−𝛼/𝐾 − 𝑒−2𝛼/𝐾) ≤ 𝑉𝑎𝑟 [𝜇 (𝐺𝐿𝑆)] ≤
𝑚

4
.

By applying the Cantelli inequality, we have
𝑃𝑟 [𝜇 (𝐺) − 𝜇 (𝐺𝐿𝑆) < E[𝜇 (𝐺)] − E[𝜇 (𝐺𝐿𝑆)] − 𝛽𝑚]

≤ 𝑉𝑎𝑟 [𝜇 (𝐺)] +𝑉𝑎𝑟 [𝜇 (𝐺𝐿𝑆)]
𝑉𝑎𝑟 [𝜇 (𝐺)] +𝑉𝑎𝑟 [𝜇 (𝐺𝐿𝑆)] + 𝛽2𝑚2 ≤

𝑚/4
𝑚/4 + 2𝛽2𝑚2 =

1
1 + 2𝛽2𝑚

,

𝑃𝑟 [𝜇 (𝐺) − 𝜇 (𝐺𝐿𝑆) < E[𝜇 (𝐺)] − E[𝜇 (𝐺𝐿𝑆)] − 𝛽𝑚]

≥ 𝑃𝑟 [𝜇 (𝐺) − 𝜇 (𝐺𝐿𝑆) ≤𝑚 (
1
𝑒
− 𝜖)

𝛼
𝐾 −𝑚 (1

𝑒
)𝛼 −𝑚𝛽] .

We denote 𝛾 = (1
𝑒 − 𝜖)

𝛼
𝐾 − (1

𝑒)
𝛼 − 𝛽 and 𝛿 = 1

1+2𝛽2𝑚
, then

𝑃𝑟 [𝜇 (𝐺) − 𝜇 (𝐺𝐿𝑆) ≥ 𝛾 ·𝑚] ≥ 1 − 𝛿. (7)

□
Next, we will prove Theorem 1.

Proof. Suppose the unmatched nodes in𝐺𝐿𝑆 form a new bipar-
tite graph 𝐺Δ while 𝐺Δ𝑘 contains the unmatched nodes in 𝐺𝑘 . We
have 𝜇 (𝐺𝐹𝑒𝑑) = 𝜇 (𝐺𝐿𝑆) + 𝜇 (𝐺Δ) = 𝜇 (𝐺𝐿𝑆) +

∑𝐾
𝑘=1 𝜇 (𝐺Δ𝑘). And

similarly we have 𝜇 (𝐺Δ) = |𝑆Δ | =
∑𝐾
𝑘=1 |𝑆Δ𝑘 |.

According to the maximum cardinality matching in each 𝐺𝑘 ,
there is no edge between𝑈Δ𝑘 and 𝑉Δ𝑘 . For the subgraph 𝐺Δ,

𝑃𝑟 [𝑣 ∈ 𝑆Δ𝑘 |𝑅𝑘 = 𝑖] = 1 − (1 − 1
𝑚
)𝑖 ,

where 𝑅𝑘 =
∑
𝑘′≠𝑘 |𝑈Δ𝑘′ |. Since |𝑈Δ𝑘 | ∼ 𝐵(𝑛

𝐾
, 𝑝0) is a random

variable following the Binomial distribution with 𝑝0 = 1− 1
𝛼 (1−(1−

1
𝑚)

𝛼𝑚
𝐾), 𝑅𝑘 is also binomial, i.e., 𝑅𝑘 ∼ 𝐵(𝑛0, 𝑝0) with 𝑛0 = (1− 1

𝐾
)𝑛.

Suppose𝑚0 =𝑚(1 − 1
𝑚)

𝛼𝑚 , we have

E[𝜇 (𝐺Δ)] = E[|𝑆Δ |] =
𝐾∑︁
𝑘=1
E[|𝑆Δ𝑘 |] =

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1
E[|𝑆Δ𝑘 | |𝑅𝑘 = 𝑖] · 𝑃𝑟 [𝑅𝑘 = 𝑖]

≥ 𝑚0
𝐾
·
𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1
(1 − (1 − 1

𝑚
)𝛼𝑚)𝑃𝑟 [𝑅𝑘 = 𝑖]

≥ 𝑚0
𝐾
(1 − 𝑒−𝛼) ·

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑃𝑟 [𝑅𝑘 = 𝑖]

=𝑚0 (1 − 𝑒−𝛼) =𝑚 (1 −
1
𝑚
)𝛼𝑚 (1 − 𝑒−𝛼) .

Since𝑚 is large, (1 − 1
𝑚)

𝛼𝑚 → 𝑒−𝛼 , then E[𝜇 (𝐺Δ)] ≥ 𝑚 · (𝑒−𝛼 −
𝑒−2𝛼). We still have 𝑉𝑎𝑟 [𝜇 (𝐺Δ)] ≤ 𝑚

4 , by setting 𝛾0 = 1
2 (𝑒
−𝛼 −

𝑒−2𝛼) and applying the Cantelli inequality again, we have

𝑃𝑟 [𝜇 (𝐺Δ) < 𝛾0𝑚] ≤
𝑚/4

𝑚/4 + 𝜖2
0
=

1
1 +𝑚 (𝑒−𝛼 − 𝑒−2𝛼)2 .

With 𝛿0 = 1
1+𝑚 (𝑒−𝛼−𝑒−2𝛼)2 , we finally obtain

𝑃𝑟 [𝜇 (𝐺𝐹𝑒𝑑) − 𝜇 (𝐺𝐿𝑆) ≥ 𝛾0𝑚] ≥ 1 − 𝛿0 .

□

Then we make extensions to general node degree𝑑 . According to
Hall’s theorem, we have 𝜇 (𝐺) ≤ 𝑁 (𝑈) = |𝑆 |. We define 𝜇 (𝐺) ≜ |𝑆 |
which is an upper bound of 𝜇 (𝐺). It will become more tight when
𝑑 is larger. And the following corollary holds for 𝜇 (𝐺).

Corollary 1. With𝛿 ′0 = 1
1+𝑚

𝑑
(𝑒−𝛼/𝑑−𝑒−2𝛼/𝑑)2 and𝛾

′
0 = 1

2 (𝑒
−𝛼/𝑑−

𝑒−2𝛼/𝑑), we have

𝑃𝑟 [𝜇 (𝐺𝐹𝑒𝑑) − 𝜇 (𝐺𝐿𝑆) ≥ 𝛾 ′0
𝑚

𝑑
] ≥ 1 − 𝛿′0 . (8)

Extension to weighted case. We make a simple extension to
maximum weighted matching. Suppose 𝐴 is the upper bound of
edge weights, and ¯̄𝜇 (𝐺) ≜ 𝐴 · 𝜇 (𝐺) which is a loose upper bound
for 𝜇 (𝐺) in weighted case. Obviously Corollary 1 holds again by
replacing 𝜇 (·) with ¯̄𝜇 (·) and replacing𝑚,𝛼 with𝑚 · 𝐴, 𝛼 · 𝐴.

A.2 Proof of Incentive Compatibility
Suppose G∗

𝑘
is a subgraph that contains all the unmatched orders

and drivers after a local maximum matching by party 𝑘 . All the G𝑘
forms a global graph 𝐺Δ. LetM(𝐺Δ)𝑘 denote the subset of match-
ing allocation on𝐺Δ where the drivers in the allocation are all from
party 𝑘 . 𝑓 (⟨G1, · · · ,G𝐾 ⟩)𝑘 is the utility function for party 𝑘 (𝑓 (G𝑘)
for short). We useM𝐻𝑢𝑛 andM𝐺𝑟𝑒 to denote the Hungarian and
greedy matching algorithms respectively.

We expect that Fed-LTD has the properties of incentive compat-
ibility (IC) or individual rationality (IR), which means the parties
will have motivation to share the unmatched orders. And we have
the following conclusions.

Lemma 2. If the utility function for party 𝑘 is

𝑓 (⟨G1, · · · ,G𝐾 ⟩)𝑘 =M𝐻𝑢𝑛 (𝐺𝑘 − G𝑘) +M𝐻𝑢𝑛 (𝐺Δ)𝑘 ,

the proposed Fed-LTD framework satisfies IR but IC cannot be achieved.

Fed-LTD: Towards Cross-Platform Ride Hailing via Federated Learning to Dispatch KDD ’22, August 14–18, 2022, Washington, DC, USA

𝜖

𝑢1,1

𝑢2,1

𝑣1,1

𝑣1,2 𝜖
1

(a) Example 1

𝑢1,1

𝑢2,1

𝑣1,1

𝑣2,1

1
1

𝑢3,1
𝑣3,1

2𝜖

𝜖

1

(b) Example 2

Figure 6: Two counterexamples

Proof. We first show that with G′
𝑘
⊆ G∗

𝑘
and G𝑘 = ∅, 𝑓 (G′

𝑘
) ≥

𝑓 (G𝑘). Since G′𝑘 only contains the unmatched nodes in 𝐺𝑘 , it will
not influenceM𝐻𝑢𝑛 (𝐺𝑘−G𝑘). And obviouslywe haveM𝐻𝑢𝑛 (𝐺Δ)𝑘 ≥
0, so 𝑓 (G′

𝑘
) ≥ 𝑓 (G𝑘). Therefore, with fixed G𝑖≠𝑘 , ∀𝑘 we have

𝑓 (⟨G1, · · · ,G′𝑘 , · · · ,G𝐾 ⟩)𝑘 ≥ 𝑓 (⟨G1, · · · , ∅, · · · ,G𝐾 ⟩)𝑘 . (9)

We further show that the inequality will be broken if G′
𝑘
contains

any node that is not in G∗
𝑘
. We only need to prove it by an coun-

terexample. In Fig. 6a, there are two parties and the initial local
match allocation of party 1 is (𝑢1,1, 𝑣1,1) with utility 𝜖 . If party 1
shares the matched nodes i.e., 𝑣1,1, it will be matched by 𝑢2,1 from
party 2, and the utility of party 1 will be 0, which violates (9). Next,
we will show that it cannot satisfy IC by another counterexam-
ple. The unmatched nodes of 3 parties are illustrated in Fig. 6b. If
party 1 does not share 𝑣1,1, the matching allocation of Hungarian
method will be the bold line, and the utility of party 1 is 1. However,
if party 1 shares 𝑣1,1, the maximum matching allocation will be
the double line, and its utility will decrease to 𝜖 . It indicates that
𝑓 (⟨G1, · · · ,G∗𝑘 , · · · ,G𝐾 ⟩)𝑘 < 𝑓 (⟨G1, · · · ,G𝑘 , · · · ,G𝐾 ⟩)𝑘 for some
G𝑘 ⊆ G∗𝑘 . Thus IC cannot be satisfied in this case. □

Therefore, with the Hungarian method for global matching, all
parties are willing to join in the federation (i.e., IR), but they may
not be willing to share all the unmatched nodes (i.e., not IC). Next,
we will see that by replacing the global matching method by the
greedy algorithm, IC can also be satisfied.

Theorem 2. If the utility function for party 𝑘 is

𝑓 (⟨G1, · · · ,G𝐾 ⟩)𝑘 =M𝐻𝑢𝑛 (𝐺𝑘 − G𝑘) +M𝐺𝑟𝑒 (𝐺Δ)𝑘 ,
the proposed Fed-LTD framework satisfies IC.

Proof. First, IR can still be achieved here regardless of the global
matching algorithm. So we will prove that with the Greedy algo-
rithm as the global matching approach, the following inequality
holds for any G𝑘 ⊆ G∗𝑘 .

𝑓 (⟨G1, · · · ,G∗𝑘 , · · · ,G𝐾 ⟩)𝑘 ≥ 𝑓 (⟨G1, · · · ,G𝑘 , · · · ,G𝐾 ⟩)𝑘 . (10)

We only need to prove that for party 𝑘 , sharing one more nodes
in G∗

𝑘
will not decrease its utility. We will prove it by induction on

|𝑉Δ | where 𝐺Δ = (𝑈Δ ∪𝑉Δ, 𝐸Δ).
When |𝑉Δ | = 1, there is only one node 𝑣1 in 𝑉Δ. (1). If 𝑣1 is

matched to 𝑢𝑖,1 by the Greedy algorithm, the utility of party 𝑘 will
be 0. So sharing new nodes 𝑣𝑘,1 will not decrease the utility. (2). If
𝑣1 is matched to 𝑢𝑘,1 by the Greedy algorithm, as 𝑣𝑘,1 and 𝑢𝑘,1 are
not connected, sharing new nodes 𝑣𝑘,1 will not change the utility
of party 𝑘 . Therefore, (10) holds when |𝑉Δ | = 1.

We make the hypothesis that (10) holds when |𝑉Δ | = 𝑚 and
analyze on the case |𝑉Δ | =𝑚 + 1. (1). 𝑣𝑚+1 does not appear in the
matching allocation of the Greedy algorithm. Then we can remove
𝑣𝑚+1 from the graph with that the matching allocation on the new
graph will not change. According to the hypothesis above, (10) still
holds. (2). 𝑣𝑚+1 appears in the matching allocation of the Greedy
algorithm.We suppose the edge with the maximal weight is (𝑢𝑥 , 𝑣1)
with edge weight 𝐴. (2.1) If 𝑢𝑥 = 𝑢𝑘,1, sharing a new node 𝑣𝑘,1 will
not change the matching result on 𝑢𝑘,1, as the edge (𝑢𝑘,1, 𝑣1) will
always be removed by the Greedy algorithm. (2.2) If 𝑢𝑥 = 𝑢𝑖,1 with
𝑖 ≠ 𝑘 , we suppose the edge weight between𝑢𝑖,1 and 𝑣𝑘,1 is𝐴′. (2.2.1)
If 𝐴′ ≥ 𝐴, according to the Greedy algorithm, (𝑢𝑖,1, 𝑣𝑘,1) will be
removed first. Suppose 𝑢𝑘,1 is matched to 𝑣𝑚 before the appearance
of 𝑣𝑘,1 with edge weight 𝐵 and the weight between 𝑢𝑘,1 and 𝑣1 is 𝐵′.
If 𝐵′ ≤ 𝐵, 𝑢𝑘,1, 𝑣𝑚 will be removed no later than 𝑢𝑘,1, 𝑣1, therefore
the utility of𝑢𝑘,1 does not decrease. If 𝐵′ > 𝐵, the utility of𝑢𝑘,1 will
remain unchanged or increase to 𝐵′. So (10) still holds here. (2.2.2) If
𝐴′ < 𝐴, we remove 𝑢𝑖,1, 𝑣1 from the graph by the Greedy algorithm
and we have |𝑉Δ | = 𝑚. According to the hypothesis above, (10)
holds. By induction on𝑚 we have proved the theorem. □

B ADDITIONAL EXPERIMENTAL RESULTS

6 Nov. 13 Nov. 20 Nov. 27 Nov.
Day

4.5

5.0

5.5

6.0

6.5

To
ta

l R
ew

ar
ds

1e5
Fed-LTD
Global
Greedy
LocalSum

(a) Total rewards (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

0

2000

4000

6000

8000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(b) Average rewards (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

0

1000

2000

3000

4000

Av
er

ag
e

R
ew

ar
ds

Fed-LTD
Global
Greedy
LocalSum

(c) Average rewards (Setting 3)

8:00 12:00 16:00 20:00 24:00
Time

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(d) Average AR (Setting 1)

8:00 12:00 16:00 20:00 24:00
Time

0.2

0.4

0.6

0.8

Av
er

ag
e A

ns
w

er
in

g
R

at
e

Fed-LTD
Global
Greedy
LocalSum

(e) Average AR (Setting 3)

Figure 7: Effectiveness results of 5 parties

	Fed-LTD: Towards cross-platform ride hailing via federated learning to dispatch
	Citation
	Author

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Order Dispatching
	2.2 Federated Order Dispatching

	3 Fed-LTD Framework
	3.1 Overview
	3.2 Local learning and dispatching
	3.3 Aggregation of Dispatching Models
	3.4 Aggregation of Dispatching Decisions

	4 Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Related Work
	6 Conclusion
	References
	A Additional Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Incentive Compatibility

	B Additional Experimental Results

