Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1-2022

Secure cloud data deduplication with efficient re-encryption

Haoran YUAN
Xidian University

Xiaofeng CHEN
Xidian University

Jin LI
Guangzhou University

Tao JIANG
Xidian University

Jianfeng WANG
Xidian University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

YUAN, Haoran; CHEN, Xiaofeng; LI, Jin; JIANG, Tao; WANG, Jianfeng; and DENG, Robert H.. Secure cloud
data deduplication with efficient re-encryption. (2022). IEEE Transactions on Services Computing. 15, (1),
442-456.

Available at: https://ink.library.smu.edu.sg/sis_research/7251

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Haoran YUAN, Xiaofeng CHEN, Jin LI, Tao JIANG, Jianfeng WANG, and Robert H. DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7251

https://ink.library.smu.edu.sg/sis_research/7251

Published in IEEE Transactions on Services Computing, 2022, 15 (1), 442-456. DOI: 10.1109/TSC.2019.2948007

Secure Cloud Data Deduplication
with Efficient Re-Encryption

Haoran Yuan
Jianfeng Wang

, Xiaofeng Chen
, and Robert H. Deng

, Senior Member, IEEE, Jin Li*, Tao Jiang",
, Fellow, IEEE

Abstract—Data deduplication technique has been widely adopted by commercial cloud storage providers, which is both important and
necessary in coping with the explosive growth of data. To further protect the security of users’ sensitive data in the outsourced storage
mode, many secure data deduplication schemes have been designed and applied in various scenarios. Among these schemes, secure
and efficient re-encryption for encrypted data deduplication attracted the attention of many scholars, and many solutions have been
designed to support dynamic ownership management. In this paper, we focus on the re-encryption deduplication storage system and
show that the recently designed lightweight rekeying-aware encrypted deduplication scheme (REED) is vulnerable to an attack which
we call it stub-reserved attack. Furthermore, we propose a secure data deduplication scheme with efficient re-encryption based on the
convergent all-or-nothing transform (CAONT) and randomly sampled bits from the Bloom filter. Due to the intrinsic property of one-way

hash function, our scheme can resist the stub-reserved attack and guarantee the data privacy of data owners’ sensitive data.
Moreover, instead of re-encrypting the entire package, data owners are only required to re-encrypt a small part of it through the
CAONT, thereby effectively reducing the computation overhead of the system. Finally, security analysis and experimental results show

that our scheme is secure and efficient in re-encryption.

Index Terms—Re-encryption, data deduplication, convergent encryption, user revocation

1 INTRODUCTION

H the rapid development of cloud storage, more
Wand more individuals and enterprises tend to out-
source their sensitive data to remote cloud service pro-
viders in a pay-per-use manner [1], [2], [3], [4], [5].
According to the study from Internet Data Center (IDC)
sponsored by Dell EMC, the digital universe is doubling
in size every two years and the volume of the universe
data is expected to reach 44 zettabytes (ZB) or 44 trillion
gigabytes (GB) in 2020 (more than 5,200 gigabytes for
each man, woman, and child) [6]. However, the growth
of data puts heavy pressures on cloud service providers.
To cope with it, a straightforward method is to require
cloud service providers continuously increasing the
capacity of storage space, so as to meet users’ require-
ments for high-quality storage services.

However, cloud service providers may store plentiful and
repetitive data (such as movies, music and genome data),

o H. Yuan and X. Chen are with the State Key Laboratory of Integrated
Service Networks, Xidian University, Xi'an 710071, China, and also with
the State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878,
China. E-mail: {hryuan1}@163.com, xfchen.

o] Liis with the School of Computational Science and Education Software,
Guangzhou University, Guangzhou 510006, China.
E-mail: lijin@gzhu.edu.cn.

o T. Jiang and]. Wang are with the State Key Laboratory of Integrated
Service Networks, Xidian University, Xi’an 710071, China.
E-mail: {taojiang, jfwang)@xidian.edu.cn.

e R.H. Dengis with the School of Information Systems, Singapore Management
University, 188065, Singapore. E-mail: robertdeng@smu.edu.sg.

which inevitably incurs a mass of redundant storage and
backup space, consequently to cost a vast amount of comput-
ing and management overhead during its whole life cycle. To
solve this problem, Bolosky et al. first proposed the technique
of data deduplication [7], which decreases the redundant
storage space and bandwidth by eliminating duplicate copies
and only storing one copy of them. Nowadays, data dedupli-
cation techniques have been widely deployed by cloud ser-
vice providers, such as Dropbox [8], Google Drive [9] and
Memopal [10]. Researches [11], [12] have shown that most of
the genome data (> 83%) and disk (> 90%) of business appli-
cations can be reduced by exploiting data deduplication
technique. While the technique of data deduplication has
plentiful advantages, there are still some security challenges
that need to be addressed. In particular, the cloud service pro-
viders are often assumed to be not fully trusted, which may
try to infer and analyze the outsourced data [13], [14], [15],
[16]. To protect the confidentiality of their sensitive data,
cloud users generally encrypt their data before outsourcing
them to cloud service providers. However, different users
encrypt the same data with their private keys, which leads
the same data to output different ciphertexts, and makes the
function of data deduplication unachievable. Douceur et al.
[17] proposed the first feasible solution to protect the confi-
dentiality of data and achieve deduplication on ciphertexts.
However, the cloud user encrypts sensitive data with a con-
vergent key, which is derived from the hash value of the data
and unchanged. It will lead the revoked cloud user to access
the sensitive data through the reserved convergent key.

User revocation is a severe security problem in the cloud
environment. We take the case in genome research as an

https://orcid.org/0000-0003-0242-5646
https://orcid.org/0000-0003-0242-5646
https://orcid.org/0000-0003-0242-5646
https://orcid.org/0000-0003-0242-5646
https://orcid.org/0000-0003-0242-5646
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0001-6900-7305
https://orcid.org/0000-0001-6900-7305
https://orcid.org/0000-0001-6900-7305
https://orcid.org/0000-0001-6900-7305
https://orcid.org/0000-0001-6900-7305
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
mailto:hryuan1@163.com, xfchen
mailto:lijin@gzhu.edu.cn
mailto:taojiang@xidian.edu.cn
mailto:jfwang@xidian.edu.cn
mailto:robertdeng@smu.edu.sg

I

| [
| I
| I
| I
! the ciphertext C K :
: |
| I
| [
| I

Fig. 1. All-or-nothing transform.

example to illustrate this point. Considering the enormous
volume of genome datasets, genome researchers tend to use
the cloud to store the genome data [18]. Google Genomics
[19] and Amazon [20] have deployed specific platforms for
managing and analyzing genome data. However, some sen-
sitive genome data produced by disease sequencing projects
must be protected. For example, when a researcher is no lon-
ger a member of the genome project, he will be prohibited
from accessing the genome datasets. This problem has been
addressed by using techniques such as re-encryption and
group key distribution [21], [22], [23]. By using symmetric
encryption (such as AES-128 or AES-256) to re-encrypt the
sensitive data and distribute group key for group users,
those schemes can support user joining and user revocation.
Although the re-encryption scheme uses a new encryption
key to encrypt the entire message to protect the data confi-
dentiality, it will result in a waste of excessive computation
overhead. William et al. [24] provided evidence that, in situa-
tions involving even a minimal amount of policy dynamism,
the cryptographic enforcement of access controls is likely to
carry prohibitive costs.

Recently, Li et al. [25], [26] proposed a rekeying-aware
encrypted deduplication storage system (REED), which sup-
ports a lightweight re-encryption. Instead of re-encrypting
the entire package, data owners are only required to re-
encrypt a small part of it through the CAONT, thereby effec-
tively reducing the computation overhead of the system.
However, we point that the REED is vulnerable to the stub-
reserved attack, which will be described in Section 3.2. In
short, if a revoked cloud user keeps the last bytes of a pack-
age as stub package, he can use the reserved stub package
and trimmed package (downloaded from the cloud service
provider) to recover the plaintext. Therefore, existing pro-
posed schemes cannot well support secure dynamic owner-
ship management of cloud users and efficient re-encryption.

Our Contribution. In this paper, we further study the
above problems of secure and efficient re-encryption for
deduplication storage. Our contributions are three folds:

e We point out a security weakness of the enhanced
encryption of REED scheme [25], [26]. That is, this
scheme is vulnerable to the so-called stub-reserved
attack proposed in this paper.

e We propose a location selection method based on
Bloom filter and a secure data deduplication scheme
with efficient re-encryption. By using the symmetric
encryption and the new location selection method,
the revoked cloud user cannot obtain the sensitive
data from the data owner. Thus data privacy is
ensured. Moreover, instead of re-encrypting the
entire package, data owners are only required to re-
encrypt a small part of it through the CAONT,
thereby effectively reducing the computation over-
head of the scheme.

e We provide the security analysis and performance
evaluation of our scheme, and the results show that
our scheme is secure and efficient.

2 PRELIMINARIES

In this section, we first present the definitions and proper-
ties of all-or-nothing transform (AONT) [27] and convergent
all-or-nothing transform (CAONT) [28]. Then, we review
the concept of the ciphertext-policy attribute-based encryp-
tion (CP-ABE) and Bloom filter.

2.1 Convergent All-or-Nothing Transform
All-or-nothing transform is an unkeyed and randomized
encryption mode, which has the property that one must
decrypt the entire ciphertext before one can determine even
one message block [27]. AONT is defined as follows.

AONT transforms a message M into a package (C,t),
where C'is called head and ¢ is called tail. In particular, a
user first chooses a random key K and generates a pseudo-
random mask G(K) = E(K, P), where E(-) denotes a sym-
metric key encryption algorithm (e.g., AES-256) and P
denotes a public block with the same size as message M.
Then, the user computes C = M & G(K) and t = H(C) & K,
where @ is the exclusive-or (XOR) operation and H(:)
denotes a hash function (e.g., SHA-256). It should be noted
that the resulting package (C,t) is longer than message M.
To recover the original message M, a user first uses C' and ¢
to compute K = H(C) @ t. Then, the user uses C' and K to
compute M = C & E(K, P). The workflow of the AONT is
shown in Fig. 1.

In the original AONT scheme, it randomly chooses a key
K to construct a package. Thus, the original AONT scheme
hinders the implementation of data deduplication. To solve
this problem, Li et al. proposed the CAONT scheme [28].
CAONT derives the deterministic key from the identical
message. By using the deterministic key to construct a pack-
age, the same message always generates the same package.
Especially, CAONT follows the same paradigm of AONT
by replacing the encryption key with a deterministic hash
value k=H(M). This makes data deduplication over
encrypted data plausible. Furthermore, CAONT allows
integrity verifying without padding. The integrity can be
checked by computing the hash of message A and checking
whether it equals &.

To prove the security of the AONT scheme, Victor Boyko
defined the non-adaptive indistinguishability in [29]. We
review the scenario and definition of non-adaptive indistin-
guishability as follows. Let L be an arbitrary set of [bit posi-
tions. The adversary runs in two stages:

Attribute Attribute Attribute

Attribute

Fig. 2. Access tree for CP-ABE.

e Find stage: The adversary is given L and access to
random oracle O. He outputs zp,z; € {0,1}" and
cp € {0, 1}*.

e Guess stage: The adversary is given ¢, and, for ran-
dom bit b, AONTO(:B;,) with bit positions L missing.
The adversary has access to O and guesses b.

Note that 2y and z; may be included in c;. We may view
¢y as the saved state of the adversary at the end of the find
stage. We want the adversary’s probability of correctly
guessing b to be as close as possible to 3. The definition is as
follows:

Definition 1 (Non-adaptive indistinguishability). Let
AONT be a randomized transform mapping n-bit messages
to n'-bit outputs and using random oracle O. Let | be
between 1 and n'. An adversary A is said to succeed in
(T, qo, €)-distinguishing AONT with | missing bits if there
exist L € {n',1} such that P1r[(’)<£ Q; (l’o,LEl,Cf)<£ A°(L,
find); b il {0,1} y & AONTO (x3) : Ao(hn/ﬂ,‘(y),cﬂguess) =b=

1/2 + ¢, and, moreover, in the experiment above, A runs for at
most T' steps, and makes at most qo queries to O.

To ensure the security of ANOT, for any given an L, the
advantage of an arbitrary adversary to break the Non-adap-
tive indistinguishability should be less than ¢.

2.2 Ciphertext-Policy Attribute-Based Encryption
Ciphertext-policy attribute-based encryption is a crypto-
graphic encryption algorithm, which enables data owners
to define an access policy over user attributes and encrypt
data under the access policy with the corresponding public
key components [30]. If and only if the users’ attributes
match the corresponding access policy, the user can decrypt
the corresponding ciphertext. In CP-ABE, each policy is rep-
resented in an access tree, in which each non-leaf node of
the tree represents a Boolean gate (e.g., AND or OR), while
each leaf node represents an attribute that defines user
property (e.g., ages, genders, departments, etc.). Each user
is given a private key that corresponds to a set of attributes.
If and only if the user’s attributes satisfy the access tree, his
private key can decrypt the ciphertext. The access tree of
CP-ABE is shown in Fig. 2.

In this paper, we treat each attribute as a unique identi-
fier of each cloud user. We issue each cloud user with a CP-
ABE private key, which is related to the identity. The policy
of each file as an access tree and the identities of all autho-
rized cloud users are connected with the OR gate. Therefore,

=
E:
=1
B
3
a
o
5
[
5
ugq
&

JA 95essow €
JA 9essow €

MLE__

Fig. 3. Enhanced encryption of REED.

any authorized cloud user can decrypt the ciphertext and
get the original message.

2.3 Bloom Filter

The Bloom filter is a simple space-efficient data structure for
checking whether an element belongs to a set [31], which
has been very popular in practical applications. A Bloom fil-
ter sets a bit array of n bits and k independent hash func-
tions defined as follows: h; : {0,1}" — [1,n],4 € [1, k]. These
hash functions map each element to a random number uni-
formed in {1,...,n}. In the initialization stage, all bits of
the array are set to 0. To add an element « to the set, it com-
putes k array locations with the & hash functions, and sets
all the locations of h;(z) as 1. To check whether the element
x is in the set S, a user just needs to compute h;(z) for
reconstructing all the array locations. Thus, if one of the
array locations is 0, we can make sure that the element x is
not in the set S. However, it is not certain whether the ele-
ment is in the set even all the locations of h;(z) are 1, since
there exist h;(z) = h;(y) (i.e., collision of the hash function)
for some y # x.

3 ANALYSIS oOF REED SCHEME

Li et al. proposed a novel rekeying-aware encrypted dedu-
plication storage system, called REED [25], [26]. In this sec-
tion, we first give an overview of the REED scheme. Then,
we point out the security weakness in this construction.

3.1 Review of REED Scheme

Based on the CAONT mechanism, Li et al. proposed a
rekeying-aware encrypted deduplication storage system,
called REED. Due to the feature of CAONT, it is computa-
tionally infeasible to recover the original message without
getting the entire ciphertext. Hence, instead of re-encrypting
the entire package, data owners are only required to re-
encrypt a small part of it through the CAONT, thereby
effectively reducing the computation overhead of the
system.

Enhanced Encryption of REED Scheme. To enhance the
security of the basic scheme, the authors proposed an
enhanced scheme. The workflow of the enhanced scheme is
shown in Fig. 3. We review the enhanced scheme as follows.
If a cloud user wants to upload a message M, the cloud user
first uses the message-locked encryption (MLE) key K, to
encrypt the message M by the traditional MLE scheme and
get the ciphertext Cy = E(Kj;, M), where E(-) is the encryp-
tion function. Then, the cloud user transforms the K||C;
by the original CAONT, where ”||" denotes the concatena-
tion. Different from the basic scheme, the enhanced scheme

uses the hash key h = H(C}||Ky/) as the input of pseudo-
random mask G. The cloud user computes G(h) = E(h, 5),
where S is a publicly known block with the same size as
C1|| K. The package head is Cy = (C1|| K1) @ G(h). To gen-
erate the package tail ¢, the cloud user first divides C; into a
set of fixed-sized pieces, each with the same size as h. Then,
the cloud user performs XOR operation of all the pieces as
well as h to generate the package tail ¢. Without getting the
entire message Cj, the result of self-XOR cannot be pre-
dicted. Finally, the cloud user trims the last few bytes (e.g.,
64 bytes) from (Cy,t) as the stub package and leaves the
remaining part of the package as the trimmed package. For
preventing the revoked cloud user from recovering the orig-
inal message, the data owner uses the file key to re-encrypt
the stub package and generate the stul’ package. The file
key is distributed by using the CP-ABE algorithm. The
cloud user who belongs to the group can get the file key.
Furthermore, the data owner only needs to re-encrypt the
stub package to generate the stub’ package. Finally, the
cloud user only uploads the stud’ and trimmed packages to
the cloud service provider.

The procedure of message reconstruction is as follows.
First, the cloud user uses the file key to decrypt the stub’ pack-
age and get the stub package. For reconstructing (Cy, Ka)
from the trimmed and stub packages, the cloud user divides
C into fixed-size pieces and recovers h by performing XOR
operation of all the pieces and ¢. Then, the package C || Ky is
generated by comparing C||K); = C> @ G(h) and the integ-
rity is checked by comparing H(C!||K ;) and h. Finally, the
cloud user computes M = D(K,;,C1), where D(-) is the
decryption function.

3.2 Stub-Reserved Attack
We argue that the REED scheme suffers from the following
attack.

We assume a rational attacker model that a malicious
user wants to access the original message after key revoca-
tion by minimizing the local storage effort. This attack can
be launched by a revoked cloud user who aims to recover
the original message without data ownership. The attack is
based on the fact that a cloud user can use the file key to
decrypt the stub’ package and get the stub package before
the cloud user leaves the group. After being revoked from
the group, the revoked cloud user can use the reserved stub
package and trimmed package (corresponding to the stub
package) downloaded from the cloud service provider to
reconstruct the original message. Because the stub package
only occupies 0.39 percent of the original message, the
revoked cloud user can keep a small part of data for recov-
ering the original message. The workflows of the stub-
reserved attack are described as follows.

1) Before a cloud user leaves the group of the message
M, the cloud user uses the file key K. to decrypt
the stub’ package and get the stub package. The stub
package is stored in local storage and used to recover
the original message.

2) After being revoked from the group, the cloud user
concatenates trimmed package (downloaded from
the cloud service provider) and reserved stub pack-
age to recover (C,,t) package (because the stub

package is the last few bytes of (C5,t) and the
trimmed package is the remaining part of the package
of (Cz, t))

3) The revoked cloud user divides C5 into fixed-size
pieces and computes h by performing XOR opera-
tion of those pieces and t. The package Ci||K); is
recovered by computing C||Ky; = C» & G(h). Then,
the cloud user splits the package C)||Kj to the
ciphertext C} and the MLE key K.

4) Finally, the cloud user can use K, to decrypt C; and
get the original message M = D(K),C}). Visually,
the reversed stub package can be regarded as the
“big key”, which is longer than the file key but sig-
nificantly shorter than the original message.

We analyze why the REED scheme suffers from the stub-
reserved attack. The main reason is that the small part of
the ciphertext (which is used for re-encryption) never
changes, this makes the revoked cloud user can predict
which small part of the ciphertext (that is stub package) will
be re-encrypted. Then, the revoked cloud user can recover
the original message by using the reserved stub package. In
detail, because the REED scheme uses the CAONT mecha-
nism, it is computationally infeasible to recover the original
message without getting the entire ciphertext. Then, the
data owners only need to re-encrypt a small part of the
entire ciphertext for saving computation overhead. How-
ever, if the sites of stub package never change, the revoked
cloud user can recover the original message by using the
reserved stub package rather than the file key. Although the
stub package is longer than the file key, it still far less
than the plaintext (0.78 percent for an 8 KB chunk and
0.39 percent for a 16 KB chunk).

Remark 1. In order to deal with this problem, a straightfor-
ward solution is that the data owner randomly chooses a
small part of the ciphertext as the stub package. This
makes the revoked cloud user cannot predict which part
of ciphertext will be chosen in the next re-encryption.
Thus, the revoked cloud user needs to preserve the entire
stub and trimmed packages to recover the original mes-
sage. Because the stub and trimmed packages are longer
than the original message, it is better to preserve the origi-
nal message. This solution can avoid the stub-reserved
attack. However, the revoked cloud user still can keep the
h before he leaves the group. Thus, the revoked cloud
user can use h as the input of pseudo-random mask G to
generate G(h). The revoked cloud user performs XOR
operation of G(h) and package trimmed to extract a
majority part of the chunk. Therefore, the privacy of the
data owners’ sensitive data is compromised.

4 NMODELS AND SECURITY GOALS

4.1 System Model

In this paper, we propose a secure cloud data deduplication
scheme with efficient re-encryption. Our scheme is designed
for enterprise or user groups in which multiple users want to
outsource the data to a remote cloud service provider. The
cloud service provider can conduct deduplication on cipher-
texts and save abundant storage overhead. The system of
our scheme contains three entities: cloud user, key server

el

%ﬁi)

Key server

|

Ciphertext » Cloud service ﬁbvider

Cloud users *

Fig. 4. The cloud storage model.

and cloud service provider (CSP). The system model of our
scheme is shown in Fig. 4.

Data deduplication schemes can be categorized into file-
level and block-level deduplication. This paper focuses on
file-level deduplication, which divides file data into the
fixed-size chunk. In this paper, we use the terms “chunks”
and “message” interchangeably.

e Cloud user: A cloud user is an entity who wants to
outsource sensitive data to the CSP and access data
later. After uploading the data, the cloud user
removes M for saving storage space.

e Key server: The key server is a CP-ABE key server,
which helps the cloud user to distribute the file key.
The key server is also used to generate the MLE
encryption key. Cloud users obtain the encryption
key from the key server via an oblivious PRF proto-
col. We assume that the key server is trusted worthy
and the communication channel is encrypted and
authenticated.

e CSP: The CSP is an entity that provides storage serv-
ices, which is responsible for deleting redundant data
and only storing one copy of them. The CSP is
assumed to be honest-but-curious. That is, it will exe-
cute the protocol honestly, but also is curious about
the contents of stored data. The CSP should not be
accessible to the plaintext. In particular, as claimed in
[32], we also hold the same assumption that the CSP
would not store all the history version of the gathered
package and remainder package.! Our scheme pro-
vides strong economic incentives for the CSP to store
only the newest gathered and remainder packages: A
misbehaving CSP storing all the history version of the
gathered package and remainder package would
have to multiply its storage cost.

4.2 Threat Model

We assume a rational adversary model that an adversary
wants to access the original message by minimizing the
local storage effort. Otherwise, if the stored data is larger
than the original plaintext, it is better to store the original
plaintext. The attacker capability is described as following.
First, it can compromise the CSP and access all the stored

1.If CSP keeps all the history version of the ciphertext and the
revoked cloud user keeps the corresponding key. Once the CSP and
revoked cloud user collude, the revoked cloud user always can decrypt
the ciphertext in almost all of the re-encryption schemes.

chunks. Second, it can collude with a subset of unautho-
rized or revoked cloud users, and attempt to access the orig-
inal message that is beyond the access scope of the colluded
users. Furthermore, it can monitor the activities of the cloud
user, identify the MLE keys returned by the key server, and
extract the message owned by the monitored cloud user.

We assume that our threat model under the following
assumptions. First, we assume that the communication
between a cloud user and the key server is encrypted and
authenticated (e.g., using SSL/TLS). Thus, any eavesdrop-
ping activity can be resisted. Second, because our scheme
adopts the oblivious key generation scheme, the key server
cannot infer the fingerprint information and learn the mes-
sage content. Third, we assume that the key server is
trusted. The adversary cannot collude with the key server.
Besides, the key server can rate-limit the query rate of each
cloud user. The on-line brute force attacks from a compro-
mised cloud user can be avoided. Since our scheme per-
forms server-side deduplication, any side channel is not
introduced in our scheme [33].

4.3 Security Goals

The security goals of our scheme include three folds. First,
our scheme ensures integrity, such that when a cloud user
downloads a package from the CSP, the cloud user can ver-
ify whether it has been corrupted. Second, our scheme
ensures confidentiality. The adversary, unauthorized cloud
user and revoked cloud user should not obtain the plaintext.
More precisely, before uploading the data, a cloud user
should be assumed to be unauthorized, although the cloud
user possesses the data. Thus, the cloud user should be pre-
vented from accessing the plaintext of the outsourced data.
After being revoked from the group, the cloud user is also
assumed to be unauthorized. Thus, the revoked cloud user
should also be prevented from accessing the outsourced
data. Finally, our scheme prevents the stub-reserved attack.

5 ScHEME CONSTRUCTION

In this section, we first introduce the main idea of our
scheme. Then, we introduce the Bloom filter-based location
selection method. Finally, we present our scheme in detail.

5.1 Main Idea

The CAONT mechanism has the property that one must
decrypt the entire ciphertext before one can determine even
one message block. If a data owner transforms a message
into the ¢t and C, packages by using CAONT, the data owner
is not required to re-encrypt the entire package but only a
small part of the package C», which saves excessive compu-
tation overhead. However, to protect the data privacy of
data owners’ sensitive data, not only do we need to prevent
the revoked cloud user from accessing the original message,
but also need to prevent the CSP from accessing the original
message. In order to solve the above problems, we propose a
Bloom filter-based location selection method and a secure
data deduplication scheme with efficient re-encryption. For
protecting data privacy, a data owner generates a two-part
gathered package as follows. First, the data owner trims the
last 256-bit from the package C; as part-two of the gathered
package. Second, the data owner uses the Bloom filter-based

Bloom filter-based location

selection method

256 random locations
YyYYVY A

gathered i
package

Fig. 5. Package generation of our scheme.

location selection method to select the random 256 locations
of the package C, (after trimming 256-bit). Then, the data
owner gathers the randomly selected 256-bit as part-one of
the gathered package. The package ¢ and a large part of the
remained package C> make up the remainder package.
Finally, the data owner uses the file key to re-encrypt the
gathered package and generate the gathered package. The
data owner uploads the gathered and remainder packages
to the CSP. The CP-ABE key server encrypts the file key by
using CP-ABE based on the policy of the file, which allows
authorized cloud users to get the file key. Due to the property
of the hash function, a revoked cloud user is hard to predict
the correct locations in the message without a new file key.
In addition, the CSP is hard to get the last 256-bit of the mes-
sage. Then, it is difficult to reconstruct the original message.
Therefore, our scheme is secure against the stub-reserved
attack and prevents the CSP from accessing the plaintext.

In order to achieve data deduplication, our scheme ena-
bles the different cloud users with the same file always gen-
erate the same ciphertext. The process of encryption is
described as follows. A cloud user first uses the MLE algo-
rithm to encrypt the message M and get the ciphertext C.
Then, the cloud user transforms the ciphertext C; into the ¢
and C, packages by using CAONT. Second, the cloud user
concatenates the randomly selected 256-bit of package C»
by using the Bloom filter-based location selection method
and the last 256-bit from the package C5 as gathered pack-
age. The package t and a large part of the remained package
C, are concatenated as the remainder package. Finally, the
cloud user uses the file key” to re-encrypt the gathered pack-
age and generate the gathered’ package. After that, the cloud
user uploads the gathered and remainder packages to the
CSP. In this way, our scheme allows different cloud users
with the same data always to generate the same remainder
and gathered packages. Since the different cloud users out-
source the same remainder and gathered packages to the
CSP, the CSP can remove the duplicate packages and only
keep one copy of them. Thus, our scheme can achieve
ciphertext deduplication.

5.2 Bloom Filter-Based Location Selection Method

As we analyzed in Section 3.2, we need to random choose
location from package Cs to generate the gathered package.
A straightforward solution is to define 256 hash functions for
selecting random locations. In detail, a cloud user inputs the
secret key into 256 hash functions to generate 256 random

2. The different cloud users always can generate the same file key
for the same file in our scheme.

locations. Then, the cloud user sorts those 256 randomly cho-
sen locations in ascending order. Finally, the cloud user gath-
ers all of the bit values corresponding to these locations from
package C5 and concatenates the last 256 bits of C as the
gathered package. This straightforward solution can prevent
the stub-reserved attack. However, it has the following prob-
lems. First, the cloud user needs to store 256 hash values,
which increases the storage cost. Second, the cloud user
needs to sort those 256 randomly chosen locations in ascend-
ing order, which increases the computational cost.

In order to solve the above problems, we propose a Bloom
filter-based location selection method. The main idea of the
Bloom filter-based location selection method is to adopt the
bit array of Bloom filter to record the selected locations, which
can reduce storage and computation overhead. In detail, we
set a bit array of n bits and 256 independent hash functions
defined as follows: h; = H(key, i) : {0,1}" — [1,n],i € [1, 256].
These hash functions map each element to a random number
uniform over {1,...,n}. In the initialization stage, all bits of
the bit array are set to 0. To select 256 random array locations,
a cloud user randomly chooses a key and computes h; =
H(key,i) : {0,1}" — [1,n] from i = 1 to ¢ = 256. Then, all 256
locations of the bit array are set to 1. The location of 1 in the bit
array represents the 256 randomly selected location. Different
from the Bloom filter, if two hash functions generate the same
hash value, the second hash function re-computes a new hash
value for location selection. For example, if h; = h; (i < j),
the cloud user needs to re-computes h; = H(key, h;). It means
that one location of bit array can be set to 1 only once. Finally,
the cloud user can extract the 256-bit values at the correspond-
ing locations of the bit array from C'; and concatenate the last
256-bit of Oy as the gathered package. Compared with the
above scheme, Bloom filter-based location selection method
no longer needs to store 256 hash values but only a bit array
(the length of a bit array is the same as the length of one hash
value), which reduces the storage overhead. In addition, by
using a bit array to record random locations, our location
selection method avoids the time to sort 256 hash values,
which reduces the computational overhead.

5.3 A Concrete Scheme

The workflow of the gathered and remainder packages gen-
eration is shown in Fig. 5. Our data deduplication scheme
involves three operations defined as follows:

Message Upload. If a cloud user wants to upload a file F,
the cloud user first splits /' into a set of chunks {M}. For
each chunk, the cloud user runs the processes as follows
(the procedure of message upload operation is shown in
Fig. 6.):

MLE Key Generation. The cloud user generates the MLE
key based on the verifiable OPRF (oblivious pseudorandom
function). The RSA-OPRF scheme is based on the RSA blind
signature [34]. The detail is described as following:

e The RSA exponent e is fixed and as a public parame-
ter of the scheme. The key server first runs a key gen-
eration algorithm with input e to generate N, d such
that ed = 1 mod ¢(N), where modulus N is the prod-
uct of two distinct primes of roughly equal length.
Then, (N, (N,d)) is output as the public key, secret
key pair.

1.MLE key generation:
e Compute /s, =H(M)
e Compute x =/, -7°mod N|

Key
server

CSp

e Compute y=x"modN |

[Sendx — >
-4 Send y

e Compute z = yr ' mod N
e Generate K,, =H(z)
e Encrypt C, =E(X,,,M)

I
2.CAONT:
e Compute h, =H(C,) and G(h,)=E(h,, P)
e Compute C, =C, @ G(h,) and generate ¢
|

3.File key generation:
e Compute s =H(C

-

Send 7,

-l

>
eFor each /,choose a random number 7,

elnsert the pair of 4. and random number
;.. Into list V'

e Generate K, =H(C|| r}1(~)|
I

I
E

4.Package gathered and remainder generation:

e Trim the last 256 —bit from C, as s,

e Compute /,(K ;) = H(K , [|7) : {0,1}* —>[1,n-256],i €[1,2

o Gather randomly selected 256-bit as s, and s = (s, || 5,)

o Concatenate the package ¢ with the remaining (n-256)-bit
of C, as the remainder package

56]

I
S.Re-encryption of gathered package:
e Use symmetric encryption AES to re-encrypt gathered
package and generate gathered' package
I

Send file recipe, remainder |

1

Fig. 6. The procedure of message upload operation.

A cloud user computes the hash value hy = H(M) of
message M and chooses a random number 7 from
the Zy. Then, the cloud user computes blinded hash
value = hy - °mod N and sends « to the key server
via a secure channel (e.g., SSL/TLS).

After receiving the blinded hash value z, the key
server computes the RSA signature on blinded hash
value y = z?mod N and returns y to the cloud user.
Finally, the cloud user computes z=y-r ! mod N
and checks whether 2 mod N = hy. If 2°mod N = hy,
the cloud user gets the MLE key K); = H(z) and
uses the K, to encrypt M and generate the cipher-
text Cl = E(KM, M)

CAONT. Base on the CAONT mechanism, the cloud user
transforms package C into package ¢ and package C,. The
detail is described as following:

For the package (', a cloud user first computes the
hash value hy = H(C4) as input of pseudo-random
mask G and computes G(hy) = E(hy, P), where E()
denotes a symmetric key encryption algorithm (e.g.,
AES-256) and P denotes a public block with the
same size as the message C).

The cloud user computes Cy = C1 & G(hy).

Finally, the cloud user divides ', into a set of fixed-
sized pieces, each with the same size as hy. Then, the

and gathered' packages

cloud user performs XOR operation of all the pieces
as well as hy to generate the package t. Without get-
ting the entire message C5, the result of self-XOR
cannot be predicted.

File Key Generation. We use C' to denote the ciphertext of
file F. To generate the file key K. of the file F', the work-
flows are described as following;:

A cloud user sends the hash value h¢e =H(C) to
the CSP.2

After receiving the hash value h¢, the CSP first
checks whether the hash value h¢ is in the list V. If
the hash value already exists in the list V, the CSP
returns the random number 7, corresponding to
the hash value h¢. Otherwise, the CSP randomly
chooses a number 7;,, for the unique h¢ and inserts
the pair of hash value i¢ and random number 7y,
into the list V. Then, the CSP sends the random num-
ber r;,, to the cloud user.

After receiving the random number 7y, the cloud
user generates the file key K. = H(C||ry,.)-

Package gathered and remainder Generation. To generate
the 512-bit gathered package s = (s1]|s2), we use the Bloom

3. In the CSP setup phase, the CSP sets up a random number list V'
which is used to store the pair of the hash value and random number.

filter-based location selection method in our scheme. The
detail is described as following:

The cloud user trims the last 256-bit from Cj as s,.
The cloud user sets a bit array of n — 256 bits and
256 independent hash functions defined as follows:
hi(Kfie) = H(K fiel]i) : {0,1} — [1,n — 256]. These
hash functions map each element to a random num-
ber uniform over {1,...,n —256}. In the initializa-
tion stage, all bits of the bit array are set to 0.

e To select 256 random bit array locations, the cloud
user uses the file key Ky, to compute h;(K) =
H(Kfielli) : {0,1}" — [1,n — 256]. Then, all 256 loca-
tions of the bit array are set to 1.*

e The cloud user extracts the 256-bit values at the cor-
responding locations of the bit array from C; as s;
and generates the gathered package s = (s1||s2).

e Finally, the cloud user concatenates the package ¢
with the remaining (n — 512)-bit of the ciphertext C
as the remainder package.

Re-Encryption of gathered Package. The cloud user uses the
file key K. to re-encrypt the gathered package and gener-
ate the gathered package by using symmetric encryption
such as AES-256. The key server encrypts the file key K
by using CP-ABE based on the policy of the file.

As described before, we use the unique identity of the
cloud users as the attribute and issue each cloud user a CP-
ABE private key, which is related to the identity. The policy
of each file as an access tree and the identities of all autho-
rized cloud users are connected with the OR gate. This
makes only the authorized cloud user can get the file key.
Finally, the remainder and gathered packages are uploaded
to the CSP. The file recipe, which includes the file name, file
size and the number of chunks, is also uploaded to the CSP
by the cloud user. The file recipes and encrypted file key are
used for the other cloud users to recover the original
message.

After receiving these packages, the CSP performs dedu-
plication on the remainder and gathered packages. Once
there are some new cloud users to upload the remainder
and gathered packages, the CSP makes a comparison for
the stored remainder and gathered” packages and the
new remainder and new gathered packages. If the same
remainder and gathered packages are found, it means the
same remainder and gathered packages have been stored in
the CSP. Then, the CSP no longer stores the new packages
for saving storage space. The CSP also recalls the key server
to add the new cloud users’ identity as the attribute in the
CP-ABE access tree.

Message Download. If a cloud user wants to download the
file F, the cloud user first downloads the file recipe,
encrypted file key, and metadata from the CSP. Then, the
cloud user downloads all remainder and gathered packages
from the CSP with the help of file receipt and performs the
following steps:

Re-Decryption of gathered Package. To re-decrypt the
gathered' package, the cloud user first obtains the file key
K i from the CP-ABE access tree. Then, the cloud user uses

4. For a file F, the Bloom filter-based location selection method only
needs to be run once.

K to decrypt the gathered package and generate the
gathered package s = (s1]s2).

Package Cy and t Generation. To recover the package Cs
and ¢, the following processes need to be performed:

e The cloud user first uses the remainder package to
concatenate the s, of the gathered package.

e The cloud user sets a bit array of n — 256 bits (all
bits of the bit array are set to 0) and computes
hi(K fie) = H(K pire||7) = {0,1} — [1,n — 256] (1 <i <
256). Then, all 256 locations of the bit array are set to 1.

e The cloud user inserts the ith bit in s; into the loca-
tion of ith 1 of the bit array in the remainder package
from i =1toi = 256.

e Finally, the cloud user generates the package ¢ by
trimming the first |¢|-bit of the remainder package.
The remaining part of the remainder package is pre-
cisely the ciphertext Cs.

The reversion of CAONT. To reconstruct the package C,

the processes are described as following;:

e The cloud user first divides C5 into a set of fixed-
sized pieces, each with the same size as t.

e The cloud user performs XOR operation of all the
pieces as well as ¢ to generate h; and compute C; =
Cy & G(hy).

Finally, the cloud user checks whether h(C)) = hy. If
h(Cy) = hs, the cloud user uses the MLE key K to decrypt
C) and get the plaintext M = D(K),C1). The cloud user
integrates all the set of chunks {M} into file F', with the help
of file receipt.

Dynamic Access Control. If the file key is compromised or
expired, the cloud user should re-encrypt the stored file for
protecting the confidentiality of the file. To re-encrypt the
file, the cloud user (on behalf of the owner of file F) first
downloads the file recipe, encrypted file key, and metadata
from the CSP. The cloud user also downloads all the
remainder and gathered packages from the CSP with the
help of file receipt. Then, the cloud user performs the fol-
lowing steps:

Re-Decryption of gathered Package. To re-decrypt the
gathered package, the cloud user first obtains the file key
K from the CP-ABE access tree. Then, the data owner
uses K ;. to decrypt the gathered package and generate the
gathered package s = (s1]s2).

Package Cs and t Generation. To recover the package Cs
and ¢, the following processes need to be performed:

e To recover the package (5, the cloud user first uses
the remainder package to concatenate the s, of the
gathered package.

e The cloud user sets a bit array of n — 256 bits (all
bits of the bit array are set to 0) and computes
B i) = HOgaclli) < 10,1} — [1n - 256] (1< <
256). Then, all 256 locations of the bit array are set to 1.

e The cloud user inserts the ith bit in s; into the loca-
tion of ith 1 of the bit array in the remainder package
from i =1toi = 256.

e Finally, the cloud user generates the package ¢ by
trimming the first [¢|-bit of the remainder package.
The remaining part of the remainder package is pre-
cisely the ciphertext Cs.

File Key Updating. To generate the new file key K7, for
the file £, the cloud user performs the following steps:

e The cloud user first sends the hash value h¢ and ran-
dom number ry,, to the CSP.

e After receiving the hash value h¢ and random num-
ber 7., the CSP chooses a new random number r’hc
for the unique h¢. Then the CSP sends the new ran-
dom number 7}, , to the cloud user.

e Afterreceiving the random number), , the cloud user

generates the new file key K';,, = H(C||r},.,).
New-gathered and New-remainder Packages Generation. To
generate the 512-bit new-gathered package s’ = (s}|s}) and
new-remainder package, we use the Bloom filter-based
location selection method in our scheme. The detail is
described as following;:

e To generate the 512-bit new-gathered package ¢/, the
cloud user first trims the last 256-bit from C} as s.

e The cloud user sets a bit array of n — 256 bits and all
bits of the bit array are set to 0.

e The cloud user uses the new file key K’ and the
Bloom filter-based location selection method to gen-
erate the random locations of C; by computing
hi(K'y.) = H(E . [1) - {0, 1} — [1,n — 256], i € [1,256].
Then, all 256 locations of the bit array are set to 1.

e Finally, the cloud user extracts the 256-bit values at
the corresponding locations of the bit array from Cs
as) and generates the new-gathered package s’ =

(s11|$5). The remaining package ¢ and the large part
of the ciphertext C5 are also gathered as the new-
remainder package.

Re-Encryption of New-gathered Package. The cloud user
uses the new file key K7, to re-encrypt the new-gathered
package and generate the new-gathered package by using
symmetric encryption such as AES-256. The new file key is
encrypted based on the new policy of the file and is distrib-
uted by using the CP-ABE mechanism.

Finally, the cloud user uploads the new-remainder and
new-gathered' packages to the CSP.

Remark 2. It should be emphasized that only when the file
key is expired or cloud users are revoked, the data owner
needs to re-encrypt these packages. However, if some
remainder and gathered packages are already stored in
the CSP and a new cloud user wants to upload the same
packages, these packages do not require re-encryption.
The CP-ABE key server only needs to add the identity of
the new cloud user into the group. In addition, our
scheme can implement lazy revocation. In lazy revoca-
tion, re-encryption of stored packages are deferred for a
period of time (one day or one week). The data owner can
avoid staying online.

6 ANALYSIS OF OUR PROPOSED SCHEME

6.1 Security Analysis

In this section, we analyze the security of our scheme involv-
ing three parts: integrity, confidentiality and resistance to
stub-reserved attack. We assume that the underlying basic
tools are secure, which include the message-locked encryption

scheme, symmetric encryption scheme, convergent all-or-
nothing transform scheme, Bloom filter scheme, and CP-ABE
scheme. The security of our scheme is ensured by these
assumptions.

Theorem 6.1. The proposed scheme guarantees data integrity.

Proof. In the cloud environment, an attacker will tamper or
attack the sensitive outsourced data. The data integrity of
cloud users’ sensitive data may be corrupted. In our
scheme, the data integrity can be checked by computing
the hash of package C; and checking whether it equals hs.

After downloading the gathered and remainder pack-
ages from the CSP, the cloud user first re-decrypts the
gathered package and generates the gathered package.
Then, the cloud user recovers the package Cy and ¢ by
using the Bloom filter-based location selection method.
Second, the cloud user divides C5 into a set of fixed-sized
pieces, each with the same size as ¢. Then, the cloud user
performs XOR operation of all the pieces as well as ¢ to
generate hy and compute C; = Cy ¢ G(hs). Finally, the
cloud user checks whether H(C}) = hy. Because the cloud
user generates the package h by computing self-XOR
operation, it is possible that the self-XOR operation
returns a correct h even if the package has been tam-
pered. Specifically, a smart adversary can divide C, into
fixed-size pieces and flips the same bit location for an
even number of the pieces. However, a corrupted pack-
age will be reverted to an incorrect C] and H(C}) # h.
Then, the cloud user can detect that message integrity
was destroyed. Therefore, our scheme guarantees data
integrity. O

Theorem 6.2. The proposed scheme guarantees data confidentiality.

Proof. In our scheme, the procedure of data re-encryption is
as follows. A cloud user first uses the DupLESS scheme to
encrypt the message M and generate the ciphertext C;.
Then, the cloud user uses CAONT scheme to transform
ciphertext C; into the gathered and remainder packages.
Finally, the cloud user uses symmetric encryption (such
as AES-256) to re-encrypt the gathered package and get
the gathered package. To prove the data confidentiality,
we need to prove the confidentiality of data in the proce-
dure of gathered package re-encryption, CAONT trans-
formation and MLE encryption.

First, we analyze the confidentiality of gathered pack-
age re-encryption. In our scheme, the cloud user uses
symmetric encryption (such as AES-256) to re-encrypt
the gathered package. The key is protected and distrib-
uted by using CP-ABE. Since the CP-ABE access tree
does not include the identities of adversary, unautho-
rized cloud users and revoked cloud users, the adversary
cannot access the key even if he colludes with the unau-
thorized and revoked cloud users. We assume that AES
and CP-ABE are secure, the confidentiality of gathered
package can be guaranteed.

Second, we need to prove that if the adversary cannot
get the gathered package, the probability that the adver-
sary can recover the () package is negligible. As
described in [28], CAONT inherits the security properties
of the original AONT [29]. According to the theorem 1
in [29]: suppose [< ky and ky > 14. Suppose that there

TABLE 1
Comparison of Data Deduplication Schemes

Scheme Encrypted data deduplication Data integrity = User joining User revocation = Lightweight re-encryption
CE [17] Yes No No No No
Hur et al. [21] Yes Yes Yes Yes No
REED [25] Yes Yes Yes No Yes
Our scheme Yes Yes Yes Yes Yes

exists an adversary A that (7T)qq,qu.c) — distinguishes
OAEP® with I missing bits, where ¢q < 2k—1 " Then
e < 8qg loé‘fkofl. We can conclude that the adversary’s

advantage in (7, q¢, qu, €) — distinguishes CAONT-OAEP

1035356 27256 (where | = 256 and

ko = 256 in our scheme). The probability of an adversary to
recover the package C; without the gathered package is
less than or equal to 22%qg. Thus, if the adversary cannot
get the gathered package, the probability that the adversary
can recover package C is negligible.

According to the above proof, since the adversary can-
not compromise the file key, all gathered and remainder
packages cannot be reverted. Thus, our scheme achieves
the same level of confidentiality as DupLESS [35]. In
detail, if the key server is secure, then the ciphertexts
appear to be derived from a random key-space. Thus, our
scheme guarantees confidentiality even for the predict-
able data. Even if the key server is compromised, the con-
fidentiality of unpredictable data is still preserved.]

is less than or equal to 8¢¢

Theorem 6.3. The proposed scheme prevents the stub-reserved
attack.

Proof. Once a cloud user is revoked from the group, the data
owner re-encrypts the packages as follows: First, the data
owner re-decrypts the gathered package and gets the
gathered package. Then, the data owner uses the gathered
and trimmed packages to recover the package ¢t and Cb.
Second, the data owner chooses a new file key K;, and
uses the new file key to generate the random 256 locations
of (5. Third, the data owner gathers the newly selected
256-bit and the last 256-bit of C, to generate a new-
gathered package, the package ¢ and the remained a large
part of C, are gathered as a new-remainder package.
Finally, the data owner re-encrypts the new-gathered
package and generates a new-gathered package. Because
the new-gathered package is selected by randomly choos-
ing from C; package, the revoked cloud user cannot pre-
dict which part of the package will be re-encrypted. The
revoked cloud user needs to preserve all gathered and
remainder packages to recover the plaintext. In this case, it
is better to keep the plaintext. Thus, our scheme prevents
the stub-reserved attack.]

6.2 Comparison

Table 1 presents the comparison among four data dedupli-
cation schemes, which consist of the convergent encryption
(CE) scheme [17], secure data deduplication scheme with

5. The random oracle O could be used to simulate random oracles G
and H, with the condition that at most ¢ queries are made to random
oracle G and at most ¢ queries are made to random oracle H.

dynamic ownership management [21], REED scheme [25]
and our scheme, in terms of encrypted data deduplication,
data integrity, user joining, user revocation, and lightweight
re-encryption.

All the data deduplication schemes support data dedu-
plication on ciphertext, which can prevent unauthorized
cloud users and the CSP from accessing the plaintext and
guarantee data privacy. CE scheme cannot guarantee data
integrity. The cloud users’ data is vulnerable to the poison
attack. However, by employing an additional mechanism,
other data deduplication schemes enable the cloud users to
check the integrity of their sensitive data.

CE scheme neglects the problem of dynamic ownership
management and cannot support user joining and user rev-
ocation. In Hur et al.’’s scheme, for the universe of cloud
users who own the same data, the cloud server sets an own-
ership group. The cloud server can use the binary KEK
(key-encrypting key) tree for distributing the group key.
Therefore, Hur et al.’s scheme can support user joining and
user revocation. By using the CAONT mechanism, the
REED scheme can achieve lightweight re-encryption. How-
ever, the REED scheme is vulnerable to the stub-reserved
attack and cannot support user revocation.

Based on the CAONT and Bloom filter-based location
selection method, we propose a new data deduplication
with efficient re-encryption. Once a cloud user is revoked or
file key is compromised, the data owner re-encrypts sensi-
tive data by using the Bloom filter-based location selection
method and CAONT mechanism. Due to the property of
one-way hash function, our scheme can resist the stub-
reserved attack and guarantee the privacy of cloud users’
data. Besides, instead of re-encrypting the entire package,
data owners are only required to re-encrypt a small part of
it through the CAONT. Thus, our scheme can support user
joining, user revocation, and lightweight re-encryption.

Table 2 presents the computational cost of re-encryption
among the traditional schemes [21], [36] and our scheme.
Enc and Dec denote the cost of encryption and decryption,
respectively. Gen and Rec denote the cost of gathered pack-
age generation and recovering, respectively.

7 PERFORMANCE EVALUATION

In this section, we provide a thorough experimental evalua-
tion of our scheme. We implement our scheme in the Java
programming language by employing java.security and
javax.crypto packages. The testing environment is Intel(R)
Xeon(R) E5-1620 v3 3.50 GHz CPU 16.0 GB RAM, Ubuntu
v14.04. We use both of the synthetic datasets and real-world
public dataset collected by the File systems and Storage Lab
(FSL) at Stony Brook University [37]. The FSLhomes dataset
contains snapshots of students’ home directories, where
files consist of source code, binaries and office documents.

TABLE 2
Computational Cost of Re-Encryption

Chunk Size Traditional re-encryption Our Scheme
Re-encryption Re-decryption Re-encryption Re-decryption
4KB 100%Enc 100%Dec Gen + 1.56%Enc Rec +1.56%Dec
8 KB 100%Enc 100%Dec Gen + 0.78%Enc Rec + 0.78%Dec
16 KB 100%Enc 100%Dec Gen + 0.39%FEnc Rec + 0.39%Dec

We focus on the FSLhomes dataset in 2014, which comprises
174 daily snapshots from January 18 to November 26, 2014.
To verify the validity of the stub-reserved attack and
compare the performance of our scheme with the existing
deduplication schemes [21], [25], [26], we mainly use stub-
reserved size, plaintext recovering time, MLE key genera-
tion time, re-encryption and re-decryption time as the
evaluation metrics. Stub-reserved size is the size of the data
that the revoked cloud user needs to preserve for recovering
the plaintext message when executing the stub-reserved
attack. Plaintext recovering time consists of re-decryption,
CAONT transformation and MLE decryption time. MLE
key generation time is the time required by the cloud user
and key server to generate the MLE key. Re-encryption and
re-decryption time are the time required for cloud users to
re-encrypt and re-decrypt data. We observe the impacts of
varying chunk size and data size on the scheme perfor-
mance. According to the paper [25], [26], [38], we set the
chunk size to 4 KB, 8 KB and 16 KB (larger sizes have perfor-
mance that degrades as expected due to inputs not fitting
into the CPU cache). The data size ranges from 1 MB to
10 MB [21]. Our results are averaged over 20 runs.

Stub-Reserved Attack Performance. We first measure the
performance of stub-reserved attack proposed in this paper.
In stub-reserved attack, the revoked cloud user can recover
the original plaintext by reserving a small part of the pack-
age. We test the size of reserved stub package for recovering
the original plaintext, the data size ranges from 200 MB
to 1000 MB and the average chunk sizes at 4 KB, 8 KB, and
16 KB [25], [26]. The data size of the stub package that needs
to be reserved is shown in Fig. 7.

As shown in the experimental results, to recover the plain-
text, a revoked cloud user needs to preserve 1.56 percent of
the entire package for 4 KB chunk, 0.78 percent of the entire

18

[4KB chunk
16 | [l 8B chunk
1 16KB chunk

14

12

10

Stub-reserved Size (MB)
o

600
Data Size (MB)

Fig. 7. Stub-reserved size.

package for 8 KB chunk and 0.39 percent of the entire
package for 16 KB chunk. In particular, a revoked cloud user
only needs to preserve 3.90625 MB data for recovering the
size of 1,000 MB data (for chunk sizes at 16 KB). In addition,
we measure the recovering time and the results shown
in Fig. 8.

MLE Key Generation Performance. We measure the perfor-
mance in MLE key generation. To reduce the round-trip
overhead of small requests, we batch multiple MLE key
generation requests. We test the MLE key generation time
of REED and our scheme from 1 MB to 10 MB. According to
the paper [25], [26], we set the batch size to 256 and chunk
size to 8 KB. The cost computation time for MLE key genera-
tion is shown in Fig. 9. The results show that the MLE key
generation time in our scheme is almost the same as the
REED scheme.

Location Generation Performance. In this paper, we pro-
posed the Bloom filter-based location selection method to
choose random locations. Although we choose 256-bit ran-
dom locations as s; in our scheme. To achieve more effi-
ciency or security, a cloud user also can select 128-bit or
512-bit random locations as s;. We measure the location
selection time of different bit lengths and the result is shown
in Fig. 10.

Gathered Package Generation Performance. We measure the
performance of gathered package generation. The gathered
package generation time consists of location generation, bits
extraction and concatenation time. According to the paper
[25], [26], we set the chunk size to 8 KB and 16 KB. The cost
computation time for gathered package generation is shown
in Fig. 11. The results show that the overhead of gathered
package generation for 16 KB chunk is less than 8 KB chunk.
This is because the large size of chunk requires less process-
ing overhead.

8

|[Em 4KB chunk
7 [ICZ2] 8KB chunk
|| I 16KB chunk

6

Time cost (s)

200 600
Data Size (MB)

Fig. 8. Recovering time.

800 4

600

—a— REED
—— Our scheme

400

y

/

Time Cost (ms)

200

e

/

e

4

Data Size (MB)

Fig. 9. MLE key generation time.

0.3

N

Time Cost (ms)

{700 128bit
|| 256bit
B 512bit

0.28

6 8

4

5 6

Data Size (MB)

Fig. 10. Location generation time.

4.0
{1 | —m— 8KB chunk
354 | —@— 16KB chunk .
3.0 A
||/
» 254
z*] e
B 204 /
(&) i n >
.qé 154 l/ /0/
[]
10 -/ ./.
1 //./
0.5 = ®
o/
T T T

2

4

-
[
=}

—¥— gathered package re-encryption
160 | —e— gathered package re-decryption
140 /}/
120
y
12}
2 100 A/
@
S //'/
E j -
F 60 /
40
20 2
0 2 4 6
Data Size (MB)
Fig. 12. gathered package re-encryption and re-decryption time.
100 5
J |—*— Traditional re-encryption|
4 |—*— Our scheme
1|——REED
10 3
s] /Q/‘%’.——.—_‘
%]
4]
3]
() -
E '3
[
0.01 5
1E-3 T T T T
2 4 6 8 10
Data Size (MB)
Fig. 13. Computation time for re-encryption.
100 5
1 |—*— Traditional re-decryption
1 |—*— Our scheme
1|—~— REED
10 5
B
o 4
o
o 014
IS 3
£
0.01
1E-3 T T T T T T
2 4 6 8 10

Data Size (MB)

Fig. 11. gathered package generation time.

For protecting the data confidentiality, once the file key is
compromised or expired, a cloud user needs to re-encrypt
the gathered package. We measure the gathered package re-
encryption and re-decryption time, in which we set the
chunk size to 8 KB. The results are shown in Fig. 12.

Re-Encryption and Re-Decryption Performance. In tradi-
tional re-encryption scheme [21], [36], a cloud user needs to
re-encrypt the entire file, which costs abundant computing

Data Size (MB)

Fig. 14. Computation time for re-decryption.

resources. To achieve efficient re-encryption, we propose a
secure and efficient re-encryption method for data dedupli-
cation based on the CAONT and Bloom filter-based location
selection method. We measure the re-encryption and re-
decryption performance of our scheme and the existing
schemes [21], [25], [26]. We set the chunk size to 8 KB and
the data size from 1 MB to 10 MB. The results are depicted
in Figs. 13 and 14. Although our scheme is slower than the
REED scheme, our scheme can prevent the stub-reserved

[Upload
[Download

1.024k

Time Cost (ms)
@
&8

Data Size (MB)

Fig. 15. Computation time for upload and download.

attack and still more efficient than the traditional re-
encryption scheme.

Upload and Download Performance. We measure the upload
and download performance of our scheme. To test the compu-
tation time of upload and download, we choose the message
size from 1 MB to 10 MB and set the chunk size to 8 KB. The
upload time includes MLE key generation, message-locked
encryption, CAONT, package generation and re-encryption
time. The download time includes package re-decryption,
package recovering, CAONT and message-locked decryption
time. The evaluation result is shown in Fig. 15. The result
indicates that the upload time is mainly bounded by the MLE
key generation.

In summary, our scheme has the same MLE key genera-
tion time as the REED scheme [25], [26]. The MLE key gen-
eration speed of our scheme can reach 12 MB/s. Compared
with the traditional re-encryption scheme [21], [36], our
scheme only costs 63.2 and 41.5 percent of the computing
time in data re-encryption and re-decryption, respectively.
The re-encryption speed and re-decryption speed of our
scheme can reach 1.71 MB/ms and 2.26 MB/ms (the tradi-
tional re-encryption speed and re-decryption speed are
1.08 MB/ms and 0.94 MB/ms). Thus, our data deduplica-
tion scheme is efficient in re-encryption and re-decryption.

8 RELATED WORK

Numerous researchers have devoted considerable attention
to the problem of how to support data deduplication under
ciphertext. CE scheme is the first clever solution for data
deduplication over encrypted data [17]. The main idea is as
follows: a user encrypts and decrypts some sensitive data
with a convergent key, which is derived by hashing these
data. Since the convergent key and data are deterministic,
the identical data is deterministically encrypted to the same
ciphertext, no matter who encrypts them. Thus, this allows
cloud service providers to perform deduplication over
ciphertexts. However, the CE scheme is inherently vulnera-
ble to the brute-force dictionary attacks. In order to solve this
problem, Bellare et al. [35] proposed the DupLESS scheme,
in which a user obtains the key from a dedicated key-server
via an oblivious PRF (OPRF) protocol. The OPRF mechanism
is used to “blind” the fingerprint. Based on the RSA mecha-
nism, the key server is configured with a system-wide pub-
lic/private key pair. This enables the key server to return the
MLE key without knowing the original fingerprint. The rate-
limits are used in the key generation requests and can be

efficient against the brute-force attacks. If the key-server is
secure, the encryption key appears to be derived from a ran-
dom space. Shin et al. [39] extended the predicate encryption
scheme in data deduplication. However, this scheme only
supports the requirement of single-user data deduplication.
By introducing the additional tag checking mechanism, Bel-
lare et al. proposed the randomized convergent encryption
(RCE) scheme [38]. After decrypting the ciphertext, the user
uses the plaintext to generate the tag and compare it with the
corresponding tag. If tags are consistency, the user accepts
the ciphertext; else, rejects it. Thus, the RCE scheme guaran-
tees the integrity of users’ data. However, these schemes suf-
fer from security flaws with respect to user revocation. If the
revoked users keep the convergent key, they can access the
plaintext without permission. Thus, the confidentiality of
users’ sensitive data cannot be guaranteed.

To deal with the problem of efficient and reliable key
management, Li et al. [40] proposed a secure data deduplica-
tion scheme by employing a security Ramp secret sharing
scheme [41]. To realize dynamic updates in the deduplica-
tion, Wen et al. [36] proposed a session-key-based conver-
gent key management scheme and convergent key sharing
scheme. To deal with the problem of dynamic ownership
changes of outsourced data, Hur et al. [21] used the group
key to re-encrypt the ciphertext, which allows only the
authorized cloud user to access the shared data. Chen et al.
[42] proposed a block-level message-locked encryption (BL-
MLE) scheme, which achieves file-level and block-level
deduplication. To flexibly support data access control and
revocation, Yan et al. [43] proposed a scheme to deduplicate
encrypted data stored in the cloud. Based on static or
dynamic decision trees, Jiang et al. introduced a new primi-
tive called R-MLE2 and proposed a cloud data deduplication
with randomized tag [23]. Based on the PAKE protocol, Liu
et al. [44] proposed a secure data deduplication scheme,
which supports the client-side encryption without an addi-
tional independent server. To address the problem of autho-
rized data deduplication, Li et al. proposed several data
deduplication schemes supporting authorized duplicate
checking in a hybrid cloud architecture [45]. However, these
schemes mainly use the method of re-encryption to solve the
problem of user revocation. The traditional re-encryption
scheme inevitably brings abundant computation overhead.

Recently, efficient re-encryption techniques are attracting
widespread attention in the scientific community. To
achieve efficient re-encryption and lightweight rekeying in
data deduplication, Li et al. [25] proposed a rekeying-aware
encrypted deduplication storage system. In this scheme, a
data owner does not need to re-encrypt the entire package
but only a small part of it, saving excessive computation
overhead. In addition, the authors extended REED with
ciphertext-policy attribute-based encryption [30] to control
the access privileges to different data. However, a security
weakness is found in the REED scheme. That is, the REED
scheme is vulnerable to the stub-reserved attack. The
detailed analysis of this scheme is given in Section 3.

9 CONCLUSION

In this paper, we propose a Bloom filter-based location selec-
tion method and a secure data deduplication scheme with

efficient re-encryption. By using the symmetric encryption
and the new location selection method, the revoked cloud
user cannot obtain the sensitive data from the data owner. In
addition, instead of re-encrypting the entire package, data
owners are only required to re-encrypt a small part of it
through the CAONT, which saves excessive computation
overhead. We also prove that our scheme can achieve the
desired security goals and provide detailed simulation tests.
The experimental results show that our scheme is efficient in
re-encryption.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous associate
editor and referees for their invaluable suggestions. This
work is supported by the National Natural Science Founda-
tion of China (No. 61960206014), China 111 Project (No.
B16037) and National Cryptography Development Fund
(No. MM]J20180110).

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

X. Chen, J. Li,]. Weng,]. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” IEEE Trans. Com-
put., vol. 65, no. 10, pp. 3184-3195, Oct. 2016.

M. Gerla, J. Weng, and G. Pau, “Pics-on-wheels: Photo surveil-
lance in the vehicular cloud,” in Proc. Int. Conf. Comput. Netw.
Commun., 2013, pp. 1123-1127.

X. Chen, J. Li, J]. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 9, pp. 2386-2396, Sep. 2014.

H. Yuan, X. Chen, T. Jiang, X. Zhang, Z. Yan, and Y. Xiang,
“DedupDUM: Secure and scalable data deduplication with
dynamic user management,” Inf. Sci., vol. 456, pp. 159-173, 2018.
H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, “Bitcoin-based
fair payments for outsourcing computations of fog devices,”
Future Gener. Comput. Syst., vol. 78, pp. 850-858, 2018.

IDC, “The digital universe of opportunities: Rich data and the
increasing value of the Internet of Things,” 2014. [Online]. Available:
https://www.emc.com/leadership/digital-universe/2014iview/
index.htm

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single
instance storage in windows 2000,” in Proc. Conf. Usenix Windows
Syst. Symp., 2000, pp. 2-2.

Dropbox, 2007. [Online]. Available: http://www.dropbox.com
GoogleDrive, 2012. [Online]. Available: http://drive.google.com
Memopal, 2018. [Online]. Available: http:/ /www.memopal.com
Netapp, “Netapp deduplication helps duke institute for genome
sciences and policy reduce storage requirements for genomic
information by 83 percent,” 2008. [Online]. Available: http://
www.netapp.com

M. Dutch, “Understanding data deduplication ratios,” SNIA Data
Manage. Forum, pp. 1-13, June 2008. [Online]. Available: http://
www.snia.org

T. Jiang, X. Chen, J. Li, D. S. Wong, J. Ma, and J. K. Liu, “TIMER:
Secure and reliable cloud storage against data re-outsourcing,” in
Proc. 10th Int. Conf. Inf. Security Practice Experience, 2014, pp. 346-358.
X. Chen, B. Lee, and K. Kim, “Receipt-free electronic auction
schemes using homomorphic encryption,” in Proc. 6th Int. Conf.
Inf. Security Cryptology, 2003, pp. 259-273.

J. Wang, X. Chen, J. Li, K. Kluczniak, and M. Kutylowski, “TrDup:
Enhancing secure data deduplication with user traceability in cloud
computing,” Int.]. Web Grid Services, vol. 13, no. 3, pp. 270-289, 2017.
X. Zhang, X. Chen,]J. Wang, Z. Zhan, and]. Li, “Verifiable privacy-
preserving single-layer perceptron training scheme in cloud
computing,” Soft Comput., vol. 22, no. 23, pp. 7719-7732, 2018.

J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed
file system,” in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002,
pp. 617-624.

L. D. Stein, “The case for cloud computing in genome
informatics,” Genome Biol., vol. 11, no. 5, pp. 207-207, 2010.

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

GoogleGenomics, 2018. [Online]. Available: https:/ /cloud.google.
com/genomics/

Amazon, 2018. [Online]. Available: https:/ /aws.amazon.com/

J. Hur, D. Koo, Y. Shin, and K. Kang, “Secure data deduplication
with dynamic ownership management in cloud storage,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 11, pp. 3113-3125, Nov. 2016.
J. Li et al, “Secure distributed deduplication systems with
improved reliability,” IEEE Trans. Comput., vol. 64, no. 12,
pp- 3569-3579, Dec. 2015.

T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure
and efficient cloud data deduplication with randomized tag,”
IEEE Trans. Inf. Forensics Security, vol. 12, no. 3, pp. 532-543,
Mar. 2017.

W. C. G.1II, A. Shull, S. Myers, and A. J. Lee, “On the practicality
of cryptographically enforcing dynamic access control policies in
the cloud,” in Proc. IEEE Symp. Security Privacy, 2016, pp. 819-838.
J.Li, C. Qin, P. P. C. Lee, and J. Li, “Rekeying for encrypted dedu-
plication storage,” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Depend.
Syst. Netw., 2016, pp. 618-629.

C. Qin, J. Li, and P. P. C. Lee, “The design and implementation of
a rekeying-aware encrypted deduplication storage system,” ACM
Trans. Storage, vol. 13, no. 1, pp. 9:1-9:30, 2017.

R. L. Rivest, “All-or-nothing encryption and the package trans-
form,” in Proc. 4th Int. Workshop Fast Softw. Encryption, 1997,
pp- 210-218.

M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,” in Proc.
USENIX Annu. Tech. Conf., 2015, pp. 111-124.

V. Boyko, “On the security properties of OAEP as an all-or-nothing
transform,” in Proc. Annu. Int. Cryptology Conf., 1999, pp. 503-518.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attri-
bute-based encryption,” in Proc. IEEE Symp. Security Privacy, 2007,
pp- 321-334.

B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422426, 1970.

M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass schemes: How to prove that cloud
files are encrypted,” in Proc. ACM Conf. Comput. Commun. Security,
2012, pp. 265-280.

D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: Deduplication in cloud storage,” IEEE Security Pri-
vacy, vol. 8, no. 6, pp. 40-47, Nov./Dec. 2010.

D. Chaum, “Blind signatures for untraceable payments,” in Proc.
Advances Cryptology, 1982, pp. 199-203.

M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-
aided encryption for deduplicated storage,” in Proc. 22nd USENIX
Conf. Security, 2013, pp. 179-194.

M. Wen, K. Ota, H. L4, J. Lei, C. Gu, and Z. Su, “Secure data dedu-
plication with reliable key management for dynamic updates in
CPSS,” IEEE Trans. Comput. Social Syst., vol. 2, no. 4, pp. 137-147,
Dec. 2015.

FSL traces and snapshots public archive. 2017. [Online]. Available:
http:/ /tracer filesystems.org/ traces /fslhomes /2014 /

B. Mihir, K. Sriram, and R. Thomas, “Message-locked encryption
and secure deduplication,” in Proc. 32nd Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2013, vol. 28, pp. 296-312.

Y. Shin and K. Kim, “Equality predicate encryption for secure
data deduplication,” in Proc. Conf. Inf. Security Cryptology, 2012,
pp- 64-70.

J.Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou, “Secure deduplica-
tion with efficient and reliable convergent key management,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615-1625, Jun. 2014.
G. R. Blakley and C. Meadows, “Security of ramp schemes,” in
Proc. Workshop Theory Appl. Cryptographic Techn., 1985, vol. 196,
pp- 242-268.

R. Chen, Y. Mu, G. Yang, and F. Guo, “BL-MLE: Block-level
message-locked encryption for secure large file deduplication,”
IEEE Trans. Inf. Forensics Security, vol. 10, no. 12, pp. 2643-2652,
Dec. 2015.

Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication
on encrypted big data in cloud,” IEEE Trans. Big Data, vol. 2, no. 2,
pp- 138-150, Jun. 2016.

J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted
data without additional independent servers,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Security, 2015, pp. 874-885.

J.Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou, “A hybrid cloud
approach for secure authorized deduplication,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 5, pp. 1206-1216, May 2015.

https://www.emc.com/leadership/digital-universe/2014iview/index.htm
https://www.emc.com/leadership/digital-universe/2014iview/index.htm
http://www.dropbox.com
http://drive.google.com
http://www.memopal.com
http://www.netapp.com
http://www.netapp.com
http://www.snia.org
http://www.snia.org
https://cloud.google.com/genomics/
https://cloud.google.com/genomics/
https://aws.amazon.com/
http://tracer.filesystems.org/traces/fslhomes/2014/

Haoran Yuan received the BS degree in network
engineering, from the Xi’'an University of Posts &
Telecommunications, Shaanxi, China in 2015.
Currently, he is working toward the PhD degree
majoring in cyberspace security from the School
of Cyber Engineering, Xidian University, China.
His research interests include cloud security and
data security, data deduplication, data auditing,
and cloud computing security.

Xiaofeng Chen received the BS and MS degrees
in mathematics from Northwest University, United
States in 1998 and 2000, respectively, and the
PhD degree in cryptography from Xidian Univer-
sity, China in 2003. Currently, he is working at
Xidian University as a professor. His research
interests include applied cryptography and cloud
computing security. He has published more than
200 research papers in international conferences
and journals. His work has been cited more than
7000 times at Google Scholar. He is in the edito-
rial board of the IEEE Transactions on Dependable and Secure Comput-
ing and the Security and Privacy, and the Computing and Informatics
etc. He has served as the program/general chair or program committee
member in more than 30 international conferences. He is a senior mem-
ber of the IEEE.

Jin Li received the BS degree from Southwest
University, Chongging, China in 2002 and MS
degree from Sun Yat-sen University, in 2004,
both in mathematics, respectively, and the PhD
degree in information security from Sun Yat-sen
University, Guangdong, China in 2007. Currently,
he is a professor at Guangzhou University. His
research interests include cloud computing secu-
rity and cryptographic protocols. He has pub-
lished more than 100 papers in international
conferences and journals including IEEE INFO-
COM, the IEEE Transaction on Parallel and Distributed Computation
etc. He has served as the TPC committee for many international
conferences.

Tao Jiang received the BS degree from Shandong
Jianzhu University, China in 2009, the MS degree
from Jiangsu University, Jiangsu, China in 2012,
and the PhD degree from Xidian University, China
in 2016. He is currently a postdoctoral lecturer with
the School of Cyber Engineering in Xidian Univer-
sity. His research interests include applied cryptog-
raphy and cloud computing security.

Jianfeng Wang received the MS degree in mathe-
matics from Xidian University, China, and the PhD
degree in cryptography from Xidian University, in
2016. Currently, he is working at Xidian University.
He visited Swinburne University of Technology,
Australia, from December 2017 to December 2018.
His research interests include applied cryptogra-
phy, cloud security, and searchable encryption.

Robert H. Deng has been a professor with the
School of Information Systems, Singapore Man-
agement University, Singapore since 2004. His
research interests include data security and pri-
vacy, multimedia security, network and system
security. He was an associate editor of the IEEE
Transactions on Information Forensics and
Security from 2009 to 2012. He is currently an
associate editor of the IEEE Transactions on
Dependable and Secure Computing and the
Security and Communication Networks (John

“ k :
7] -~
Wiley). He is the cochair of the Steering Committee of the ACM Sympo-

sium on Information, Computer and Communications Security. He is a
fellow of the IEEE.

	Secure cloud data deduplication with efficient re-encryption
	Citation
	Author

	Secure Cloud Data Deduplication with Efficient Re-Encryption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

