
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2018

Attributed social network embedding Attributed social network embedding

Lizi LIAO
Singapore Management University, lzliao@smu.edu.sg

Xiangnan HE

Hanwang ZHANG

Tat-Seng CHUA

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
LIAO, Lizi; HE, Xiangnan; ZHANG, Hanwang; and CHUA, Tat-Seng. Attributed social network embedding.
(2018). IEEE Transactions on Knowledge and Data Engineering. 30, (12), 2257-2270.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7236

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 1

Attributed Social Network Embedding
Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua

Abstract—Embedding network data into a low-dimensional vector space has shown promising performance for many real-world
applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network
structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles
of friendship networks and textual content of citation networks. These rich attribute information of social actors reveal the homophily
effect, exerting huge impacts on the formation of social networks. In this paper, we explore the rich evidence source of attributes in
social networks to improve network embedding. We propose a generic Social Network Embedding framework (SNE), which learns
representations for social actors (i.e., nodes) by preserving both the structural proximity and attribute proximity. While the structural
proximity captures the global network structure, the attribute proximity accounts for the homophily effect. To justify our proposal, we
conduct extensive experiments on four real-world social networks. Compared to the state-of-the-art network embedding approaches,
SNE can learn more informative representations, achieving substantial gains on the tasks of link prediction and node classification.
Specifically, SNE significantly outperforms node2vec with an 8.2% relative improvement on the link prediction task, and a 12.7% gain
on the node classification task.

Index Terms—Social Network Representation, Homophily, Deep Learning.

F

1 INTRODUCTION

SOCIAL networks are an important class of networks
that span a wide variety of media, ranging from social

websites such as Facebook and Twitter, citation networks of
academic papers, and telephone caller–callee networks — to
name a few. Many applications need to mine useful informa-
tion from social networks. For instance, content providers
need to cluster users into groups for targeted advertising [1],
and recommender systems need to estimate the preference
of a user on items for personalized recommendation [2].
In order to apply general machine learning techniques on
network-structured data, it is essential to learn informative
node representations.

Recently, research interest in representation learning has
spread from natural language to network data [3]. Many
network embedding methods have been proposed [3], [4],
[5], [6], and show promising performance for various ap-
plications. However, existing methods primarily focused
on general class of networks and leveraged the structural
information only. For social networks, we point out that
there almost always exists rich information about social
actors in addition to the link structure. For example, users
on social websites may have profiles like age, gender and
textual comments. We term all such auxiliary information
as attributes, which not only refer to user demographics, but
also include other information such as the affiliated texts
and the possible labels.

Attributes essentially exert huge impacts on the orga-
nization of social networks. Many studies have justified
its importance, ranging from user demographics [7], to

• X. He is the corresponding author. E-mail: xiangnanhe@gmail.com
• L. Liao is with the NUS Graduate School for Integrative Sciences and

Engineering, National University of Singapore, Singapore, 117456.
E-mail: liaolizi.llz@gmail.com

• X. He, H. Zhang and TS. Chua are with National University of Singapore.

Manuscript received May 12, 2017; revised **** ****.

ϮϬϬϵϮϬϬϴϮϬϬϳ͙

(a) class year

DĂũŽƌͲϭϬϳ͙ ͙

(b) major

�ŽƌŵͲϮϭϴ͙ ͙

(c) dormitory

Fig. 1: Attribute homophily largely impacts social net-
work: we group users in each 4018×4018 user matrix based
on a specific attribute. Clear blocks around the diagonal
show the attribute homophily effect.

subjective preference like political orientation and personal
interests [8]. To illustrate this point, we plot the user–user
friendship matrix of a Facebook dataset from three views1.
Each row or column denotes a user, and a colored point
indicates that the corresponding users are friends. Each
subfigure is a re-ordering of users according to a certain
attribute such as “class year’, “major” and “dormitory”. For
example, Figure 1(a) first groups users by the attribute “class
year”, and then sort these resulting groups in chronological
order. As can be seen, there exist clear block structures in
each subfigure, where users of a block are more densely
connected. Each block actually points to users of the same
attribute; for example, the right bottom block of Figure 1(a)
corresponds to users who will graduate in the year of 2009.
This real-world example lends support to the importance
of attribute homophily. By jointly considering the attribute
homophily and the network structure, we believe more
informative node representations can be learned. Moreover,

1. This is the Chapel Hill data constructed by [9], which we will detail
later in Section 5.1.1.

ar
X

iv
:1

70
5.

04
96

9v
1

 [
cs

.S
I]

 1
4

M
ay

 2
01

7

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 2

since we utilize the auxiliary attribute information, the link
sparsity and cold-start problem [10] can largely be allevi-
ated.

In this paper, we present a neural framework named
SNE for learning node representations from social network
data. SNE is a generic machine learner working with real-
valued feature vectors, where each feature denotes the ID
or an attribute of a node. Through this, we can easily incor-
porate any type and number of attributes. Under our SNE
framework, each feature is associated with an embedding,
and the final embedding for a node is aggregated from its
ID embedding (which preserves the structural proximity) and
attribute embedding (which preserves the attribute proxim-
ity). To capture the complex interactions between features,
we adopt a multi-layer neural network to take advantage
of strong representation and generalization ability of deep
learning.

In summary, the contributions of this paper are as fol-
lows.

• We demonstrate the importance of integrating net-
work structure and attributes for learning more in-
formative node representations for social networks.

• We propose a generic framework SNE to perform so-
cial network embedding by preserving the structural
proximity and attribute proximity of social networks.

• We conduct extensive experiments on four datasets
with two tasks of link prediction and node classifica-
tion. Empirical results and case studies demonstrate
the effectiveness and rationality of SNE.

The rest of the paper is organized as follows. We first
discuss the related work in Section 2, followed by providing
some preliminaries in Section 3. We then present the SNE
framework in Section 4. We show experimental results in
Section 5, before concluding the whole paper in Section 6.

2 RELATED WORK

In this section, we briefly summarize studies about attribute
homophily. We then discuss network embedding methods
that are closely related to our work.

2.1 Attribute homophily in Social Networks
Social networks belong to a special class of networks, in
which the formation of social ties involves not only the
self-organizing network process, but also the attribute-based
process [11]. The motivation for considering attribute prox-
imity in the embedding procedure is rooted in the large
impact of attribute homophily, which plays an important
role in attribute-based process. Therefore, we provide a brief
summarization of homophily studies here as a background.
Generally speaking, the “homophily principle”—birds of
a feather flock together—is one of the most striking and
robust empirical regularities of social life [12], [13], [14]. The
hypothesis that people similar to each other tend to become
friends dates back to at least the 70s in the last century. In
social science, there is a general expectation that individuals
develop friendships with others of approximately the same
age [15]. In [16] the authors studied the inter-connectedness
between homogeneous composition of groups and the emer-
gence of homophily. In [17] the authors tried to find the

role of homophily in online dating choices made by users.
They found that online users of the online dating system
seek people like them much more often than chance would
predict, just as in the offline world. In more recent years,
[18] investigated the origins of homophily in a large univer-
sity community, using network data in which interactions,
attributes and affiliations were all recorded over time. Not
surprisingly, it has been concluded that besides structural
proximity, preferences for attribute similarity also provides
an important factor for the social network formation pro-
cedure. Thus, to get more informative representations for
social networks, we should take attributes information into
consideration.

2.2 Network Embedding
Some earlier works such as Local Linear Embedding
(LLE) [19], IsoMAP [20] and Laplacian Eigenmap [21] first
transform data into an affinity graph based on the feature
vectors of nodes (e.g., k-nearest neighbors of nodes) and
then embed the graph by solving the leading eigenvectors
of the affinity matrix.

Recent works focus more on embedding an existing
network into a low-dimensional vector space to facilitate
further analysis and achieve better performance than those
earlier works. In [3] the authors deployed truncated ran-
dom walks on networks to generate node sequences. The
generated node sequences are treated as sentences in lan-
guage models and fed to the Skip-gram model to learn
the embeddings. In [5] the authors modified the way of
generating node sequences by balancing breadth-first sam-
pling and depth-first sampling, and achieved performance
improvements. Instead of performing simulated “walks”
on the networks, [6] proposed clear objective functions to
preserve the first-order proximity and second-order proximity
of nodes while [10] introduced deep models with multiple
layers of non-linear functions to capture the highly non-
linear network structure. However, all these methods only
leverage network structure. In social networks, there exists
large amount of attribute information. Purely structure-
based methods fail to capture such valuable information,
thus may result in less informative embeddings. In addition,
these methods get affected easily when the link sparsity
problem occurs.

Some recent efforts have explored the possibility of in-
tegrating contents to learn better representations [22]. For
example, TADW [23] proposed text-associated DeepWalk [3]
to incorporate text features into the matrix factorization
framework. However, only text attributes can be handled.
Being with the same problem, TriDNR [24] proposed to
separately learn embeddings from the structure-based Deep-
Walk [3] and label-fused Doc2Vec model [25], the embed-
dings learned were linearly combined together in an itera-
tive way. Under such a scheme, the knowledge interaction
between the two separate models only goes through a series
of weighted sum operations and lacks further convergence
constrains. On the contrary, our method models the struc-
ture proximity and attribute proximity in an end-to-end
neural network that does not have such limitations. Also, by
incorporating structure and attribute modeling by an early
fusion, the two parts only need to complement each other,
resulting in sufficient knowledge interactions [26].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 3

Fig. 2: An illustration of social network embedding. The
numbered nodes denote users, and users of the same color
share the referred attribute.

There have also been efforts explored semi-supervised
learning for network embedding. [27] combined an
embedding-based regularizer with a supervised learner to
incorporate label information. Instead of imposing regu-
larization, [28] used embeddings to predict the context
in graph and leveraged label information to build both
transductive and inductive formulations. In our framework,
label information can also be incorporated in the same
way similar to [28] when available. We leave this extension
as future work, as this work focuses on the modeling of
attributes for network embedding.

3 DEFINITIONS

Social networks are more than links; in most cases, social
actors are associated with rich attributes. We denote a social
network as G = (U , E ,A), where U = {u1, ..., uM} denotes
the social actors, E = {eij} denotes the links between social
actors, and A = {Ai} denotes the attributes of social actors.
Each edge eij can be associated with a weight sij denoting
the strength of connection between ui and uj . Generally,
our analysis can apply to any (un)directed, (un)weighted
network. While in this paper, we focus on unweighted
network, i.e., sij is 1 for all edges, our method can be easily
applied to weighted network through the neighborhood
sampling strategy [5].

The aim of social network embedding is to project the
social actors into a low-dimensional vector space (a.k.a. em-
bedding space). Since the network structure and attributes
offer different sources of information, it is crucial to capture
both of them to learn a comprehensive representation of
social actors. To illustrate this point, we show an example in
Figure 2. Based on the link structure, a common assumption
of network embedding methods [3], [5], [6] is that closely
connected users should be close to each other in the embed-
ding space. For example, (u1, u2, u3, u4, u5) should be close
to each other, and similarly for (u8, u9, u11, u12). However,
we argue that purely capturing structural information is
far from enough. Taking the attribute homophily effect into
consideration, (u2, u9, u11, u12) should also be close to each
other. This is because they all major in computer science;
although u2 is not directly linked to u9, u11 or u12, we could
expect that some computer science articles popular among
(u9, u11, u12) might also be of interest to u2. To learn more
informative representations for social actors, it is essential
to capture the attribute information.

In this work, we strive to develop embedding meth-
ods that preserve both the structural proximity and attribute
proximity of social network. In what follows, we give the
definition of the two notions.

Definition 1. (Structural Proximity) denotes the proximity of
social actors that is evidenced by links. For ui and uj , if there
exists a link eij between them, it indicates the direct proximity;
on the other hand, if uj is within the context of ui, it indicates the
indirect proximity.

Intuitively, the direct proximity corresponds to the first-
order proximity, while the indirect proximity accounts for
higher-order proximities [6]. A popular way to generate
contexts is by performing random walks in the network [3],
i.e., if two nodes appear in a walking sequence, they are
treated as in the same context. In our method, we apply the
walking procedure proposed by node2vec [5], which controls
the random walk by balancing the breadth-first sampling
(BFS) and depth-first sampling (DFS). In the remaining of
the paper, we use the term “neighbors” to denote both the
first-order neighbors and the nodes in the same context for
simplicity.

Definition 2. (Attribute Proximity) denotes the proximity of
social actors that is evidenced by attributes. The attribute inter-
section of Ai and Aj indicates the attribute proximity of ui and
uj .

By enforcing the constraint of attribute proximity, we can
model the attribute homophily effect, as social actors with
similar attributes will be placed close to each other in the
embedding space.

4 PROPOSED METHOD

We first describe how we model the structural proximity with
a deep neural network architecture. We then elaborate how
to model the attribute proximity with a similar architecture
by casting attributes to a generic feature representation. Our
final SNE model integrates the models of structures and
attributes by an early fusion on the input layer. Lastly, we
discuss the relationships of our SNE model to other relevant
models. Some of the terms and notations are summarized in
Table 1.

4.1 Structure Modeling

Since the focus of this subsection is on the modeling of
network structure, we use only the identity (ID) to represent
a node in the one-hot representation, in which a node ui is
represented as an M -dimensional sparse vector where only
the i-th element of the vector is 1. Based on our definition
of structural proximity, the key to structure modeling is in
the estimation of pairwise proximity of nodes. Let f be
the function that maps two nodes ui, uj to their estimated
proximity score. We define the conditional probability of
node uj on ui using the softmax function as:

p(uj |ui) =
exp(f(ui, uj))∑M

j′=1 exp(f(ui, uj′))
, (1)

which measures the likelihood that node uj is connected
with ui. To account for a node’s structural proximity w.r.t. all

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 4

its neighbors, we further define the conditional probability
of a node set by assuming conditional independence:

p(Ni|ui) =
∏
j∈Ni

p(uj |ui), (2)

where Ni denotes the neighbor nodes of ui. By maxi-
mizing this conditional probability over all nodes, we can
achieve the goal of preserving the global structural proximity.
Specifically, we define the likelihood function for the global
structure modeling as:

l =
M∏
i=1

p(Ni|ui) =
M∏
i=1

∏
j∈Ni

p(uj |ui). (3)

Having established the target of learning from network
data, we now design an embedding model to estimate the
pairwise proximity f(ui, uj). Most previous efforts have
used shallow models for relational modeling, such as matrix
factorization [29], [30] and neural networks with one hidden
layer [3], [5], [31]. In these formulations, the proximity of
two nodes is usually modeled as the inner product of their
embedding vectors. However, It is known that simply the
inner product of embedding vectors can limit the model’s
representation ability and incur large ranking loss [32]. To
capture the complex non-linearities of real-world networks
[10], [33], we propose to adopt a deep architecture to model
the pairwise proximity of nodes:

fid(ui, uj)

= ũj · δn(W(n)(· · · δ1(W(1)ui + b(1)) · · ·) + b(n)),
(4)

where ui denotes the embedding vector of node ui, and
n denotes the number of hidden layers to transform an
embedding vector to its final representation; W(n), b(n) and
δn denote the weight matrix, bias vector and activation
function of the n-th hidden layer, respectively.

It is worth noting that in our model design, each node
has two latent vector representations, u that encodes a node
to its embedding and ũ that embeds the node as a neighbor.
To comprehensively represent a node for downstream appli-
cations, practitioners can add/concatenate the two vectors
which has empirically shown to have better performance in
distributed word representations [34], [35].

4.2 Encoding Attributes
Many real-world social networks contain rich attribute in-
formation, which can be heterogeneous and highly diverse.
To avoid manual efforts that design specific model com-
ponents for specific attributes, we convert all attributes
to a generic feature vector representation (see Figure 3 as
an example) to facilitate designing a general method for
learning from attributes. Regardless of semantics, we can
categorize attributes into two types:

• Discrete attributes. A prevalent example is categor-
ical variables, such as user demographics like gen-
der and country. We convert a categorical attribute
to a set of binary features via one-hot encoding.
For example, the gender attribute has two values
{male, female}, so we can express a female user as
the vector v = {0, 1}where the second binary feature
of value 1 denotes “female”.

TABLE 1: Terms and Notations

Symbol Definition

M total number of social actors in the social network
Ni neighbor nodes of social actor ui

n number of hidden layers
Ũ the weight matrix connecting to the output layer

h(n)
i embedding of ui with both structure and attributes
ũi the row in Ũ refers to ui’s embedding as a neighbor
ui pure structure representation of ui

u′
i pure attribute representation of ui

W(k), b(k) the k-th hidden layer weight matrix and biases
Wid, Watt the weight matrix for id and attributes input

• Continuous attributes. Continuous attributes natu-
rally exist on social networks, e.g., raw features of
images and audios. Or they can be artificially gener-
ated from transformation of categorical variables. For
example, in document modeling, after obtaining bag-
of-words representation of a document, it is common
to transform it to real-valued vector via TF-IDF to
reduce noises. Another example is the historical fea-
tures, such as users’ purchases on items and check-
ins on locations, which are always normalized to
real-valued vector to reduce the impact of variable
length [36].

0 1 0.8 … 0.1 0.2 0.1 0.0 … 0.1 0.0 … 0.4
F M l1 … lL w1 w2 w3 wW… t1 tT…

Gender Location Text.content Transformed

Fig. 3: A simple example to show the two kinds of social
network attributes information.

Suppose there are K feature entries in the attribute
feature vector v as shown in Figure 3, for each feature entry,
we associate it with an low-dimensional embedding vector
ek which corresponds to the k-th column of the weight
matrix Watt as shown in Figure 4. We then aggregate the
attribute representation vector u′ for each input social actor
by u′ =

∑K
k=1 vkek.

Similar to structure modeling, we aim to model the
attribute proximity by adopting a deep model to approximate
the complex interactions between attributes and introduce
non-linearity, which can be fulfilled by Equation 4 while
substituting ui with u′i.

4.3 The SNE Model
To combine the strength of both structure and attribute
modeling, an intuitive way is to concatenate the learned
embeddings from each part by late fusion as adopted by
[6]. However, the main drawback of late fusion is that
individual models are trained separately without knowing
each other and results are simply combined after training.
On the contrary, early fusion allows optimizing all parame-
ters simultaneously. As a result, the attribute modeling can
complement the learning of structure modeling, allowing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 5

teh two parts closely interact with each other. Essentially,
the strategy of early fusion is more preferable in recent
developments of end-to-end deep learning methods, such as
Deep crossing [37] and Neural Factorization Machines [38].
Therefore, we propose a generic social network embedding
framework (SNE) as shown in Figure 4, which integrates the
structure and attribute modeling parts by an early fusion on
the input layer. In what follows, we elaborate the design of
SNE layer by layer.

Embedding Layer. The embedding layer consists of two
fully connected components. One component projects the
one-hot user ID vector to a dense vector u which captures
structure information. The other component encodes the
generic feature vector and generates a compact vector u′

which aggregates attributes information.
Hidden Layers. Above the embedding layer, u and u′

are fed into a multi-layer perceptron. The hidden repre-
sentations for each layer are denoted as h(0),h(1), · · · ,h(n),
which are defined as follows:

h(0) =

[
u
λu′

]
,

h(k) = δk(W(k)h(k−1) + b(k)), k = 1, 2, · · · , n,
(5)

where λ ∈ R adjusts the importance of attributes, δk de-
notes the activation function, n is the number of hidden
layers. From the last hidden layer, we obtain an abstractive
representation h(n)

i of the input social actor ui.
Stacking multiple non-linear layers has been shown to

help learning better representations of data [39]. Regarding
the architecture design, a common strategy is to use a
tower structure, where each successive layer has a smaller
number of neurons. The premise is that by using a small
number of hidden units for higher layers, they can learn
more abstractive features of data [39]. Therefore, as depicted
in Figure 4, we implement the hidden layers component
following the tower structure with halved layer size for
each successive higher layer. Such a design has also been
shown to be effective by recent work on recommendation
task [32]. Moreover, u and u′ are concatenated with weight
adjustments λ before fed into the fully connected layers,
which can help to learn high-order interactions between also
has been shown to help learning higher-order interactions
between u and u′ [32], [37].

Output Layer. At last, the output vector of the last
hidden layer h(n)

i is transformed into a probability vector
o, which contains the predictive link probability of ui to all
the nodes in U :

o = [p(u1|ui), p(u2|ui), · · · , p(uM |ui)]. (6)

Denoting the abstractive representation of a neighbor uj
as ũj which corresponds to a row in the weight matrix
Ũ between the last hidden layer and the output layer, the
proximity score between ui and uj can be defined as below:

f(ui, uj) = ũj · h(n)
i , (7)

which can be fed into Equation 1 for further obtaining the
predictive link probability p(uj |ui) in vector o:

p(uj |ui) =
exp(ũj · h(n)

i)∑M
j′=1 exp(ũ′j · h

(n)
i)

, (8)

Fig. 4: Social network embedding (SNE) framework.

where all the parameters Θ = {Θh,Wid,Watt, Ũ} and Θh

denotes the weight matrices and biases in the hidden layers
component.

4.3.1 Optimization

To estimate the model parameters of the whole SNE frame-
work, we need to specify an objective function to optimize.
As detailed in Equation 3, we aim to maximize the condi-
tional link probability over all nodes. In this way, the whole
SNE framework is jointly trained to maximize the likelihood
with respect to all the parameters Θ,

Θ? = arg max
Θ

M∏
i=1

∏
j∈Ni

p(uj |ui)

= arg max
Θ

∑
ui∈M

∑
uj∈Ni

log p(uj |ui) (9)

= arg max
Θ

∑
ui∈M

∑
uj∈Ni

log
exp(ũj · h(n)

i)∑
j′∈M exp(ũj′ · h(n)

i)
. (10)

Maximizing the softmax scheme in Equation 10 actually
has two effects: to enhance the similarity between any ui
and these u ∈ Ni as well as to weaken that between any ui
and these u 6∈ Ni. However, this causes two major problems.
The first one lies in the fact that if two social actors are
not linked together, it does not necessarily mean they are
dissimilar. For example, many users in social websites are
not linked, not because they are dissimilar. Most of the
times, it is simply because they never had the chance to
know each other. Thus forcing dissimilarity between ui and
all the other actors not inside Ni will be inappropriate.
The second problem arises from the calculation of the nor-
malization constant in Equation 10. In order to calculate a
single probability, we need to go through all the actors in
the whole network, which is computationally inefficient. In
order to avoid these problems, we apply negative sampling
procedure [31], [40] where only a very small subset of users
are sampled from the whole social network.

The main idea is to do approximation in the gradient
calculation procedure. When we consider the gradient of
the log-probability in Equation 9, the gradient is actually
composed of a positive and a negative part as follows,

∇ log p(uj |ui) = ∇ f(ui, uj)−
∑
j′∈M

p(uj′ |ui)∇ f(ui, uj′),

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 6

where f(ui, uj) = ũj · h(n)
i as defined in Equation 7. Note

that given the actor ui, the negative part of the gradient is
in essence the expected gradient of ∇f(ui, uj′), denoting
as E[∇f(ui, uj′)]. The key idea for sampling a subset of
social actors is to approximate this expectation, resulting in
much lower computational complexity as well as avoiding
too strong constraint on those not linked actors.

To optimize the aforementioned framework, we ap-
ply the Adaptive Moment Estimation (Adam) [41], which
adapts the learning rate for each parameter by performing
smaller updates for the frequent parameters and larger
updates for the infrequent parameters. The Adam method
combines the advantages of two popular optimization meth-
ods: the ability of AdaGrad [42] to deal with sparse gra-
dients, and the ability of RMSProp [43] to deal with non-
stationary objectives. To address internal covariate shift [44]
which slows down the training by requiring careful settings
of learning rate and parameter initialization, we adopt batch
normalization [44] in our multi-layer SNE framework. In
the embedding layer and each hidden layer, we also add
dropout component to alleviate overfitting. After proper
optimization, we obtain abstractive representation h(n) and
ũ for each social actor, similar to [34], [35], we use h(n) +ũ as
the final representation for each social actor, which returns
us better performance results.

4.4 Connections to Other Models
In this subsection, we discuss the connection of the pro-
posed SNE framework to other related models. We show
that SNE subsumes the state-of-the-art network embedding
method node2vec [5] and the linear latent factor model
SVD++ [45]. Specially, the two models can be seen as a
special case of shallow SNE. To facilitate further discussion,
we first give the prediction model of the one-hidden-layer
SNE as:

f(ui, uj) = ũj · δ1(W(1)

[
ui

λu′i

]
+ b(1)). (11)

4.4.1 SNE vs. node2vec
The node2vec applies a shallow neural network model to
learning node embeddings. Under the context of SNE, the
essence of node2vec can be seen as estimating the proximity
of two nodes as:

fnode2vec(ui, uj) = ũj · ui.

By setting λ to 0.0 (i.e., no attribute modeling), δ1 to an
identity function (i.e., no nonlinear transformation), W(1) to
an identity matrix and b(1) to a zero vector (i.e., no trainable
hidden neurons), we can exactly recover the node2vec model
from Equation 11.

4.4.2 SNE vs. SVD++
The SVD++ is one of the most effective latent factor models
for collaborative filtering [45], originally proposed to model
the ratings of users to items. Given a user u and an item i,
the prediction model of SVD++ is defined as:

fSV D++(u, i) = qi ·

pu +
∑

k∈Ru

yk

 ,

where pu (qi) denotes the embedding vector for user u (item
i); Ru denotes the set of rated items for u, and yk denotes
another embedding vector for item k for modeling the item–
item similarity. By treating the item as a “neighbor” of the
user for estimating the proximity, we reformulate the model
using the symbols of our SNE:

fSV D++(ui, uj) = ũj · (ui + u′i) ,

where u′i denotes the sum of item embedding vectors ofRu,
which corresponds to the aggregated attribute representa-
tion of ui in SNE.

To see how SNE subsumes the model, we first set δ1 to an
identity function, λ to 1.0, and b(1) to a zero vector, reducing
Equation 11 to:

f(ui, uj) = ũj ·W(1)

[
ui

u′i

]
.

By further setting W(1) to a concatenation of two identity
matrices (i.e. W(1) = [I, I]), we can recover the SVD++
model:

f(ui, uj) = ũj · (ui + u′i) .

Through the connection between SNE and a family of shal-
low models, we can see the rationality behind our design
of SNE. Particularly, SNE deepens the shallow models so
as to capture the underlying interactions between the net-
work structure and attributes. When modeling real-world
data that may have complex and non-linear inherent struc-
ture [10], [33], our SNE is more expressive and can better fit
on the real-world data.

5 EXPERIMENTS

In this section, we conduct experiments on four publicly
accessible social network datasets to answer the following
research questions.

RQ1 Can SNE learn better node representations as
compared to state-of-the-art network embed-
ding methods?

RQ2 What are the key reasons that lead to better
representations learned by SNE?

RQ3 Are deeper layers of hidden units helpful for
learning better social network embeddings?

In what follows, we first describe the experimental settings.
We then answer the above three research questions one by
one.

5.1 Experimental Setup
5.1.1 Datasets
We conduct the experiments on four public datasets, which
are representative of two types of social networks — social
friendship networks and academic citation networks [46].
The statistics of the four datasets are summarized in Table 2.

FRIENDSHIP Networks. We use two Facebook net-
works constructed by [9], which contain students from
two American universities: University of Oklahoma (OK-
LAHOMA) and University of North Carolina at Chapel
Hill (UNC), respectively. Besides user ID, there are seven
anonymized attributes: status, gender, major, second major,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 7

dorm/house, high school, class year. Note that not all stu-
dents have the seven attributes available. For example, for
the UNC dataset, only 4, 018 of the 18, 163 users contain all
attributes (as plotted in Figure 1).

CITATION Networks. For citation networks, we use
the DBLP and CITESEER2 data used in [24]. Each node
denotes a paper. The attributes are the title contents for
each paper after removing stop words and the stemming
process. The DBLP dataset consists of bibliography data in
computer science from [47]3. A list of conferences from four
research areas are selected. The CITESEER dataset consists
of scientific publications from ten distinct research areas.
These research areas are treated as class labels in the node
classification task.

TABLE 2: Statistics of the datasets

Dataset #(U) #(E)

OKLAHOMA [9] 17,425 892,528

UNC [9] 18,163 766,800

DBLP [24] 60,744 52,890

CITESEER [24] 29,751 77,218

5.1.2 Evaluation Protocols
We adopt two tasks — link prediction and node classi-
fication — which have been widely used in literature to
evaluate network embeddings [3], [5]. While the link pre-
diction task assesses the ability of node representations in
reconstructing network structure [10], node classification
evaluates whether the representations contain sufficient in-
formation trainable for downstream applications.

Link prediction. We follow the widely adopted way
in [5], [10]: we randomly hold out 10% links as the test
set, 10% as the validation set for tuning hyper-parameters,
and train SNE on the remaining 80% links. Since the
test/validation set contains only positive instances, we ran-
domly sample the same number of non-existing links as
negative instances [5], and rank both positive and negative
instances according to the prediction function. To judge the
ranking quality, we employ the area under the ROC curve
(AUROC) [48], which is widely used in IR community
to evaluate a ranking list. It is a summary measure that
essentially averages accuracy across the spectrum of test
values. A higher value indicates a better performance, and
an ideal model that ranks all positive instances higher than
negative instances has an AUROC value of 1.

Node classification. We first train models on the training
sets (with links and all attributes but no class labels) to
obtain node representations; the hyper-parameters for each
model are chosen based on the performance of link predic-
tion. We then feed node representations into the LIBLINEAR
package [49], which is widely adopted in [3], [10], to train
a classifier. To evaluate the classifier, we randomly sample a
portion of labeled nodes (ρ ∈ {10%, 30%, 50%}) as training,
using the remaining labeled nodes as test. We repeat this
process 10 times, and report the mean of the Macro-F1
and Micro-F1 scores. Note that since only the DBLP and

2. http://citeseerx.ist.psu.edu/
3. http://arnetminer.org/citation (V4 version is used)

TABLE 3: The optimal hyper-parameter settings.

OKLAHOMA UNC DBLP CITESEER

SNE
bs 128 256 128 64
lr 0.0001 0.0001 0.001 0.001
λ 0.8 0.8 1.0 1.0

node2vec
p 2.0 2.0 1.0 2.0
q 0.25 1.0 0.25 0.125

LINE S 100 100 10 10
TriDNR tw 0.6 0.6 0.8 0.8

CITESEER datasets contain class labels for nodes, the node
classification task is performed on the two datasets only.

5.1.3 Comparison Methods
We compare SNE with several state-of-the-art network
embedding methods.

- node2vec [5]: It applies the Skip-Gram model [31]
on the node sequences generated by biased random walk.
There are two key hyper-parameters p and q that control the
random walk, which we tuned them the same way as the
original paper. Note that when p and q are set to 1, node2vec
degrades to DeepWalk [3].

- LINE [6]: It learns two embedding vectors for each
node by preserving the first-order and second-order proxim-
ity of the network, respectively. Then the embedding vectors
are concatenated as the final representation for a node. We
followed the hyper-parameter settings of [6] and the number
of training samples S (millions) is adapted to our data size.

- TriDNR [24]: It learns node representations by cou-
pling multiple neural network models to jointly exploit
the network structure, node–content correlation, and label–
content correspondence. This is a state-of-the-art network
embedding method that also uses attribute information.
We searched the text weight (tw) hyper-parameter among
[0.0, 0.2, ..., 1.0].

For all baselines, we used the implementation released
by the original authors. Note that although node2vec and
LINE are state-of-the-art methods for embedding networks,
they are designed to use only the structure information.
For a fair comparison with SNE that additionally exploits
attributes, we further extend them to include attributes
by concatenating the learned node representation with the
attribute feature vector. We dub the variants node2vec+ and
LINE+. Moreover, we are aware of a recent network em-
bedding work [22] also considering attribute information.
However, due to the unavailability of their codes, we do not
further compare with it.

5.1.4 Parameter Settings
Our implementation of SNE is based on TensorFlow4, which
will be made available upon acceptance. Regarding the
choice of activation function of hidden layers, we have
tried rectified linear unit (ReLU), soft sign (softsign) and
hyperbolic tangent function (tanh), finding softsign leads
to the best performance in general. As such, we use soft-
sign for all experiments. We randomly initialize model

4. https://www.tensorflow.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 8

Ratio of links for trainning
0.40.50.60.70.8

AU
R

O
C

 v
al

ue

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
node2vec
LINE
TriDNR

node2vec+attr
LINE+attr
SNE

(a) OKLAHOMA

Ratio of links for trainning
0.40.50.60.70.8

AU
R

O
C

 v
al

ue
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
node2vec
LINE
TriDNR

node2vec+attr
LINE+attr
SNE

(b) UNC

Ratio of links for trainning
0.40.50.60.70.8

AU
R

O
C

 v
al

ue

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
node2vec
LINE
TriDNR

node2vec+attr
LINE+attr
SNE

(c) DBLP

Ratio of links for trainning
0.40.50.60.70.8

AU
R

O
C

 v
al

ue

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9
node2vec
LINE
TriDNR

node2vec+attr
LINE+attr
SNE

(d) CITESEER

Fig. 5: Performance of link prediction on social networks w.r.t. different network sparsity (RQ1).

parameters with a Gaussian distribution (with a mean
of 0.0 and standard deviation of 0.01), optimizing the
model with mini-batch Adam [41]. We test the batch size
(bs) of [8, 16, 32, 64, 128, 256] and the learning rate (lr) of
[0.1, 0.01, 0.001, 0.0001]. The search space of the concatena-
tion hyper-parameter λ is the same as tw of TriDNR, where
a value of λ = 0.0 degrades to a model that considers only
the structure (c.f., Section 4.1). The concatenation parameter
λ is searched in same space as tw. More detailed impact of
λ is studied in Section 5.2.3. The embedding dimension d is
set to 128 for all methods in line with node2vec and LINE.
The hyper-parameter p and q for controlling the walking
procedure are set to be the same with that of node2vec.
Without special mention, we use two hidden layers, i.e.,
n = 2. Table 3 summarizes the optimal hyper-parameters
of each method tuned on validation sets.

5.2 Quantitative Analysis (RQ1)

5.2.1 Link Prediction
Figure 5 shows the AUROC scores of SNE and baseline
methods on the four datasets. To explore the robustness
of embedding methods w.r.t. the network sparsity, we vary
the ratio of training links and investigate the performance
change. The key observations are as follows:

1) Our proposed SNE achieves the best performance
among all methods. Notably, compared to the pure
structure-based methods node2vec and LINE, our SNE per-
forms significantly better with only half links. This demon-
strates the usefulness of attributes in predicting missing
links, as well as the rationality of SNE in leveraging at-
tributes for learning better node representation. Moreover,
we observe more dramatic performance drop of node2vec
and LINE on DBLP and CITESEER, as compared to that of
OKLAHOMA and UNC. The reason is that the DBLP and
CITESEER datasets contain less link information (as shown
in Table 2); as such, the link sparsity problem becomes more
severe when the ratio of training links decreases. On the
contrary, our SNE exhibits more stability when we use fewer
links for training, which is credible to its effective modeling
of attributes.

2) Focusing on methods that account for attributes, we
find how to incorporate attributes plays a pivotal role for

the performance. First, node2vec+ (LINE+) slightly improves
over node2vec (LINE), which reflects the value of attributes.
Nevertheless, the rather modest improvements indicate that
simply concatenating attributes with the embedding vector
is insufficient to fully leverage the rich signal in attributes.
This reveals the necessity of designing a more principled
approach to incorporate attributes into the network em-
bedding process. Second, we can see that SNE consistently
outperforms TriDNR — the most competitive baseline that
also incorporates attributes into the network embedding
process. Although TriDNR is a joint model, it separately
trains the structured-based DeepWalk and attributed-fused
Doc2Vec during the optimization process, which can be
sub-optimal to leverage attributes. In contrast, our SNE
seamlessly incorporates attributes by an early fusion on the
input layer, which allows the following hidden layers to
capture complex structure–attribute interactions and learn
more informative node representations.

3). Comparing the two structure-based methods, we
observe that node2vec generally outperforms LINE across all
the four datasets. This result is in consistent with Grover and
Leskovec [5]’s finding. One plausible reason for node2vec’s
superior performance might be that by performing ran-
dom walks on the social network, higher-order proxim-
ity information can be captured. In contrast, LINE only
models the first- and second-order proximities, which fails
in capturing sufficient information for link prediction. To
justify this, we have further explored an additional baseline
that directly utilizes the second-order proximity by ranking
nodes according to their common neighbors. As expected,
the performance is weak for all datasets (lower than the
bottom line of each subfigure), which again demonstrates
the need for learning higher-order proximities via network
embedding. Since our SNE shares the same walking proce-
dure as node2vec, it is also capable of learning from higher-
order proximities, which are further complemented by the
attribute information.

5.2.2 Node Classification
Table 4 shows the macro-F1 and micro-F1 scores obtained
by each method on the classification task. Upon getting
the node representations, we train the LIBLINEAR classifier
with different ratios of labeled data (ρ ∈ {10%, 30%, 50%}).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 9

The performance trends are generally consistent with that
of the link prediction task.

First and foremost, SNE achieves the best performance
among all the methods for all settings, and the one-sample
paired t-test verifies that all improvements are statistically
significant for p < 0.05. The performance of SNE is fol-
lowed by that of TriDNR, and then followed by that of
the attribute-based methods node2vec+ and LINE+; node2vec
and LINE which use only the network structure perform
the worst. This further justifies the usefulness of attributes
on social networks, and such that properly modeling them
can lead to better representation learning and benefit down-
stream applications. Among the four attribute-based meth-
ods, SNE and TriDNR demonstrate superior performance
over node2vec+ and LINE+, which points to the positive
effects of incorporating attributes into the network embed-
ding process.

It is worth pointing out that the ground-truth labels of
the node classification task are not involved in the network
embedding process. Despite this, SNE can learn effective
representations that support the task well. This is attributed
to SNE’s modeling of network structure and attributes in a
sound way, which leads to comprehensive and informative
representations for nodes.

5.2.3 Impact of λ

We further explore the impact of λ which adjusts the im-
portance of attributes. Both the link prediction task and
the node classification task are evaluated under the same
evaluation protocols as Section 5.1.2. For a clear comparison,
we plot the results in Figure 6. The link prediction results
are reported under training on 80% of links. The node
classification results are obtained from training on 50% of
labeled nodes.

Due to the fact that λ actually can be set to any real
number under our learning framework, we first broadly
explore the impact of λ on the range [0, 0.01, 0.1, 1, 10, 100].
Setting λ to 0 returns the pure structure modeling, while
setting it to a large number approximates the pure attribute
modeling. We found that good results are generally obtained
within [0, 1] across datasets. When λ becomes relatively
large and the attribte part overweights the structure part,
the performance even becomes worse than pure structure
modeling. Therefore, we focus our exploration on the range
[0, 1] at an interval of 0.2.

Generally, attributes play an important role in SNE as
evidenced by the improving performance when λ increases.
We observe similar trends for both the link prediction and
node classification tasks across datasets. If we ignore the
attribute information by setting λ = 0.0, SNE degrades to
pure structure modeling as detailed in subsection 4.1. Its
corresponding performance is the worst for both tasks, as
compared to the attributes included counterparts. Moreover,
the performance improvements on DBLP and CITESEER
are relatively larger. Specifically, we observe a dramatic im-
provement of performance on CITESEER when λ increases
from 0.0 to 0.2. As there is less link information in these two
datasets as shown in Table 2, the performance improvement
indicates that attributes help to alleviate the link sparsity
problem.

6

0.0 0.2 0.4 0.6 0.8 1.0

AU
R

O
C

 v
al

ue

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

OKLAHOMA
UNC
DBLP
CITESEER

(a) Link prediction

(b) Node classification

Fig. 6: Performance results with different λ (RQ1).

In addition, we observe that the pure structure model
(λ = 0.0) outperforms node2vec if we further compare the
results with Figure 5 for link prediction and Table 4 for
node classification. Since the same p, q setting as node2vec
are leveraged, we attribute the performance improvements
to the non-linearity introduced by the hidden layers.

5.3 Qualitative Analysis (RQ2)
To understand why SNE can achieve better results than the
other methods, we carry out a case study on the DBLP
dataset in this subsection. Given the node representations
learned by each method, we retrieve the three most similar
papers w.r.t. a given query paper. Specifically, we measure
the similarity using the cosine distance. For a fair compari-
son with the structure-based methods, the query paper we
choose is a well-cited paper of KDD 2006 named “Group
formation in large social networks: membership, growth, and
evolution”. According to Google Scholar by 15/1/2017, its
citation number reaches 1510. Based on the content of this
query paper, we expect that relevant results should be about
the structure evolution of groups or communities in social
networks. The top results retrieved by different methods are
shown in Table 5.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 10

TABLE 4: Averaged Macro-F1, Micro-F1 scores for node classification task. ? denotes the statistical significance for
p < 0.05. (RQ1)

Dataset CITESEER DBLP

Method LINE node2vec LINE+ node2vec+ TriDNR SNE LINE node2vec LINE+ node2vec+ TriDNR SNE

m
ac

ro

10% 0.548 0.606 0.597 0.613 0.618 0.653? 0.565 0.617 0.619 0.631 0.665 0.699?

30% 0.580 0.625 0.631 0.630 0.692 0.715? 0.586 0.632 0.636 0.642 0.702 0.725?

50% 0.619 0.667 0.670 0.682 0.736 0.752? 0.628 0.677 0.692 0.695 0.715 0.761?

m
ic

ro

10% 0.573 0.623 0.607 0.628 0.644 0.675? 0.587 0.647 0.661 0.686 0.750 0.763?

30% 0.614 0.653 0.667 0.695 0.714 0.732? 0.632 0.665 0.678 0.749 0.778 0.786?

50% 0.661 0.695 0.691 0.717 0.756 0.767? 0.678 0.733 0.732 0.753 0.785 0.804?

TABLE 5: Top three results returned by each method (RQ2)

Query: Group formation in large social networks: membership,
growth, and evolution5

SNE
1. Structure and evolution of online social networks
2. Discovering temporal communities from social network documents
3. Dynamic social network analysis using latent space models

TriDNR
1. Influence and correlation in social networks
2. A framework for analysis of dynamic social networks
3. A framework for community identification in dynamic social
networks

node2vec
1. Latent Dirichlet Allocation
2. Maximizing the spread of influence through a social network
3. Mining the network value of customers

LINE
1. Graphs over time: densification laws, shrinking diameters and
possible explanations
2. Maximizing the spread of influence through a social network
3. Relational learning via latent social dimensions

First of all, we see that SNE returns rather relevant re-
sults: all the three papers are about dynamic social network
analysis and community structures. For example, the first
one considers the evolution of structures such as communi-
ties in large online social networks. The second result can
be viewed as a follow-up work of the query, focusing on
discovering temporal communities. While for TriDNR, the
top result aims to measure social influence between linked
individuals but community structures are not of concern.

Regarding methods that only leverage structure infor-
mation, the results returned by node2vec are less similar to
the query paper. It seems that node2vec tends to find less
related but highly cited papers. According to Google Scholar
by 15/1/2017, the citation numbers for the first, second and
third results are 16908, 4099 and 1815, respectively. This is
because the random walk procedure can be easily biased
towards the popular nodes that have more links. While SNE
also relies on the walking sequences, it can correct such bias
to a certain extent by leveraging attributes.

Similarly, LINE also retrieves less relevant papers. Al-
though the first and second results are related to dynamic
social network analysis, all the three results are not con-

TABLE 6: Performance of link prediction and node classi-
fication on DBLP w.r.t. different number of hidden layers
(RQ3)

Hidden layers AUROC micro-F1

No Hidden Layers 0.9273 0.791
128Softsign 0.9418 0.799
256Softsign→ 128Softsign 0.9546 0.804
512Softsign→ 256Softsign→ 128Softsign 0.9589 0.802

cerned with group or community. It might due to the limi-
tations of only modeling first- and second-order proximities
while leaving out the abundant attributes.

Based on the above qualitative analysis, we draw the
conclusion that using both network structure and attributes
benefits the retrieval of similar nodes. Compared to the
pure structure-based methods, the top returned results of
SNE are more relevant to the query paper. It is worth
noting that for this qualitative study, we have purposefully
chosen a popular node to migrate the sparsity issue, which
actually favors the structure-based methods; even so, the
structure-based methods fail at identifying relevant results.
This sheds light on the limitation of solely relying on the
network structure for social network embedding, and thus
the importance of modeling the rich evidence sources in
attributes.

5.4 Experiments with Hidden Layers (RQ3)
In this final subsection, we explore the impact of hidden
layers on SNE. It is known that increasing the depth of a
neural network can increase the generalization ability for
some models [32], [39], however, it may also degrade the
performance due to optimization difficulties [50]. It is thus
curious to see whether using deeper layers can empirically
benefit the learning of SNE.

Table 6 shows SNE’s performance of the link predic-
tion and node classification tasks w.r.t. different number of
hidden layers on the DBLP dataset. The results on other
datasets are generally similar, thus we just showcase one
here. As the size of the last hidden layer determines a SNE
model’s representation ability, we set it to the same number
for all models to ensure a fair comparison. Note that for
each setting (row), we have re-tuned the hyper-parameters
to fully exploit the model’s performance.

First, we can see the trend that with more hidden lay-
ers, the performance is improved. This indicates the pos-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 11

itive effect of using a deeper architecture for SNE, which
indeed increases its generalization ability and boost its
performance. The trade-off, however, is the server CPU
time needed for the training procedure. Specifically, on our
modest commodity server (Intel Xeon CPU of 2.40GHz), a
one-layer SNE takes 25.6 seconds, while a three-layer SNE
takes 81.9 seconds for one epoch. We stopped exploring
deeper models, as the current SNE uses fully connected
layers, which become difficult to optimize and can be eas-
ily over-fitting and degrading with more layers [50]. The
diminishing improvement of results in Table 6 also implies
the potential problem. To address it, modern neural network
designs shall be applied, such as the residual units and
highway networks [39]. We leave this possibility for future
work.

It is worth noting that when there is no hidden layer,
SNE’s performance is rather weak, which is in the same
level as TriDNR. With one more layer, the performance is
significantly improved. This demonstrates the usefulness of
learning structure–attribute interactions in a non-linear way.
To justify this, we have further tried to replace the softsign
activation function with the identity function, i.e., using a
linear function above the concatenation of structure and
attribute embedding vectors. However, the performance
is much worse than that of using the non-linear softsign
function.

6 CONCLUSION

To learn informative representations for social network data,
it is crucial to account for both network structure and
attribute information. To this end, we proposed a generic
framework for embedding social networks by capturing
both the structural proximity and attribute proximity. We
adopted a deep neural network architecture to model the
complex interrelations between structural information and
attributes. Extensive experiments show that SNE can learn
informative representations for social networks and achieve
superior performance on the tasks of link prediction and
node classification comparing to other representation learn-
ing methods.

This work has tackled representation learning on social
networks by leveraging both structural and attribute infor-
mation. While social networks are rich sources of informa-
tion containing more than links and textual attributes, we
will study the following directions in future. First, we will
enhance our SNE framework by fusing data from multiple
modalities. It is reported that over 45% tweets contain
images in Weibo [51], making it urgent and meaningful to
perform network embedding with multi-modal data [52].
Second, we will develop (semi-)supervised variant for SNE,
so as to learning task-oriented embeddings to tailor for a
specific task. Third, we are interested in exploring how to
capture the evolution nature of social networks, such as new
users and social relations by using temporal-aware recurrent
neural networks. Lastly, we will consider improving the
efficiency of SNE by learning to hash techniques [53] to
make it suitable for large-scale industrial use.

ACKNOWLEDGMENTS

This research is supported by the NExT research center,
which is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its IRC@SG Fund-
ing Initiative. We warmly thank all the anonymous review-
ers for their time and efforts.

REFERENCES

[1] X. Wang, L. Nie, X. Song, D. Zhang, and T.-S. Chua, “Unifying
virtual and physical worlds: Learning toward local and global
consistency,” ACM Transactions on Information Systems, vol. 36,
no. 1, p. 4, 2017.

[2] X. He, M. Gao, M.-Y. Kan, and D. Wang, “Birank: Towards ranking
on bipartite graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 1, pp. 57–71, 2017.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in SIGKDD, 2014, pp. 701–710.

[4] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architec-
tures,” in SIGKDD, 2015, pp. 119–128.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in SIGKDD, 2016, pp. 855–864.

[6] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW, 2015, pp.
1067–1077.

[7] J. D. Burger, J. Henderson, G. Kim, and G. Zarrella, “Discriminat-
ing gender on twitter,” in EMNLP, 2011, pp. 1301–1309.

[8] M. Pennacchiotti and A.-M. Popescu, “Democrats, republicans and
starbucks afficionados: user classification in twitter,” in SIGKDD,
2011, pp. 430–438.

[9] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure
of facebook networks,” Physica A: Statistical Mechanics and its
Applications, pp. 4165–4180, 2012.

[10] D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in SIGKDD, 2016, pp. 1225–1234.

[11] G. Robins, “Exponential random graph models for social net-
works,” Encyclopaedia of Complexity and System Science, Springer,
2011.

[12] P. F. Lazarsfeld, R. K. Merton et al., “Friendship as a social process:
A substantive and methodological analysis,” Freedom and control
in modern society, pp. 18–66, 1954.

[13] E. O. Laumann, Prestige and association in an urban community: An
analysis of an urban stratification system. Bobbs-Merrill Company,
1966.

[14] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, pp. 415–
444, 2001.

[15] S. B. Kurth, “Friendships and friendly relations,” Social relation-
ships, pp. 136–170, 1970.

[16] J. M. McPherson and L. Smith-Lovin, “Homophily in voluntary
organizations: Status distance and the composition of face-to-face
groups,” American sociological review, pp. 370–379, 1987.

[17] A. T. Fiore and J. S. Donath, “Homophily in online dating: when
do you like someone like yourself?” in CHI ’05, 2005, pp. 1371–
1374.

[18] G. Kossinets and D. J. Watts, “Origins of homophily in an evolving
social network1,” American journal of sociology, pp. 405–450, 2009.

[19] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, pp. 2323–2326, 2000.

[20] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
science, pp. 2319–2323, 2000.

[21] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in NIPS, 2001, pp. 585–
591.

[22] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in WSDM, 2017.

[23] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in IJCAI, 2015,
pp. 2111–2117.

[24] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep
network representation,” in IJCAI, 2016, pp. 1895–1901.

[25] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in ICML, 2014, pp. 1188–1196.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2017 12

[26] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad-
hye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide &
deep learning for recommender systems,” in Workshop on DLRS,
2016, pp. 7–10.

[27] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning
via semi-supervised embedding,” in Neural Networks: Tricks of the
Trade, 2012, pp. 639–655.

[28] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-
supervised learning with graph embeddings,” in ICML, 2016, pp.
40–48.

[29] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in CIKM, 2015, pp. 891–900.

[30] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factoriza-
tion for online recommendation with implicit feedback,” in SIGIR,
2016, pp. 549–558.

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in NIPS, 2013, pp. 3111–3119.

[32] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” in WWW, 2017.

[33] D. Luo, F. Nie, H. Huang, and C. H. Ding, “Cauchy graph
embedding,” in ICML, 2011, pp. 553–560.

[34] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in EMNLP, 2014, pp. 1532–1543.

[35] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional sim-
ilarity with lessons learned from word embeddings,” Transactions
of the Association for Computational Linguistics, 2015.

[36] S. Rendle, “Factorization machines,” in ICDM, 2010, pp. 995–1000.
[37] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep

crossing: Web-scale modeling without manually crafted combina-
torial features,” in SIGKDD, 2016, pp. 255–262.

[38] X. He and T.-S. Chua, “Neural factorization machines,” in SIGIR,
2017, p. to appear.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[40] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What
your images reveal: Exploiting visual contents for point-of-interest
recommendation,” in WWW, 2017, pp. 391–400.

[41] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015, pp. 1–15.

[42] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, pp. 2121–2159, 2011.

[43] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neu-
ral networks for machine learning,” Tech. Rep., 2012.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015, pp. 448–456.

[45] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in SIGKDD, 2008, pp. 426–434.

[46] S. Wasserman and K. Faust, Social network analysis: Methods and
applications, 1994.

[47] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in SIGKDD,
2008, pp. 990–998.

[48] K. H. Zou, A. J. OMalley, and L. Mauri, “Receiver-operating char-
acteristic analysis for evaluating diagnostic tests and predictive
models,” Circulation, pp. 654–657, 2007.

[49] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of
machine learning research, pp. 1871–1874, 2008.

[50] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in AISTATS, 2010, pp. 249–
256.

[51] T. Chen, X. He, and M.-Y. Kan, “Context-aware image tweet
modelling and recommendation,” in MM, 2016, pp. 1018–1027.

[52] C. Zhang, K. Zhang, Q. Yuan, H. Peng, Y. Zheng, T. Hanratty,
S. Wang, and J. Han, “Regions, periods, activities: Uncovering ur-
ban dynamics via cross-modal representation learning,” in WWW,
2017, pp. 361–370.

[53] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua,
“Discrete collaborative filtering,” in SIGIR, 2016, pp. 325–334.

	Attributed social network embedding
	Citation

	1 Introduction
	2 Related Work
	2.1 Attribute homophily in Social Networks
	2.2 Network Embedding

	3 Definitions
	4 Proposed Method
	4.1 Structure Modeling
	4.2 Encoding Attributes
	4.3 The SNE Model
	4.3.1 Optimization

	4.4 Connections to Other Models
	4.4.1 SNE vs. node2vec
	4.4.2 SNE vs. SVD++

	5 Experiments
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Evaluation Protocols
	5.1.3 Comparison Methods
	5.1.4 Parameter Settings

	5.2 Quantitative Analysis (RQ1)
	5.2.1 Link Prediction
	5.2.2 Node Classification
	5.2.3 Impact of

	5.3 Qualitative Analysis (RQ2)
	5.4 Experiments with Hidden Layers (RQ3)

	6 Conclusion
	References

