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Abstract
Network robustness measures how well network structure is strong and healthy when it is
under attack, such as vertices joining and leaving. It has been widely used in many applica-
tions, such as information diffusion, disease transmission, and network security. However,
existing metrics, including node connectivity, edge connectivity, and graph expansion, can be
suboptimal for measuring network robustness since they are inefficient to be computed and
cannot directly apply to the weighted networks or disconnected networks. In this paper, we
define the R-energy as a new robustness measurement for weighted networks based on the
method of spectral analysis. R-energy can cope with disconnected networks and is efficient
to compute with a time complexity of O(|V | + |E |), where V and E are sets of vertices and
edges in the network, respectively. Our experiments illustrate the rationality and efficiency of
computingR-energy: (1) Removal of high degree vertices reduces network robustness more
than that of random or small degree vertices; (2) it takes as little as 120s to compute for a
network with about 6M vertices and 33M edges. We can further detect events occurring in
a dynamic Twitter network with about 130K users and discover interesting weekly tweeting
trends by tracking changes to R-energy.
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1 Introduction

The popularity of web, mobile phones, and other portable devices has propelled the growth of
large-scale networks such as Facebook and Twitter, as well as a wide range of online content
sharing and crowdsourcing services. These networks are dynamically evolving as users join
and leave, and as their traffic of interactions varies. To characterize the strength or health of
these large-scale networks, we need some measures to tell us their robustness.

Network robustness measures how well network structure is strong and healthy when it
is under attack, such as vertices joining and leaving. The ability to measure the robustness
of networks can benefit several useful applications. For example, in a phone call network,
dense and frequent calls among users reduce the likelihood of churn. A similar comment
can be made for online social networks. For another example, the robustness of IP networks
affects service quality and security. Service providers therefore aim to monitor, manage, and
optimize their networks to keep their networks robust. Network robustness is also studied in
other applications, such as disease transmission [3, 12] and network security [17].

Evaluating the robustness of a weighted network is a natural problem because edges
of the network may associate with attached information, such as times of interactions in
Telcom network, # retweets between Twitterers, and # adoptions between a user and an
item for online shopping web site. As today’s networks are usually of very large scale,
efficiently measuring robustness of weighted networks is therefore a challenge. The naive
way is to extend existing robustnessmeasures to evaluate the robustness ofweightednetworks.
They include node connectivity [11], edge connectivity [11], and algebraic connectivity [13].
Node (or edge) connectivity υ(G) (or ε(G)) of a weighted network G may be defined by
the weights of nodes (or edges) that may be removed to break the networks into multiple
connected components. Large node and edge connectivity values suggest that a network is
robust. Algebraic connectivity λ(G)may be defined by the second smallest eigenvalue of the
Laplacian matrix (defined in Sect. 3) of the weighted network.

In combinatorics, an expander network is a connected and undirected network in which
every small subset of the vertex set has a large boundary. The goodness (or robustness) of
an expander network can be measured by Cheeger constant [29], vertex expansion [5] and
edge expansion [18]. LetG = (V , E,W ) be a connected, undirected, and weighted network.
Cheeger constant h(G), vertex expansion hv(G), and edge expansion he(G) may be defined
in Eqs. (1), (2) and (3).

h(G) = min
S⊂V

|∂(S)|
min{vol(S), vol(S)} , (1)

hv(G) = min
S⊂V ,0<|S|≤ |V |

2

|∂out(S)|
|S| , (2)

he(G) = min
S⊂V ,0<|S|≤ |V |

2

|∂(S)|
|S| , (3)

where the symbols can be found in Table 1. vol(S) (vol(S)) is the total weighted degrees
of vertices in S (complement of S), ∂(S) is the edge boundary of S (i.e., the set of edges
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Table 1 The description of
symbols in Eqs. (1), (2) and (3)

Symbol Description

vol(S) The total weights of vertices in S

vol(S) The total weights of vertices in complement of S

∂(S) The edge boundary of S

∂out(S) The outer vertex boundary of S

|∂(S)| The total weights of edges in ∂(S)

|∂out(S)| The total weights of vertices in ∂out(S)

with exactly one endpoint in S), and ∂out(S) is the outer vertex boundary of S (i.e., the set of
vertices in V \S with at least one neighbor in S).

The existing measures may have the following shortcomings:

– They are only applicable to connected networks. Even though a highly robust giant
component exists in a network with very few connected components, the network is
considered not robust at all as all these measures return zero values.

– They quantify robustness using specific (optimal) combinations of vertices (for node con-
nectivity), specific combination of edges (for edge connectivity), and specific eigenvalue
(for algebraic connectivity).

– Even for connected network, they are difficult to scale for large networks of millions
vertices. For algebraic connectivity, we need to compute the second smallest eigenvalue
of the Laplacian matrix. For node connectivity, edge connectivity, Cheeger constant,
vertex expansion, and edge expansion, we have to check all cuts of the weighted network.
These are all time-consuming measurements.

In this paper, we aims to extend our proposed R-energy in [14] to measure robustness
for the weighted networks. Comparing to the original work, the main contributions of this
version can be summarized as follows:

– We proposeR-energy as an efficient measure for weighted network robustness. The new
measure, defined based on the normalized Laplacian matrix, demonstrates several nice
properties. It can also handle networks with multiple connected components and can be
computed with good time complexity O(|V | + |E |), where V and E are sets of vertices
and edges in a weighted network.

– We find that R-energy can be used to monitor the robustness for dynamic networks.
In Theorem 3, we have proved that we can incrementally and efficiently compute the
R-energy for dynamic networks with vertex or edge modification, such as insert and
delete.

– We further apply R-energy to a dynamic Twitter community with about 130K users
to detect events and regular trend patterns that affect the weighted network robustness.
We empirically show that more events can be detected from the reply network in this
extended version. This points to the positive effect of defining R-energy on a weighted
network.

The remainder of the paper is organized as follows. We first review related work in
Sect. 2. We then introduce some basic notations in Sect. 3, before presenting R-energy and
its algorithm in Sect. 4. We illustrate some important properties of R-energy in Sect. 5 and
demonstrate some observations and the performance ofR-energy on both synthetic and real
networks in Sect. 6. Before we conclude this paper in Sect. 7, we illustrate some patterns and
events found using R-energy on a dynamic Twitter user community.
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2 Related work

2.1 Robustness

The traditional network robustness measures, node connectivity, and edge connectivity were
proposed by Dekker and Colbert [11]. Network expansion can also be used to measure
network robustness. Different formulations of expander give rise to different measures of
expander, e.g., edge expansion [18], vertex expansion [5], and spectral expansion [23]. Larger
edge or vertex expansions indicate less bottleneck inside a network.

Jamakovic and Mieghem proposed to use the second smallest eigenvalue of the Lapla-
cian matrix also known as algebraic connectivity to measure network robustness [13, 19].
Malliaros et al. [23] described the relationship between algebraic connectivity and node/edge
connectivities. According to Cheeger’s inequality, Chung found that the expansion of a
network is closely related to the spectral gap between the largest and the second largest
eigenvalues of adjacency matrix. Malliaros et al. confirmed the findings of Chung in [23].
This measure is, however, costly to be computed and is sensitive to the network size. Hence,
it is not appropriate for comparing networks of different sizes. Albert et al. [1] used diameter
to measure robustness of networks, but the measure does not capture network connectivity
which should be considered in robustness measures. As mentioned in Sect. 1, they have some
drawbacks to measure robustness of weighted networks.

2.2 Graph energy

The energy of a network has always been defined to be some form of deviation of eigenvalues
of some networkmatrix from themean of eigenvalues. For example, Gutman defined network
energy on an adjacency matrix as the absolute deviation of eigenvalues from the mean of
eigenvalues which is zero for any adjacency matrix [16]. In [26, 30], Laplacian energy has
been defined on the combinatorial Laplacian matrix. In [7], normalized Laplacian energy is
defined on the normalized Laplacian matrix in a similar manner.

Day and So studied network energy changes with edge or vertex removals [9, 10]. There
are some existing works which derive the lower and upper bounds for different energy defi-
nitions including Gutman’s graph energy [2], Laplacian energy [26, 30, 31], and normalized
Laplacian energy [7]. They are not appropriatemeasures for network robustness as computing
them would be time costly.

3 Definition ofR-energy

In this section, based on the normalized Laplacian matrix of a weighted network, we address
how the eigenvalues of the normalized Laplacian of the weighted network are related to the
structure of the network and define the R-energy to measure the robustness of the weighted
network.

3.1 Normalized Laplacian

Consider an undirected networkG = (V , E)with vertex set V and edge set E (Let |V | = n).
Let AG denote the adjacency matrix representing G and be defined as:
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Onmeasuring network robustness for weighted networks 1971

AG(i, j) :=
{
1, if (vi , v j ) ∈ E;
0, otherwise.

Definition 1 Aweighted network G is triple (V , E,WG), where V and E are sets of vertices
and edges, and each edge (vi , v j ) ∈ E associates with weight wi j . As such, WG is a weight
matrix defined as

WG(i, j) =
{

wi j , if (vi , v j ) ∈ E;
0, otherwise.

Formally, we define the neighbor of vi to be a vertex set as N (vi ) := {v j |(vi , v j ) ∈ E}, and
degree of vi to be the total weight of vertices in N (vi ), denoted as d(vi ) := ∑

v j∈N (vi )
wi j .

We then define degree matrix DG as

DG(i, j) :=
{
d(vi ), if i = j and vi ∈ V ;
0, otherwise.

A network is an unweighted network if all edges have the identical weight.
Based on matricesWG and DG , we define the normalized Laplacian matrix of a weighted

network in Definition 2.

Definition 2 Normalized Laplacian matrix NG of a weighted network G with nonnegative
weight matrix WG is given by

NG := I − D−1/2
G WGD−1/2

G .

We denote ζ1 ≤ ζ2 ≤ · · · ≤ ζn as the sequence of eigenvalues of NG .
The eigenvalues of the normalized Laplacian matrix satisfy three important properties:

Theorem 1 Let G be a weighted network of n vertices. The eigenvalues of NG have

1. 0 = ζ1 ≤ ζ2 ≤ n
n−1 ≤ ζn ≤ 2;

2. ζ2 = · · · = ζn = n
n−1 if and only if G is a clique of equal edge weights;

3. G has at least i connected components if and only if ζ j = 0, for j = 1, 2, . . . , i .

We prove the theorem in Appendix. Property (1) illustrates that the second smallest and
the largest eigenvalues range from 0 to n

n−1 and n
n−1 to 2, respectively. As a special case,

when all except the smallest eigenvalue equal n
n−1 , the network is a clique as shown in

Property (2). Property (3) states that each additional connected component corresponds to a
zero eigenvalue. ζ1 is therefore 0 in any weighted networks.

3.2 Definition ofR-energy

According to Theorem 1, for a weighted network G that is sparsely connected and is far from
being a clique, its ζ2 is small, but ζn is large. In contrast, a network that is densely connected
and similar to a clique will have ζ2 not much smaller than ζn . As such, a robust weighted
network should have a small degree of dispersion on eigenvalues.

To evaluate the degree of dispersion of eigenvalues,wedefine robustness energy as follows:

Definition 3 Let G be a weighted network, the robustness energy (short in R-energy) of G
is defined as:
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ER(G) := 1

n − 1

n∑
i=2

(ζi − ζ )2

where ζ = 1
n−1

∑n
i=2 ζi .

The definition ofR-energy does not consider ζ1 since its value is always zero. A weighted
network is more robust if its R-energy is smaller. This is due to the factor that smaller
dispersion of ζ2, ζ3, . . . , ζn implies that the weighted network is closer to a clique of equal
edge weights. Furthermore, R-energy can be applied for measuring the robustness of both
connected and disconnected networks. For a disconnected network, we may observe a large
R-energy (less robust) since it has multiple zero eigenvalues.

4 Computation ofR-energy

To compute theR-energy, the naive approach is to compute all eigenvalues of the normalized
Laplacian matrix. As we known, computing all eigenvalues is computationally expensive.
Based on the following theorem, we propose a simple and efficient approach to compute
R-energy in O(|V | + |E |).
Theorem 2 Given that a weighted network of n vertices and its eigenvalues of the normalized
Laplacian matrix are ζ1, ζ2, ζ3, . . . , ζn, we have

1. the mean of eigenvalues ζ2, ζ3, . . . , ζn, denoted as ζ , is n
n−1 ;

2. the R-energy can be computed as

ER(G) = 1

n − 1

∑
(vi ,v j )∈E

wG(i, j)2

d(vi )d(v j )
− n

(n − 1)2
. (4)

Proof According to Definition 2, entry NG(i, j) of NG is:

NG(i, j) =

⎧⎪⎨
⎪⎩
1, if i = j and d(vi ) �= 0;
− wG (i, j)√

d(vi )d(v j )
, if AG(i, j) �= 0;

0, otherwise.

(5)

Note that each diagonal element of NG is 1 and ζ1 = 0, we have,

1

n − 1

n∑
i=2

ζi = 1

n − 1

n∑
i=1

ζi = 1

n − 1
· tr(NG) = n

n − 1
.

where tr(NG) denotes the trace of matrix NG .
In terms of the value of ζ , we now compute the R-energy:

ER(G) = 1

n − 1

n∑
i=2

(
ζi − n

n − 1

)2

= 1

n − 1

n∑
i=1

ζ 2
i − n2

(n − 1)2
,
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Onmeasuring network robustness for weighted networks 1973

where we have
∑n

i=1 ζ 2
i = tr(N (G)2). To further compute, the i th diagonal element of

N (G)2 is
n∑
j=1

NG(i, j)NG( j, i) =
n∑
j �=i

wG(i, j)2

d(vi )d(v j )
+ 1.

Thus, we have:

ER(G) = 1

n − 1

n∑
i=1

n∑
j �=i

wG(i, j)2

d(vi )d(v j )
− n

(n − 1)2
.

= 1

n − 1

∑
(vi ,v j )∈E

wG(i, j)2

d(vi )d(v j )
− n

(n − 1)2
.

��
Theorem 2 indicates that we can avoid to calculate all eigenvalues for computing R-

energy. In terms of the theorem, Algorithm 1 depicts the steps to compute the R-energy for
a weighted network. The algorithm consists of two main steps. One is to compute the degree

of vertices (Lines 1–3). The other one is to aggregate the value of wG (i, j)2

deg(vi )deg(v j )
for each edge

at Lines 4–6. Both the time and space complexities of the algorithm are O(|V | + |E |).

Algorithm 1: calEnergy(G)

Input: input weighted network: G = (V , E) and WG ;
Output: the R-energy of G: e;

1 for each vertex vi ∈ V do
2 deg(vi ) = ∑

v j∈N (vi )
wG (i, j);

3 end
4 for each edge (vi , v j ) ∈ E do

5 e ← e + wG (i, j)2

deg(vi )deg(v j )
;

6 end
7 e ← e

n−1 − n
(n−1)2

;

8 return e

4.1 2-step commute probability

Given a weighted network, it can be considered as a random walk, where its transition
probability matrix P = (pi j )1≤i, j≤n can be defined as

pi j :=
{

wG (i, j)
d(vi )

, if (vi , v j ) ∈ E;
0, otherwise.

where pi j denotes the probability of reaching v j from vi in one step.

Let p(t)
i j denote the probability of reaching v j from vi in exactly t step. Specially, p(2)

i i
means the probability of returning vi from vi in exactly 2 steps, namely 2-step commute
probability, i.e.,

P(2)
i i =

n∑
j=1

pi j · p ji .
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The probability is very important because it computes the possibility of a random walk
returning back to vertex vi after 2 steps when a walker starts at vi . For a well-connected
vertex vi , a random walk is unlikely to return back to it if the walker starts at vi , i.e., small
2-step commute probability.

In fact, R-energy is related to the average 2-step commute probability of all vertices in
G. That is,

1

n

n∑
i=1

p(2)
i i = 1

n

n∑
i=1

n∑
j �=i

pi j · p ji = 1

n

n∑
i=1

n∑
j �=i

wG(i, j)2

d(vi )d(v j )
.

We rewrite Eq. (4) into Eq. (6).

ER(G) = n

n − 1

⎛
⎝1

n

∑
(vi ,v j )∈E

wG(i, j)2

d(vi )d(v j )
− 1

n − 1

⎞
⎠ (6)

The factor n
n−1 in Eq. (6) can be considered as a reward factor for the weighted network of

n vertices. Larger graphs are therefore more robust due to monotonically decreasing n
n−1 as

n increases. This factor facilitates the comparison of R-energy for networks with different
sizes. Note that the 2-step commute probability of each vertex in a clique of equal edge
weights with n vertices is 1

n−1 . The right side of Eq. (6) is thus the difference between the
average 2-step commute probability and the average 2-step community probability of a clique
with the same size. Hence, theR-energy of G combines the reward of network size with the
difference between the average 2-step commute probability of G and a clique with the same
size.

4.2 R-energy for disconnected network

R-energy canmeasure the robustness of both connected and disconnectedweighted networks.
Suppose that network G has N connected components, denoted as {Ck}Nk=1. In Eq. (7), the
energy is derived by weighted sum of the average 2-step commute probability of vertices
from each connected component.

ER(G) = n

n − 1

(
N∑

k=1

nk
n
PCk − 1

n − 1

)
(7)

where PCk is the average 2-step commute probability of vertices from connected component
Ck in Eq. (8).

PCk = 1

nk

∑
(vi ,v j )∈Ck

wG(i, j)2

d(vi )d(v j )
, k = 1, . . . , N (8)

R-energy therefore considers a large disconnected network G to be robust if G contains a
robust giant component. This conclusion is reasonable and is consistent with our intuition.

For an unweighted network G, wG(i, j) = 1 if AG(i, j) = 1, otherwise 0. TheR-energy
can be computed in Eq. (9).

ER(G) = 1

n − 1

∑
(vi ,v j )∈E

AG(i, j)

d(vi )d(v j )
− n

(n − 1)2
. (9)

The result is consistent with our published work [14].
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4.3 ComputingR-energy in an incremental manner

Based on following theorem, we computeR-energy in an incremental manner. It means that
R-energy can be applied for measuring robustness of dynamic networks.

Theorem 3 Given aweighted networkG = (V , E,W ) of n vertices and itsR-energy denoted
as ER(G), we have

1. if v0 is a new coming vertex, which connects vertex vk with weight w in network G. The
R-energy of the new formed network can be computed as

n − 1

n
ER(G) + 2

n
Δ(vk) − 1

n2(n − 1)
. (10)

2. if a new coming edge e with weight w connects vertices vi0 and v j0 in network G. The
R-energy of the new formed network can be computed as

n − 1

n
ER(G) + 2

n

(∇(vi0) + ∇(v j0)
) − 1

n2(n − 1)
. (11)

where Δ(vk) = −∑
v j∈N (vk )

wG ( j,k)2w
(d(vk )+w)d(vk )d(v j )

+ w
d(vk )+w

and ∇(vk) = −∑
v j∈N (vk )

wG (k, j)2w
(d(vk )+w)d(v j )d(vk )

+ w2

(d(vi0 )+w)(d(v j0 )+w)
.

Proof 1. For vertex vk , its degree changes to d(vk) + w. Furthermore, the difference of
2-step commute probability for vertex vk is

Δ(vk)
.=

∑
v j∈N (vk )

wG( j, k)2

(d(vk) + w)d(v j )
+ w2

(d(vk) + w)d(v0)
−

∑
v j∈N (vk )

wG( j, k)2

d(vk)d(v j )

= −
∑

v j∈N (vk )

wG( j, k)2w

(d(vk) + w)d(vk)d(v j )
+ w

d(vk) + w
.

For all neighbors of vertex vk , the difference of their 2-step commute probabilities is

∑
v j∈N (vk )

wG(k, j)2

(d(vk) + w)d(v j )
+ w2

(d(vk) + w)d(v0)
−

∑
v j∈N (vk )

wG(k, j)2

d(vk)d(v j )

= −
∑

v j∈N (vk )

wG( j, k)2w

(d(vk) + w)d(vk)d(v j )
+ w

d(vk) + w
= Δ(vk).

According to Eq. (6), R-energy of the new formed network can be computed as

ER(G + v0) = 1

n

⎛
⎝ ∑

(vi ,v j )∈E

wG(i, j)2

d(vi )d(v j )
+ 2Δ(vk)

⎞
⎠ − n + 1

n2

= 1

n

(
(n − 1)ER(G) + n

n − 1
+ 2Δ(vk)

)
− n + 1

n2

= n − 1

n
ER(G) + 2

n
Δ(vk) − 1

n2(n − 1)
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2. For new formed edge e = (vi0 , v j0), the difference of 2-step commute probabilities for
vertices in N (vi0) is

∇(vi0)
.=

∑
vk∈N (vi0 )

wG(k, i0)2

(d(vi0) + w)d(vk)
+ w2

(d(vi0) + w)(d(v j0) + w)

−
∑

vk∈N (vi0 )

wG(k, i0)2

d(vk)d(vi0)

= −
∑

vk∈N (vi0 )

wG(k, i0)2w

(d(vi0) + w)d(vk)d(vi0)
+ w2

(d(vi0) + w)(d(v j0) + w)
.

For vertex vi0 , the difference of 2-step commute probability is

−
∑

vk∈N (vi0 )

wG(i0, k)2w

(d(vi0) + w)d(vk)d(vi0)
+ w2

(d(vi0) + w)(d(v j0) + w)
= ∇(vi0).

Similarly, we can compute the difference of 2-step commute probability related to vertex
v j0 . According to Eq. (6), R-energy of the new formed network can be computed as

ER(G + e) = 1

n − 1

⎛
⎝ ∑

(vi ,v j )∈E

wG(i, j)2

d(vi )d(v j )
+ 2∇(vi0) + 2∇(v j0)

⎞
⎠ − n

(n − 1)2

= 1

n

(
(n − 1)ER(G) + n

n − 1
+ 2∇(vi0) + 2∇(v j0)

)
− n + 1

n2

= n − 1

n
ER(G) + 2

n

(∇(vi0) + ∇(v j0)
) − 1

n2(n − 1)

��
In terms of Theorem 3, R-energy can be efficiently updated when vertices are added

or edges are modified. As a result, we can compute R-energy for dynamic networks in an
incremental and efficient manner.

4.4 Some important properties ofR-energy

In this section, we show some properties of R-energy of a weighted network.

4.4.1 R-energy for complete networks

Theorem 4 Given a weighted network G = (V , E,W ) of size n,

1. If G is a clique of equal edge weight, then ER(G) = 0;
2. If G is a biclique of equal edge weight, then ER(G) = n−2

(n−1)2
;

Proof As G is a clique of equal edge weight w, degree of each vertex is therefore (n − 1)w.

ER(G) = 1

n − 1

n∑
i=1

n∑
j �=i

w2

(n − 1)2w2 − n

(n − 1)2
= 0.
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Fig. 1 Two cliques with different
weights
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If G is a biclique of equal edge weight, let |V1| = p, |V2| = q and weight be w. Degree
of each vertex v1 ∈ V1 is qw, and degree of each vertex v2 ∈ V2 is pw. Then, ER(G) can
be computed as:

1

n − 1

⎛
⎝ p∑

i=1

n∑
j �=i

w2

pqw2 +
p+q∑

i=p+1

n∑
j �=i

w2

pqw2

⎞
⎠ − n

(n − 1)2

= 1

n − 1

⎛
⎝ p∑

i=1

1

p
+

p+q∑
i=p+1

1

q

⎞
⎠ − n

(n − 1)2

= 2

n − 1
− n

(n − 1)2
= n − 2

(n − 1)2
.

��
This theorem indicates that a clique with equal edge weight is equivalent to an unweighted
clique. For example, Fig. 1 shows two cliques of 4 vertices with different weights. In terms of
Theorem 4 and Eq. (6),R-energies of two cliques in Fig. 1 are ER(Ga) = 0 and ER(Gb) =
8

225 . NetworkGa is therefore more robust thanGb. In addition, only clique with equal weight
can achieve zero R-energy. For a biclique, it can be very robust if it is large in size.

4.4.2 Bounds ofR-energy

Theorem 5 Let LB and U B be n[wmin(n−1)−dmax]
dmax(n−1)2

and n[wmax(n−1)−dmin]
dmin(n−1)2

, respectively. If G is
a connected and weighted network of n vertices, then

max
{
0, LB

} ≤ ER(G) < min
{
1,UB

}
, (12)

where wmin and wmax are the minimum and maximum weights of network G, and dmin and
dmax are the minimum and maximum vertex degrees of network G.

Proof At first, we bound the value of var(G) := ∑n
i=1

∑n
j �=i

w2
G (i, j)

d(vi )d(v j )
.

var(G) =
n∑

i=1

1

d(vi )

∑
v j∈N (vi )

w2
G(i, j)

d(v j )

≤
n∑

i=1

wmax

d(vi )

∑
v j∈N (vi )

wG(i, j)

dmin
= nwmax

dmin
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Similarly, we have

var(G) ≥
n∑

i=1

wmin

d(vi )

∑
v j∈N (vi )

wG(i, j)

dmax
= nwmin

dmax

Thus, we have

nwmin

dmax
≤ var(G) ≤ nwmax

dmin

According to Theorem 2, we have

ER(G) = var(G)

n − 1
− n

(n − 1)2

It is easy to get the bound of ER(G) as

LB ≤ ER(G) ≤ UB

Note thatER(G) ≥ 0 because it is defined as variance of ζi for i = 2, 3, . . . , n. Therefore,
we have the left side of Eq. (12). Furthermore, because 0 ≤ wG (i, j)

d(vi )
≤ 1 and 0 ≤ wG (i, j)

d(v j )
≤ 1,

we have

var(G) =
n∑

i=1

∑
v j∈N (vi )

wG(i, j)

d(vi )

wG(i, j)

d(v j )

≤ 1

2

n∑
i=1

∑
v j∈N (vi )

(
wG(i, j)

d(vi )
+ wG(i, j)

d(v j )

)
= n

Then, we have ER(G) < 1. Thus, we have the right side of Eq. (12). ��

This theorem indicates thatR-energy ranges from 0 to 1. The left equality holds if weighted
network G is a clique with equal weight.

4.4.3 Other topological measures

In this section, we analyze the other possible robustness measures on weighted networks.
The weighted algebraic connectivity, which is defined by the second smallest eigenvalue

of Laplacian matrix of a weighted network, is applied to evaluate robustness of weighted
airport transportation network [28] and is a measurement of the robustness for weighted
networks [20].

The entropy of a weighted network is defined in Eq. (13):

entropy = −
∑
v∈V

d(v)

2m
log

(
d(v)

2m

)
, (13)

where d(v) denotes the weighted degree of vertex v, andm presents the total weighted degree
of all vertices of the network. The entropy of a weighted network evaluates how biased
weighted degrees of vertices of the network are. The entropy of a network is maximized,
which is log(n − 1), if the network is a d-regular network with equal weights whatever the
positive integer d is.
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The disparity of vertex vi is defined as below [4]:

η(vi ) =
∑

v j∈N (vi )

(
wG(i, j)

d(vi )

)2

(14)

This measure distinguishes how biased weights of out-link edges of a vertices are. For a
vertex of k neighbors, when all weights are of the same order, the quantity is closed to 1

k
(� 1). In contrast, where only a small number of connections dominate, the quantity is of
order 1

n (n � k). Based on disparities of all vertices in a weighted network, we define mean
and variance disparities for the network as follows:

m-disparity = 1

n

∑
v∈V

η(v);

v-disparity = 1

n

∑
v∈V

(η(v) − m-disparity)2.

Existing measures may not be suitable to evaluate robustness of weighted networks. We
summarize our analysis in Table 2. In detail, a reasonable robustness measure can evaluate
how well following networks have:

– Networks with isolated vertices: many vertices in a scale-free network have few neigh-
bors. They are easy to be isolated vertices when the network is attacked. From Table 2,
entropy, weighted algebraic connectivity, mean disparity, and variance disparity cannot
evaluate robustness of network with isolated vertices because: (1) entropy, mean dispar-
ity, and variance disparity have no definition for a vertex of zero degree; (2) weighted
algebraic connectivity is always zero.

– Disconnected networks: networks always have many strongly connected components.
Weighted algebraic connectivity is zero if the network has multiple strongly connected
components. Even though the giant component is a representation of the network, some
networks may not have giant component. For the case, weighted algebraic connectivity
is invalid which is shown in Table 2.

– d-regular networks: a d-regular network is closed to a clique when d is a large value.
On contrast, the network is far away being a clique. Entropy and variance disparity of all
d-regular networks are log(n−1) and zero, respectively (note that all edges have the same
weight in each d-regular network). Even though regular networks with different d values
have different topological structures, entropy and variance disparity cannot distinguish
them.

– Weighted networks: edges of a network may associate with weight or attached informa-
tion, such as times of interactions and # retweets between two users. However, binary
version of R-energy ignores weights of edges in a network.

– Large-scale networks: today’s networks are usually of very large scale. For example,
Cit-Patents [22] has about millions vertices and ten millions edges. Weighted algebraic
connectivity cannot be computed efficiently since the second smallest eigenvalue need
to be computed. Therefore, efficient measurements of network robustness are required.

5 Robustness on static networks

In this section, we evaluate our proposedR-energy on static networks including synthetically
created networks and some real-world networks. We design a set of experiments to compare:
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(1) the effectiveness and scalability of R-energy; (2) common patterns which are found
based onR-energy. The experiments were implemented in Java. They were all conducted on
a dual-core 64-bit processor with 3.06 GHz CPUs and 128 GB of RAM.

5.1 Networks

Synthetic networks Syn_N is a synthetic graph with N vertices. The generator outputs a
synthetic graph as shown in Algorithm 2. The algorithm initializes a graph with N vertices
and empty adjacency list. According to the property of the scale-free network, it assigns a
degree k to each vertex v in this graph such that Pr[deg(v) = k] ≈ k−α from Lines 5 to
8. Note that the value of totalDeg should be even. The steps from Lines 9 to 11 guarantee
this condition. Next, we assign the neighbors of each vertex after sorting vertices by degree
in decreasing order from Lines 13 to 25. Finally, we assign a weight to an undirected edge
randomly from Lines 26 to 30.

Algorithm 2: a synthetic undirected and weighted graph
Input: N , α,weight;
Output: G: a undirected and weighted graph;

1 vertexSet ← a vertex set with N vertices; // initialized vertex set;
2 edgeSet ← ∅;
3 weightSet ← ∅;
4 totalDeg ← 0; // initialized sum of degrees;
5 for each vertex x ∈ vertexSet //Step 1: Vertex generation do
6 deg(x) ← sample an integer value from the power law distribution with parameter α;
7 totalDeg ← totalDeg + deg(x);
8 end
9 if numEdge is odd then

10 deg(x1) ← deg(x1) + 1;
11 totalDeg ← totalDeg + 1;
12 end
13 sort vertices in vertexSet by descending order of deg(·);
14 V ← vertexSet;
15 for each vertex x ∈ vertexSet //Step 2: Edge generation do
16 randomly select a vertex set Y from V s.t. |Y | = deg(x) and x /∈ Y ;
17 for each vertex y ∈ Y do
18 edgeSet ← edgeSet ∪ {(x, y)};
19 deg(y) ← deg(y) − 1;
20 if deg(y) == 0 then
21 V ← V − {y};
22 end
23 end
24 V ← V − {x};
25 end
26 for each undirected edge (u, v) ∈ edgeSet //Step 3: Weight assignment do
27 randomly assign a weight w s.t. w ∼ U [0,weight];
28 weightSet ← ((u, v), w);
29 weightSet ← ((v, u), w);
30 end
31 return G = (vertexSet, edgeSet,weightSet)
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Table 3 Descriptive statistics of
experimental networks

Network Vertices Edges Avg. degree

CN 297 2148 7.23

IT 187 11, 907 63.7

HT 7610 15, 751 2.07

AP 16,046 121, 251 7.56

CM 16,264 47, 594 2.93

SP 1,632,804 30,633,564 18.76

WT 1,394,385 5,021,410 3.60

CP 5,969,810 33,037,895 5.53

Real networks We use six static real networks with different sizes from Mark Newman’s
collection1, Kristian Skrede Gleditsch’s collection2, and Stanford Large Network Dataset
Collection.3

– IT: it provides estimates of trade flows between independent states (1948–2000) [15].
– CN: Neural network [27].
– HT: it is a weighted network of coauthorships between scientists posting preprints on the

High-Energy Theory E-Print Archive between January 1, 1995, and December 31, 1999
[25].

– AP: it is a weighted network of coauthorships between scientists posting preprints on the
Astrophysics E-Print Archive between January 1, 1995, and December 31, 1999 [25].

– CM: it is a weighted network of coauthorships between scientists posting preprints on
the Condensed Matter E-Print Archive between January 1, 1995, and March 31, 2005
[25].

– SP: it is an undirected social network on Pokec [22].
– WT: it is an undirected communication network on Wikipedia [27].
– CP: it is a US patent dataset which spans 37 years (January 1, 1963, to December 30,

1999) and includes all the utility patents granted during that period [22].

The descriptive statistics of these networks are demonstrated in Table 3. In this work, we
consider these networks weighted and undirected.

5.2 Efficiency and scalability of computingR-energy

In this task, the synthetic networks are generated with different sizes. We compute the values
of R-energy for both synthetic and real networks. We illustrate the elapsed time and the
values of R-energy in Fig. 2. Note that computing R-energy and algebraic connectivity is
faster than computing node connectivity and edge connectivity since computing later metrics
needs to check all cuts of a network, which is very expensive operation. In addition, the later
metrics are only proposed for evaluating robustness of unweighted networks. As a result, we
only compare the efficiency for computing R-energy and algebraic connectivity in part. In
Fig. 2a, we demonstrate the elapsed time for computing R-energy and algebraic connectivity.
As illustrated in Fig. 2a, c, we observe that the elapsed time forR-energy linearly scales with

1 http://www-personal.umich.edu/~mejn/netdata/.
2 http://ksgleditsch.com/exptradegdp.html.
3 http://snap.stanford.edu/data/index.html.
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(a) (b)

(c) (d)

Fig. 2 Performance of computing the R-energy

the number of edges. Furthermore, the elapsed time of computingR-energy is less than 400
ms for synthetic networks with more than 100,000 vertices, and less than 120s for the largest
network Cit-Patents [22] with 5.9M vertices and 33.0M edges. We hold that it is because
the complexity of computing R-energy is only O(|V | + |E |). However, the elapsed time of
computing algebraic connectivity is more than 1000 times than that of computing R-energy
when there are 4× 104 vertices in a synthetic network. This points to the advantage of using
R-energy to measure robustness for large networks.

5.3 Impact of vertex removal toR-energy

Unweighted networks with heavy tail are known to be highly robust against random removal
of vertices [8], but are hypersensitive to removal of high-degree vertices [1, 6]. We would
like to check whether the same conclusion can be observed from weighted networks.

In this task, we experiment with three vertex removal options, namely (a) remove in
decreasing degree order; (b) remove in increasing degree order; and (c) remove in random
order. For eachoption, after removing x fractionof vertices from thenetworks,we computeR-
energy to measure the new network robustness. Figure 3 illustrates theR-energy of resultant
network for the three options compared with theR-energy of the original network. From the
figure, we obtain three important observations as follows.

– Networks become less robust sooner when vertices with the highest degrees are removed.
As demonstrated in Fig. 3, compared with the original networks, the values ofR-energy
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increase sooner when vertices with the highest degrees are removed than when vertices
with small degrees are removed, or randomly removed. This is due to the fact that vertices
with high degrees tend to have smaller 2-step commute probabilities. Removing them
leads to an increase in average returning probability. Therefore, the network becomes
less robust.

– Networks remain robust or become slightly more robust when vertices with the smallest
degrees are removed. As illustrated in Fig. 3, we find that the values ofR-energy remain
constant or decrease slightly when vertices with the smallest degrees are removed from
the networks. Because vertices with the smallest degrees have larger 2-step commute
probabilities, removing the vertices with the smallest degrees results in little decrease in
the average of the returning probabilities.

– Networks become less robust when vertices are randomly removed. However, the change
is slower than that of removing vertices of the highest degrees. This observation can
be attributed to the fact that each vertex has a certain chance to decrease its degree
when we remove vertices at random. It indicates that the 2-step commute probability of
each vertex increases with certain probability. However, vertices with smallest degrees
are more likely to be removed in scale-free networks. Hence, vertices of large 2-step
commute probabilities are more likely to be removed leading to a decrease in network
energy.

The above three observations are also consistent with the results of the unweighted net-
works [14] and point out the rationality of proposed R-energy.

6 Robustness on dynamic networks

Weighted networks evolve with time and so are their robustness. In this section, we applyR-
energy on dynamic and time-evolving Twitter weighted network so as to evaluate robustness
as a possiblemeasure to detect events and trends.Unlike the previous event and trenddetection
research which considers time series of messages or news articles generated in social media,
our approach utilizes dynamic changes to network structure. These are the changes that cause
a network to become suddenly more robust or less robust than usual.

6.1 Data collection

Twitter is a popular microblogging site with users generating and sharing short message
contents in real time [21]. In this experiment, we first selected a set of Twitter users Uus

(Usg) who are the followers and followees of a small set of seed user accounts that belong
to US (Singapore) politicians and analysts. These are the users who are more likely to tweet
about political topics. We crawled the Twitter data generated by U · from May 1, 2012, to
July 29, 2012.

FromU ·, we further selected users who write, reply, or retweet at least a tweet per month
over three months. There are 129,056 and 48,339 such users from the USA and Singapore,
andwe keep them in the user setU · discarding the remaining users and their tweets. Each day,
a subset of users in U · may reply or retweet one another. We therefore construct a weighted
reply network and another weighted retweet network for day t and denote them by G ·

RE (t)
and G ·

RT (t), respectively. An undirected edge (u, v) is included in the reply network for day
t if user u replies at least a tweet from user v, or user v replies at least a tweet from user u in
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3 R-energies of static networks

day t . The weight of undirected edge (u, v) or (v, u) is the number of reply tweets between
users u and v. The edges in retweet network on day t are created in a similar manner.

6.2 Event detection

We demonstrate theR-energies ofG ·
RE (t) andG ·

RT (t) in Fig. 4a, b. To facilitate reading, we
add vertical lines representing Sundays to the figures. From the figures, we aim to determine
events that are characterized by bursts and drops of communication (replies or retweets) by
many users. We call these the internal and external events as the former can be explained by
the bursty content but not the latter. For example, a sport event may draw user attention away
from tweeting about politics. In addition to event detection, we also want to explain internal
events by searching the web.

Suppose (e1, e2 . . . , e90) is the sequence of R-energy values, where ei is the value of R-
energy for the i-th day. We calculate the absolute first-order difference of energy sequence,
denoted as (d1, d2 . . . , d90), where d1 = 0 and dt+1 = |et+1 − et | for 1 ≤ t ≤ 89. Based
on the mean and standard deviation of {dt }, we can detect an event at time t ′ statistically if
|dt ′ − mean({dt })| > γ · stddev({dt }) where mean({dt }) and stddev({dt }) denote the mean
and standard deviation of {dt }, respectively. In other words, an event is found when the
absolute first-order difference deviates from mean more than γ times the standard deviation.
However, mean is known to be sensitive to anomalies. We therefore employ trimmed mean
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(a)

(b)

Fig. 4 G-energies of dynamic networks

that is defined as the mean after discarding the smallest and largest τ% · |{dt }| values. In this
work, we set γ = 3 and τ = 5 empirically.

To describe an event at day t , we need to extract relevant event description keywords
from tweets (which can be replies or retweets) generated on the same day t . We denote the
words extracted from reply tweets (or retweets) on day t by WRE (t) (or WRT (t)) and the
frequency of word w ∈ WRE (t) (or WRT (t)) by f RE (w, t) (or f RT (w, t)). We define the
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Table 4 Descriptive statistics of reply and retweet networks

Network Absolute energy gap Word frequency gap

Mean Standard deviation Mean Standard deviation

Gus
RE 0.0086 0.0063 23.5 145.8

Gus
RT 0.0077 0.0060 148.3 1230.2

Gsg
RE 0.0051 0.0030 11.2 54.5

Gsg
RT 0.0104 0.0065 80.5 321.8

first-order frequency difference of wordw for day t as d f ∗(w, t) = f ∗(w, t)− f ∗(w, t−1).4

From {d f ∗(w, t)}, we derive the mean and standard deviation as mean∗(w) and stddev∗(w),
respectively.

Table 4 illustrates the means and standard deviations of absolute energy difference
sequence and word frequency difference sequence of the dynamic reply and retweet net-
works.

Take the largest difference of energy from both Gus
RE and Gus

RT on June 28, 2012, as an
example. The top three words from retweets with highest frequency difference are ‘tax,’
‘Obamacar,’ and ‘scotu’ (Supreme Court ofUnited States) after stopword removal and word
stemming. By searching the web using these keywords, we verified that the Obamacare
healthcare law was upheld by the Supreme Court of United States, and there were concerns
about tax increase as its outcome. This event attracted a lot of replies and retweets on June
28. The word frequency difference of ‘Obamacar’ in retweets subsided quickly on June 29,
2012, as shown by a negative d f RT (‘Obamacar,’ June 29) value.

For each day t , we define the average frequency difference of the three words w1, w2 and
w3 with highest d f ∗(·, t) as M∗(t) = 1

3

∑3
i=1 d f

∗(wi , t). If M∗(t) deviates far away from
the mean mean∗(w) w.r.t. the value stddev∗(w), an event is considered to happen on day t .

Formally, we define the normalized M∗(t) on day t as

N∗(t) = M∗(t) − mean∗(w)

stddev∗(w)

The larger the N∗(t) is, the more likely the top words are able to explain some event on t .
Empirically, we use the words with N∗(t) ≥ 8 to help us to explain internal events. On the
other hand, an external event may prevent people from communicating in Twitter. In this
case, N∗(t) may be small due to very few users generating tweets. We nevertheless tried to
use the frequent words on day t to search the web to confirm if an event is external.

Figure 5a illustrates the N∗(t) values of both Gus
RE and Gus

RT . Table 5 lists eight events
found from Gus

RE and Gus
RT using R-energy. The first column shows the location of event in

Fig. 4. The second column shows the date of event and N∗(t) value. The third column shows
the top three words derived by top frequency differences inGus

RE orGus
RT depending on which

of the two networks are used to detect the event. The final column shows the description of
events manually derived from the Google Search results of the top words.

Similarly, Fig. 5b illustrates the N∗(t) values of both Gsg
RE and Gsg

RT . Table 6 lists four
events found from Gsg

RE and Gsg
RT using R-energy.

Instead of using R-energy, we also experimented with time series of daily reply and
retweet counts using a similar event detection method. Unlike the R-energy time series, we

4 symbol * denotes RE or RT .
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(a)

(b)

Fig. 5 Normalized difference of word frequencies

could detect only two events on June 28 and June 30 listed in Table 5 and one event on June
19 listed in Table 6. This is because reply and retweet counts fluctuate very much over time.
We therefore detect fewer bursty events than that usingR-energy. The results also show that
R-energy can help detecting events that are different.

Compared the detected events in Table 5 with that of in Table 4 of the original conference
version [14], we can observe that four more events are detected from the reply network. This
is due to the factor that an unweighted edge in the reply network does not reflect the process
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Table 5 Detected events from Gus
RE and Gus

RT

Anomaly Confirmed Event Event description

d36 (RE) June 5 (5.5) Walker (935) Tom Barr. Wisconsin voters rejected a year-long
effort to recall Gov. Scott Walker

Vote (858)

Union (687)

d59 (RE) June 28 (19.7) Tax (4777) Obamacare was the largest tax increase in the
history of the world

Robert (1988)

Obamacar (1943)

d61 (RE) June 30 (1.7) Natgat (1898) Honorable Bio visited California to bring the
power loss

Republic (1061)

Storm (1049)

d67 (RE) July 7 (36.2) Libertyimag (207) 2012 Conquer the Bear Series took place from
July 7 to September 9 on Big Bear Lake, CA

Ron (201)

Gibb (178)

d82 (RE) July 20 (10.0) Shoot (25,860) A masked gunman killed 12 people at a midnight
showing of the new Batman movie in Aurora,
Colorado

Gun (24,103)

Aurora (20,480)

d36 (RT) June 5 (15.6) Wisconsin (21089) The event is also detected by d36(RE)

Walker (20,726)

Wirecal (16213)

d47 (RT) June 15 (10.6) Obama (17,652) President Obama was way out of line with his
June 15th immigration amnesty

Immigr (11284)

Illeg (10588)

d52 (RT) June 20 (16.7) Fastandfuri (23,295) White House had asserted executive privilege on
‘fast and furious’ documents

Holder (19,991)

Obama (18,974)

d52 (RT) June 21 (2.3) Lebron(3816) Twitter went down in worst crash in 8 months

Nba (2694)

Twitter (2517)

d60 (RT) June 28 (36.2) Tax (52,444) The event is also detected by d59(RE)

Obamacar (51,390)

Scotu (30,247)
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Table 6 Detected events from Gsg
RE and Gsg

RT

Anomaly Confirmed Event Event description

d63 (RE) July 2 (6.2) lol (590) SIA backed biometrics to improve integrity
of medicare, medicaid programs

sleep (246)

sia (208)

d26 (RT) May 26 (5.7) Hougangbyelect (2448) Polling Day for the Hougang by election
would be on May 26, 2012

pap (1645)

wp(1607)

d50 (RT) June 19 (23.0) Singapor (9073) Singapore is in Europe was popular on
Twitter

Europ (7543)

Bieber (5847)

d69 (RT) July 8 (8.7) Anthem (3012) ‘China FT’ wanted to change Singapore
national anthem to Chinese

Chang (2890)

Nation (2735)

of user interaction. Even though two users have a lively discussion about a hot topic, only
an unweighted edge forms between them, while a weighted edge captures the interaction
between users. However, we do not observe this phenomenon in the retweet network since
users usually do not retweet a tweet many times. This points to the positive effect of defining
R-energy on a weighted network.

6.3 Periodic trend pattern detection

Other than ad hoc events, Mann–Kendall trend test [24] indicates that a periodic pattern
significantly exists inG ·

RE andG ·
RT of Fig. 4a, b.We alsowant to detectweekly trend patterns

from the figure by examining the regularities in network energy changes. This weekly pattern
can be even more distinct when the ad hoc events are removed.

In this section, we therefore focus on detecting weekly pattern. Based on a pre-defined
threshold θ (= 0.1 × mean({dt })), we first derive three kinds of energy changes from the
previous day, namely (i) energy increase (‘+’), (ii) energy decrease (‘−’), and (iii) insignif-
icant change (null). Given a day of a week x , e.g., Tuesday, we count the number of ‘+’s,
‘−’s, and null’s and denote them by p(x), n(x), and null(x), respectively. After ignoring the
ad hoc events, we increment p(x) if the energy change is more than θ ; increment n(x) if the
energy change is smaller than −θ ; or increment null(x) otherwise. The proportions of ‘+’s
and ‘−’s on x across multiple weeks can be defined as:

prop(‘+’, x) = p(x)

p(x) + n(x) + null(x)

prop(‘−’, x) = n(x)

p(x) + n(x) + null(x)

prop(null, x) = null(x)

p(x) + n(x) + null(x)
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0

(a) (b)

Fig. 6 Weekly pattern detecting for US users

(a) (b)

Fig. 7 Weekly pattern detecting for Singapore users

Let maxprop(x) be maximum value of prop(‘+’, x), prop(‘−’, x) and prop(null, x). We
assign a label l to day x as follows:

l =
⎧⎨
⎩
‘+’, if prop(‘+’, x) equal to maxprop(x)
‘−’, if prop(‘−’, x) equal to maxprop(x)
null, otherwise

(15)

In case of prop(‘+’, x) = prop(‘−’, x) = maxprop(x), we assign a null label to the day x .
For example, suppose out of 13 weeks, there are 12 Mondays with ‘−’s, one with ‘+’ and

zero with null. The compositions of positive, negative, and null energy changes on Monday
are 7.7%, 92.3%, and 0%, respectively. Monday therefore is assigned to ‘−’. By assembling
the proportions of positive, negative, null energy changes for different days of week, we
obtain the weekly trend pattern of G ·

RE and G ·
RT .

Figure 6 illustrates the composition of weekly pattern for Gus
RE and Gus

RT . According to
label assignment rule, we obtain the weekly trend pattern ‘− − + + + + −’ for Gus

RE , and
another weekly trend pattern ‘− − − + − + −’ for Gus

RT . Other than Friday, the two weekly
trend patterns obtained from Gus

RE and Gus
RT are very similar.

Figure 7 illustrates the composition of weekly pattern for Gsg
RE and Gsg

RT . According to
label assignment rule, we obtain the weekly trend pattern ‘− + + − + + −’ for Gsg

RE , and
another weekly trend pattern ‘− + + + + + −’ for Gsg

RT . Other than Friday, the two weekly
trend patterns obtained from Gsg

RE and Gsg
RT are very similar. In addition, the weekly trend

patterns for two countries are very similar.
From the weekly trend pattern, we can casually conclude that users are less likely to tweet

on Saturdays but tweet a lot on Sundays as well as Mondays.
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7 Conclusion

In many applications, an obvious characteristic is tending to be modeled them with large-
scale networks, such as protein–protein interaction networks, neural networks, the Internet,
the World Wide Web, social networks, and scientific collaboration networks. To understand
the robustness of network with millions or billions vertices is an important and challenged
task both in theory and application. In this paper, based on the normalized Laplacian matrix,
we define the R-energy for a weighted network to measure its robustness.

In theory, the R-energy is related to the average 2-step commute probability. Vertex has
smaller 2-step commute probability if it has higher connectivity. It indicates that the high
robustness network has smaller R-energy. Furthermore, the complexity of computing R-
energy is O(|V | + |E |) since the algorithm just scans the entire weighted network once
after obtaining the weighted degrees of all vertices. Therefore, it can be easily applied to
large networks. Our empirical study illustrates that our algorithm takes less than 120s for a
network with millions vertices. In practice, we can find some patterns of robustness of static
networks and some anomaly cases of dynamic networks.

In this work, we have only considered the dynamic information network offline, and thus,
it may fail for online event detection. Since online event detection may be more helpful in
real-world applications. To address this issue, we plan to extend ourR-energy to online detect
events on real social network platforms, such as Facebook and Twitter. In addition, we can
construct the interaction network for a particular event. In terms of the connection of this
information network, we can also apply our R-energy to predict its future trend. Thus, we
plan to investigate how to accurately predict its burst.

Acknowledgements Thiswork has been supported by theNationalNatural Science Foundation ofChina under
Grant No. U1911203, Alibaba Group through the Alibaba Innovation Research Program, and the National
Natural Science Foundation of China under Grant No. 61877018.

Appendix

Appendix A: Operators on the vertices

Eigenvalues and eigenvectors are used to understand what happens when one repeatedly
applies an operator to a vector. If we have an operator that is naturally associated with a
weighted network G, then properties of this operator will be revealed by its eigenvalues and
eigenvectors. The first operator one typically associates with a weighted network G is its
adjacency operator. To understand operator, one must view vectors g ∈ Rn as function from
a vertex to a Real. That is, they should be understood as a vector of RV . When we apply the
adjacency operator to such a function, the result value at a vertex vi is the sum of the values
of the function g ∈ RV over all neighbors of vertex vi .

(AGg)(vi ) =
∑

v j :(vi ,v j )∈E
g(v j ).

Similarly, we can derive weighted Laplacian and weighted normalized Laplacian operators
as:

(LGg)(vi ) =
∑

(vi ,v j )∈E
wG(i, j)(g(vi ) − g(v j );
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(NGg)(vi ) = g(vi ) −
∑

(vi ,v j )∈E
g(v j )

wG(i, j)√
d(vi )d(v j )

.

Appendix B: Proof of Theorem 1

Proof (i) follows from considering the Rayleigh quotient and the trace of NG . Since sum
of every column or row of NG is 0, 0 is eigenvalue of NG associated with eigenvector
v1 = −→

1 = (1, 1, . . . , 1)T . Let RV be the set of functions from V to R,

RV = {g : V −→ R}.
If g be a function of RV , we can view g as a column vector. Then,

〈g, NGg〉
〈g, g〉 = 〈g, D−1/2

G LGD−1/2
G g〉

〈g, g〉 = 〈 f , LG f 〉
〈 f , f 〉

=
∑

(v,u)∈E wG(u, v)( f (u) − f (v))2∑
v f (v)2d(v)

where g = D1/2
G f and 〈 f , g〉 = ∑

x f (x)g(x). In terms of Rayleigh quotient, ζ1 =
infg

〈g,NGg〉
〈g,g〉 ≥ 0. And the fact that (( f (u) − f (v))2) ≤ 2( f (v)2 + f (u)2), therefore,

ζn = sup
g

〈g, NGg〉
〈g, g〉

= sup
f

∑
(v,u)∈E wG(u, v)( f (u) − f (v))2∑

v f (v)2d(v)
≤ 2.

Equality holds for i = n − 1 when f (v) = − f (u) for every edge (v, u) ∈ E .
In addition, the sum of all eigenvalues of NG is n. Except ζ1, the mean of remaining

eigenvalues is n
n−1 . We therefore derive ζ2 ≤ n

n−1 ≤ ζn .
(ii) ⇐� follows from the equation det(NG − ζ I ) = 0.
�⇒: Let NG = ΛΠΛ−1 and Π = diag(0, n

n−1 , . . . ,
n

n−1 ). We have
(
NG − n

n − 1
I

)
NG =

(
ΛΠΛ−1 − n

n − 1
I

)
ΛΠΛ−1

= ΛΠ2Λ−1 − Λ
n

n − 1
ΠΛ−1 = 0.

We also have NG(NG − n
n−1 I ) = 0. Thus, every column and row of NG − n

n−1 I is an eigen-
vector of NG associated with eigenvalue zero. Notice that the eigenvector of NG associated
with eigenvalue zero is c(

√
d(v1),

√
d(v2), . . . ,

√
d(vn)) for some scalar constant c. Matrix

NG − n
n−1 I can be represented as

⎛
⎜⎜⎝
c1

√
d(v1) c1

√
d(v2) · · · c1√d(vn)

c2
√
d(v1) c2

√
d(v2) · · · c2√d(vn)

· · · · · ·
cn

√
d(v1) cn

√
d(v2) · · · cn√d(vn)

⎞
⎟⎟⎠

Because NG − n
n−1 I is symmetric and has identical diagonal values, we have ci = c j and√

d(vi ) = √
d(v j ) for any i, j . Therefore, NG = n

n−1 I + cJ , where c is a scalar constant
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and J is a n × n matrix where each entry is equal to 1. To summarize, network G must be a
clique of equal edge weights.

(iii)�⇒: follows from the fact that the union of two disjoint networks has as its spectrum
the union of the spectra of the original network.

⇐�: it is correct if i = 1. Obviously, the network is disconnected if i > 1. The network
has i strongly connected component, otherwise ζi = 0 or ζi �= 0. ��
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