
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2022

Adaptive task planning for large-scale robotized warehouses Adaptive task planning for large-scale robotized warehouses

Dingyuan SHI

Yongxin TONG

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Ke XU

Wenzhe TAN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
SHI, Dingyuan; TONG, Yongxin; ZHOU, Zimu; XU, Ke; TAN, Wenzhe; and LI, Hongbo. Adaptive task planning
for large-scale robotized warehouses. (2022). Proceedings of the 38th IEEE International Conference on
Data Engineering (ICDE), Kuala Lumpur, 2022 May 9-12. 3327-3339.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7222

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Dingyuan SHI, Yongxin TONG, Zimu ZHOU, Ke XU, Wenzhe TAN, and Hongbo LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7222

https://ink.library.smu.edu.sg/sis_research/7222

Adaptive Task Planning for Large-Scale
Robotized Warehouses

Dingyuan Shi∗, Yongxin Tong∗, Zimu Zhou†, Ke Xu∗, Wenzhe Tan‡, Hongbo Li‡
∗ SKLSDE Lab, BDBC and IRI, Beihang University, Beijing, China

† Singapore Management University
‡ Geekplus

∗{chnsdy, yxtong, kexu}@buaa.edu.cn
†zimuzhou@smu.edu.sg ‡{wenzhe.tan, jason.li}@geekplus.com

Abstract—Robotized warehouses are deployed to automatically
distribute millions of items brought by the massive logistic orders
from e-commerce. A key to automated item distribution is to plan
paths for robots, also known as task planning, where each task
is to deliver racks with items to pickers for processing and then
return the rack back. Prior solutions are unfit for large-scale
robotized warehouses due to the inflexibility to time-varying item
arrivals and the low efficiency for high throughput. In this paper,
we propose a new task planning problem called TPRW, which
aims to minimize the end-to-end makespan that incorporates the
entire item distribution pipeline, known as a fulfilment cycle.
Direct extensions from state-of-the-art path finding methods are
ineffective to solve the TPRW problem because they fail to adapt
to the bottleneck variations of fulfillment cycles. In response,
we propose Efficient Adaptive Task Planning, a framework for
large-scale robotized warehouses with time-varying item arrivals.
It adaptively selects racks to fulfill at each timestamp via rein-
forcement learning, accounting for the time-varying bottleneck of
the fulfillment cycles. Then it finds paths for robots to transport
the selected racks. The framework adopts a series of efficient
optimizations on both time and memory to handle large-scale
item throughput. Evaluations on both synthesized and real data
show an improvement of 37.1% in effectiveness and 75.5% in
efficiency over the state-of-the-arts.

I. INTRODUCTION

The boom of e-commerce has stimulated enormous logistic
demands. Over 2 billion logistic orders (worth over 115 billion
dollars) were created during the online shopping carnival of
2020 in China1. Such huge amounts of orders often emerge
dynamically over time. For example, there can be a sharp
surge within a short time when the carnival begins at midnight.
The massive, time-varying arrival of orders in unit time i.e.,
throughput, urges highly efficient and effective operations of
the warehouses that store and distribute the corresponding
items to buyers [1].

Robotized warehouses are expected to improve the effec-
tiveness and efficiency of warehouse operations by automating
the fulfillment cycle of item distributions [2]. In these ware-
houses, multi-robot systems are installed for item distribution.
Of our particular interest is the rack-to-picker mode, a popular
robotized warehouse operational mode where robots pick up
and deliver racks containing items from the storage area to

1https://www.cnbc.com/2020/11/12/singles-day-2020-alibaba-and-jd-rack-
up-record-115-billion-of-sales.html

(a) (b)

Fig. 1. A snapshot of a robotized warehouse showing entities in (a) the
storage area and (b) the processing area.

Fig. 2. The 2D layout of a rack-to-picker warehouse, where racks are shipped
back and forth between storage area and picking area. Pickers located at
picking area processing items (tasks) on the racks. A complete fulfilling cycle
contains five steps: pickup, delivery, queuing, processing and return.

pickers in the human picker area for processing (see Fig. 1).
In this mode, a fulfill cycle for item distribution consists
of five steps: rack pickup, delivery, queuing, processing, and
return (see Fig. 2). From the algorithmic perspective, a central
problem is to plan tasks (i.e., items) for these robots, i.e.,
determine racks (containing tasks) to fulfill, and plan paths
for robots to complete fulfill cycles at each timestamp.

Such task planning problems have been extensively studied
in the context of multi-agent path finding [3]–[9]. These multi-
agent path finding algorithms search conflict-free paths for
multiple agents (i.e., no robot will collision with each other),
typically with the objective to find the shortest paths [3], [4],
or to minimize the makespan [5]–[9], i.e., the total delay to
fulfill all items [10]. Most research efforts perform offline task
planning assuming the arrival of items is known a prior [3]–

[6]. A few [7]–[9] investigate the more realistic online task
planning problem, where tasks come continually as times goes
on. We also focus on online task planning that minimizes the
makespan. Yet we argue that prior studies [7]–[9] are unfit for
online task planning in large-scale robotized warehouses due
to the following limitations.
• Limitation 1: inflexible planning to time-varying item ar-

rival. As mentioned, a fulfillment cycle contains multiple
stages. Previous studies [7]–[9] assume a fixed makespan
bottleneck, e.g., delivery, which is reasonable with low,
constant throughput. This assumption breaks with high,
varying throughput, where the makespan bottleneck may
turn into queuing or processing. It is ineffective to apply a
time-invariant planning strategy to cope with the dynamic
makespan bottleneck.

• Limitation 2: inefficient planning for massive robots and
items. Many path finding algorithms [7]–[9] adopt A*
search [11] from source to destination completely, often
resulting in a time complexity of O(I(HW)2), where
I,H,W is the number of items, height and width of ware-
house. However, modern warehouses for e-commerce are
confronted with million-scale processing workload and
thousands of robots2. With over 106 items flushing in,
the total time complexity will be up to 1014, which is
unacceptable for execution in practice. Therefore, more
efficient planning algorithms are compulsory.

In response, we take a holistic problem formulation. First,
we define an end-to-end makespan incorporating the entire
fulfillment cycle. Such a formulation captures the bottleneck
changes in fulfillment cycles due to the time-varying item
arrivals. Then we propose Efficient Adaptive Task Planning
(EATP), an effective and efficient task planning framework
for large-scale robotized warehouses with time-varying item
arrivals. Instead of start fulfilling once items emerge on racks,
EATP adopts reinforcement learning to adaptively select racks
to fulfill at each timestamp according to the current through-
put, where the makespan may be dominated by the delay
of rack transport (pickup, delivery, and return), processing,
or queuing. It also incorporates a series of efficient designs
such as flip requesting side, conflict detection table and cache
aiding for both time and memory consumption reduction in
terms of rack selection and path finding. Evaluations on both
synthesized and real data show an improvement of 37.1% in
effectiveness and 75.5% in efficiency over the state-of-the-art
online multi-agent path finding scheme [7].

Our contributions are summarized as follows.
• We formulate the Task Planning in Robotized Warehouse

(TPRW) problem, which aims to minimize the end-to-
end makespan and highlights the challenges with massive,
time-varying item arrivals.

• We design Efficient Adaptive Task Planning (EATP), an
effective and efficient task planning framework to solve
the TPRW problem. It offers adaptability to item arrivals

2https://www.dhl.com/nl-en/home/press/press-archive/2019/dhl-opens-
largest-and-greenest-e-commerce-sorting-center-for-the-dutch-market.html

with reinforcement learning based rack selection, and
adopts a series of optimizations for fast and scalable
multi-agent path finding.

• We conduct experiments on both synthesized and real
datasets. The results demonstrate notable gains over the
state-of-the-art [7] in both effectiveness and efficiency.

The rest of this paper is organized as follows. We first
formulate our problem in Sec. II and propose a naive task
planning algorithm in Sec. III. We then provide an overview
of our efficient adaptive task planning method in Sec. IV, and
elaborate on its learning based rack selection and robot path
finding in Sec. V. The efficient design are detailed in Sec. VI.
We present the evaluations in Sec. VII, review related work
in Sec. VIII, and finally conclude in Sec. IX.

II. PROBLEM STATEMENT

In this section, we define the Task Planning in Robotized
Warehouses (TPRW) problem. We formulate the problem in
the context of the rack-to-picker mode, a prevailing operational
mode in robotized warehouses [12]. In this operation mode,
robots ship racks containing multiple items from the storage
area to pickers in the processing area. As in prior studies [7]–
[9], we partition the warehouse into grids whose side length
is the same as a robot’s side length (about 1 meter). The grid
partition is reasonable because the layout of a warehouse is
often regular. We build grid index for the warehouse. Next,
we formally define racks, pickers, and robots.

Definition 1 (Rack). A rack r is represented as 〈lr, τr, pr〉,
which locates at lr in the storage area and is associated
with picker pr. τr is the set of items’ processing time unit
consumption on r to be delivered to pr.

In the rack-to-picker mode, each rack is associated with a
fixed picker. This is because certain pickers and racks may
be dedicated to serve items destined to specific cities. Item
processing time usage set τr specifies each item’s processing
time at the picker. Items arrive and processed in an online
manner thus elements in τr emerge and disappear as time goes
on. We use R to denote the set of all racks.

Definition 2 (Picker). A picker p is represented as 〈lp, qp, ep〉,
where lp is its fixed location and ep is the estimated remaining
processing time of the currently picked item. qp is the queue
of racks waiting to be processed.

We assume a picker processes the items on the racks in the
queue in the “first-come-first-serve” manner. This is reasonable
since the picking area is often confined, making it difficult for
robots that carry racks to cut in line. We use P to denote the
set of all pickers.

Definition 3 (Robot). A robot a is represented as 〈la, sa〉 with
location la and state sa.

Since the robot is mobile, its location and state change over
time. The state sa can be either busy or idle. A robot is busy if
it is in the stage of rack pickup, delivery, queuing, processing,
or return. We use A to denote the set of all idle robots.

(a) Single-grid (b) Inter-grid

Fig. 3. Examples of conflicts in path planning.

Now we define the objectives of our task planning problem.
In short, we aim to minimize the makespan.

Definition 4 (Makespan). The makespan M is the time from
the emergence of the first item till the return of the last rack.

Assuming the first item appears at time 0, M equals to the
time when the last rack is returned:

M = max
r∈R

fr (1)

where fr denotes the latest time at which rack r is returned.
It can be calculated as follows.

fr = tk + d(la, lr) + d(lr, lpr)

+ max{d(la, lr) + d(lr, lpr)− fp, 0}+
∑
i∈τr

i+ d(lpr , lr)

(2)
where tk is the last time the rack is selected. The remaining
five terms correspond to the delays for rack pickup, delivery,
queuing, processing, and return, respectively. d(·, ·) is the path
length between two locations. Assuming that robots move at
unit velocity, d(·, ·) equals to the delay. fp is the delay of
picker p to process the items on all the racks in queue, which
can be computed as follows.

fp = ep +
∑
r∈qp

∑
i∈τr

i (3)

Makespan is a widely used metric in prior studies [3], [4],
[7], [8], but we redefine it in an end-to-end manner. From
Eq.(1) to Eq.(3), the makespan is determined after deciding
planning schemes U = {Ut} for the robots at each timestamp
t, where Ut is the planning scheme generated at timestamp t.
Finally, we define the problem below.

Definition 5 (Task Planning in Robotized Warehouses
(TPRW)). Given sets of racks R, idle robots A and pickers
P at every timestamp, the problem is to generate planning
schemes Ut = {ua|sa = idle} correspondingly at each
timestamp in which element ua is a path for an idle robot
a, such that

minM

{Ut|∀t} is sufficient and conflict-free

The planning schemes {Ut|∀t} are sufficient if all racks are
assigned to a robot after the arrival of its items, i.e., ∀it ∈ IR,
∃t′ ≥ t s.t. ∃as.t.ua ∈ Ut′ , where item it emerges at time t
and IR is the item set of rack set R.

The planning schemes are conflict-free if there is neither
single-grid conflict nor inter-grid conflict among all paths.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS.

Notation Description

t current timestamp
R,P,A set of racks, pickers, idle robots

lr, τr, pr
location, item processing time usage set,
corresponding picker of rack r

lp, qp, ep
location, rack queue and estimated remaining
time of current item of picker p

la/sa location/state of robot a
M makespan of all tasks
d(·, ·) distance between two locations
A designed algorithm

fr/fp finish time of rack r/picker p

Ut, ua
path planning scheme at t and a single path
for robot a

St rack selection scheme at timestamp t
H/W height/width of the warehouse

k, ξ
number of tasks, processing time of each task
in Sec. III-B’s example

oi/vj one task for p1/p2 in Sec. III-B’s example.

D/Dj
summation of pickup, delivery and return time
of all oi/each vj in Sec. III-B’s example

M
time usage of moving between p1’s rack and
p2’s first rack in Sec. III-B’s example

s, α, γ, c, β, ε
state, action, discount factor, reward,
learning rate and policy derivation parameter

apr/arr picker pr/rack r’s accumulative processing time

δ,K,L
parameters of bootstrap, robot requesting
and distance threshold

The two conflicts are defined below (see Fig. 3).
• Single-grid conflict. Two paths visit the same location at

the same time.
• Inter-grid conflict. For two paths u1 and u2, there ex-

ist 〈ti, xi, yi〉, 〈ti+1, xi+1, yi+1〉 in u1 and 〈tj , xj , yj〉,
〈tj+1, xj+1, yj+1〉 in u2 such that ti = tj ∧ ti+1 =
tj+1 ∧ xi = xj+1 ∧ yi = yj+1 ∧ xi+1 = xj ∧ yi+1 = yj .

Table I summarizes the important notations.
Remarks. The TPRW problem is a variant of the online multi-
agent path finding problem [7] with an end-to-end makespan
definition that accounts for the entire fulfillment cycle (pickup,
delivery, queuing, processing, and return). The TPRW problem
is challenging for large-scale warehouses with highly varied
item throughput (i.e., amount of item arrivals in unit time) due
to the complex composition of the makespan.
• With low item throughput, the makespan is dominated by

the rack transport delay (pickup, delivery, and return) [1],
as is optimized by mainstream online multi-agent path
finding literature [7]–[9].

• With high item throughput, large queues may build up at
pickers, turning the queuing time the bottleneck.

In Sec. VII-C we will show that the bottleneck changes under
different throughput. The state-of-the-art solution [7] fails to
adapt to such bottleneck changes in the makespan, while
other studies [8], [9] assume tasks and robots emerge in a
binding manner, which is unfit for our problem. Neither do
they offer efficient design for warehouses with hundreds of

Algorithm 1: Naive Task Planning
Input : t: timestamp, P : pickers, A: robots, R: racks
Output: Ut: planning scheme at t

1 Ut ← ∅
2 Sort P in ascending order based on finishing time fp
3 for p ∈ P do
4 R← {r|τr 6= ∅ ∧ pr = p}
5 for r ∈ R do
6 find the closet idle robot a from A
7 ua ← plan path for robot avia A* algorithm
8 Ut ← Ut ∪ {ua}

9 return Ut

robots processing thousands or even millions of items daily.
Next we will show the extension of state-of-the-art solution to
our problem and how it may lead to bad results.

III. NAIVE TASK PLANNING

In this section, we adapt the state-of-the-art online multi-
agent path finding algorithm [7] to solve the TPRW problem
(Sec. III-A), and analyze why it is ineffective (Sec. III-B).

A. Extension from State-of-the-Art

The state-of-the-art online multi-agent path finding algo-
rithm [7] plans conflict-free paths for each robot one at a time
following certain order. The order of planning is decided by the
distance from robots to its closest rack. That is, this algorithm
greedily plans paths for robots with the least pickup time.

This algorithm is inapplicable to the TPRW problem since
it only accounts for pickup and delivery time. We extend the
algorithm to our problem as follows. Instead of planning paths
for robots with the least pickup time, we plan paths for robots
associated with the most slack picker. Specifically, the most
slack picker p has the smallest finish time fp as in Eq.(3).
This is because a slack picker indicates a smaller queuing
time. Together with optimization on rack transport time, the
algorithm tend to minimize the makespan defined in Eq.(1).

Algorithm 1 illustrates the naive path planning algorithm.
It first finds all pickers whose corresponding racks that still
have items for processing. Then, it sorts pickers based on
their degree of slack (i.e., the current finish time). For each
picker, it finds the corresponding racks that require processing.
Finally, it choose the closet idle robot and finds a path via A*
algorithm, a classical yet prevailing algorithm in multi-agent
path finding studies [3], [7]–[9] (detailed in Sec. V-C).

B. Limitations of Naive Task Planning

We illustrate the limitations of the naive task planning
algorithm via the following example.

Consider two pickers p1, p2 and one robot a. For p1, there
is only one associated rack r. For p2, k racks on which tasks
will emerge. Robot a’s initial location is the same as rack r
(right under the rack). Both p1 and p2 have k items (tasks) to

+ task emerges timestamp + task finishes timestamp

(a) Naive

(b) Optimal

Fig. 4. A bad case for the naive path planning algorithm.

be processed. For simplicity, we assume all items of p1 and
p2 have the same processing time ξ.

Picker p1’s all k tasks are o1, o2, ...ok which appear on this
rack with the same time interval D + ξ, where D is the sum
of pickup, delivery and return time from r to p1. For p2, there
are k tasks v1, v2, ...vk and each belongs to a different rack.
Let Dj be the sum of pickup, delivery and return time for
item vj . These k items emerge in an online manner and the
span between adjacent items vi and vi+1 is shorter than all
Di. The emerging time of v1 is later than o1.

In this case, the greedy algorithm will first move rack r to
p1 right after the emergence of item o1. Then when the rack is
returned, o2 just shows up and the robot will deliver the rack to
p1 again. The cycle repeats until ok is finished. Meanwhile, all
the items of p2 have emerged. The robot then moves from r to
the rack of v1, taking M time units. Then it delivers all racks
of p2 one by one, which takes

∑
vDv + kξ time units. The

makespan is k(D+ξ)+M+
∑
vDv+kξ, as shown in Fig. 4(a).

The optimal solution, however, will not greedily deliver racks
of p1. It will first deliver all racks of p2. Meanwhile, all items
of p1 will emerge, and it delivers rack r to p1 only once. The
makespan is D+kξ+2M+

∑
vDv+kξ, as shown in Fig. 4(b).

Thus, the competitive ratio will be O(
k(D+ξ)+

∑
v Dv+kξ

D+kξ+2M+
∑

v Dv+kξ
).

With sufficiently large D, the bound is approximately O(k),
which is not constant.

The ineffectiveness of the naive path planning algorithm can
be explained intuitively as follows.

• From picker p1’s perspective, all items emerge on a single
rack. Hence a smart strategy should be batching the

Fig. 5. Efficient Adaptive Task Planning (EATP).

delivery of all items in one time rather than moving racks
as soon as one item emerges.

• From picker p2’s perspective, all items emerge on differ-
ent racks. So, the bottleneck is the rack transport time.

In summary, the difference in throughput i.e., the number of
items emerged on a rack in unit time, shifts the dominating
factor in the makespan, which affects the decision on whether
to deliver a rack once an item appears or wait for more items
to emerge (experimental results in Sec. VII-C also validate
the observation). Naive task planing fails to incorporate such
decisions for its greedy strategy. This limitation motivates us to
develop a solution that adapts its decisions (i.e., immediately
deliver a rack or wait for more items to arrive) according to
the dynamic throughput, as explained next.

IV. EFFICIENT ADAPTIVE TASK PLANNING OVERVIEW

This section presents an overview of our Efficient Adaptive
Task Planning (EATP) solution (see Fig. 5). From the analysis
of naive task planning in Sec. III-B, its poor performance is
due to lack of adaptability, i.e., it considers only how to plan
shortest paths without when to plan it.
Idea. Instead of immediately processing all the racks with item
arrival, our EATP framework only selects a subset of racks
for robots to pick up and deliver. To make this selection be
adaptive, EATP reformulates the problem as a Markov decision
process and incorporates a reinforcement learning based rack
selection according to the dynamic item throughput. It also
involves a set of efficiency optimizations for both selection
and path finding in large-scale warehouse applications.
Workflow. The workflow of EATP can be summarized as four
steps: (i) collect spatiotemporal data from pickers, racks and
robots, then (ii) use Q-learning to train the model and (iii)
derive the rack selection scheme St containing racks for which
(iv) it plans paths.

Next, we introduce our adaptive task planning (Sec. V) and
explain how to improve its efficiency (Sec. VI).

Algorithm 2: Adaptive Task Planning
Input : t: timestamp, A idle robots, R: racks , P :

pickers, δ: bootstrap degree, β: learning rate,
ε: policy derivation

Output: Ut: planning scheme at t
1 Initialize
2 initialize q
3 initialize spatiotemporal graph G
4 Rack Selection Step
5 approximate← Sample from Bernoulli(δ)
6 if approximate = 1 then
7 St ← Select same as Naive Task Planning
8 for r ∈ St do
9 update q by Eq.(5)

10 else
11 St ← ∅
12 sort R in descending order based on q(sr, 0)
13 for r ∈ R do
14 action ← ε-greedy
15 if action = 1 then
16 St ← St ∪ {〈r}
17 update q by Eq.(5), where c is calculated

by Eq.(4)
18 if |St| = |A| then
19 break

20 Path Finding Step
21 Ut ← ∅
22 for r ∈ St do
23 a← find the closest robot of r
24 ua ← find the path on spatiotemporal graph
25 Ut ← Ut ∪ {ua}
26 insert the ua into G

27 return Ut

V. ADAPTIVE TASK PLANNING

In this section, we present adaptive task planning. We model
rack selection from the Markov decision process perspective
(Sec. V-A), and exploit reinforcement learning for model
training and rack selection (Sec. V-B). For each selected rack,
we find conflict-free paths (Sec. V-C). At last we integrate
rack selection and path finding in Sec. V-D.

A. Markov Decision Process Model

The rack selection decisions are made sequentially every
timestamp. It requires considering the rack and its corre-
sponding picker’s status (i.e., the rack’s containing items and
the picker’s queue and workload and so on). The selection
decisions only depend on the current status of racks and
pickers instead of historical ones, which implies that rack
selection decision is sequential decision with Markov property.
Hence, we can derive the definition of rack selection Markov
decision process as below.

State. Since our selection decisions are rack-centric, we define
the state of each rack as 〈apr, arr〉, where apr is the accumula-
tive processing time of the picker associated with rack r, i.e.,
apr =

∑t
i=1 Ipr is processing at i, arr is the accumulative pro-

cessing time of rack r, i.e., arr =
∑t
i=1 Ir is being processed at i,

where Iw is the indicator function, which is 1 if w is true.

Action. The action is also defined from the rack’s perspec-
tive. The action αr becomes requesting pickup, delivery and
processing, which is 1 if r asks for a robot and 0 otherwise.
The definition dramatically reduces the actions space as binary.
If we define the action from meta view and the action is to
directly select racks, the action space would be combinatorial
and difficult to cope with.

State Transition. Based on the definition of action α, the
transitions are as below. If αr = 0, the state remain the same.
If αr = 1, state 〈apr, arr〉 will transit to 〈apr+

∑
i∈τr i, arr+∑

i∈τr i〉. That is, the accumulative processing time of both the
picker and the rack will increase by the total processing time
of the current items on rack r, i.e.,

∑
i∈τr i.

Though a single transition always changes apr and arr in
the same way, updates from different racks can make apr and
arr different since one picker can be associated with multiple
racks. The fact that one picker is responsible for multiple racks
also implies the dependence among racks, which motivates the
joint state modeling of the rack and its picker.

Reward. We use negation of the increment in a picker’s finish
time fp after selecting certain rack as the reward. However, it
is difficult to derive the increment of picker’s finish time. This
is because the rack selection decision is performed before path
planning, and thus the delays for pickup, delivery, queuing and
return are unknown. Thus we estimate the reward as follows.

c = −

(
max{fp, d(lr, lpr)}+

∑
i∈τr

i

)
(4)

where the max term denotes the increase in waiting time
and the sum term is the increment of apr. The negation is
because our goal is to minimize makespan while reinforcement
learning maximizes the sum of rewards.

Note that our reward design considers the end-to-end delay
for pickup, delivery, queuing, processing, and return, and thus
is aligned with our makespan definition.

Optimizations. Based on the above Markov decision process
definition, optimizing makespan requires us to find policy that
accounts for the current states and make actions for all racks.
The policy is derived from value function, which is represented
as q(〈apr, arr〉, α) in our problem. It maps the state-action to
the expected accumulative rewards. Based on the definition
of reward, the value function indicates the expected finishing
time of rack r considering both its delivery time and the
picker’s finish time. According to the value function q, the
best action would be argmaxα′ q(s, α′). However, this policy
may be trapped into sub-optimal solutions because q(s, α) can
be inaccurate especially in the early stage of training. Instead,
we adopt the ε-greedy policy [13]. It chooses the current best

Fig. 6. Illustration of our Markov decision process model

action with 1 − ε probability and a random action with ε
probability to balance exploration and exploitation.

Remarks. Fig. 6 illustrates why our model is fit for the TPRW
problem. The state definition jointly implies both the rack
and its picker, the reward will change while the fulfillment
bottleneck varies.

We can derive a policy only if the value function can be
effectively trained, as explained below.

B. Q-Learning Based Model Training

We apply Q-learning [14], a classic temporal difference
based bootstrap method to train the value function, since it
is better fit for online learning and highly self-adaptive [13].
The Q-learning trains value function as below.

q(s, α)← q(s, α) + β · (c+ γmax
α′

q(s′, α′)− q(s, α)) (5)

where s/s′ are the current/next state after taking action α, β is
the learning rate, c is the reward and γ is the discount factor.

Directly applying Q-learning as above will bootstrap unex-
plored states. Recall that state 〈apr, arr〉 is time-dependent.
When updating the value function by Eq.(5), s′ is 〈apr +∑
i∈τr i, arr +

∑
i∈τr i〉 (see state definition in Sec. V-A).

The new state is unexplored because both apr and arr always
increase, preventing the value function from converging. As a
remedy, we integrate a greedy method into the training. Specif-
ically, at each timestamp, we choose the greedy method with
probability δ and the original bootstrap with 1− δ probability.
This way, the greedy method will provide solutions, explore
some states and update the value function approximately. Then
based on the approximation, bootstrap is able to train the value
function more precisely. The greedy method adapts the “most
slack picker first” strategy. That is, it greedily chooses those
racks whose associated picker has the smallest fp.

C. Path Finding on Spatiotemporal Graph

Given the selection schemes, a path finding algorithm plans
conflict-free paths. We adopt A* algorithm [11] for finding
conflict-free paths. Instead of searching on the spatial graph,
the algorithm searches on the spatiotemporal graph to avoid

(a) Spatial graph (b) Spatiotemporal graph

Fig. 7. Illustration of a spatial graph and a spatiotemporal graph.

conflicts. Intuitively, the space graph is duplicated in every
time step. Each vertex represents a location with a certain
timestamp, while each edge represents two vertex are adjacent
both spatially and temporally (see Fig. 7) [15]. On spatiotem-
poal graph, the algorithm starts with the source vertex (i.e.,
grid with certain timestamp) and then maintain a open set
which stores vertices explored. Based on the current cost and
heuristic value (h-value), we choose a vertex from the open set
for the next round search. When searching on the grid based
space, the h-value is usually defined as the Manhattan distance
from current vertex to the destination [16].

D. Put it Together
By integrating rack selection and path finding, we propose

Adaptive Task Planning (ATP), as shown in Algorithm 2.
Lines 4 to 19 are rack selection step while lines 20 to 26

are path finding step. In rack selection step, we first randomly
decides whether to approximate or bootstrap (line 5). If
approximate, we use the greedy method to derive the selection
scheme (lines 6 to 9). If bootstrap, we sort racks based on the
value function in line 12. It will then preferentially select racks
with the largest expected finish time till no robot is available
(line 13 to 19). Both steps adopt Q-learning to update the
value function (line 9 and 17). Based on selection scheme
calculated from selection step, path finding step will assign
the closest robot of each selected racks (line 23) and finds
path for it (line 24). The spatiotemporal graph will maintain
all prior planed path for conflict avoidance (line 26). Note that
δ controls the degree of bootstrap. A larger δ means smaller
bootstrap. From empirical results (see Sec. VII-B), a δ smaller
than 0.4 contributes to effective training.

VI. EFFICIENCY OPTIMIZATIONS FOR ADAPTIVE TASK
PLANNING

In this section, we present our efficient design for adaptive
task planning. For rack selection step, we flip the requesting
side from rack to robot to reduce selection time consumption
(Sec. VI-A). For path finding step, we optimize both the
time and memory consumption. We replace the spatiotemporal
graph with conflict detection table which has less space
complexity while support for quick conflict detection and use
cache aiding the finding step (Sec. VI-B). At last we elaborate
integrate these efficient design into ATP (Sec. VI-C).

A. Optimization for Rack Selection
From the time complexity analysis above, the bottleneck

of ATP’s rack selection step lies in sorting racks. Instead of

traversing racks then requesting robot for delivery, we accel-
erate the process by flip requesting side to robot. Specifically,
we traverse robots and then finding a rack among its closest K
racks. Since all racks’ locations in the storage area are fixed,
recording closest K racks of different grids is static and easy
to maintain. Then for each robot, we can easily find its closest
racks according to its located grid and find the closest selected
rack among those racks (See Fig. 8).

B. Optimization for Path Finding

Memory Compression via Conflict Detection Table. Search-
ing on a spatiotemporal graph incurs large space cost due
to the ever-increasing temporal dimension. In worst case, the
space complexity of the spatiotemporal graph is O((HW)2)
because the space complexities of the spatial graph and
the path lengths are both O(HW). Next we introduce our
conflict detection table to reduce the space complexity while
maintaining efficient conflict detection.

In conflict detection table, an array is built for all grids, and
each entry contains a set recording the passing time. The set
can either be implemented based on balanced binary search
tree or hash set for quick search. When planning path, ATP
will search for a grid and by checking the grid’s corresponding
entry contains the timestamp or not, it will quickly judge
whether conflict will happen. This conflict detection table
removes the ever growing temporal dimension. The space
complexity is decreased to O(HW).

In addition to path finding, the table also supports update
and insertion. The update operation deletes all passed times-
tamp. This operation reduces the space cost of the table and is
executed periodically. The insertion operation inserts a path to
the table. It will insert the passing time to the corresponding
grid entry for each point of trajectory.

Cache-aided Path Finding. We can further accelerate the path
finding algorithm by caching certain shortest paths without
considering conflict, and then deriving the conflict-free paths
based on the shortest paths.

As mentioned in Sec. V-C, the path finding algorithm will
maintain a open set and pick vertex from it for path finding.
Specifically, when picking vertex from the open set, if the
distance between the current vertex and the destination is
within a threshold L, we directly extract the shortest path from
the cache and derive the conflict-free path. The corresponding
policy is to let the robot wait till there is no conflict to move
next steps along the shortest path. The rationale is that, when
the current vertex is close to the destination (i.e., within the
threshold), instead of searching for the shortest conflict-free
path, directly moving along the shortest path with some wait
may be effective, since it is already close to the destination.
Such cache can notably reduce the size of open set and thus
the search cost.

C. Integrate Efficient Design into ATP

Integrating all efficient designs, we get our final Efficient
Adaptive Task Planning (EATP), as in Algorithm 3 and Fig. 8.

Fig. 8. Workflow of Efficient Adaptive Task Planning (EATP).

It first initializes the cache (line 3) and conflict detection
table (line 4). The cache contains shortest paths whose Man-
hattan distances are within threshold L. For rack selection,
lines 10 to 13 are flip requesting and line 18 is cache-aided
path finding. It will find paths by CDT and when the current
vertex is close to the destination (lr or lp depended on different
steps of pickup, delivery or return) less than L, it will derive
the last segment of path by waiting till no conflict occurs.

For the hyperparameter distance threshold L, it controls the
degree of cache-aiding, a larger value encourages using cache
for less computation consumption.

VII. EVALUATION

This section presents the evaluations together with case
study of our proposed methods.

A. Experimental Setup

Datasets. We use both synthesized and real datasets. The two
synthesized datasets Syn-A and Syn-B are generated on two
warehouse layouts with different numbers of items. All items
emerge following Poisson distribution and each racks picking
time is distributed uniformly between 20 and 40 seconds,
which is close to the real situation. Two real datasets are
derived based on historical records from Geekplus, one of the
world’s leading smart logistics companies 3. Two real datasets
are named as Real-Normal and Real-Large considering the
scalability of data. Table II lists the dataset details.
Validation system. To test algorithms’ performances on these
datasets, We build a virtual warehouse which simulates the
movement of robots and the processing of pickers. At each
timestamp, it collects all idle robots and racks containing
remaining items as well as pickers’ working status, then
executes the algorithm for path planning. Then it converts the
path planning scheme to instructions on robots’ motion. It also
records the performance of task planning algorithms in terms
of effectiveness and efficiency. A snapshot of the validation

3https://geekplusrobotics.borealtech.com/en/

Algorithm 3: Efficient Adaptive Task Planning
Input : t: current timestamp, A: idle robots, P :

pickers, R: racks, L: distance threshold
Output: Ut: planning scheme at time t

1 Initialize
2 initialize q
3 initialize Cache containing all shortest paths with

length ≤ L.
4 initialize conflict detection table CDT
5 Rack Selection Step
6 approximate← Sample from Bernoulli(δ)
7 if approximate = 1 then
8 St ← Same as lines 7 to 9 in Algorithm 2

9 else
10 for a ∈ A do
11 for r ∈ {K racks closet to la} do
12 Update St, q same as line 14 to 17 in Algorithm 2
13 break inner loop when a rack is selected

14 Path Finding Step
15 Ut ← ∅
16 for r ∈ St do
17 a← find closet robot to r
18 ua ← path finding on CDT and derive via Cache
19 Ut ← Ut ∪ {ua}
20 CDT.insert(ua)

21 return Ut

system is shown in Fig. 9(a). A real warehouse is also used
for deployment demonstration (See Fig. 9(b)).

As for implementation, we set the default value of δ, ε,
learning rate β and distance threshold L to be 0.2, 0.1, 0.1
and 50, respectively. All algorithms as well as the validation
system are implemented in Java 8 and the experiments are run
on 4 cores CPU Intel(R) Xeon(R) Platinum 8269CY CPU T

TABLE II
SUMMARY OF DATASETS.

Name H ×W #Item #Robot #Rack

Syn-1 233× 104 105 0.5k 5.0k
Syn-2 426× 146 5× 105 1.0k 1.3k

Real-Norm3 240× 206 5.6× 105 1.0k 10k
Real-Large3 541× 302 106 3.0k 34k

3.10GHz with 20 GiB Java virtual machine memory.

(a) Virtual system (b) Real warehouse

Fig. 9. Snapshots of virtual (a) and real (b) warehouses.

Baselines. We compare EATP with the following methods.

• Naive Task Planning (NTP) [7]. This method is the
directly extension of state-of-the-art path planning algo-
rithm [7]. It assigns robots to racks whose corresponding
picker has the earliest finish time fp (see Sec. III).

• Least Expiration First planning (LEF) [17]. This
spatiotemporal task selection algorithm selects tasks with
least expiration time [17]. Though our items emerge
without expiration, by assuming all items with the same
degree of tolerance of delay, this algorithm will select
racks whose items are emerged earliest.

• Integer Linear Programming planning (ILP) [12].
This method proposes an integer linear programming
based approach to handle orders composed of items
from different racks [12]. We extend their method to
our problem by adding the pickers’ status in the linear
programming model.

• Adaptive Task Planning (ATP). This algorithm incor-
porates reinforcement learning for rack selection and A*
algorithm for path finding as introduced in Sec. V.

• Efficient Adaptive Task Planning (EATP). This algo-
rithm incorporates all efficient design for both selection
and planning (Algorithm 3).

Evaluation Metrics. We use three metrics to evaluate the
algorithms in terms of effectiveness.

• Makespan (M). It is the objective of TPRW problem as
defined in Eq.(1). A smaller makespan indicates a higher
processing efficiency of a warehouse.

• Picker’s Processing Rate (PPR). This metric is defined
as follows.

PPR =
1

|P |
∑
p∈P

∑
t Ip is processing at t

M
(6)

TABLE III
MAKESPAN COMPARISON ON ALL DATASETS.

Method Syn-A Syn-B Real-Norm Real-Large

NTP [7] 95, 713 229, 865 222, 044 264, 139
LEF [17] 68, 736 225, 484 176, 317 −
ILP [12] 72, 423 219, 555 173, 446 −

ATP
(Ours) 60,193 209,531 165,438 220,257

EATP
(Ours) 60,753 209,866 164,628 220,263

where Ip is working at t is 1 if picker p is processing or 0
otherwise, so the summation term in numerator is the
picker’s total processing time. A larger PPR means that
all pickers are working sufficiently, leading to a higher
processing efficiency.

• Robot’s Working Rate (RWR). Similar to PPR, RWR
can be defined as follows.

RWR =
1

|A|
∑
a∈A

∑
t Ia is working at t

M
(7)

where the summation term in numerator is the robot’s
working time. A large RWR means that the assignment
algorithm using robot in a more effective way, that is less
delivering time and more picking time.

Apart from effectiveness metrics, we adopt three metrics to
quantify the time and memory efficiency.
• Selection Time Consumption (STC). The selection time

consumption is the total time usage when executing the
algorithms for making rack selection decisions. A smaller
STC means a higher executing efficiency.

• Planning Time Consumption (PTC). Similar to STC,
the planning time consumption is the total time usage of
path planning scheme generation. A smaller PTC means
a higher executing efficiency.

• Memory Consumption (MC). It measures the memory
consumption when executing an algorithm. A smaller
memory consumption indicates a higher space efficiency.

B. Experimental Results

Overall Performance. The makespan results of all datasets
are shown in Table III. ILP and LEF are too slow to execute
on dataset Real-Large so we only compare our methods with
NTP. Our ATP and EATP reduce makespan by 4.5% ˜37.1%
than the baselines. Specifically, our EATP outperforms LEF,
ILP by 8.5% and 8.7% on average, respectively.

Fig. 10 illustrates the comparison results for other ef-
fectiveness metrics. The x-axis (y-axis) indicates the task
planning procedure (the value of PPR or RWR). Our EATP
and ATP achieves the highest PPR and RWR, which is 4.6%
˜59.1% higher and 3.5% ˜59.8% than baselines, respectively.
In particular, our EATP outperforms LEF by 9.4% and 9.3%
on average in terms of PPR and RWR, respectively. As for ILP,
EATP gains an average improvement of 9.9% and 10.2% in

1 3 6 10
#items/104

0.6

0.8

1.0
PP
R NTP

LEF
ILP
ATP
EATP

(a) PPR on Syn-A

1 3 6 10
#items/5 × 104

0.8

0.9

1.0

PP
R NTP

LEF
ILP
ATP
EATP

(b) PPR on Syn-B

1 3 6 10
#items/6 × 104

0.6

0.8

1.0

PP
R NTP

LEF
ILP
ATP
EATP

(c) PPR on Real-Norm

1 3 6 10
#items/105

0.6

0.8

1.0

PP
R

NTP
ATP
EATP

(d) PPR on Real-Large

1 3 6 10
#items/104

0.10

0.12

0.14

0.16

R
W
R NTP

LEF
ILP
ATP
EATP

(e) RWR on Syn-A

1 3 6 10
#items/5 × 104

0.07

0.08

0.09

R
W
R NTP

LEF
ILP
ATP
EATP

(f) RWR on Syn-B

1 3 6 10
#items/6 × 104

0.10

0.12

0.14

R
W
R NTP

LEF
ILP
ATP
EATP

(g) RWR on Real-Norm

1 3 6 10
#items/105

0.05

0.06

0.07

0.08

R
W
R

NTP
ATP
EATP

(h) RWR on Real-Large

Fig. 10. Picker’s Processing Rate (PPR) and Robot’s Working Rate (RWR) comparisons.

terms of PPR and RWR, respectively. Also, EATP consistently
outperforms the baselines in all the three datasets.

We also find an interesting fact that PPR has nearly the same
variations as RWR. This is reasonable because all pickers’
processing workload is delivered by robots thus robots are
as busy as pickers. Also note that EATP has a slightly
performance loss than ATP. This is because the adoption of
efficient design introduced in Sec. VI trades some precision
for acceleration, which leads to a slightly performance loss.
However, the performance loss is less than 1% and it still
significantly outperforms other baselines, so the trade-off is
worthwhile. We will show that EATP has a large reduction on
both time and space consumption.

Adaptibility. Our ATP and EATP shows a strongly adap-
tive property mainly because: (i) our algorithms are steadily
outperforms other baselines overall datasets that have differ-
ent layouts, levels of throughput and so on, indicating our
algorithm are capable of multiple situations. (ii) PPR and
RWR of our algorithms steadily remain high during the task
planning procedure, unlike other baselines vary largely (See
Fig. 10), which implies that our algorithms can adaptively
make task planning decisions and keep robots and pickers
working steadily despite of the time-variant throughput.

Scalability. Fig. 11 illustrates the selection and planning time
consumption results. For selection time consumption, without
adoption of efficient design, ATP does not perform well and
it is even worse than ILP. With the selection optimization
(Sec. VI-A), our EATP’s efficiency improves significantly by
153.8% ˜280.9% and close to most naive Greedy methods,
whose complexity is only O(|P | log |P |+ |A|). Its time usage
is less than LEF and ILP by 52.7% and 56.5% at most,
respectively. As for planning time consumption, our efficient
design introduced in Sec. VI-B improves EATP planning
efficiency largely. Specifically, our EATP has a reduction of

75.5%, 60.5%, 71.8% and 60.8% at most compared with
other algorithms on dataset Syn-A, Syn-B Real-Normal and
Real-Large respectively. This results shows that our algorithm
has a strong potential for large-scale processing requirement.
Especially on Real-Large, our EATP’s total execution time are
less than NTP for over 7000 seconds.

Note that even though ATP adopts the same path planning
algorithm as other baselines, it still has a smaller PTC because
its adaptibility helps reduces the planning frequency.

As for memory cost, Fig. 12 illustrates the comparison
results. All algorithms except EATP have nearly the same
memory cost due to the memory cost bottleneck lies on A*-
based planning which these algorithm both adopts. Besides,
all algorithm has a steadily usage of memory as the task plan-
ning procedure goes on, this is because we eliminate passed
saptiotemporal graph or timestamps timely and maintain the
memory consumption relatively stable. The comparison results
shows our EATP is also memory efficient. With the help of
conflict detection table (Sec. VI-B), we can largely reduces
the memory usage by 16.4%, 68.4%, 89.2% and 58.1% on
Syn-A, Syn-B, Real-Normal and Real-Large, respectively.

Summary of Experimental Results. The experimental results
are summarized as below.

• Our ATP and EATP achieve state-of-the-art effectiveness
performances. With an reduction on makespan by mostly
37.1% than other baselines.

• The steady superiority over other baselines on all datasets
and the steadily high PPR and RWR during the whole
task planning procedure indicates a high adaptability of
our algorithm.

• The efficiency design on both selection and planning
improves efficiency by up to 280.9%, which enables our
EATP to overcome scalability challenge.

1 2 3 4 5 6 7 8 9 10
#items/104

0

5

10

15
ST

C
/s

NTP
LEF
ILP
ATP
EATP

(a) STC on Syn-A

1 2 3 4 5 6 7 8 9 10
#items/5 × 104

0

50

100

ST
C
/s

NTP
LEF
ILP
ATP
EATP

(b) STC on Syn-B

1 2 3 4 5 6 7 8 9 10
#items/6 × 104

0

50

100

ST
C
/s

NTP
LEF
ILP
ATP
EATP

(c) STC on Real-Norm

1 2 3 4 5 6 7 8 9 10
#items/105

0

100

200

300

ST
C
/s

NTP
ATP
EATP

(d) STC on Real-Large

1 2 3 4 5 6 7 8 9 10
#items/104

0

1

2

PT
C
/1

03 s

NTP
LEF
ILP
ATP
EATP

(e) PTC on Syn-A

1 2 3 4 5 6 7 8 9 10
#items/5 × 104

0

2

4
PT

C
/1

04 s

NTP
LEF
ILP
ATP
EATP

(f) PTC on Syn-B

1 2 3 4 5 6 7 8 9 10
#items/6 × 104

0

1

2

PT
C
/1

04 s

NTP
LEF
ILP
ATP
EATP

(g) PTC on Real-Norm

1 2 3 4 5 6 7 8 9 10
#items/105

0

3

6

9

PT
C
/1

04 s

NTP
ATP
EATP

(h) PTC on Real-Large

Fig. 11. Selection Time Consumption (STC) and Planning Time Consumption (PTC) comparisons.

1 3 5 7 9
#items/104

400

425

450

475

M
C
/M

iB
yt
es NTP

LEF
ILP
ATP
EATP

(a) Syn-A

1 3 5 7 9
#items/5 × 104

500

750

1000

M
C
/M

iB
yt
es NTP

LEF
ILP
ATP
EATP

(b) Syn-B

1 3 5 7 9
#items/6 × 104

250

500

750

1000
M
C
/M

iB
yt
es NTP

LEF
ILP
ATP
EATP

(c) Real-Norm

1 3 5 7 9
#items/105

1000

1500

M
C
/M

iB
yt
es

NTP
ATP
EATP

(d) Real-Large

Fig. 12. Memory Consumption comparisons.

C. Case Study of Bottleneck Variations on Geekplus

We conduct case study on demonstrative warehouse with
over 1 thousand robots and 50 thousand items which is built by
Geekplus3, a leading smart logistics company. We validate the
phenomenon of bottleneck variations and how our method can
adaptively batching items. The bottleneck variations among
processing, queuing and transport (i.e., summation of pickup,
delivery and return) are shown in Fig. 13. The x-axis is picking
time while y-axis is cost summation of all racks under different
fulfillment steps. At the beginning, when the number of items
is small, the bottleneck lies in transport. As times goes on, the
number of items is continually growing, bottleneck convert to
queuing. Meanwhile the processing time grows and then it
remains static.

Next we choose a single rack to illustrate how our ATP
accounts for the situation and make decisions adaptively.
Different items emerge on this rack at different time, where
the bottleneck is different. Our ATP decides to batch items
instead of delivery immediately. When the bottleneck lies in
transport, ATP tends to batch less items while it will tends to
batch more orders as queuing time becomes larger.

Fig. 13. Bottleneck variation over time.

VIII. RELATED WORK

Our study is related to two threads of studies.

A. Multi-Agent Path Finding

Multi-agent path finding is inspired by the need for coordi-
nating hundreds of robots in a robotized warehouse [2]. The
problem is about searching for shortest paths while meeting up
with conflict constraints [10]. Although this problem has been
proved to be NP-hard [18], earlier studies still try to design
branch-bound search algorithms hoping to find the optimal
solution in an offline setting [3]–[6]. Yet these solutions are
unfit for large-scale applications. For example, the empirical
validations in these studies typically consider fewer than 200
robots and delivery tasks, while their running time can be up
to 5 minutes, which fails to support online planning with over
thousands robots and million-scale daily throughput.

More recently, online multi-agent path finding has been
explored [7]–[9]. In [7], the authors study the online multi-
agent path finding problem where tasks emerge in an online
manner while robots remain static, which is same as our
settings. Other efforts [8], [9] consider a different setting where
robots and tasks are tied and emerge together. The setting
ignores the process to assign robots to tasks, which is not
aligned with the rack-to-picker setting in our problem.

In this work, we study online multi-agent path finding in
settings more aligned with large-scale applications. On the
one hand, we aim to minimize the end-to-end makespan that
covers the entire fulfilment cycle (pickup, delivery, queuing,
processing, and return). On the other hand, we account for the
high-volume, high-variation item arrivals. Existing solutions
fail to deliver satisfactory effectiveness and efficiency in these
two settings.

B. Task Assignment and Planning in Spatial Crowdsourcing

Task assignment and planning are two core issues in spatial
crowdsourcing [19], a popular topic in database research.

Task assignment is typically modeled as a bipartite matching
problem, where vertices from two sides represented tasks
and workers, respectively [20]. Various optimization goals
have been investigated, including maximizing the matching
edge weights [21], minimizing the detour distance [22] and
load balancing [23], [24]. Alternatively, task assignment can
be viewed as a selection problem where the objective is to
maximize the number of fulfilled tasks [17], [25].

Although these formulations are aligned with different spa-
tial crowdsourcing applications such as ride hailing [21], [24],
geographical data generation [17], [22], [25] and workload
distribution [23], [24], they cannot be trivially extended into
our problem setting. This is because spatial crowdsourcing
confines the assignment decision into a batch or assume an
expiration of each task. After expiration, a task is discarded.
In our scenario, all tasks must be fulfilled and assignment
decisions cover the whole time horizon.

Task planning, or route planning, as another important issue
in spatial crowdsourcing [26]–[30]. These studies optimize
different objectives [26], [27], [29] and also adopt data-driven
approaches [28], [30] to improve the planning performance.
Notice that [30] is also related to logistics and uses rein-
forcement learning. Their methods cannot be adapted to our

problem because they focus on planning among warehouses
and factories on road networks without considering conflicts,
and the reinforcement learning are used to avoid myopic
optimization of the travel distance, rather than the bottleneck
variations in our problem. Furthermore, the number of tasks
and robots we plan is ten times larger than their orders and ve-
hicles, making us confronting stricter efficiency requirement.
Since works in spatial crowdsourcing are humans, their route
planning does not consider issues such as conflicts. In contrast,
route planning for robotized warehouses is more challenging
for the coordination among robots to avoid conflicts.

An orthogonal research on path planning focuses on indoor
spaces, where the positioning data may be uncertain and noisy
[31]–[33]. We assume the location data of robots are accurate,
which is common in real-world robotized warehouses. Task
planning under location errors is out of our scope.

IX. CONCLUSIONS

In this paper, we propose the TPRW problem, an extension
from online multi-agent path finding problem. It defines an
end-to-end makespan incorporating all steps of item fulfill-
ment, which is suitable for large-scale and highly varied
throughput in modern robotized warehouses. Direct extension
of state-of-the-art methods is inflexible to solve the problem.
In response, we propose the framework of efficient adaptive
task planning (EATP). EATP exploits reinforcement learning
to adaptively decide and plan paths for robots. It also adopts
a set of acceleration techniques to optimize both time and
memory efficiency. Experimental results show that EATP
achieves 37.1% and 75.5% improvement in effectiveness and
efficiency over the state-of-the-art online multi-agent path
finding algorithms.

ACKNOWLEDGMENTS

We are grateful to anonymous reviewers for their con-
structive comments. This work is partially supported by the
National Key Research and Development Program of China
under Grant No. 2018AAA0101100, the National Science
Foundation of China (NSFC) under Grant No. U21A20516,
U1811463 and 62076017, and the State Key Laboratory
of Software Development Environment Open Funding No.
SKLSDE-2020ZX-07. This research was supported by the Lee
Kong Chian Fellowship awarded to Zimu Zhou by Singapore
Management University. Yongxin Tong is the corresponding
author in this paper.

REFERENCES

[1] R. Bogue, “Growth in e-commerce boosts innovation in the warehouse
robot market,” Ind. Robot, vol. 43, no. 6, pp. 583–587, 2016.

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29,
no. 1, pp. 9–20, 2008.

[3] T. Standley, “Finding optimal solutions to cooperative pathfinding prob-
lems,” in AAAI, vol. 24, no. 1, 2010.

[4] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost
tree search for optimal multi-agent pathfinding,” Artificial Intelligence,
vol. 195, pp. 470–495, 2013.

[5] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[6] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel,
and E. Shimony, “Icbs: Improved conflict-based search algorithm for
multi-agent pathfinding,” in IJCAI, 2015.

[7] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent path
finding for online pickup and delivery tasks,” in AAMAS. ACM, 2017,
pp. 837–845.

[8] J. Švancara, M. Vlk, R. Stern, D. Atzmon, and R. Barták, “Online multi-
agent pathfinding,” in AAAI, vol. 33, no. 01, 2019, pp. 7732–7739.

[9] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in AAAI.
AAAI, 2021, pp. 11 272–11 281.

[10] R. Stern, N. R. Sturtevant, A. Felner, and et al, “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in SOCS. AAAI, 2019, pp.
151–159.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[12] N. Boysen, D. Briskorn, and S. Emde, “Parts-to-picker based order
processing in a rack-moving mobile robots environment,” European
Journal of Operational Research, vol. 262, no. 2, pp. 550–562, 2017.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge: MIT press, 2018.

[14] C. Watkins, “Learning from delayed rewards,” PhD thesis, Cambridge
University, 1989.

[15] H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” in AAMAS. ACM, 2016, pp. 1144–1152.

[16] F. Grenouilleau, W. van Hoeve, and J. N. Hooker, “A multi-label a*
algorithm for multi-agent pathfinding,” in ICAPS. AAAI, 2019, pp.
181–185.

[17] D. Deng, C. Shahabi, U. Demiryurek, and L. Zhu, “Task selection
in spatial crowdsourcing from worker’s perspective,” GeoInformatica,
vol. 20, no. 3, pp. 529–568, 2016.

[18] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in AAAI. AAAI, 2010.

[19] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” VLDBJ, vol. 29, no. 1, pp. 217–250, 2020.

[20] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-

task allocation in spatial crowdsourcing,” in ICDE. IEEE, 2016, pp.
49–60.

[21] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, and et al, “Large-
scale order dispatch in on-demand ride-hailing platforms: A learning
and planning approach,” in KDD. ACM, 2018, pp. 905–913.

[22] C. F. Costa and M. A. Nascimento, “Online in-route task selection in
spatial crowdsourcing,” in SIGSPATIAL. ACM, 2020, pp. 239–250.

[23] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S.
Jensen, “Fairness-aware task assignment in spatial crowdsourcing:
Game-theoretic approaches,” in ICDE. IEEE, 2021, pp. 265–276.

[24] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task
assignment in spatial crowdsourcing,” PVLDB, vol. 13, no. 11, pp. 2479–
2492, 2020.

[25] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the number of
worker’s self-selected tasks in spatial crowdsourcing,” in SIGSPATIAL.
ACM, 2013, pp. 314–323.

[26] H. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: A multi-
preference path planning approach,” in ICDE. IEEE, 2010, pp. 261–272.

[27] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11, no. 11,
pp. 1633–1646, 2018.

[28] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in ICDE. IEEE, 2013, pp. 410–421.

[29] Y. Zeng, Y. Tong, Y. Song, and L. Chen, “The simpler the better: An
indexing approach for shared-route planning queries,” PVLDB, vol. 13,
no. 13, pp. 3517–3530, 2020.

[30] X. Li, W. Luo, M. Yuan, J. Wang, J. Lu, J. Wang, J. Lü, and J. Zeng,
“Learning to optimize industry-scale dynamic pickup and delivery
problems,” in ICDE. IEEE, 2021, pp. 2511–2522.

[31] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor
distance-aware query processing,” in ICDE. IEEE, 2012, pp. 438–449.

[32] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query
evaluation on indoor moving objects,” in ICDE. IEEE, 2013, pp. 434–
445.

[33] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu,
“Shortest path queries for indoor venues with temporal variations,” in
ICDE. IEEE, 2020, pp. 2014–2017.

	Adaptive task planning for large-scale robotized warehouses
	Citation
	Author

	tmp.1660185228.pdf.GSAMc

