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Abstract

In-home sensing of daily living patterns from older adults coupled with machine learn-
ing is a promising approach to detect Mild Cognitive Impairment (MCI), a potentially
reversible condition with early detection and appropriate intervention. However, the
number of subjects involved in such real-world studies is typically limited, posing the
so-called small data problem to most predictive models which rely on a sizable number
of labelled data. In this work, a predictive self-organizing neural network known as
fuzzy Adaptive Resonance Associate Map (fuzzy ARAM) is proposed to detect MCI
using in-home sensor data collected from a unique Singapore cross-sectional study.
Specifically, mean and standard deviation of nine in-home behavioural attributes of 49
subjects over two months were derived for each subject from the raw sensor data. We
first applied fuzzy ARAM to the 49-subject data set with missing data, and achieved
a F1-score of 58.3% to detect MCI from cognitive healthy. To eliminate the effect
of missing data, we next conducted our study using an even smaller 25-subject data
set with no missing values, of which fuzzy ARAM achieved a F1-score of 63.6%. To
derive concise rules for prediction and interpretation, antecedent pruning was sub-
sequently employed. For the 25-subject data set, the F1-score improved to 76.2%,
while the symbolic IF-THEN rules revealed that behaviour metrics such as variation
of forgetfulness and sleep contained notable predictive utility. Compared with Support
Vector Machines (SVM), Decision Tree, Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM), our benchmark ex-
periments show that fuzzy ARAM provided the highest predictive performance and
yielded unique rules for MCI detection. These results demonstrate the potential of
fuzzy ARAM to detect MCI using in-home monitoring sensor data.
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1. Introduction

Dementia is a neurodegenerative disease with prevalence rate of approximately 50 mil-
lion worldwide presently and projected to triple by 2050 (World Health Organization,
2021). Early detection of at-risk stage of dementia known as Mild Cognitive Impair-
ment (MCI) coupled with multidomain, multicomponent interventions may halt or
even reverse the progression of MCI to become dementia (McMaster et al., 2020). To
facilitate early detection, healthcare professionals and researchers are actively investi-
gating different novel approaches to detect MCI in the community (Tierney & Lermer,
2010). An objective and accurate technique that can be deployed long-term within the
community for MCI detection would represent a significant advancement in the field
of dementia, impacting the world.

In-home sensor monitoring technology to capture data related to daily living be-
haviours of older adults is a promising technique to detect MCI (Hayes et al., 2008).
For instance, Akl et al. (2015) demonstrated the potential of in-home walking speed
data and in-room activity distribution as predictive features for MCI detection. Khan
& Jacobs (2021), on the other hand, has shown that complex in-home movement pa-
rameters related to cognitive confusion and forgetfulness can be used to identify MCI
from cognitive healthy subjects. As the number of subjects involved in such studies are
typically limited (sample size <300), classical machine learning model such as Support
Vector Machine (SVM) has thus far been explored to differentiate MCI from cognitive
healthy (Akl et al., 2015; Khan & Jacobs, 2021). Clearly, most in-home studies cen-
tered their attention on extraction of novel data features from the raw sensor data to
identify MCI from cognitive healthy. Investigation of novel machine learning models
that may potentially be more suited for such small data challenge to identify MCI
from cognitive healthy remains elusive.

Adaptive Resonance Associative Map (ARAM), a predictive self-organizing neural
network (Tan, 1995) (Carpenter & Grossberg, 1992), has been successfully applied to
tackle a wide range of pattern recognition problems (Tan & Pan, 2005). In particular,
it has been shown to achieve predictive performance to be equivalent or even superior
to many machine learning models including Backpropagation Neural Network for small
and noisy data set of less than 300 samples (Tan, 1995). Besides the capability to of-
fer superior predictive performance, ARAM possesses an unique capability to address
missing data problem (Granger et al., 2000), a problem which especially exacerbates
machine learning performance in an already small and noisy data set. Specifically,
due to the employment of complement coding in ARAM for preserving amplitude in-
formation from input data attribute whilst preventing category proliferation problem,
complement coding can be further set to fill in for any missing values of an input data
attribute (Granger et al., 2000); this unique property enables ARAM to retain the orig-
inal data sample size during machine learning, circumventing missing data problem.
On top of all these, ARAM can also furnish symbolic IF-THEN rules for interpreta-
tion (Tan & Pan, 2005); interpretability of prediction model is critical in healthcare
domain (Amann et al., 2020), especially when using it for clinical decision support
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(Zihni et al., 2020) such as in the application of in-home sensor monitoring system
for detection of MCI from cognitive healthy. Evidently, ARAM inherently possesses
multiple properties (i.e., high accuracy for small data problem, missing data handling,
compatibility to symbolic IF-THEN rules) that could be applied in healthcare domain.
However, to the best of our knowledge, it has not been investigated for use on in-home
monitoring sensor data for early detection of MCI.

This study primarily aims to investigate the utility of ARAM to identify MCI from
cognitive healthy based on in-home behaviour patterns such as duration of sleep de-
rived from in-home monitoring sensors. In specific, univariate testing was first carried
out to assess potential diagnostic utility of 18-sensor data derived in-home behaviour
patterns. Next, we investigate the correlation of different combinations of behaviour
patterns with the cognitive status using ARAM to evaluate its feasibility for MCI
detection. As there were missing values in the multi-model behaviour patterns, we
employed complement coding strategy (Granger et al., 2000) during ARAM modeling
on the original 49-subject data set; we also utilized a 25-subject data set with no
missing values (Kang, 2013) for ARAM modeling. Consequently, exhaustive search
of different hyperparameters including learning rates was conducted on the 49- and
25-subject data sets with different combinations of behaviour to build different ARAM
models for identifying MCI from cognitive healthy. To derive concise rules for predic-
tion and interpretation, different pruning strategies were also investigated. Using the
model with the highest predictive performance, symbolic IF-THEN rules from ARAM
were then extracted to elicit mechanistic insights for MCI prediction from cognitive
healthy. The selected ARAM model was subsequently benchmarked against models
developed by SVM, Decision Tree, Multi-Layer Perceptron (MLP), Convolutional Neu-
ral Network (CNN) and Long Short-Term Memory (LSTM) to evaluate the advantage
of ARAM for MCI detection using in-home sensor monitoring data.

The major contributions of this paper are summarized below. First, to the best of
our knowledge, this is the first research investigation on novel machine learning model
that may be more suited to tackle small data problem in the field of in-home sensor
monitoring for MCI detection using real-world data. Secondly, this work represents
amongst the first in-home sensor monitoring application that reports on strategies
to address missing data value issue for machine learning modeling. The presence
of missing data value complicates the already small data problem faced by machine
learning; the missing data value problem is set to grow further in this field when
researchers start to integrate different types of emerging in-home sensor data (e.g.
wearable data such as daily heart rate) with the conventional passive infrared (PIR)
motion sensor data for machine learning. Thirdly, unlike previous machine learning
classification model application on in-home sensor detection of MCI, this work, for the
first time, provides novel symbolic IF-THEN interpretable rules to elucidate possible
factors to differentiate MCI from cognitive healthy.

The rest of this paper is organized as follows: Section II provides a literature re-
view on the related work. Section III then introduces the proposed ARAM model,
its missing data handling strategy, rule algorithm, and classical pruning strategy with
capability to reduce complexity of fuzzy ARAM rules. Subsequently, Section IV de-
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scribes the real-world data set and the data processing method. Section V and VI
next present the experimental results and discussion, respectively. Finally, Section
VII concludes the paper.

2. Related Work

Broadly, in the field of in-home monitoring sensor for MCI detection in a real world
setting, different types of prediction models on different derived data features mainly
from PIR motion sensor have been investigated. With this, this section provides the
overview of related prediction model work as follows: (1) Individual-specific norm ap-
proach; (2) Group-norm unsupervised approach; (3) Group-norm supervised approach.

2.1. Individual-specific norm approach

To date, there had been extensive research on investigation of models that can track
trajectory changes in functional outcomes of a subject (Akl & Mihailidis, 2015; Akl
et al., 2014, 2017). For instance, Akl et al. (2017) pioneered the use of inhomoge-
neous Poisson regression to characterize in-room activity distribution of a subject in
different rooms throughout a day, coupled with the use of Kullback-Leibler (KL)-
divergence to quantify the changes of an activity distribution with time (e.g. weeks)
and demonstrated feasibility to detect MCI of an individual with time. This type
of model basically leverages on deviation of a measure with time from each subject
baseline measurement to detect possible correlation with MCI. It does not leverage on
group-norm (comparing group norm of MCI vs. cognitive healthy such as the mean
walking speed of MCI subjects vs. cognitive healthy) for establishing the model.

2.2. Group-norm unsupervised approach

Broadly, there are two methods that used group-norm method to detect MCI from
cognitive healthy using data from in-home monitoring sensors. One method is via
unsupervised machine learning technique. Specifically, Akl et al. (2016) introduced a
combination of k-means and affinity propagation to create exemplars of room activity
distribution (also using inhomogeneous Poisson regression to characterize room ac-
tivity distribution) to different cognitive status, followed by classifying room activity
distributions belonging to a test subject to an exemplar via KL-divergence similarity
measure. As each exemplar is associated with a cognitive status, the classification of
the test subject to an exemplar will enable determination of the cognitive status of the
test subject. Note that this method, thus far, has only leveraged on a simple input
data attribute (i.e., in-room activity for one type of room such as either bedroom or
living room) to build a classifier model.

2.3. Group-norm supervised approach

Another group-norm approach is via use of supervised machine learning technique that
can effectively employ multiple input data attributes to predict MCI from cognitive
healthy. For example, Akl et al. (2015) had reported on a study using Support Vector
Machine (SVM) on data from 18 MCI and 79 cognitive healthy subjects. Their work
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experimented on sliding windows of one week to 24 weeks on each subject longitudinal
data (which can range from roughly one year to three years) to extract data up to
13 features including walking speed changes from each sliding window, general room
activity in the house, age and gender as data input attributes for training of SVM
model to detect MCI. In their work, they achieved a receiver operating curve-area
under the curve (ROC-AUC) of 0.97, signifying high predictive accuracy potential to
detect MCI.

Most recently, with the same in-home sensor data source as Akl et al. (2015), Khan
& Jacobs (2021) also investigated on a new data approach to detect MCI. Specifically,
Khan & Jacobs (2021) explored on the extraction of up to 40 novel complex movement
parameters related to cognitive confusion and forgetfulness as input data attributes
for SVM to detect MCI. In contrast, Akl et al. (2015)’s supervised machine learning
study mainly focused on use of walking speed data and in-room activity distribution.
One key point to highlight for Khan & Jacobs (2021)’s study is that though Khan
& Jacobs (2021) had only selected 22 MCI and 22 cognitive healthy subjects, they
had used each month of the subject data as one data record for modeling, enabling
their group to use 395 MCI and 264 cognitive healthy data points for model training
to predict onset of MCI. With this data set, they reported predictive accuracy of
approximately 80% to detect MCI. Clearly, these two research studies are focused on
different use of movement input data attributes for MCI detection. Investigation of
alternative machine learning models that may yield improved predictive performance
particularly for a small data set has yet to be carried out.

3. Proposed Machine Learning Model

To differentiate MCI from cognitive healthy using in-home sensor monitoring data
especially in a small data set, we propose the use of a self-organizing neural network
model called the fuzzy Adaptive Resonance Associative Map (fuzzy ARAM) (Tan,
1995; Tan & Pan, 2005). Figure 1 shows the fuzzy ARAM architecture. At high level,
fuzzy ARAM comprises of two overlapping adaptive resonance theory (ART) networks
sharing a single category field. With this architecture, it synchronizes the unsupervised
categorization of two pattern sets for learning of a supervised mapping between the
pattern sets (Tan, 1995). Specifically, an fuzzy ARAM system consists of an input
field F a

1 , an output field F b
1 , and a category field F2. With the input feature vectors

at F a
1 coupled with their corresponding class vectors at F b

1 , fuzzy ARAM learns to
associate combinations of key input features to their respective classes through the
encoding of recognition nodes in category field F2 (Tan & Pan, 2005). Note that
each recognition node j is associated with two adaptive weight templates wa

j and wb
j .

When a recognition node’s weight templates have not encoded any input patterns, it
means the recognition node has not learnt any new pattern. In other words, it is in
an uncommitted state. For such weight templates, the weight templates are initiated
to 1’s. During the start of learning, only one such uncommitted recognition node in
the F2 field will be created (Tan & Pan, 2005).
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To yield committed recognition nodes which indicates that learning has occurred,
fuzzy ARAM requires the setting of the following parameters (Tan, 1995): contribution
parameter γ ∈ [0,1], the choice parameters αa > 0 and αb > 0; the vigilance parameters
ρa ∈ [0,1] and ρb ∈ [0,1]; and the learning rates βa ∈ [0,1] and βb ∈ [0,1]. In brief,
the contribution parameter γ and the choice parameters αa and αb are firstly utilized
in a minimax learning operation. Specifically, the contribution parameter and the
choice parameters are used with a fuzzy minimum operation on weight templates and

an input pattern to compute a choice function γ
|xa∧wa

j |
αa+|wa

j |
+ (1− γ)

|xb∧wb
j |

αb+|wb
j |

for each F2

node. This is followed by the code competition and selection process, wherein the F2

node with the maximum choice function value is identified. Subsequently, during the
top-down priming process, the vigilance parameter ρa and ρb are employed as criteria

in vigilance tests
|xa∧wa

j |
|xa| ≥ ρa and

|xb∧wb
j |

|xb| ≥ ρb to determine whether F2 node with

the highest choice function value or its weight templates are sufficiently close to their
respective feature and class vectors. If the vigilance criterion is fulfilled, resonance
occurs. Else, if the vigilance constraints is violated, a match tracking process will
be activated. This mechanism basically adjusts the vigilance criterion, then selects
another F2 node under the revised criterion until a resonance is achieved. This search
and test process is guaranteed to end as fuzzy ARAM will either find a committed
node that satisfies the vigilance criterion or activate an uncommitted node which would
definitely satisfy the criterion due to its initial weight values of 1’ s. Once resonance
occurs, template learning ensues. The learning rate βa and βb are then leveraged
to control the rate of adaptive weight to converge to equilibrium in response to each

input pattern with the following formulas: w
a(new)
J = (1-βa)w

a(old)
J + βa(xa ∧ w

a(old)
J ),

w
b(new)
J = (1-βb)w

b(old)
J + βb(xb ∧ w

b(old)
J ). With this network architecture, it thus

creates a dynamic number of committed F2 nodes in response to the incoming patterns,
creating a learned fuzzy ARAM model. After the model completes learning from all
input patterns, it can then be used to predict the class vector based on use of only the
input feature vector. For more detail information of the fuzzy ARAM learning and
prediction processes, please refer to Tan (1995).

3.1. Missing value handling techniques

In real-world situations, collection of a complete data set is often challenging, resulting
in missing input attribute values which necessitates to be handled during machine
learning and prediction phases. In fuzzy ARAM, we have at least two approaches
to address missing input attribute values (Granger et al., 2000; Li & Parker, 2008),
namely the replacement by ”0” method and the replacement by ”1” approach. In
brief, replacement by ”0” method is the most simplistic approach as it involves just
the replacement of the complement-coded input vector where the ith record is missing
with (0,0). On the other hand, replacement by ”1” method not only requires the
replacement of the complement-coded input vector where the ith record is missing

with (1,1), the denominator of vigilance test
|xa∧wa

j |
|xa| ≥ ρa needs to be replaced with a

fixed value to increase the chances for the vigilance test to pass (Granger et al., 2000).
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Figure 1: The Adaptive Resonance Associative Map (ARAM) architecture primarily
comprises of a category field F2, an input field F a

1 , and an output field F b
1 which are

connected by bidirectional conditional pathways indicated by links with semi-circle
heads. The directions of the activity propagation of the pathways are indicated by
light and dark grey arrows. Note that the light grey arrows indicate the bottom-up
propagation process followed by code competition and selection process, while the
dark arrows indicate the top-down priming (resonance or reset) process followed by
the template learning process.

Overall, either approach can be employed during fuzzy ARAM learning and prediction
phase to handle missing input attribute values.

3.2. Rule extraction approach

As a fuzzy ARAM network learns, each node in the F2 field encodes a group of input
patterns that is associated with an output prediction (Tan & Pan, 2005). In this
way, rules can be extracted for interpretable of a fuzzy ARAM network. Specifically,
we define that a pair of learned weight vectors for each node represents a set of rule
associating antecedents to consequences (Tan & Pan, 2005). Consequently, for any
committed F2 node j, there will be a pair of corresponding weight template vectors wa

j

and wb
j , which we can derive an IF-THEN rule of the form given below:

C : A1,A2, ...,An (1)

where C is the class indicated by the non-zero attribute value in wb
j , while A1, A2,

...,An are the antecedents or conditions corresponding to the non-zero input attribute
values in wa

j . Using complementary coding, a pair of complement coded weight values
(wa

ji, w̄
a
ji) for a feature i translates into a value range of [wa

ji, 1 - w̄a
ji]. For instance,
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a pair of weight values (0.7, 0.0) for feature i indicates a value of [0.7, 1.0], i.e. the
normalized feature value ai ≥ 0.7. The obtained value ranges may subsequently be
mapped back to the original scale of the expression values for human interpretation.
For example, the normalized feature value range of ai < 0.47 may correspond to the
heart rate (beats per minute) xi < 12 in absolute terms.

3.3. Pruning strategies

To reduce the complexity of fuzzy ARAM rules which may improve generalizability and
eventual model interpretation (Carpenter & Tan, 1993), rule pruning can be employed
to select a concise set of rules from trained ARAM networks (Carpenter & Tan, 1995).
For the rule pruning algorithm, pruning of the rules are based on the confidence factors
associated with each rule. A confidence factor for each F2 node is derived from its usage
frequency in a training set and its predictive accuracy on a predicting set. Formally,
we define the confidence factor CFj as follows:

CFj = δUsagej + (1− δ)Accuracyj , (2)

where Usagej is the usage of node j, Accuracyj is its accuracy, and δ ∈ [0,1] is a
weighting factor. For a small data set similar as this study, we typically set δ = 1,
resulting in computation of confidence factors solely based on usage in the training
set (Carpenter & Tan, 1995). After confidence factors are determined, F2 nodes can
be generally pruned from the network using threshold pruning where F2 nodes with
confidence factors below a given threshold τ are removed from the network. Typically,
τ is set to be 0.1 for small data sets. Alternatively, an iterative rule-pruning approach
can be implemented. This method essentially removes an recognition category with
the lowest confidence factor from a learned fuzzy ARAM network during a training
and prediction set, provided that the removal of the recognition category does not
lead to a deterioration of predictive performance on the same training and prediction
set. Either approach will yield a fuzzy ARAM systems with a smaller set of rules,
potentially improving generalizability and providing ease for interpretation (Tan &
Pan, 2005).

4. Experimentation on Real-World Data

We conducted a proof of concept feasibility study to evaluate whether the in-home
behaviour pattern differences between a group of cognitive healthy and a group of
MCI subjects can be used to used to construct a fuzzy ARAM model for detection
of MCI. Formally, we define that given the in-home sensor data and cognitive status
of a group of cognitive healthy and a group of MCI subjects at a cross-sectional time
point, we seek to differentiate MCI subjects from cognitive healthy subjects using
fuzzy ARAM. We also aim to derive symbolic IF-THEN rules from fuzzy ARAM to
interpret the final MCI detection model.
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4.1. Data source

We employed data from a cross-sectional study conducted over a period of two months.
The study commenced in March 2016 and was completed in August 2018. Institutional
ethics review board approvals were obtained (reference number: 2015/ 01076) (Raw-
taer et al., 2020). Informed consent was obtained from participants before screening
them for eligibility. 49 subjects were eligible and each individual subject’s home was
instrumented with an in-home sensor network system for a duration of two months
(Rawtaer et al., 2020). In brief, the in-home sensor network system consists of three
PIR motion sensors located in living room, kitchen and bedroom, two magnetic con-
tact sensors placed on main house door and medicine box, a pressure sensor placed
on bed, a smart-plug for monitoring TV usage, Bluetooth beacon sensors tagged on
key and wallet, and a wearable hand-wrist sensor that can yield heart rate (beats per
minute) and daily steps. As each type of sensors operates with a different mechanism,
data from each sensor type are recorded at different frequencies. For instance, the
motion sensors and contact sensors only recorded data whenever they are triggered.
On the other hand, the pressure sensors, the smart-plug, Bluetooth beacon sensors
and wearable hand-wrist sensor captured data at every 5 minutes, 10 minutes, 4 min-
utes and 60 minutes intervals, respectively (Chen et al., 2019). The sensed data from
the different sensors were subsequently wirelessly transmitted to the gateway. The
gateway then aggregated and transmitted the data to the backend server via secure
cellular communications (e.g. 3G) for monitoring and processing. Each data point
was identifiable only via the sensor node identifier; the mapping between the sensor
node identifier and the home was securely stored and accessible only by the study
investigators (Rawtaer et al., 2020).

The participants’ cognitive status of MCI or cognitive healthy was established at
baseline with the Mini-Mental State Examination (MMSE), Montreal Cognitive As-
sessment (MoCA), Clinical Dementia Rating (CDR) and detailed neuropsychological
test batteries and via a consensus panel (Rawtaer et al., 2020). Overall, there were
21 MCI and 28 cognitive healthy participants. This data field is also available to
this study for correlation to the sensor data for data analysis and machine learning
modeling.

4.2. In-home behaviors captured and data preprocessing

Different combinations of sensor data were used to specifically measure nine types of
in-home behaviors, namely forgetfulness of medicine taking, forgetfulness of bringing
key when traveling out, forgetfulness of bringing wallet when traveling out, number of
outdoor activities, duration of time away from home, duration of television use, du-
ration of sleep, number of steps each day, and heart beat per minute (Rawtaer et al.,
2020). For instance, participants were provided with a sensor-equipped medication box
to store all their prescription medication; data were generated whenever the box was
opened. These data, taken together with the expected medication frequency informa-
tion obtained at baseline, allowed us to determine the number of times a participant
forgot to take their medication at the prescribed time. For more details, please refer
to Rawtaer et al. (2020) for an elaborated description of the specific combinations of
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sensors used to measure the different behaviors. Overall, with the various types of raw
sensor data readings, these were first converted into a common format and aggregated
into a database. Purging of the data was performed to remove erroneous data and pe-
riods where the system was down/partially down. After data purging, sensor-specific
data cleaning or validation was performed to ensure that only valid sensor data are
processed. After the process of cleaning data, metrics such as mean and standard
deviation of frequency of forgetting medication per month per user were computed.

4.3. Preliminary data exploration

4.3.1. Data completeness

With the cleaned data from each participant (subject), we preliminary explored the
data set. As data completeness is pivotal towards construct of an accurate machine
learning model, we first examine the amount of missing data on the nine in-home be-
havior metrics. Table 1 shows the statistics for missing value from all subjects for each
behavior metric. Clearly, three behavior metrics utilizing only unobtrusive monitoring
sensors such as PIR sensors and smart-plug experienced no missing values, while the
six other behavior metrics mostly involving the use of wearable sensors suffered from
missing values ranging from 4.3% (2/49) to 32.4% (12/49) of total number of subjects.
For more detail information on the missing values for each of the nine in-home behav-
ior metrics in relation to the different subjects, please refer to Supplementary Table 1.
With these results, we further summarized the missing values statistics by per subject
basis (Table 2). We first define subject with missing values as any subject with at least
one missing behavior metric value. Using this definition, 49.0% (24/49) of subjects
suffered from missing values. However, by analyzing the average number of behavior
metric with missing values per subject, approximately 1.0 (46/49) behavior metric is
missing per subject. These results indicate that even though many subjects suffered
from at least one missing values issue, each subject on average only experienced about
one missing in-home behavior metric value.

4.3.2. Diagnostic utility of the in-home behavior metrics

With the different number of non-missing values from each of the in-home behavior
metrics, we next explored the diagnostic utility of these various behavior metrics for
differentiation of MCI from cognitive healthy. Specifically, we employed the unpaired
Student t-test to determine the predictive utility of each behavior metric collected over
a two-month period. This univariate test was selected as it excels in testing the differ-
ences of population means belonging to two sample groups with continuous variables.
This statistical test was, in fact, used in one of our prior studies (Rawtaer et al., 2020),
and also employed in another related work by a different group Wu et al. (2021). Fig-
ure 2 and Figure 3 summarize the comparison of nine in-home behaviour metrics for
MCI subjects against cognitive healthy when using two months-mean and two-months-
standard deviation measures, respectively. Overall, there is no significant statistical
differences in any of the nine in-home behaviour metrics when using the mean measure.
For the standard deviation measure, only sleep duration was found to be statistically
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Table 1: Statistics of subjects with missing values per behavior metric.

Behavior metrics
Wearable
sensors*

Subjects with miss-
ing values
Number Percentage

Television use daily (min) No 0 0.0%
Time away from home daily (min) No 0 0.0%
No. of outings daily No 0 0.0%
Frequency of forgetting keys/month Yes 2 4.3%
Frequency of forgetting wallet/month Yes 2 4.3%
Sleep duration daily (min) No 10 25.6%
Heart rate (bpm) Yes 10 25.6%
Steps (daily) Yes 12 32.4%
Frequency of forgetting medicine/month Yes 0 0.0%

*Note: Wearable sensors include Bluetooth beacon sensors and hand-wrist sensor.

Table 2: Overall missing values summary.

Data summary parameters Statistical values
Total unique subjects 49
Number of unique subjects with missing values 24
Overall % subjects with ≥ 1 missing value 49.0%
Average ± standard deviation (SD) number of missing
behavior metric value per subject

1±1

significant (p<0.05). Clearly, this preliminary univariate data analysis demonstrated
that the standard deviation measure of sleep duration contains statistically significant
predictive utility for MCI detection, while each of the 17 other behaviour metrics con-
tains subtle individual diagnostic information to detect MCI, suggesting that it may
be necessary to combine behavior metrics to provide notable predictive utility for MCI
detection.

4.4. Fuzzy ARAM modeling using data set with missing values

From our preliminary data exploration result, we observed that each subjects on av-
erage only suffered about one missing behavior metric value out of a total of nine
behavior metrics. As fuzzy ARAM possesses the capability to handle missing values
for learning and prediction (Granger et al., 2000), we first investigated the use of a
full 49-subject data set for ARAM modeling to detect MCI from cognitive healthy.
A min-max normalization operation was first carried out to scale non-missing values
from each of the data input attribute to be bounded between 0 and 1 (Tan & Pan,
2005). For each of the data attributes, we then created a corresponding vector by
subtracting min-max normalized non-missing values from 1. Hence, each of the data
attributes was associated with two values, which is known as complement coding (Tan,
1995). For data input attribute with missing value, complement coding of (1,1) was
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Figure 2: Comparison of mean values of nine in-home behavior metrics measured
over two months between the cognitively healthy group and MCI. Note that the error
bar represents standard error (standard deviation normalized by square root of
sample size).

utilized to replace any missing value from any specific data input attribute so that
we can employ the full 49-subject data set (Granger et al., 2000). To evaluate the
performance on this small sample data set, the leave-one-out, cross-validation method
was employed. In brief, in the first round of leave-one-out, cross-validation, one data
point (which represented one subject in this study) was left out, while the remaining
were used for model training. For example, when using the 49-subject data set, one
data point from one subject was withheld, while the 48 subjects were used for model-
ing building. The built model was then used to classify the withheld data point from
the one subject. This process was repeated until all withheld data were classified. In
other words, this process was repeated 49 times. In each run, the training patterns
are presented in a random order. Predictive performance metrics were then computed
based on results from all withheld data points. As this study may potentially suffer
from imbalanced class data set problem (Saito & Rehmsmeier, 2015), F1-score was
employed as the main performance metric. Accuracy was, nevertheless, also reported
in this report as a secondary performance metric for evaluation.

For all fuzzy ARAM learning experiments, we fixed choice parameter αb, learning
rate βb, baseline vigilance ρb, contribution parameter γ, and number of voting ARAM
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Figure 3: Comparison of standard deviation values of nine in-home behavior metrics
measured over two months between the cognitively healthy group and MCI. Note
that the error bar represents standard error, and p-value is shown for any pairwise
comparison (i.e., MCI and cognitively healthy group) which is statistically significant
at 5% level.

models to be 0.001, 1, 1, 1, and 5, respectively. For maximal generalization, match-
tracking is used for all experiments. We then varied different combinations of choice
parameter αa between 0.001 to 0.1, learning rate βa between 0.1 to 1.0, baseline
vigilance ρa between 0.1 to 1.0, and with different combination of pruning strategies
including no pruning, threshold pruning at 0.1, and the iterative-rule pruning. Note
that pruning approach in this small data set study is solely based on computation of
usage in the training set (Tan & Pan, 2005). This variation of different combinations
of hyperparameters and different pruning strategies was repeated for each set of data
input attributes. As our preliminary data exploration work suggested that there were
limited diagnostic utility in 17 out of 18 behavior metrics for MCI detection when used
individually, the combining of multiple behavior metrics into one set of data input
attributes for fuzzy ARAM modeling would be necessary. Thus, we grouped nine in-
home behavior metrics related to two months-mean measure, all nine in-home behavior
metrics associated with two-months-standard deviation measure, and all 18 in-home
behavior metrics that are related to both two months-mean and two-months-standard
deviation measures into three combinations of data input attributes for fuzzy ARAM
modeling. The variation of different combinations of hyperparameters and different
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pruning strategies were thus repeated for each of these three combinations of data
input attributes.

Table 3 provides the performance of fuzzy ARAM models using different pruning
methods for mean, standard deviation, and mean+standard deviation measures of se-
lected in-home behaviours measured over two-months from 49 subjects. For the mean
measure, high vigilance (ρa = 0.9), slow learning (βa = 0.1), and iterative rule-based
pruning strategy were found to be pivotal to build the classifier with the highest F1-
score of 56.5%. Choice parameter (αa), however, seemingly did not play a key role.
In contrast, choice parameter of αa = 0.1, low vigilance (ρa = 0.0) and fast learning
(βa = 1.0) were discovered to be instrumental to build the classifier with the highest
F1-score (58.3%) using the standard deviation measure. Note that iterative rule-based
pruning strategy was found again to provide the highest predictive utility amongst the
different pruning methods when using the standard deviation input attribute measure.
For the mean+standard measure, choice parameter of αa = 0.1, low vigilance (ρa =
0.0), and a range of learning rate starting from slow to fast learning (βa = 0.5 or 1.0)
were found to be important for building a classifier with the highest F1-rate of 53.7%.
Clearly, the different pruning strategies apparently does not affect the predictive per-
formance. Note that though leave-one-out,cross-validation is an unbiased performance
error estimator, it is well-known to suffer from significant variability (Efron, 1983).
To estimate this variability is non-trivial (Bengio & Grandvalet, 2004). As a proxy,
we employed the bootstrapping sampling method to derive an approximate measure
of variance for our cross-validation approach (Efron, 1983). Our result shows that the
standard deviations of our performance error estimations of F1-score and accuracy rate
are in the range of 4-7%. Overall, these predictive performance results demonstrate
that fuzzy ARAM can be applied on data set with missing values to build a model
with reasonable predictive utility for MCI detection.
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Table 3: Performance of fuzzy ARAM models using different pruning methods for mean, standard deviation, and mean+standard deviation
measures of selected in-home behaviours measured over two-months from 49 subjects.

No Pruning Threshold Pruning Rule-Pruning

F1-score Accuracy F1-score Accuracy F1-score Accuracy
Measures αa ρa βa (Precision) (Sensitivity/Specificity) (Precision) (Sensitivity/Specificity) (Precision) (Sensitivity/Specificity)

Mean 0.001 0.9 0.1 52.2% 55.1% 52.2% 55.1% 56.5% * 59.2%
(48.0%) (57.1%/53.6%) (48.0%) (57.1%/53.6%) (52.0%) (61.9%/57.1%)

0.01 0.9 0.1 52.2% 55.1% 52.2% 55.1% 56.5% * 59.2%
(48.0%) (57.1%/53.6%) (48.0%) (57.1%/53.6%) (52.0%) (61.9%/57.1%)

0.1 0.9 0.1 52.2% 55.1% 52.2% 55.1% 56.5% * 59.2%
(48.0%) (57.1%/53.6%) (48.0%) (57.1%/53.6%) (52.0%) (61.9%/57.1%)

Std 0.1 0.0 1.0 55.3% 57.1% 55.3% 57.1% 58.3% * 59.2%
(50.0%) (61.9%/53.6%) (50.0%) (61.9%/53.6%) (51.9%) (66.7%/53.6%)

Mean+Std 0.1 0.0 1.0 53.7% * 61.2% 53.7% * 61.2% 50.0% 59.2%
(55.0%) (52.4%/67.9%) (55.0%) (52.4%/67.9%) (52.4%) (47.6%/67.9%)

0.1 0.0 0.5 53.7% * 61.2% 53.7% * 61.2% 53.7% * 61.2%
(55.0%) (52.4%/67.9%) (55.0%) (52.4%/67.9%) (55.0%) (52.4%/67.9%)

* denotes the fuzzy ARAM model with the highest F1-score performance respectively for the mean, standard deviation, and mean+standard deviation measures

of selected in-home behaviors. Note that recall is not provided as sensitivity is the equivalent of recall.
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From the F1-score and accuracy rate results, there is approximately 40.0% - 50.0%
prediction error rate. One plausible reason for the higher error rate could be because
the patterns with complement coding of (1,1) for missing values (from 24 subject data)
are mostly misclassified. We, thus, investigated on the relationship between missing
values and prediction errors. From the fuzzy ARAM modeling with different combi-
nations of parameters and different sets of behavior metrics, we randomly selected 38
sets of prediction results with 49 prediction labels in each set of results. Retrospec-
tively, we linked each of the 1,862 predictions labels with whether it was misclassified
and whether it was associated with missing values. A contingency table was used
to show the relationship between predictions labels which contain missing values and
prediction errors (Table 4). We observed that 46.0% (431/937) of prediction labels
with missing values were incorrectly predicted, whilst 54.4% (504/925) of prediction
labels without missing values were incorrectly predicted. Pearson’s Chi-square con-
firmed that prediction labels with missing values was associated with lower error rate
than those without missing values at 5% significance level. Overall, this experiment
indicates that the compromised predictive performance of fuzzy ARAM due to the use
of complement coding of (1,1) is most likely caused by reasons not directly related to
increased misclassification from patterns with complement coding of (1,1) for missing
values.

Table 4: Relationship between missing values and prediction error.

Prediction labels with
missing input attribute

Incorrect
prediction

Correct
prediction

Total p-value

Yes 431 506 937
No 504 421 925 0.0002
Total 935 927 1862

4.5. Fuzzy ARAM modeling using data set with no missing value

To further assess the efficacy of fuzzy ARAM to handle small data, we next investigated
the modeling performance of fuzzy ARAM to detect MCI from cognitive healthy using
the data set with no missing values. The final data set sample size with no missing
values used in this experiment was thus 25, with 10 subjects’ data belonging to MCI
and 15 subjects’ belonging to cognitive healthy. The min-max normalization operation
was again performed to scale non-missing values from each of the data input attribute
to be bounded between 0 and 1 (Tan & Pan, 2005). With the normalized 25-subject
data set, it was then subjected to the same experimental conditions as in the 49-
subject data set with fixing and varying the same fuzzy ARAM parameters. Table 5
provides the performance of fuzzy ARAM models using different pruning methods for
mean, standard deviation, and mean+standard deviation measures of selected in-home
behaviours measured over two-months from 25 subjects. For the mean measure, choice
parameter of αa = 0.1, low vigilance (ρa = 0.0) and fast learning (βa = 1.0) were found
to be critical towards building the classifier with the highest F1-score of 54.5%. The
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different pruning strategies seemingly did not affect the predictive performance. For
the standard deviation measure, the different pruning strategies were found again not
to affect the predictive performance. A choice function of αa = 0.01, low vigilance
(ρa = 0.5) and slow learning rate (βa = 0.5) were elucidated to be important for
the highest F1-score of 63.6%. For the mean+standard deviation measure, a choice
function of αa = 0.01, low vigilance (ρa = 0.0), fast learning (βa = 1.0) and iterative
rule-based pruning strategy were revealed to be important to build the classifier with
the highest F1-rate of 63.6%. Clearly, application of fuzzy ARAM on the 25-subject
data set yielded an improved predictive performance as compared to the 49-subject
data set (highest F1-rate for 25-subject data set: 63.6%; highest F1-rate for 25-subject
data set: 58.3%). Note that the standard deviation index of our performance error
estimations was estimated to be approximately between 5-11% after we had employed
the bootstrap sampling technique as a proxy. Overall, this demonstrates that fuzzy
ARAM can be employed on data set with no missing values to build a model with
improved predictive utility (as compared to models used on data with missing data)
for MCI detection.
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Table 5: Performance of fuzzy ARAM models using different pruning methods for mean, standard deviation, and mean+standard deviation
measures of selected in-home behaviours over measured two-months from 25 subjects.

No Pruning Threshold Pruning Rule-Pruning

F1-score Accuracy F1-score Accuracy F1-score Accuracy
Measures αa ρa βa (Precision) (Sensitivity/Specificity) (Precision) (Sensitivity/Specificity) (Precision) (Sensitivity/Specificity)

Mean 0.1 0.0 1.0 54.5% * 60.0% 54.5% * 60.0% 54.5% * 60.0%
(50.0%) (60.0%/60.0%) (50.0%) (60.0%/60.0%) (50.0%) (60.0%/60.0%)

Std 0.01 0.5 0.5 63.6% * 68.0% 63.6% * 68.0% 63.6% * 68.0%
(58.3%) (70.0%/66.7%) (58.3%) (70.0%/66.7%) (58.3%) (70.0%/66.7%)

Mean+Std 0.01 0.0 1.0 60.9% 64.0% 60.9% 64.0% 63.6% * 68.0%
(53.8%) (70.0%/60.0%) (53.8%) (70.0%/60.0%) (58.3%) (70.0%/66.7%)

* denotes the fuzzy ARAM model with the highest F1-score performance respectively for the mean, standard deviation, and mean+standard deviation measures

of selected in-home behaviors. Note that recall is not provided as sensitivity is the equivalent of recall.



4.6. Fuzzy ARAM modeling with antecedent pruning

From fuzzy ARAM modeling results using 49- and 25-subject data sets in Table 3 and
5, it is clear that iterative rule-pruning approach has often been found to be pivotal
towards building fuzzy ARAM models with high F1-score performance. This suggests
that rule-pruning strategy can improve generalizability. Besides rule pruning to re-
duce model complexity, antecedent pruning can also be used to derive concise rules for
prediction and interpretation. Essentially, this techniques relies on calculation of the
error factor for each antecedent in each rule based on its performance on the training
and predicting sets. When a rule makes a predictive error, each antecedent of the rule
that also appears in the current input has its error factor increased in proportion to
the smaller of its magnitudes in the rule and in the input vector. After the error factor
for each antecedent is determined, an iterative pruning strategy, similar to the one
for rules, removes redundant antecedents by setting the corresponding weight to zero
(Carpenter & Tan, 1995). This technique will reduce the number of antecedents em-
ployed in the prediction model, thereby only presenting the antecedents with the most
predictive utility for interpretation. In this work, we also experimented fuzzy ARAM
modeling with antecedent pruning. Table 6 presents the hyperparameters and the
predictive performance of fuzzy ARAM models with the highest F1-score within each
type of input attribute measure (i.e., mean, standard deviation, and mean+standard
deviation) for both 49- and 25-subject data sets. For the 49-subject data set, the
standard deviation measure with choice parameter of αa = 0.1, high vigilance (ρa =
0.9) and slow learning (βa = 0.5) were found to be important towards building a clas-
sifier with the highest F1-score predictive performance of 60.0%. For the 25-subject
data set, choice parameter of αa = 0.1 and slow learning (βa = 0.5) when applied
on the standard deviation measure were found again to be critical towards building
a classifier with the highest F1-score of 76.2%. Clearly, the 25-subject data set with
standard deviation measure using choice parameter of αa = 0.1, low vigilance (ρa =
0.5) and slow learning (βa = 0.5) were found to provide the highest predictive F1-score
amongst all modeling experiments. To validate whether the fuzzy ARAM model had
converged to a stabilized value, we plotted the training and testing loss curves with
respect to the number of epochs. Figure 4 shows the convergence of the loss curves
starting from approximately the third epoch, indicating a successful learning process.
Collectively, these results demonstrate the utility of fuzzy ARAM with antecedent
pruning to differentiate MCI from cognitive healthy with high predictive performance.
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Table 6: Performance of fuzzy ARAM models using antecedent pruning methods for mean, standard deviation, and mean+standard
deviation measures of selected in-home behaviours over two-months from 49- and 25- subjects.

Subject sample size Measure αa ρa βa F1-score Precision Accuracy Sensitivity Specificity
49 Mean 0.01 0.0 0.1 52.2% 48.0% 55.1% 57.1% 53.6%

Std 0.1 0.9 0.5 60.0% * 63.2% 67.3% 57.1% 75.0%
Mean+Std 0.001 0.5 0.5 56.4% 61.1% 65.3% 52.4% 75.0%

25 Mean 0.01 0.9 0.1 57.1% 54.5% 64.0% 60.0% 66.7%
Std 0.1 0.5 0.5 76.2% * 72.7% 80.0% 80.0% 80.0%
Mean+Std 0.01 0.0 0.5 63.6% 58.3% 68.0% 70.0% 66.7%

* denotes the highest F1-score performance from each sample size.Note that recall is not provided as sensitivity is the equivalent of recall.
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Figure 4: Loss curve: the image shows loss curves for the training (solid line) and
testing (dotted line) data. Convergence for both curves started from approximately
from the third epoch, indicating a successful learning process.

4.7. Fuzzy ARAM derived prediction rules

As fuzzy ARAM possesses the capability to provide interpretable information (Tan &
Pan, 2005), we employed this specific model to extract symbolic rules for interpreta-
tion. In this experiment, we extracted the symbolic rules using iterative-rule pruning
method from the 25-subject data set with standard deviation measure for insight com-
parison between the two different pruning strategies. In specific, we employed the
model with the lower average number of committed F2 nodes using the iterative-rule
pruning method as shown in Table 5 (i.e., of αa = 0.001, low vigilance (ρa = 0.5), and
slow learning (βa = 0.5)). Note that iterative rule-pruning method was used as bench-
mark as it was found most frequently to be critical towards building fuzzy ARAM
models with high F1-score performance. Table 7 first presents the complete list of
fuzzy ARAM rules to detect MCI and cognitive healthy using iterative-rule pruning
approach. Clearly, three sets of rules based on nine antecedents with confidence level
ranging from 0.17 to 1.00 were derived to identify MCI, while another three sets of
nine rules based on nine antecedents with confidence level ranging from 0.14 to 1.00
were constructed to identify cognitive healthy. Overall, 54 antecedents (6 rules x 9
attributes) were employed from fuzzy ARAM with iterative-rule pruning approach to
identify MCI from cognitive healthy. We next investigated the fuzzy ARAM rules us-
ing antecedent pruning method. Table 8 shows a summary of the complete list of fuzzy
ARAM rules to detect MCI and cognitive healthy using antecedent pruning approach.
Similar as the iterative-rule pruning approach, three rules with confidence level ranging
from 0.17 to 1.00 were derived to identify MCI, while another three sets with confi-
dence level ranging from 0.14 to 1.00 were constructed to identify cognitive healthy.
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Upon examining the value ranges in each rule, we observed that value ranges from the
antecedent pruning approach are also similar as those from the iterative-rule pruning
approach. For instance, for the rule to detect MCI with confidence level of 1.00, the
value ranges for the antecedent Variation (Heart rate (bpm)) using the iterative-rule
pruning method was ≥ 4 and < 12, while those using the antecedent-pruning technique
was < 12. Thus, it appears that the antecedent-pruning technique retains as much
as possible the value ranges of the antecedent derived from the iterative-rule pruning
approach. We next examined the number of antecedents in each rule. We confirmed
that the number of antecedent used has been considerably reduced from 54 to 21, with
12 antecedents utilized to detect MCI and 9 antecedents found to be useful to detect
cognitive healthy. Clearly, symbolic rules derived using antecedent-pruning presents a
concise set of antecedents for prediction and interpretation.

Based on the above analysis, consequently, Table 8 based on fuzzy ARAM with
antecedent pruning method was utilized for further interpretation of the symbolic IF-
THEN rules to differentiate MCI from cognitve healthy. From the three derived rules
for MCI, we observed that MCI is consistently associated with behavior metric of
forgetfulness such as frequency of forgetting wallet and medicine. In addition, we also
found that behavior metric related to physiologic parameters which consists of steps
and heart rate were also consistently found in all three derived rules for MCI. Though
these behavior metrics (or antecedents) related to forgetfulness and physiologic were
found in all three derived rules for MCI, these metrics were also found in the three rules
for recognizing cognitive healthy. This suggests that these behavior metrics related
to forgetfulness and physiologic were sensitive but not specific to recognize MCI. We
further examined any behavior metric that is unique to identify MCI. We confirmed
that the sleep duration behavior metric is one specific marker that can be used to
recognize MCI, but not for cognitive healthy. On the other hand, we found that the
behavior metric related to time away from home daily was specific to recognition of
cognitively healthy. Collectively, these rules derived from fuzzy ARAM model with
antecedent pruning method provide novel insights on possible sensitive and specific
casual factors that can be used to detect MCI from cognitive healthy.

4.8. Performance benchmark
In addition to evaluation of the capability of fuzzy ARAM to detect MCI from cog-
nitive healthy using in-home sensor monitoring data, we carried out a benchmark
experiment to confirm the advantage of fuzzy ARAM when confirmed to other clas-
sical or well-known models used in this field. Since SVM has been routinely applied
by Akl et al. (2015) and Khan & Jacobs (2021) for detection of MCI from cognitive
healthy using in-home sensors, SVM is selected as one benchmark algorithm (Cortes
& Vapnik, 1995). As fuzzy ARAM belongs to a type of ”white-box” model, we also
select a classical ”white-box” model for comparison with fuzzy ARAM, which is De-
cision Tree (Breiman et al., 1984). In totality, we selected SVM and Decision Tree
to benchmark against fuzzy ARAM. We first compared the three models in terms of
their predictive performance. Mean Average Precision (mAP) and Receiver Operating
Characteristics-Area Under the Curve (ROC-AUC) were chosen as the main evalua-
tion metrics (He & Ma, 2013). In specific, the fuzzy ARAM model using 25-subject
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Table 7: Iterative pruning-based fuzzy ARAM rules to detect MCI and cognitive
healthy.

Predict MCI (Confidence 1.00, usage = 1.00)
IF Variation (Time away from home daily (min)) ≥ 81, < 224
AND Variation (Heart rate (bpm))≥ 4, < 12
AND Variation (Steps (daily)) ≥ 892, < 2369
AND Variation (No. of outings daily) ≥ 1, < 18
AND Variation (Freq. of forgetting keys/month) < 17
AND Variation (Freq. of forgetting wallet/month) ≥ 3, < 15
AND Variation (Sleep duration daily (min)) ≥ 52, < 98
AND Variation (Freq. of forgetting medicine/month) ≥ 1, < 12
AND Variation (Television use daily (min)) < 13
Predict MCI (Confidence 0.33, usage = 0.33)
IF Variation (Time away from home daily (min)) ≥ 258, < 326
AND Variation (Heart rate (bpm)) = 6
AND Variation (Steps (daily)) ≥ 1663, < 2570
AND Variation (No. of outings daily) ≥ 6, < 11
AND Variation (Freq. of forgetting keys/month) ≥ 5, < 12
AND Variation (Freq. of forgetting wallet/month) ≥ 5, < 9
AND Variation (Sleep duration daily (min)) ≥ 140, < 163
AND Variation (Freq. of forgetting medicine/month) ≥ 3, < 7
AND Variation (Television use daily (min)) ≥ 17, < 25
Predict MCI (Confidence 0.17, usage = 0.17)
IF Variation (Time away from home daily (min)) = 77
AND Variation (Heart rate (bpm)) = 11
AND Variation (Steps (daily)) = 355
AND Variation (No. of outings daily) = 3
AND Variation (Freq. of forgetting keys/month) = 1
AND Variation (Freq. of forgetting wallet/month) = 3
AND Variation (Sleep duration daily (min)) = 61
AND Variation (Freq. of forgetting medicine/month) = 27
AND Variation (Television use daily (min)) = 28
Predict Cognitive healthy (Confidence 1.00, usage = 1.00)
IF Variation (Time away from home daily (min)) ≥ 81, < 166
AND Variation (Heart rate (bpm))≥ 9, < 19
AND Variation (Steps (daily)) ≥ 1362, < 3610
AND Variation (No. of outings daily) ≥ 5, < 13
AND Variation (Freq. of forgetting keys/month) ≥ 1, < 2
AND Variation (Freq. of forgetting wallet/month) < 10
AND Variation (Sleep duration daily (min)) ≥ 73, < 178
AND Variation (Freq. of forgetting medicine/month) ≥ 1, < 55
AND Variation (Television use daily (min)) < 17
Predict Cognitive healthy (Confidence 0.71, usage = 0.71)
IF Variation (Time away from home daily (min)) ≥ 190, < 248
AND Variation (Heart rate (bpm))≥ 5, < 13
AND Variation (Steps (daily)) ≥ 1798, < 3040
AND Variation (No. of outings daily) ≥ 9, < 22
AND Variation (Freq. of forgetting keys/month) ≥ 1, < 14
AND Variation (Freq. of forgetting wallet/month) ≥ 2, < 16
AND Variation (Sleep duration daily (min)) ≥ 84, < 115
AND Variation (Freq. of forgetting medicine/month) ≥ 1, < 23
AND Variation (Television use daily (min)) ≥ 9, < 254
Predict Cognitive healthy (Confidence 0.14, usage = 0.14)
IF Variation (Time away from home daily (min)) = 418
AND Variation (Heart rate (bpm))≥ 5, = 10
AND Variation (Steps (daily)) ≥ 1798, = 1026
AND Variation (No. of outings daily) ≥ 9, = 5
AND Variation (Freq. of forgetting keys/month) = 1
AND Variation (Freq. of forgetting wallet/month) = 2
AND Variation (Sleep duration daily (min)) = 201
AND Variation (Freq. of forgetting medicine/month) = 5
AND Variation (Television use daily (min)) = 384
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Table 8: Antecedent pruning-based fuzzy ARAM rules to detect MCI and cognitive
healthy.

Predict MCI (Confidence 1.00, usage = 1.00)
IF Variation (Heart rate (bpm)) < 12
AND Variation (Steps (daily)) < 2369
AND Variation (No. of outings daily) < 18
AND Variation (Freq. of forgetting wallet/month) < 15
AND Variation (Sleep duration daily (min)) < 98
AND Variation (Freq. of forgetting medicine/month) < 12
AND Variation (Television use daily (min)) < 13
Predict MCI (Confidence 0.33, usage = 0.33)
IF Variation (Heart rate (bpm)) < 6
AND Variation (Freq. of forgetting wallet/month) < 9
Predict MCI (Confidence 0.17, usage = 0.17)
IF Variation (Steps (daily)) = 355
AND Variation (Freq. of forgetting medicine/month) < 27
AND Variation (Television use daily (min)) < 28
Predict Cognitive healthy (Confidence 1.00, usage = 1.00)
IF Variation (No. of outings daily) < 13
AND Variation (Freq. of forgetting keys/month) < 2
AND Variation (Freq. of forgetting wallet/month) < 10
AND Variation (Television use daily (min)) < 17
Predict Cognitive healthy (Confidence 0.71, usage = 0.71)
IF Variation (Time away from home daily (min)) ≥ 190, < 248
AND Variation (Heart rate (bpm)) < 13
AND Variation (Steps (daily)) ≥ 1798
AND Variation (Television use daily (min)) ≥ 9
Predict Cognitive healthy (Confidence 0.14, usage = 0.14)
IF Variation (Freq. of forgetting medicine/month) < 5



data set with antecedent pruning method built using nine behavior metrics related
to standard deviation measure (αa = 0.1, low vigilance (ρa = 0.5), and slow learning
(βa = 0.5)) was selected throughout this experiment for comparison with SVM and
Decision Tree. We then utilized the same 25-subject data set containing nine behavior
metrics related to standard deviation measure for construct of multiple SVM models.
Leave-one-out, cross-validation was used to evaluate the predictive performance of the
different models, out of which we selected the SVM model with the highest F1-score
for comparison with fuzzy ARAM. In brief, we conducted a grid-search of hyperparam-
eters of C ranging [0.001, 1000], γ ranging from [0.001, 1000], and amongst different
kernels including linear and Radial-Basis Function (RBF). The SVM model with γ of
0.01, C value of 100 and with RBF kernel was eventually selected as the final model
for comparison. For Decision Tree, we utilized the same approach as SVM to select a
model eventually for comparison with fuzzy ARAM and SVM. Briefly, we conducted
a grid-search of hyperparameters of maximum tree depth ranging [3, 20], minimum
number of data points required in a leaf node ranging from [1, 10], and amongst dif-
ferent node splitting criterion including Gini and entropy. The Decision Tree with a
maximum tree depth of 5, minimum number of data points required in a leaf node of
10 and with Gini node splitting criterion was eventually selected as the final model for
comparison. As Decision Tree can provide interpretable information, we also compare
fuzzy ARAM against Decision Tree on the types of interpretable information that can
be yielded.

Figure 5 shows the mAP and ROC-AUC for the three selected classifiers each
belonging to fuzzy ARAM, SVM and Decision Tree, respectively. In specific, mAPs
of 0.70, 0.68, and 0.70 (Figure 5 (A)), and ROC-AUC of 0.78, 0.71, and 0.53 (Figure
5 (B)), respectively were achieved by fuzzy ARAM, SVM and Decision Tree. Clearly,
fuzzy ARAM achieved the highest predictive performance amongst the three models
regardless of mAP or ROC-AUC metric. To confirm fuzzy ARAM achieved the highest
predictive performance amongst the three models, we next evaluated fuzzy ARAM
against SVM and Decision Tree on F1-scores. With F1-scores of 76.2%, 73.7% and
63.6% from fuzzy ARAM, SVM and Decision Tree, respectively, we confirm that fuzzy
ARAM can achieve improved predictive performance as compared to classical models
in the area of in-home sensor monitoring for MCI detection field using small data.
Using the Decision Tree with the optimal predictive performance, we also extracted
interpretable rules from the model for comparison against fuzzy ARAM. The Decision
Tree model revealed that if a subject’s Variation (Sleep duration daily (min)) < 99,
a subject could be suffering from MCI. If not, the subject should be cognitive healthy.
This rule is similar to one of the rules found by fuzzy ARAM to detect MCI as shown in
Table 8, though there are more rules and more antecedents discovered by fuzzy ARAM
to detect MCI and cognitive healthy. Overall, with the benchmark investigation, our
result demonstrated that fuzzy ARAM provides improved predictive performance for
differentiating MCI from cognitive healthy as compared to classical models including
SVM and Decision Tree, and yields unique interpretable insight that Decision Tree
inadequately provides.
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Figure 5: (A) Mean Average Precision (mAP) and (B) Receiver Operating
Characteristics-Area Under the Curve (ROC-AUC) predictive performance
comparison of fuzzy ARAM against SVM and Decision Tree using the 25-subject
data set containing nine behavior metrics related to standard deviation measure.

To further validate the performance efficacy of the predictive self-organizing neural
networks for use in the small data sample size problem, we also benchmarked fuzzy
ARAM against the state-of-the-art deep learning models including Multi-Layer Per-
ceptron (MLP), Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) neural network models with different hyperparameters including different hid-
den layers (e.g. 3-11 layers) and different neurons in each layer (e.g. 12-128) after 300
epochs with Adam optimizer using fixed learning rate of 0.001. Table 9 provides the
predictive performance of the highest F1-score model from each of the neural network
architecture (i.e., fuzzy ARAM, MLP, CNN, and LSTM) for the 25-subject data set.
Clearly, fuzzy ARAM outperformed the different neural network architectures in a
small data set situation.
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Table 9: Predictive performance of the highest F1-score model from each of the
neural network architecture (i.e., ARAM, MLP, CNN, LSTM) for MCI detection.

Models F1-score Precision Accuracy Sensitivity Specificity
ARAM 76.2% 72.7% 80.0% 80.0% 80.0%
MLP 57.1% 54.5% 64.0% 60.0% 66.7%
CNN 63.6% 58.3% 68.0% 70.0% 66.7%
LSTM 58.3% 50.0% 60.0% 70.0% 53.3%

Note that recall is not provided as sensitivity is the equivalent of recall.

5. Discussion

5.1. Overcoming small sample size and missing data challenges

In-home sensor monitoring of older adults permits longitudinal study of activities
of daily living that could be correlated to different age-related potentially reversible
conditions including MCI (Lussier et al., 2019). As these studies are typically resource
intensive to manage, so far only small subject sample size studies typically less than
300 are carried out, and out of which only a fraction of these subjects are the MCI
cases (Khan & Jacobs, 2021). For instance, in the ORCATECH study over the span of
10 years , only 205 subjects had participated, out of which only 34 subjects developed
MCI. Within the 34 participants, only 22 did not change their residence during the
10 years period (Khan & Jacobs, 2021). Hence, Khan & Jacobs (2021) eventually
only used 22 MCI and 22 cognitive healthy subjects’ data for a balanced data set
to build a machine learning model. As most machine learning algorithms necessitate
at least a reasonable large sample size to construct an accurate prediction model (Qi
& Luo, 2020), Khan & Jacobs (2021) employed each month of the subject data as
one data record for modeling, resulting in an eventual total sample size of 395 MCI
and 264 cognitive healthy data points for model training, which is still considered as
a fairly small data set for machine learning (Tan, 1995). Clearly, in the field of in-
home monitoring sensor data for MCI detection, it is necessary to investigate machine
leaning model that can be employed in a small data problem. As a result, in this work,
we preliminary explored a self-organizing neural networks, which had been previously
shown to perform well in a small data problem (Tan, 1995), on a small in-home sensor
data set consisting of 49 subjects to build a machine learning model that can be used
to accurately detect MCI from cognitive healthy.

Though missing data is a common issue in any real-world longitudinal study, this
issue will further reduce a already small sample size data set, affecting the yielding
of a reasonable data set sample for machine learning. In this work, we have not only
introduced a new algorithm model for MCI prediction, we have also investigated dif-
ferent techniques to handle missing values for machine learning (Tlamelo et al., 2021).
In specific, we have explored the list-wise deletion technique which enables us to use
a data subset without any missing data (Li & Parker, 2008). Our pilot study indi-
cated that list-wise deletion technique (i.e., the data set without any missing data) can
provide a high predictive performance. One possible reason for the ability of list-wise

27



deletion technique to achieve reasonably good predictive performance could be because
the missing data are missing at random (Kang, 2013). As machine learning models
typically can model such randomness in subject selection, the machine learning algo-
rithm is expected to be able to be trained well and provide good prediction outcome.
However, if the missing data is biased to begin with (Kang, 2013), the prediction model
may not be able to tolerate dropping of subjects’ data with missing data, potentially
resulting in a compromised prediction model. Note that though data set without any
missing data may be used if the missing values are missing at random, the reduced
sample size will result in decrease of statistical power (Kang, 2013), leading to the
challenges of detection of MCI with low effect size. To retain the original sample size
for maintaining statistical power, imputation approaches should be used if appropriate
values can replace the missing values.

ARAM complementary coding scheme for tackling missing values is a unique im-
putation technique (Granger et al., 2000). Besides list-wise deletion method, we have
therefore investigated this technique for replacement of missing values. From our ex-
periment, predictive performance of ARAM complementary coding of missing values
degraded roughly 15% as compared to the use of data set without any missing data,
which is in good agreement with Granger et al. (2000)’s result. Upon checking on
the origin of the increased misclassified cases, our results indicated that most of the
misclassification cases arise from subjects without any missing data instead of subjects
with missing data. Empirically, this suggests that the ARAM complementary coding
of (1,1) for missing values may still affect the template matching process, though the
denominator of vigilance test for such missing value cases has been modified to per-
mit higher odds of vigilance to pass (Granger et al., 2000). To unravel the details of
the cause for increased misclassification, a more in-depth investigation is warranted in
future study. One notes that missing value is a prevalent issue for practical in-home
sensor monitoring implementation. As a result, this issue needs to be addressed for
exploitation of all data collected for building of a powerful prediction model to detect
MCI. Tackling this is non-trivial, as it can come from two dimensions, namely from
combining multi-modal sensor data into one complete data set in a cross-sectional
study design where it is challenging to ensure the availability of all sensor devices at
one time point (Liu et al., 2018); and also from missing data with just one sensor along
different time points during a longitudinal study (Nguyen et al., 2020) as it is practi-
cally difficult to collect all repeated measurements over time. In this study, we have
only started to investigate the problem of combining multi-modal sensor data into one
complete data set front. More powerful imputation techniques such as indicator vec-
tor, spatio-temporal imputation algorithm, and CLUSTIMP should be explored in the
future for ARAM related models (Granger et al., 2000) (Li & Parker, 2008) (Karesidda-
iah & Savarimuthu, 2021). With more powerful strategy to overcome missing values,
it is expected that predictive performance can be improved instead of degraded, as
what we have faced here and what Granger et al. (2000) and Li & Parker (2008)
had reported previously. In summary, this work represents the start of investigation
for handling missing values from data collected during in-home multi-modal sensor
monitoring. With more powerful and suitable imputation approaches, only then fuzzy
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ARAM can maximize use of all data to construct a powerful machine learning model
that can be used to detect MCI from cognitive healthy.

5.2. Findings from fuzzy ARAM modeling

Fuzzy ARAM is particularly attractive for healthcare application as it permits
extraction of interpretable rules for healthcare professionals and researchers to com-
prehend the logic of the constructed prediction model. In this work, from univariate
testing, the variability of sleep measure was elicited to be statistically different for
MCI as compared to cognitive healthy subjects. Subsequently, Fuzzy ARAM model
discovered that the variability of sleep measure could be used as a predictive feature
for MCI detection, supporting the findings from the univariate test that the variability
of sleep measure contained significant and specific predictive utility for MCI detection.
This is in good agreement with existing data that suggests poorer sleep duration and
quality in individuals with MCI (Diem et al., 2016). Additionally, from fuzzy ARAM
alone, the frequency of forgetting medicine/wallet and physiological parameters such
as step counts and heart rate were uncovered to be a sensitive predictive indicator for
MCI detection. From clinical viewpoint, these are common symptoms that are elicited
in a clinician’s approach to evaluating of cognitive decline. Therefore, our symbolic
IF-THEN rules insight corroborates with clinical understanding. Additionally, the
discovery of forgetfulness behavior metrics in our work is also consistent with Khan
& Jacobs (2021) study where they reported statistical significance of confusion and
forgetfulness parameters related to monthly-standard deviation measure. The good
agreement of various observations from this study as compared to Hayes et al. (2014),
Khan & Jacobs (2021) and clinical understanding indicated that clinically meaningful
predictive information could be contained in the time variation of in-home behaviour
for early detection of MCI from cognitive healthy.

Collectively, it is evident that variation of in-home behaviour of interests with time
contain important diagnostic utility that can be used to detect MCI. Potentially, a
different time window to extract variation of in-home behaviour of interests such as
one week or even six month-standard deviation can provide higher diagnostic power
to detect MCI. Exploration of different time window period ranging from single day to
weeks and even to months should be explored to determine the optimal time window
for extraction of input data attributes for a classifier model building. Algorithms
such as variant of ART can be investigated to discover and learn the optimal time
window, especially since ART has been demonstrated to be able to learn a range of
time in a continuous space due to its ability to permit time to be encoded as the
activation of input nodes (Gao et al., 2021) (Gao & Tan, 2014). ART is a promising
candidate due to its attractiveness in high predictive accuracy, intrinsic capability to
handle missing values and ability to provide interpretability (Tan & Pan, 2005), unlike
deep learning neural network models such as CNN and LSTM which cannot inherently
handle missing data, and can only promise high predictive accuracy albeit with black
box understanding of the model (Amann et al., 2020).

Regardless of the different types of neural network architecture, hyperparameter
tuning remains the most challenging issue to address for achieving a stable and ac-
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curate prediction model. For instance, in this work, only after exhaustive search of
hyperparameters including αa, ρa, βa, and different rule-pruning strategies, we then
observed that rule-pruning strategy can augment the predictive performance of ART
models to a level that is comparable to the MLP result. In fact, the observation that
rule-pruning of fuzzy ARAM can improve predictive performance was first reported
previously by Carpenter & Tan (1993); In specific, Carpenter & Tan (1993) reported
that rule-pruning based on thresholding at 0.5 of fuzzy ARAM on continuous variables
can improve test performance. Hence, the phenomenon we observed in this work, which
also uses continuous variables, is largely consistent with Carpenter & Tan (1993). In
this work, besides the observation that rule-pruning strategy can improve predictive
performance, we also discovered that the concise rules derived from antecedent pruning
can further augment predictive performance. As the subject sample size used in this
work is small but the number of input attributes are relatively large, overfitting may
occur within fuzzy ARAM (Matias et al., 2021). Hence, we postulated that antecedent
pruning may remove relatively unimportant antecedents from the rules (which could be
”noise” instead of rare events), thereby improving generalizability of fuzzy ARAM for
prediction. We draw parallel of this phenomenon with L1-norm regularization (Tib-
shirani, 1996). The findings that a more concise set of rules can improve predictive
generalizability was first reported by Pourpanah et al. (2016) where genetic algorithm
was employed on top of fuzzy ARAM to select antecedent with the highest diagnostic
utility. Hence, our findings corroborated with Pourpanah et al. (2016)’s study. To
further confirm this hypothesis, an experiment to characterize noise resilience ability
of fuzzy ARAM using different pruning strategies is definitely warranted in the future.

In this study, from observing predictive utility hidden in time variation of different
in-home behaviour of interest, and relating to Khan & Jacobs (2021)’s study which
reported on the increasing trend of MCI prediction accuracy rate from six months
preceding onset of MCI diagnosis, we inferred the possibility to detect MCI up to six
months prior to its onset using machine learning on in-home sensor data. Prediction
of when an event (in this case it is MCI) can occur can be a classification machine
learning problem if the time of event prediction is defined prior such as prediction of
the occurrence of an event six months ahead. Otherwise, this can be modeled as a
time-to-event statistical learning problem (Lee & Wang, 2013) or a time-to-event deep
learning problem (Ranganath et al., 2016) where the time of event prediction is not
defined prior. In time-to-event prediction, the objective is to model and predict the
time when an event will occur for an entity. To date, to the best of our knowledge,
time-to-event prediction utilizing in-home sensors derived behavioural data has not
been explored for longitudinal MCI detection.

6. Conclusion

In conclusion, we demonstrated the feasibility of fuzzy ARAM model to detect MCI
from cognitive healthy with a F1-score of 76.2% using a small sample size of 25-subject
data set related to variation of activities of daily living. Though fuzzy ARAM has
demonstrated high predictive performance in a small data sample size, it excels using
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big data. To employ big data from a real-world in-home sensor monitoring longitudinal
study, missing data challenge needs to be tackled; fuzzy ARAM needs to be equipped
with a robust missing value approach to leverage of all data collected for model build-
ing. With big data that potentially may also contain significant amount of noise as
what we have preliminary experienced in this work with small data, development of
new ART-based strategy to generalize well on unseen data set will be another critical
area to look into. In addition to the small data sample size limitation faced in this
work, we also wish to highlight that we have only explored the use of in-home sensor
monitoring data at an daily aggregation level for each household, despite having col-
lected data at a finer temporal resolution within a day and at different spatial locations
within a house Rawtaer et al. (2020). With the recent findings from Wu et al. (2021)
that unravelled the predictive utility of spatiotemporal paterns of daily routines for
MCI detection, we see potential to extend our earlier work using spatiotemporal activ-
ities of daily living ART (Gao et al., 2021) for MCI detection. On top of all these, due
to the initial promises of Khan & Jacobs (2021)’s study which indicated the feasibility
to predict MCI around six months ahead of initial onset of MCI, time-to-event model-
ing could be more appropriate to be applied for this problem instead of modeling this
as a classification problem. Overall, time-to-survival based modeling of variance of
activities of daily living on a temporal basis using fuzzy ARAM or a modified ARAM
model for MCI detection from cognitively healthy can be a future direction starting
from this work.
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Appendix 1

Supplementary Table 1. Missing values (without tick and shaded in grey) for each of
the nine in-home behavior metrics in relation to the different subjects
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