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Review of some existing QML 
frameworks and novel hybrid 
classical–quantum neural networks 
realising binary classification 
for the noisy datasets
N. Schetakis1,2*, D. Aghamalyan3,4,5,7*, P. Griffin3,7 & M. Boguslavsky6,7

One of the most promising areas of research to obtain practical advantage is Quantum Machine 
Learning which was born as a result of cross-fertilisation of ideas between Quantum Computing and 
Classical Machine Learning. In this paper, we apply Quantum Machine Learning (QML) frameworks to 
improve binary classification models for noisy datasets which are prevalent in financial datasets. The 
metric we use for assessing the performance of our quantum classifiers is the area under the receiver 
operating characteristic curve AUC–ROC. By combining such approaches as hybrid-neural networks, 
parametric circuits, and data re-uploading we create QML inspired architectures and utilise them for 
the classification of non-convex 2 and 3-dimensional figures. An extensive benchmarking of our new 
FULL HYBRID classifiers against existing quantum and classical classifier models, reveals that our 
novel models exhibit better learning characteristics to asymmetrical Gaussian noise in the dataset 
compared to known quantum classifiers and performs equally well for existing classical classifiers, 
with a slight improvement over classical results in the region of the high noise.

Noisy Intermediate-Scale Quantum (NISQ)1–3 devices hold a promise to deliver a practical quantum advantage 
by harnessing the complexity of quantum systems. Despite being several years away from having fault-tolerant 
quantum  computing4–6, researchers have been hopeful to achieve this task. Perhaps one of the most exciting 
breakthroughs in this direction was a demonstration of “quantum supremacy” by Google  researchers7, using their 
programmable superconducting Sycamore chip with 53 qubits, in which single-qubit gate fidelities of 99.85% and 
two-qubit gate fidelities of 99.64% were obtained on average. Here the task of sampling the output of a pseudo-
random quantum circuit was successfully achieved. Quantum Supremacy would imply that a universal quantum 
computer has the ability to perform certain tasks exponentially faster than a classical  computer8. However, it 
has been argued later that Google’s achievement amounted to a demonstration of a quantum advantage but not 
a practical advantage, in other words, the performed task was not useful for any real-life applications. Another 
quantum advantage breakthrough experiment has been  implemented9 utilising a Jiuzhang photonic quantum 
computer and performing Gaussian boson sampling (GBS) with 50 indistinguishable single-mode squeezed 
states. Here, quantum advantage has been elucidated in the sampling time complexity of a Torontonian matrix, 
which has exponential scaling with output photon clicks. However, this experiment demonstrates quantum 
advantage but fails to demonstrate quantum supremacy as this photonic quantum computer is not programmable. 
One of the most promising areas of research to obtain practical advantage is Quantum Machine  Learning10–12 
which was born as a result of cross-fertilisation of ideas between Quantum  Computing13,14 and Classical Machine 
 Learning15,16. QML in its spirit is similar to classical machine learning but with the main difference being that 
instead of classical neurons in the layers of a deep neural network, now we have qubits and quantum gates acting 
on qubits combined with quantum measurements playing the role of the activation function. The elegant field of 

OPEN

1Quantum Innovation Pc., 73100 Chania, Greece. 2Alma Sistemi Srl, 00012 Guidonia, Rome, Italy. 3School of 
Computing and Information Systems, Singapore Management University, 81 Victoria Street, Singapore 188065, 
Singapore. 4Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 
1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore. 5Centre for Quantum Technologies, National 
University of Singapore, Singapore 117543, Singapore. 6Tradeteq Ltd, London, UK. 7These authors contributed 
equally: D. Aghamalyan, P. Griffin and M. Boguslavsky. *email: nsxetakis@yahoo.gr; davagham@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14876-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11927  | https://doi.org/10.1038/s41598-022-14876-6

www.nature.com/scientificreports/

QML has been providing a new platform for devising algorithms that exhibit quantum speedups. For instance, it 
has been demonstrated that such basic linear algebra subroutines as solving certain types of linear equations (the 
quantum version is known in the community as HHL), finding eigenvectors and eigenvalues, principal compo-
nent analysis (PCA) exhibit exponential speedups compared to their classical  counterparts17–21.However, in the 
recent findings Ref.22 demonstrated that in case of PCA suggested Lloyd, Mohseni, and Rebentrost’s the quantum 
algorithm attaining the exponential speedup was simply an artifact of state preparation assumptions. Since we are 
dealing with a quantum system, one can utilise such quantum resources as coherence, entanglement, negativity, 
contextuality to leverage towards achieving practical advantage. However, it is still not completely understood 
what the role of different types of resources is in harnessing practical advantage from available 50 to 100 qubit 
noisy  devices3. The three main building blocks of any QML algorithm are data encoding, unitary evolution of 
the system followed by the state readout performed through the  measurement12. Uploading classical data in the 
quantum computer is not a trivial task and can account for most of the complexity of the algorithm, determining 
what kind of speed-ups are feasible. This procedure is called quantum embedding which can be achieved, for 
instance, with help of “quantum feature maps”23–27 which take classical data and map it to the high-dimensional 
Hilbert space, where one hopes to achieve higher separation between the data classes compared to the original 
coordinate system. Moreover, one can train the quantum embedding to achieve maximal separation between 
the data clusters in the Hilbert space (this approach has been coined as “quantum metric learning”)26,27, paving 
the way towards constructing faithful quantum classifiers.

Binary classification is a ubiquitous task in machine learning. Perhaps the most prominent example is the 
cat recognition algorithm, which gives a flavour of the power brought by utilising such basic tools as logistic 
regression combined with deep neural network  architectures15. Quantum classifiers hold a promise to bring 
feasible speedups compared to their classical counterparts. Several theoretical proposals combined with actual 
experimental runs on commercially available backends have been put forward for realising faithful quantum 
 classifiers23,24,28–38. For instance, approaches in Refs.36,37 are inspired by kernel methods used in classical machine 
learning. Refs.23,28,29 are combining certain types of quantum embeddings to achieve quantum hybrid neural 
networks, which are promising candidates for building a faithful classifier. Ref.30 suggests using hypergraph-
states39, where the assumption is that such states can lower the circuit depth of the classifier. Refs.32,33 are based 
on quantum Grover’s search algorithm.

In this manuscript, we take a rather pragmatic approach and try to benefit from a plethora of available QML 
software  packages40–44, which grant access to run the quantum circuit in the quantum simulator or an actual 
hardware (such as IBM Quantum Experience, Amazon Braket, Rigetti Computing, Strawberry Fields). By utilis-
ing these tools we provide new software that is particularly well suited for targeting classification problems in 
the unbalanced and noisy datasets which are prevalent in the financial  industry45.

In this paper at first we briefly outline and review three different necessary building block QML archi-
tectures for our software package: hybrid-neural  networks23,28,29, parametric quantum  circuits2,46–48 and 
data-reuploading 24,25.

The metric we use for assessing the performance of our quantum classifiers is the area under the receiver 
operating characteristic curve AUC–ROC . ROC is a probability curve and AUC represents the degree of sepa-
rability. In general a good model has AUC close to 1. We test our FULL HYBRID models and benchmark them 
against existing QML classifiers and also to the best known classical machine learning counterparts by running 
simulations on quantum simulators for three different 2-dimensional non-convex surfaces. It is believed that 
non convex boundaries represent more difficult classification problems as linear regression is bound to fail in 
this tasks. Then by introducing asymmetrical Gaussian noise we study the resilience of our different approaches 
to the noise. This kind of study sheds light on learning properties for the amount of noise in the dataset. We 
also perform systematic hyperparameter tuning by studying how AUC–ROC curve changes with the number of 
repeating units in the data-re-uploading approach, number of qubits, batch size, number of epochs and number 
of strongly entangling units. We remark, that our binary classifiers can be extended to multi-class classification 
problems using a one-versus-all approach.

Results
Problem setting. We consider a non-trivial classification problem and will train single and multi-qubit 
variational quantum circuits to achieve this goal. The data is generated as a set of random points in a plane x1, x2 
and labelled as 1 (blue) or 0 (red) depending on whether they lie inside or outside of a given 2-dimensional 
non-convex figure. The goal is to train a quantum circuit to predict the label (red or blue) given an input point’s 
coordinate.

Comparative study of different quantum and classical classifiers. Here we test several models 
(including our proposed models) and benchmark them against each other as well as to the best-known classical 
machine learning counterparts by running on the simulator backends (such as Aer in qiskit) for 2-dimensional 
and 3-dimensional non-convex datasets. Then we will study the resilience of our different approaches to the 
noise by introducing asymmetrical Gaussian noise by studying the prediction grids and AUC–ROC character-
istics.

This kind of study sheds light on the learning properties as a function of the amount of existing noise in the 
dataset. These results have been obtained by systematic hyperparameter tuning, by observing how the AUC–ROC 
curve changes with: the number of repeating units in the data-re- uploading approach, batch size, number of 
epochs and the number of strongly entangling units.
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To produce datasets with noise, we introduce asymmetrical (here noise is only applied to one class) Gaussian 
noise (N). In bottom of Fig. 1 we plot the case of N = 0.0 , N = 0.6 and N = 1.2. Each dataset has 6000 data points 
and is further equally split into training and testing datasets.

Here we would like to refer readers to the respective subsections of the “Methods” section,  for a detailed 
description of different types of quantum classifiers referred as DRC (data-reuploading classifier), VC (variational 
classifier “Variational Quantum Algorithms (VQA)” section), VC–DRC (variational classifier combined with 
data-reuploading one), QNODE (quantum node, see   “QNode” section) and our newly designed FULL HYBRID 
circuit architectures referred as FH: VC–DRC/NN and FH: NN/VC–DRC.

To demonstrate the power of the data-reuploading technique combined with the variational classifier in 
the VC–DRC model, we plot the AUC–ROC curve versus noise for different number of blocks. The results are 
shown in Fig. 2. It is apparent from Fig. 2 (left) that with an increasing number of repeating blocks, we get bet-
ter AUC–ROC curve for every noise level for the DRC classifier. On the right of Fig. 2 we show results for the 
VC–DRC where compared to DRC we get even higher AUC–ROC curve. We remark that no major improvements 
are seen for a Block number greater than six. From now on, in all codes of this section, we will set the number 
of blocks equal to six (B = 6). In what follows we specify number of blocks and layers for each classifier: 1) The 
single qubit DRC (B = 6) 2) 2 qubit VC (with 6 layers, L = 6) 3) VC–DRC (B = 6, L = 1) 4) QNode (B = 6, L = 1) 5) 

Figure 1.  (First row) Pattern of Dataset. (Second row) Pattern of dataset for different noise levels.

Figure 2.  AUC–ROC as a function of number of repeating blocks of data re-uploading for the DRC classifier 
(left) and VC–DRC classifier (right).
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FH: VC–DRC/NN (B = 6, L = 1) 6) FH: NN/VC–DRC (B = 6, L = 1). All models have been trained for maximum 
35 epochs, using the same optimizer and learning rate. The best result during the training process is shown. On 
the left Fig. 3 we compare all the previously mentioned classifiers. As we can see from on the left Fig. 3 VC–DRC 
outperforms both VC and DRC. VC–DRC and Qnode have almost identical performance. The FH:NN/VC–DRC 
outperforms all classifiers whilst FH:VC–DRC/NN has slightly worse behavior. In the right of Fig. 3 we can see 
the prediction grids for all classifiers at different noise levels. For low noise levels (Noise/10 = 0), DRC and VC 
struggle to capture the prediction grid pattern while VC–DRC and FH almost capture it. For medium noise levels 
(Noise/10 = 6), DRC tends to capture the noise (overfitting) while VC looks more stable. VC–DRC still captures 
the main pattern but also shows signs of overfitting. FH performs very well thanks to the classical preprocessing 
and utilising the power brought by VC–DRC. For high noise levels (Noise/10 = 12) FH captures the pattern and 
shows robustness to the noise while the rest of the classifiers are capturing the noise. In order to demonstrate 
that FULL HYBRID does not perform well only because of the strong classical NN attached to the quantum 
circuit, we benchmark FH versus just the classical part (NN) and versus just the Quantum part (QNode). From 
Fig. 4 onwards we show results for two NN’s one with 35 epochs training (same training epochs as in the FH) 
and 3000 epochs to see what is the best outcome this NN can produce. We conclude that the FH outperforms 
both it’s components (NN and QNode) which shows that FH is more powerful classifier than it’s isolated parts.

To test even further the FH classifier, we benchmark its performance against a great number of classical coun-
terparts, which are specified in the inset of the Fig. 5. Interestingly, this figure shows that in the high noise region, 
the quantum classifier appears to outperforms some classical ones, at least performing equally well in all noise 
regions. We also see that compared to the other classical approaches (QDA, Decision tree, KNN and Random 
forest) that are well suited for non-convex classification problems and showing good performance in all noise 
regimes. In Fig. 6 we are showing results for a more complicated non-convex classification problem versus noise. 
In the table on the right we summarize the highest AUC–ROC curve scores for the respective classifiers. In the 
left figure we show prediction grids for the respective quantum classifiers. As in previous case, VC is more stable 
to noise and DRC tends to overfit and explores richer prediction grids. That is why VC–DRC, which combines 
both features, and the more complex approach like FH, is giving great results as apparent from row number 6. 
Surprisingly, for this particular dataset FH: NN/VC–DRC fails to capture the pattern of the dataset while FH: 
VC–DRC/NN captures the pattern and has the highest AUC–ROC score. It should be noted that the FH models 
outperforms again both it’s components (NN and QNode).

Discussion
In this paper, we applied Quantum Machine Learning frameworks to improve binary classification models 
for noisy datasets which are prevalent in financial markets. The metric used for assessing the performance 
of our quantum classifiers is the area under the receiver operating characteristic curve AUC–ROC curve. By 
combining such approaches as hybrid-neural networks, parametric circuits, and data re-uploading we created 
a new approach called Full Hybrid (FH). We tested our models for the classification of 2 and 3-dimensional 
non-convex datasets and benchmarked them against each other as well as to the best known classical machine 
learning counterpart by running simulations on quantum simulators. Then, by introducing asymmetrical Gauss-
ian noise in the input datasets, we studied the resilience of our different approaches to noise. This kind of study 
sheds light on the learning efficacy to the amount of noise in the dataset. In the scope of the manuscript we also 
performed systematic hyperparameter tuning by studying how AUC–ROC curve changes with the number of 

Figure 3.  (Left) AUC–ROC curve for DRC, VC and VC–DRC classifiers for different noise levels. (Right) 
Prediction grids for respective classifiers for different noise levels.
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repeating units in the data-re-uploading approach, number of qubits, batch size, number of epochs and number 
of strongly entangling units.

An extensive benchmarking of our new QML approach against existing quantum and classical classifier mod-
els reveals that our novel (FH) models exhibits better learning properties with asymmetric Gaussian noise in the 
dataset compared to known quantum classifiers, and performs equally well or possibly better for existing classical 
counterparts. Yet more understanding of the merits of the (FH) classifier has been gained by a detailed analysis 
and comparison of the prediction grids for the VC, DRC, VC–DRC, QNode binary classifiers. We observed that 
for low noise levels , DRC and VC struggle to capture the prediction grid pattern while VC–DRC and FH almost 
fully capture it. For medium noise levels, DRC tends to capture the noise (overfitting) while VC looks more sta-
ble. VC–DRC still captures the main pattern but also shows signs of overfitting. FH performs very well thanks 

Figure 4.  AUC–ROC curve for increasing level of noise for the classification of 2d dataset. Here we benchmark 
FH versus just the classical part (NN) and versus just the quantum part (Qnode).

Figure 5.  AUC–ROC curve for increasing level of noise for the classification of 2d dataset. Here we benchmark 
a great number of classical classifiers against our proposed FULL HYBRID classifier.
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to the classical preprocessing and utilising the power brought by VC–DRC. For high noise levels, (FH) captures 
the pattern and shows robustness in noise while the rest of the classifiers are capturing the noise in the dataset.

It is a well conceived fact that one of the bottlenecks for VQAs is the phenomenon called “barren plateau”49. 
As it has been demonstrated in Ref.49, a given spin-spin interacting Hamiltonians cost function may exhibit a 
barren plateau, associated with exponentially vanishing variance in its first derivative, when one increases the 
number of qubits. Moreover, the VQE based algorithms perform a classical–quantum feedback loop to update the 
parameters of the parametric quantum circuits. For future studies, it would be interesting to implement non-VQA 
algorithms for building more efficient quantum classifiers. By the time a classical computer calculates its output, 
the classical–quantum feedback loop limits the efficiency of the quantum device, slowing the algorithm execu-
tion on current cloud computing frameworks. Most of the obstacles faced by VQE, such as the barren plateau 
 issue49 as well as lacking a systematic method to select the ansatz and the innate necessity of having controlled 
unitaries, have been recently tackled by suggesting a quantum assisted simulator (QAS)50,51. Remarkably, The 
QAS algorithm does not require any classical–quantum feedback loop, can be parallelized, alleviates the barren 
plateau problem by prescribing a systematic approach to constructing the ansatz, and is not based on the usage 
of complicated unitaries.

Of course, for the future studies, one has to keep in mind that sensitivity to errors and noise in qubits and 
quantum gates are the two most prominent obstacles towards scalable universal quantum computers. Given 
that, it would be nice to study how our results are affected if one implements noise models for realistic quantum 
backends. In general, a noisy quantum system is described by the open system model and systems dynamics 
within the Born-Markov approximation is governed by the Lindblad master equation for the system’s density 
 matrix52. Another approach to describe the different noise channels is based on Kraus operators which are the 
most general physical operations acting on density  matrices13.

It has been elucidated that sensitivity to input errors such as adversarial robustness is a severe problem in 
quantum classifiers Refs.53,54.Robustness of our FULL Hybrid architecture is a topic of future investigation, 
however as it has been demonstrated in Ref.54 practical quantum classification tasks classify a subset of encoded 
states with some commonly used qubit encoding scheme(Which is indeed the case as in the current article we 
have used angle embedding for the data encoding). For such tasks, the authors have shown that one can use the 
concentration of measure phenomenon to derive the robustness of any quantum classifiers in situations where 
the distribution of states to be classified can be smoothly generated from a Gaussian latent space.

Since most of our codes were based on PennyLane, it is instructive to mention that Pennylane has 3 different 
ways for implementing noise in quantum circuits: classical parametric randomness, PennyLane’s built-in default.
mixed device, and plugins for other platforms. Of course, Quantum circuits may be run on a variety of backends, 
some of which have their own associated programming languages and simulators. PennyLane interfaces to these 
other languages via plugins such as for Cirq and Qiskit.

Finally, it is also worth mentioning that we plan to test our classifiers on real world financial data. Here we 
hope to demonstrate that our proposed classifiers have the potential to improve credit scoring accuracy. Credit 

Figure 6.  (Right) AUC–ROC curve for classifiers for different noise levels. (Left) Prediction grids for respective 
classifiers for different noise levels.
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scoring provides lenders and counterparties better transparency of the credit risk they are taking when deal-
ing with a counterparty. For large companies, this transparency is provided by public credit ratings. Small and 
medium enterprise companies(SMEs) are not covered by rating agencies and are suffering from reduced availabil-
ity of credit. These datasets, along with the best classical neural networks, will by provided by the company called 
Tradeteq (Tradeteq is a value-added service provider to the Networked Trading Platform (NTP) of Singapore).

In summary, we have demonstrated that the FH architecture outperforms several previously known quantum 
classifiers along with some of the best known classical counterparts. Interestingly, in the FH: VC–DRC/NN case, 
the power of the approach is given by the fact that, the VC–DRC part is acting as quantum embedding.

Methods
Review of existing QML frameworks. In this section we briefly review three different necessary build-
ing block QML architectures for our software package : hybrid-neural  networks23,28,29, variational  circuits2,47 and 
data-reuplodaing24,25.

Hybrid classical–quantum classifier (Hybrid). Recent findings of the Ref.55,56 on applying Hybrid quantum 
based memory-centric and heterogeneous multiprocessing architecture, have revealed the practical advantage 
of hybrid algorithms compared to standard classical algorithms in both the computational speed and quality of 
the solution.These findings encapsulate a strong motivation for studying hybrid classical–quantum architectures 
for obtaining practical advantage.

Hybrid neural networks are formed by concatenating classical and quantum neural networks and can bring 
a great advantage by having a number of features in the initial classical layers that exceeds the number of qubits 
in the quantum layer. Normally we assume that in each layer we have one qubit for each feature and a sequence 
of one and two-qubit gates acting on it.

To create a quantum-classical neural network, a hidden layer is normally implemented utilising a param-
eterized quantum circuit (Fig. 7). By “parameterized quantum circuit”, we mean a quantum circuit where, for 
instance, the rotation angles for each gate are trainable parameters, specified by the components of a classical 
input vector. The outputs from our neural network’s previous layer will be collected and used as the inputs for 
our parameterized circuit. Normally measurement statistics at the end of the quantum circuit would be fed into 
the subsequent classical neural network layer. Notice that this kind of approach establishes a link between the 
classical and quantum neural networks. An important point to note is that a single qubit classifier generates no 
entanglement, and can therefore be simulated classically. If one hopes to achieve a quantum advantage using 
hybrid neural networks, one needs to introduce several qubits and consequently entangle them, harnessing that 
quantum resource.

Variational Quantum Algorithms (VQA). Variational circuits are quantum circuits that have learning param-
eters that are optimised through classical learning subroutines, in spirit, this kind of approach is reminiscent of 
a Variational Quantum Eigensolver (VQE)2,47.

As schematically shown in Fig. 8, the first step towards developing a VQA is to define a cost or loss function 
C which encompasses the solution to the problem. After that, an ansatz is introduced through the quantum 

Figure 7.  Quantum circuit implementing hybrid classical–quantum classifier, each block corresponds to the 
layer of classical neural network. Taken from the online source Ref.57.
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operation depending on a set of continuous or discrete parameters that can be optimized. This ansatz is then 
trained in a hybrid quantum-classical loop to solve the optimization task at hand

The trademark of VQAs is that a quantum computer is utilised to estimate the cost function C(θ) while harness-
ing the power of classical optimizers for training the quantum parameters. A rather crucial assumption here is 
that one cannot efficiently compute the cost function on the classical computer, as this would imply an absence 
of quantumm advantage in the VQA framework.

DRC: Data‑reuploading classifier. Data re-uploading is a subclass of quantum embedding which is realised by 
catenating repeating units in a row. Single-qubit rotations applied several times along the circuit generate the 
necessary non-linearity for engineering a functional neural network. Moreover, it has been demonstrated that a 
single qubit can realise both being a universal quantum  classifier24 and being a universal  approximant25.

To load [x1, x2] into the qubit, we just start from some initial state vector, |0� , apply the unitary operation 
U(x1, x2, 0) and end up at a new point on the Bloch sphere. Here we have padded 0 since our data is only 2-dimen-
sional. Authors of Ref.24 discuss how to load a higher dimensional data point [x1, x2, x3, x4, x5, x6] by breaking it 
down into sets of three parameters (U(x1, x2, x3,U(x4, x5, x6).

After the data loading stage, we want to have some trainable non-linear model analogous to a deep neural 
network with a non-linear activation function where one can learn the weights of the model. Fig. 9 are showing 
how data reuploading is implemented by the sequence of B repeating units which correspond to the layers of 
classical neural networks, consequently one expects that with increasing B one gets a deeper neural network 
and consequently better learning can be obtained. Each unit is realised as a product of two unitaries U(x1, x2, 0) 
and U(θ1, θ2, θ3) , where the second unitary contains the trainable parameters. This approach can be boosted by 
introducing strongly entangling layers through utilisation of CNOT gates as it is shown on Fig. 10.

As it has been mentioned in the previous section, one can also speculate that multiple qubits with an entangle-
ment between them could provide some quantum advantage over classical neural networks.

(1)θ∗ = argmin
θ

C(θ).

Figure 8.  Schematic diagram of a Variational Quantum Algorithm (VQA). Figure is taken from the Ref. 2.

Figure 9.  Quantum circuit implementing data re-uploading, each block corresponds to the layer of classical 
neural network. Image is taken from the online source Ref.58.
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FH:NN/VC–DRC and FH:VC–DRC/NN Full hybrid neural networks enriched with Variational 
and data-reuploading technics. VC–DRC. A Variational classifier circuit (VC) consists of a data em-
bedding layer which in turn loads the classical data into the qubits followed by the entangling layers (CNOT 
gates that entangle each qubit with its neighbour) and the measurement outcome is the expectation value of a 
Pauli observable for each  qubit59. In our case we use an angle embedding Rx . In order to combine a VC circuit 
with DRC technique we define as one block (B) a sequence of data embedding and entangling layers (L). By add-
ing many blocks we re-introduce the input data into the model. In Fig. 11 we illustrate such VC–DRC circuit for 
B = 2 , L = 1.The trainable parameters are the Rotational gates Rx and R in the Angle embedding and Entangling 
layers of each block respectively.

QNode. Pennylane is an open-source software framework for differentiable programming of quantum com-
puters. All our models are builded using this framework. In Pennylane an object QNode represents a quantum 
node in the hybrid computational graph. Here a quantum function is used to create a quantum node, or QNode 
object, encapsulating the quantum function (corresponding to a variational circuit) and the device used to exe-
cute the function.

Figure 10.  Quantum circuit implementing data-reuploading with strongly entangling layers, where 
entanglement between the blocks is introduced with controlled two-qubit gates. Figure is taken from the online 
source Ref.58.

Figure 11.  VC–DRC example for two Blocks and one entangling layer per block (B = 2 , L = 1).
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Here we would like to clarify what we call a QNode in the scope of the current manuscript. As depicted in 
the first row of the Fig. 12, a QNode is a specific circuit where input data are passed to the quantum Node which 
consists of a VC–DRC and a final classical decision layer.

The input classical data is passed into the quantum circuit as rotation angles Rx (“angle embedding”) on the 
Bloch sphere. After the computation on the quantum node is completed, measurement is performed and the 
outcome is passed to the classical decision layer which decides the final prediction label of the binary classifier.

FH:NN/VC–DRC and FH:VC–DRC/NN. In this section we propose two varieties of a new binary classifier 
architectures which which are named under the common name Full Hybrid (FH). On a basic level, FH consists 
of a VC–DRC combined with classical layers. We came up with two novel architectures for the FH circuits 
depending on whether the VC–DRC circuit is at the end or at the beggining of the model(named FH: NN/VC–
DRC and FH: VC–DRC/NN respectively). These architectures are extensively studied in the current manuscript 
as novel candidates for performing binary classification on noisy datasets (See second row of Fig. 12). Moreover, 
we demonstrate in great detail, in the next section, that FH architectures outperforms several previously known 
quantum classifiers and performs equally well compared to classical counterparts. We comment that, in the 
FH:VC–DRC/NN case the power of the approach is given by the fact that the VC–DRC part can be acting as a 
quantum embedding as evidenced by Refs.26,27. In this case the goal is to derive the angle embedding for which 
the separation of the data labels is maximized in the Hilbert space. Mean absolute error (MAE) is the loss func-
tion we used. The loss is the mean overseen data of the absolute differences between true and predicted values. In 
what follows, we provide more technical details on the Full Hybrid architectures with an emphasis on explaining 
and giving more details on the Master, Feeding and Decision classical layers which are depicted in the second 
row of the Fig. 12.

For FH: NN/VD-DRC the first part is a classical neural network(NN), followed by the VC–DRC circuit and 
a final decision layer, which is just a single neuron layer with a sigmoid activation function. We use a classical 
NN that is not fine-tuned for this specific classification task. Moreover, as it can be seen on Fig. 12, the classical 
NN can contain an arbitrary number of layers, and each layer can contain an arbitrary number of neurons but 
the last layer (Feeding classical layer) should always have the same number of neurons as number of qubits. In 
our 2D case the classical NN, consists of a 2-neuron layer with ReLU as the activation function (Master classical 
layer), followed by a 2-neuron layer with a Leaky ReLU activation function (Feeding classical layer).

For FH: VC–DRC/NN the first part is a VC–DRC circuit, followed by the previously described NN network 
and the same final decision layer. We remark that we also tried Sigmoid , tanh and general geometric functions, 
and the best performing activation functions were selected.

Data availability
All the codes used in the manuscript will be provided under the reasonable request. Moreover one of the co-
authors(N. Schertakis) was invited by Pennylane to contribute in their community forum by writing a detailed 
tutorial which shares large chunk of our codes for FULL HYBRID architecture. To access the tutorial use the 
following link: https:// github. com/ nsans en/ Quant um- Machi ne- Learn ing/ blob/ main/ Penny lane.

Figure 12.  (First row) Block Diagram of the specific QNode proposed in the current study. (Second row left) 
Block Diagram of the Full Hybrid (NN/VC–DRC) classifier where a VC–DRC circuit is placed after a classical 
neural network, (Second row right) Block Diagram of the Full Hybrid classifier where a fully quantum VC–DRC 
circuit is placed before classical neural network (VC–DRC/NN).

https://github.com/nsansen/Quantum-Machine-Learning/blob/main/Pennylane
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