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Editorial
Deep Learning for Anomaly Detection

ANOMALY detection aims at identifying data points
which are rare or significantly different from the majority

of data points. Many techniques are explored to build highly
efficient and effective anomaly detection systems, but they are
confronted with many difficulties when dealing with complex
data, such as failing to capture intricate feature interactions or
extract good feature representations. Deep-learning techniques
have shown very promising performance in tackling different
types of complex data in a broad range of tasks/problems,
including anomaly detection. To address this new trend, we
organized this Special Issue on Deep Learning for Anomaly
Detection to cover the latest advancements of developing deep-
learning techniques specially designed for anomaly detection.
This editorial note provides an overview of the paper submis-
sions to the Special Issue, and briefly introduces each of the
accepted articles.

I. OVERVIEW OF THE SPECIAL ISSUE

Due to the significance to many critical domains like cyber-
security, fintech, healthcare, public security, and AI safety,
anomaly detection has been one of the most active research
areas in various communities, such as data mining, machine
learning, and computer vision [1], [2]. Many techniques are
explored to build highly efficient and effective anomaly detec-
tion systems, but they are confronted with many difficulties
when dealing with complex data, such as failing to capture
intricate feature interactions or extract good feature represen-
tations. Deep-learning techniques, including different types of
deep neural network architectures such as recurrent neural net-
works, convolutional neural networks, generative adversarial
networks, and graph neural networks, and a broad range of
regularization and training techniques for learning expressive
representations, have shown very promising performance in
tackling different types of complex data in a broad range of
tasks/problems [3]. Nevertheless, its development in the area
of anomaly detection is relatively slow due to some unique
characteristics of anomalies, such as rare and heterogeneous
distributions [2]. The goal of this Special Issue is to discuss the
latest advancements in developing deep-learning techniques
specially designed for anomaly detection.

In total, we received 77 valid submissions from a wide range
of 22 countries, including China (30), India (7), the USA (6),
the U.K. (5), Australia (5), and Brazil (3). An overview of
the country of submitting author is presented in Fig. 1. After
a rigorous review procedure, 22 submissions were accepted

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3162123.
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Fig. 1. Distribution of countries of submitting author. We received 77 submis-
sions from 22 countries, with China, India, the USA, the U.K., and Australia
as the top five sources of submission country.

for publication in this Special Issue. The majority of the
accepted manuscripts focus on devising novel deep anom-
aly detection methods. In addition, there are two compara-
tive studies performing a large-scale evaluation of existing
state-of-the-art deep anomaly detectors on different types
of data. We also have four studies that present interesting
real-world applications of anomaly detection. In the following,
we provide a brief introduction to each of these accepted
manuscripts.

II. NOVEL ANOMALY DETECTION METHODS

Anomaly detection is a general problem in different types
of data, such as video data, image data, graph data, temporal
data, and tabular data. Below we briefly introduce the accepted
articles from a data perspective.

A. On Visual Data

In [A1], Nguyen et al. tackle video anomaly detection with
normal videos available during training. The work extends
the model that includes one shared encoder to learn features
and two decoders to enforce texture coherence and successive
motion coherence by reconstruction error minimization and
image translation prediction, respectively. The method shows
competitive performance on diverse benchmarks from pedes-
trian and traffic video surveillance scenes. The work is an
extended version of its conference version published in ICCV
2019 [4].
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In [A2], Wang et al. introduce a future frame prediction-
based method for video anomaly detection. The model uses
multiple path network structure and non-local blocks to learn
the feature representations, and introduces a loss function that
helps increase the robustness to irrelevant background infor-
mation. By doing so, the model does not require generative
adversarial models (as needed in previous work, such as the
seminal work [5] in this line) to effetively predict future
frames and detect abnormal events in videos. In addition,
multiresolution modeling of normal patterns is found to be
useful in detecting anomalies, which is also confirmed in [A3]
in which Massoli et al. design a multi-layer one-class clas-
sifier on feature representations learned in different layers.
Similar observations are also found in several other recent
studies [7], [8].

In [A4], Yang et al. explore the incorporation of a memory
module into a generative adversarial network (GAN)-based
anomaly detection models. The resulting model can map nor-
mal samples into a latent space where they reside in a convex
hull of the memory units, facilitating better discrimination
when performing data reconstruction from this latent space.
Learning an auxiliary memory module has been emerging
as a popular approach to enable autoencoder- or GAN-based
anomaly detection in recent years [9]–[11].

In [A5], Zhou et al. propose a structure-texture-based data
reconstruction method for anomaly detection. The method
learns internal structures underlying normal images and uses
the learned structure representations to reconstruct input
images, alleviating the overfitting to anomaly images in tradi-
tional autoencoder-based detectors that can often reconstruct
anomalous images comparably well to normal images. The
work extends its ECCV conference version [12] by the intro-
duction of a memory module to learn the structure-texture
correspondence and the incorporation of extra structure infor-
mation into the model.

In [A6], Macêdo et al. study the problem of out-of-
distribution (OOD) detection where the target is to detect
OOD samples while at the same time accurately classifying
in-distribution samples into fine-grained classes. The work
introduces a novel loss function based on exclusively distances
between samples and class prototypes, showing effective per-
formance improvement when plugging into the current OOD
detection methods to replace the popular softmax loss.

In [A7], Li et al. explore the case of automated anomaly
detection, aiming at automatically searching for an opti-
mal neural network-based anomaly detector out of a large
number of possible detection model candidates. They intro-
duce a reinforcement learning-based search method that uses
curiosity-based internal rewards, in addition to the use of
accuracy on a labeled validation set as external rewards,
to bind the model search with anomaly detection. The method
is evaluated on six image datasets with injected OOD samples
from external data sources as anomaly samples, and compared
with four baseline OOD detectors and anomaly detectors.

B. On Graph Data

In [A8], Liu et al. introduce a contrastive self-supervised
anomaly detection method for attributed graph data. The

self-supervised pretext task is to predict the relationship
between a target node and a small subgraph, in which we
may generate a positive subgraph by sampling the subgraph
around the target node, or a negative subgraph that is randomly
sampled from the other part of the graph. This subgraph
can be seen as a context for the target node. Thus, if the
target node does not fit well with the subgraph, it indicates
anomalousness of the node. In doing so, the pretext task and
the anomaly detection task are unified into one framework.
As only subgraph inputs are required, the method can also
reduce time and space complexities compared to many existing
graph neural network methods that work on the full graph.

In [A9], Zhao et al. introduce a new graph anomaly detec-
tion method, which combines pattern mining methods and
graph neural network-based methods to learn global and local
relevant features into node feature representations for detecting
abnormal nodes in a graph. The model is evaluated on two
real-world graph anomaly detection datasets, including one
user-posts-hashtag graph dataset and one Bitcoin trading user
dataset, and compared with 14 competing methods.

In [A10], Ding et al. explore the problem of cross-domain
graph anomaly detection, in which we aim to adapt knowledge
learned from a fully labeled source graph data to an unlabeled
target graph data. They use a shared-weight graph neural
network encoder to embed nodes of source and target graphs
into the same feature space, and then use three loss functions,
including anomaly classification loss, domain discriminator
loss, and node attribute-based data reconstruction loss, to train
the model.

C. On Temporal Data

In [A11], Deng et al. aim to detect abnormal events in
spatial-temporal data derived from urban traffic data. The work
formulates the problem into a graph mining problem and
introduces a graph convolutional adversarial network to tackle
the problem. The use of graph networks enables the modeling
of correlations between spatially adjacent data points. The
model can also incorporate previously occurred trend features
and some other pre-defined auxiliary features. The model is
evaluated on two real-world traffic anomaly detection datasets
and shows good detection recall rates.

In [A12], Zhou et al. introduce a class prototype
learning-based method for novelty detection while at the same
time updating classification models with newly detected novel
classes. It dynamically learns a class center for each class for
know class classification and uses the classification uncertainty
and novel class prediction probability to detect novel classes.
The effectiveness of the method is justified on five real-world
datasets with ten relevant methods as competing methods.

D. On Tabular Data

In [A13], Xie et al. introduce a deep-generative model
for semi-supervised anomaly detection on multidimensional
data. The model makes use of a small number of labeled
anomaly samples to train the generative model using a
classification-based objective rather than a data reconstruction
objective in existing work. It concludes that if there are labeled



2284 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

anomaly examples available during training, we should utilize
them to achieve substantially improved detection accuracy.
Similar observations/conclusions are discussed in a number
of previous studies (e.g., [13]–[16]), though the approach to
leverage the labeled anomaly data is different.

In [A14], Zhou et al. explore how to fully leverage a limited
number of labeled anomaly samples to train anomaly-informed
detection models. The work introduces an encoder that com-
bines autoencoder-based hidden representation, residual vec-
tors between original data and reconstructed data, and a
reconstruction error to form a feature representation of a given
data point. It then introduces two loss functions that enforce
a large margin between the reconstruction errors (deviation-
based anomaly scores) of unlabeled data and the labeled
anomaly examples. The resulting model is evaluated on eight
tabular datasets and compared with both “supervised” and
unsupervised detection models.

In [A15], Zhao et al. address the semi-supervised anomaly
detection problem. The work first uses a local density measure
to identify a set of prototypical instances, dubbed “landmarks”
and then introduces a new loss function that minimizes the
distance between unlabeled samples while guaranteeing a
large margin between the unlabeled samples and anomaly
examples. The effectiveness of the method is evaluated on
12 real-world tabular datasets and compared with 11 semi-
supervised/unsupervised competing methods.

In [A16], Li et al. introduce a new deep anomaly detection
method by imposing several constraints on top of the popular
deep support vector data description-based method [17] to
learn more reasonable one-class center description. The key
idea is to incorporate the importance of each data instance into
the one-class center generation and to dynamically update the
one-class center. The model is evaluated on 16 tabular datasets,
and compared with nine competing methods. The model is also
evaluated on two image datasets.

III. LARGE-SCALE EMPIRICAL EVALUATION

There have been a large number of shallow and deep anom-
aly detection methods developed over the years. However,
a systematic empirical comparison of these methods is missing
in the literature. In this Special Issue, we have two studies that
are specifically dedicated to fill this gap [A17], [A18]. More
specifically, in [A17], Škvára et al. present a comprehensive
evaluation of both shallow and deep anomaly detection meth-
ods (with a focus on generative models) on a large collection
of tabular and image datasets. The study evaluates how the
difference in the dataset type, the hyperparameter selection
strategy, or the computational resource is associated with the
performance of each detector. The code and results of the study
are publicly available for download.

In [A18], Garg et al. perform a large-scale evaluation of
deep unsupervised and semi-supervised anomaly detection
methods on multivariate time series data. The work uses
11 deep methods from three general categories of approach,
including generic normality feature learning, anomaly-measure
dependent feature learning, and end-to-end anomaly scoring.
Seven real-world time-series anomaly detection datasets from

several domains, such as water resource management, manu-
facturing process, spacecraft, and server monitoring, are used.

IV. APPLICATIONS OF ANOMALY DETECTION

One main reason that anomaly detection is of great inter-
est to the community is due to its application potential in
broad domains. Some interesting and relevant applications
we accepted to this special issue include malware detection,
rumor detection, and detection of abnormal citation behaviors.
Particularly, in [A19], Sun et al. study the problem of malware
detection and introduce a two-stage method for both efficient
and accurate detection, in which a traditional classifier is
first used to detect malware with high confidence while a
deep classifier is used to handle malware candidates that the
traditional classifier are not confident with.

In [A20], Li et al. explore the problem of rumor detec-
tion and introduce a hierarchical heterogeneous graph-based
method to jointly optimize stance and rumor detection, result-
ing in largely improved performance in both stance detection
and rumor detection.

In [A21], Liu et al. tackle the problem of identifying
abnormal citations in an academic paper citation network,
facilitating the identification of citation manipulation and
inflation behaviors. A graph learning method is introduced to
achieve a joint learning of node features and edge features in
the citation network and the relevant citation context.

In [A22], Cheng et al. address the problem of blade
icing detection, in which we are interested in automatically
assessing whether there is a blade icing issue based on
data of wind turbines installed at high-latitude places. Class
imbalance is an inherent issue in blade icing data, as turbines
mostly operate under normal conditions. The work introduces
a prototypical-based neural network to address the class-
imbalance problem. The proposed model is evaluated on one
real-world dataset that contains about 1,000 hours of wind
turbine data, accompanied by 26 features defined by domain
experts. The model is compared with unsupervised anomaly
detectors and imbalanced classifiers to show its effectiveness.
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