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Abstract

By replacing L2 covering number approaches in Rademacher analysis with an ana-1

lysis based on L∞ covering numbers, we show generalisation error bounds for deep2

learning with two main improvements over the state of the art. First, our bounds3

have no explicit dependence on the number of classes except for logarithmic factors.4

This holds even when formulating the bounds in terms of the L2-norm of the weight5

matrices, while previous bounds exhibit at least a square-root dependence on the6

number of classes in this case. Second, we adapt the Rademacher analysis of DNNs7

to incorporate weight sharing—a task of fundamental theoretical importance which8

was previously attempted only under very restrictive assumptions. In our results,9

each convolutional filter contributes only once to the bound, regardless of how10

many times it is applied.11

1 Introduction12

The statistical theory of deep learning has enjoyed a revival since 2017 with the advent of learning13

guarantees for deep neural networks expressed in terms of various norms of the weight matrices14

and classification margins [1, 2, 3, 4]. Many improvements have surfaced to make bounds non-15

vacuous at realistic scales, including better depth dependence, bounds that apply to ResNets [5] and16

PAC-Bayesian bounds using network compression.17

Yet, several questions of fundamental theoretical importance remain unsolved. (1) How can we18

account for weight sharing in convolutional neural networks (CNNs)? So far, the best bound [4]19

accounting for weight sharing is valid only if, in each layer, the convolutional filters are orthonormal.20

(2) How can we remove or decrease the dependence of bounds on the number of classes? This21

question is of central importance in extreme classification [6]. In [2], the authors show a bound that22

has no explicit class dependence (except for log terms). However, this bound is formulated in terms23

of the L2,1 norms of the network’s weight matrices. If we convert the occurring L2,1 norms into L224

norms, we obtain a square-root dependence on the number of classes.25

In this paper, we provide, up to only logarithmic terms, a complete solution to both of the above26

questions. Our bound relies only on L2 norms. Although, in the hidden layers, it scales as the27

square root of the maximum network width (as other L2 bounds for DNNs), it has no explicit (non-28

logarithmic) dependence on the width of the output layer, that is, the number of classes. Furthermore,29

our bound accounts for weight sharing: the Frobenius norm of the weight matrix of each convolutional30

filter contributes only once to the bound, regardless of how many times it is applied, and regardless of31

any orthogonality conditions and how many filters a layer contains.32
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2 Related Work33

The now often cited paper [2] provides the following bound:34

Theorem 2.1 (Bartlett et al., 2017). Assume that (x, y), (x1, y1), . . . , (xn, yn) are drawn iid from35

any probability distribution over Rd × {1, 2, . . . ,K}. Denote by FA the function represented by the36

network with weights A = {A1, A2, . . . , AL} and involving the nonlinearities σi : Rdi−1 → Rdi37

(where d0 = d is the input dimension and dL = K is the number of classes) so that FA(x) =38

σL
(
ALσL−1

(
AL−1 . . . σ1

(
A1x

)))
.39

The final layer of the network is translated into a class prediction by taking the argmax over
components, with an arbitrary rule for breaking ties. For any classifier f : Rd → Rh and any real
number γ > 0, write also

R̂γ(f) =

∑n
i=1 1 [f(xi)yi ≤ γ + maxj 6=yi f(xi)j ]

n
,

‖X‖Fr for the Frobenius norm of the data matrix X ∈ Rn×d, as well as ‖X‖22,2 for the quantity40

1
n

∑n
i=1(

∑d
j=1X

2
ij) =

‖X‖2Fr

n .41

For (x, y), (x1, y1), (x2, y2), . . . , (xn, yn) drawn iid from any probability distribution over Rd ×42

{1, 2, . . . ,K}, with probability at least 1− δ, every network FA with weight matrices A and every43

margin γ > 0 satisfy:44

P(arg max
j

(FA(x)j) 6= y) ≤ R̂γ(FA) + Õ

(
‖X‖2,2MA

γ
√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (1)

where W̄ = maxLi=1 di is the maximum width of the network, and45

MA =

(
L∏
i=1

ρi‖Ai‖σ

) L∑
i=1

‖(Ai)>‖
2
3
2,1

‖Ai‖
2
3
σ

 3
2

. (2)

Here ‖ .‖σ denotes the spectral norm, and for any matrix A ∈ Ra×b, ‖A‖2,1 =
∑b
j=1

√∑a
i=1A

2
i,j .46

Around the same time as the above result appeared, the authors in [1] used a PAC Bayesian approach47

to prove an analogous result with MA replaced by the quantity below1:48

MA,2 := L
√
W̄

(
L∏
i=1

ρi‖Ai‖σ

)(
L∑
i=1

‖Ai‖22
‖Ai‖2σ

) 1
2

. (3)

The above bounds are fully post hoc, scale-sensitive and have the further satisfying property of taking49

the classification margins into account. However, they apply generally to fully connected networks50

and take very little architectural information into account. In particular, if the above bounds are51

applied to a convolutional neural network, when calculating the squared Frobenius norms ‖Ai‖22,52

the matrix Ai is the matrix representing the linear operation performed by the convolution, which53

implies that the weights of each filter will be summed as many times as it is applied. This effectively54

adds a dependence on the square root of the size of the corresponding activation map at each term of55

the sum. Furthermore, the L2 version of the above includes a dependence on the square root of the56

number of classes through the maximum width W of the network.57

In late 2017 and 2018, there was a spur of research effort on the question of fine-tuning the analyses58

that provided the above bounds, with improved dependence on depth [7], and some bounds for59

recurrent neural networks [8, 3]. Notably, in [4], the authors provided an analogue of Theorem 2.160

for convolutional networks, but only under some very specific assumptions.61

Since then, other lines of research (especially the PAC Bayesian school building on [1]) have focused62

on obtaining more meaningful bounds at realistic scales using various techniques including model63

1Note that the result using formula 3 can also be derived from expressing 1 in terms of L2 norms and using
Jensen’s inequality
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compression, as well as understanding any implicit restriction on the function class imposed by the64

optimisation procedure [9, 10, 11, 12, 13].65

Still, the fundamental question of taking weight sharing into account in the Rademacher analysis66

of DNNs was left unsolved until the first version of our work, and an independent solution [14]67

simultaneously appeared on arXiv. In this note, we present our solution to the weight sharing problem.68

Furthermore, we present our solution to the multiclass problem in the L2 theory, which corresponds69

to a improvement of a factor of
√
C compared to the state of the art.70

3 Informal Outline of Contributions71

In this section, we state our main results which can be considered as specific examples of our general72

results in Section A.73

Theorem 3.1 (Multi-class, fully connected). Assume that (x, y), (x1, y1), . . . , (xn, yn) are drawn74

iid from any probability distribution over Rd × {1, 2, . . . ,K}, and let us use the notation of [2].75

Write W1,W2, . . . ,WL for the width of each layer. With probability at least 1− δ, every network FA76

with weight matrices A and every margin γ > 0 satisfy:77

P(arg max
j

(FA(x)j) 6= y) ≤ R̂γ(FA) + Õ

(
maxni=1 ‖xi‖2RA

γ
√
n

log(W ) +

√
log(1/δ)

n

)
, (4)

where W = W̄ = maxLi=1Wi is the maximum width of the network, and

RA := LρL max
i
‖ALi, .‖2

(
L−1∏
i=1

ρi‖Ai‖σ

)(
L−1∑
i=1

(
√
Wi‖Ai‖2)2

‖Ai‖2σ
+

‖AL‖22
maxi ‖ALi, .‖22

) 1
2

,

and R̂γ(FA) is defined as in Theorem 2.1.78

Proof. The result follows directly from Theorem A.1, which is presented in Section A.79

Note that the last term of the sum does not explicitly contain architectural information, and the bound80

only depends on Wi for i ≤ L− 1, but not on WL (the number of classes). This means the above is a81

class-size free generalisation bound (up to a logarithmic factor) with L2 norms of the last layer weight82

matrix. This improves on the earlier L2,1 norm result in [2]. To see this, let us consider a standard83

situation where the rows of the matrix AL have approximately the same L2 norm, i.e., ‖ALi, .‖2 � a.84

In this case, our bound involves ‖AL‖Fr �
√
WLa, which incurs a square-root dependency on the85

number of classes. As a comparison, the bound in [2] involves ‖(AL)>‖2,1 �WLa, which incurs a86

linear dependency on the number of classes. If we further impose an L2-constraint on the last layer87

as ‖AL‖Fr ≤ a as in the SVM case for a constant a [15], then our bound would enjoy a logarithmic88

dependency while the bound in [2] enjoys a square-root dependency.89

Suppose now we have a convolutional architecture where we collect the weights in matrices A1,90

A2,. . ., and AL, with Al ∈ Rml×dl (here ml is the number of filters at layer l, and dl is the size of91

the filters in that layer) each row being a filter (represented only once), so that the ith row of Al92

represents the ith convolutional filter of layer l. For l ≤ L and a weight matrix Al, we will also write93

Ãl for the matrix representing the linear operation that consists in applying each of the filters over94

each of the patches of the previous layer 2. Thus the full network can be represented in matrix form as95

FA(x) = σL
(
ÃLσL−1

(
ÃL−1 . . . σ1

(
Ã1x

)))
. We have the following result, which follows directly96

from our general Theorem A.1 below.97

Theorem 3.2. With probability at least 1− δ over the draw of the training data, every network FA98

with weight matrices A = {A1, A2, . . . , AL} and every margin γ > 0 satisfy:99

P
(

arg max
j

(FA(x)j) 6= y

)
≤ R̂γ(FA) + Õ

(
maxni=1 ‖xi‖2RA

γ
√
n

log(W ) +

√
log(1/δ)

n

)
, (5)

2The dimensions of this matrix depend on the stride and on the size of the previous layer
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where W is the maximum number of neurons in a single layer (after pooling) and

RA := L

(
ρL max

i
‖ALi, .‖2

L−1∏
l=1

ρl‖Ãl‖σ

)(
L−1∑
l=1

(
√
Wl‖Al‖2)2

‖Ãl‖2σ
+

‖AL‖22
maxi ‖ALi, .‖22

) 1
2

,

ALi, . denotes the i’th row ofAL, and for all ‖ .‖σ and ‖ .‖2 denote the standard spectral and Frobenius100

norms respectively.101

While we still have to use the spectral norm of the complete convolution operation represented by Ãl102

in the first factor, the Frobenius norm involved is that of the matrix Al (the filter) instead of Ãl (the103

matrix representing the full convolutional operation), which means we are only summing the square104

norms of each filter once, regardless of how many time it is used. As a comparison, applying the105

result in [2] to CNN’s yields a bound involving the whole matrix Ã ignoring the structure of CNNs.106

This means that through exploiting weight sharing, we remove a factor of
√
Ol−1 in the lth term107

of the sum compared to a standard the result in [2], where Ol denotes the number of convolutional108

patches in layer l. We have also replaced the width dependence by a dependence on the width after109

pooling by exploiting the L∞-continuity of the pooling operation.110

Remark: Note that while for simplicity we presented our results with the Frobenius norms of the111

filter matrices Al in the numerators of rA, our proof also allows us to replace these quantities by112

‖Al −M l‖Fr, for some arbitrary matrices M l chosen in advance (typically the initialised weights).113

4 Main ideas of proof114

Obtaining PAC guarantees go through bounding the covering numbers of the function class considered.115

In the case of neural networks, the first step is then to provide a bound on the covering numbers of116

individual layers. If we apply classical results on linear classifiers as is done in [2] (where results117

on L2 covering numbers are used) by viewing a convolutional layer as a linear map, we cannot take118

advantage of weight sharing. In this work, we circumvent this difficulty by applying results on the L∞119

covering numbers of classes of linear classifiers to a different problem where each "(convolutional120

patch, sample, output channel)" combination is viewed as a single data point. More precisely, we will121

make use of the following proposition from [16] (Theorem 4, page 537).122

Proposition 4.1. Let n, d ∈ N, a, b > 0. Suppose we are given n data points collected as the rows of123

a matrix X ∈ Rn×d, with ‖Xi, .‖2 ≤ b,∀i = 1, . . . , n. For Ua,b(X) =
{
Xα : ‖α‖2 ≤ a, α ∈ Rd

}
,124

we have125

logN (Ua,b(X), ε, ‖ .‖∞) ≤ 36a2b2

ε2
log2

(
8abn

ε
+ 6n+ 1

)
.

With convolutional layers in mind, we now consider the problem of bounding the L∞ covering126

number of {(v>i Xj)i≤I,j≤J :
∑
i≤I ‖vi‖22 ≤ a2} (whereXj ∈ Rd×n for all j) with only logarithmic127

dependence on n, I, J . Here, I plays the role of the number of output channels, while J plays the128

role of the number of convolutional patches. To do so, we apply the above result 4.1 on the nIJ × dI129

matrix constructed as follows:130  X1 0 . . . 0 X2 0 . . . 0 . . . XJ . . . . . . 0
0 X1 . . . 0 0 X2 0 . . . . . . 0 XJ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . X1 0 0 . . . X2 . . . 0 . . . . . . XJ

 ,

with the corresponding vectors being constructed as (v1, v2, . . . , vI) ∈ RdI .131

If we compose the linear map on Rn×d represented by (v1, v2, . . . , vI)
> with k real-valued functions132

with L∞ Lipschitz constant 1, the above argument yields comparable bounds on the ‖ .‖∞,2 covering133

number of the composition, loosing a factor of
√
k only (for the last layer, k = 1, and for convolutional134

layers, k is the number of neurons in the layer left after pooling).135

This solves the problem for a single layer network. Once this is taken care of, the rest of the136

proof consists in adaptation of classic chaining arguments and a union bound on probabilities of137

events [2, 4, 5].138
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Figure 1 – Illustration of architecture for one layer

A Precise Notation and Results139

A.1 Notation140

We use the following notation to represent linear layers with weight sharing such as convolution. Let141

x ∈ RU×w, A ∈ Rm×d and S1, S2, . . . , SO beO ordered subsets of ({1, 2, . . . , w}×{1, 2, . . . , U})142

each of cardinality d3, where we will denote by Soi the ith element of So. We will denote by143

ΛA(x) the element of Rm×O such that ΛA(x)j,o =
∑d
i=1XSoi

Aj,i. In a typical example the sets144

S1, S2, . . . , SO represent the image patches where the convolutional filters are applied, and Λ would145

be represented via the "tf.nn.conv2d" function in Tensorflow. See We will also write Ãl for the matrix146

in R(Ul−1wl−1)×(Ol−1ml) that represents the convolution operation ΛAl .147

To represent a full network, we suppose that we are given a number L ∈ N of layers, 7L+ 2 numbers148

m1,m2, . . . ,mL, d1, d2, . . . , dL, ρ1, ρ2, . . . , ρL, w0, w1, . . . , wL, U0, U1, . . . , UL, O1, O2, . . . , OL,149

and k1, k2, . . . , kL, as well as
∑L
l=0Ol ordered sets Sl,o ⊂ {1, 2, . . . , Ul} × {1, 2, . . . , wl} (for150

l ≤ L, o ≤ Ol), and L− 1 functions Gl : Rml×Ol−1 → RUl×wl (for l = 1, 2, . . . , L) satisfying the151

following conditions.152

1. For all l ∈ {1, 2, . . . , L− 1}, Gl is ρl Lipschitz (component-wise) with respect to the L∞153

norm.154

2. For all l ∈ {1, 2, . . . , L− 1}, and for each o ≤ Ol, Sl,o has cardinality dl.155

The architecture above can help us represent a feedforward neural network involving possible (intra-
layer) weight sharing as

FA1,A2,...,AL : RU0×w0 → RUL×wl : x 7→ (GL ◦ ΛAL ◦GL−1 ◦ ΛAL−1 ◦ . . . G1 ◦ ΛA1)(x),

where for each l ≤ L, the weight Al is a matrix in Rml×dl . Note that as usual, offset terms can be156

accounted for by adding a dummy dimension of constants at each layer (this dimension must belong157

to Sl,o for each o).158

To aid understanding, we provide a quick table of notations in Figure 1.159

Throughout the text, we also fix some norms | .|L0
,| .|L1

,. . ., and | .|LL on the spaces RU0×w0 ,160

RU1×w1 , . . ., and RUL×wL , some functions | .|L∗l on Rml×dl for 1 ≤ l ≤ L, and some numbers161

k1, k2, . . . , kL ∈ N such that the following three properties are satisfied:162

1. For all l ≤ L and all ξ ∈ RUl×wl , if |ξ|Ll ≤ 1, then ∀o ≤ Ol,
∑
δ∈Sl,o(ξδ)

2 ≤ 1.163

2. For all l ∈ {1, . . . , L}, all a > 0 and all ξ1, ξ2 ∈ RUl−1×wl−1 , if |ξ1 − ξ2|Ll−1
≤ a, then

|(Gl ◦ ΛAl)(ξ1)− (Gl ◦ ΛAl)(ξ2)|Ll−1
≤ a|Al|L∗l .

3. For any ξ ∈ RUl×wl , |ξ|2Ll ≤ kl‖ξ‖
2
∞164

3We suppose for notational simplicity that all convolutional filters at a given layer are of the same size. It is
clear that the proof applies to the general case as well.
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Notation Meaning

Gl Activation functions + pooling at layer l
Al Filter matrix at layer l

ΛAl Convolution operation relative to filter matrix Al

Ãl Matrix representing ΛAl (Has repeated weights in conv. net)
Ol Number of convolutional patches at layer l
ml # of channels at layer l before nonlinearity

(=# of output channels at layer l − 1)
Sl,o oth convolutional patch at layer l
wl Number of spatial dimensions at layer l
Ul Number of channels after nonlinearity
ρl Lipschitz constant of Gl

Wl = Ulwl Width (after pooling) at layer l
W = maxlWl Maximum network width (after any pooling)

W̄ = maxlOl−1ml Maximum network width (before any pooling)
W Total number of parameters
dl Size of convolutional patches corresponding to the operation ΛAl
kl Smallest integer such that ‖ .‖Ll ≤

√
kl‖ .‖∞, kL = 1,

kl = Wl if | .|Ll = ‖ .‖2 and kl = dl if ‖x‖2Ll = maxo≤Ol
∑
δ∈Sl,o(xδ)

2

K = WL Number of classes
Table 1 – Table of notations for quick reference

4. For all l, there exist real numbers Dl and El such ∀A ∈ Rml×dl ,
‖A‖2L∗l
Dl

≤ ‖A‖22 ≤ El‖A‖2L∗l .

The two main examples of suitable such norms are the following.165

The standard L2 and spectral norms. We can set |A|Ll = |A|Fr for all l, |A|L∗l = ρl|Ã|σ for all166

l ≤ L− 1 and |A|L∗L = ρL maxi ‖Ai, .‖2, where | .|σ denotes the usual spectral norm for matrices,167

and Ã is the circulant matrix that represents the convolution operation performed by ΛA. This choice168

satisfies the conditions on the norms | .|L0 , . . . , | .|LL with Dl = wl and El = ml, and kl = Wl.169

Through Lipschitz constants. First, for all l ≤ L and all x ∈ RUl×wl , define ‖x‖2Ll =170

maxo≤Ol
∑
δ∈Sl,o(xδ)

2. For each Al ∈ Rml×dl , we can then simply define ‖Al‖L∗l as the Lipschitz171

constant of G ◦ ΛA : RUl−1×wl−1 → RUl×wl with respect to the distances induced by the norms172

‖ .‖Ll−1
and ‖ .‖Ll . This satisfies the above conditions with kl being the maximum number of active173

neurons in a single convolutional patch of layer l.174

Mix of the above To obtain the results 3.1 and 3.2 with the dividend maxi ‖ALi, .‖22 in the last term175

of the sum, we use the spectral norms up to layer L− 1 and the Lipschitz one for the last layer.176

A.2 General Results177

We can now formulate our main Theorems. We always assume that we are given a classification178

problem with i.i.d. data-points (x, y), (x1, y1), . . . , (xn, yn) with y, y1, . . . , yn ∈ {1, 2, . . . ,K}.179

Theorem A.1 (Post-hoc asymptotic result). Assume we are given an architecture and classification180

problem as described in section A. For all δ > 0, with probability > 1 − δ over the draw of the181

training set it holds that every network as described in section A, and every margins γ > 0 satisfy:182

P
(

arg max
j

(FA(x)j) 6= y

)
≤ R̂γ(FA) + Õ

(
‖X‖(L0,∞)>RA

γ
√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (6)

where ‖X‖(L0,∞)> := maxi≤n |xi|L0
, W̄ = maxLl=0Ol−1ml, and

R2
A = L2

L∑
l=1

klρ
2
l ‖Al‖22

∏
i6=l

‖Ai‖2L∗i .

6



The more precise non-asymptotic result from which Theorem A.1 can be deduced is the following.183

Theorem A.2 (Post-hoc result). Assume we are given an architecture and classification problem as184

described in Section A. For all δ > 0, with probability > 1− δ over the draw of the training set it185

holds that every network as described in section A, and every margins γ > 0 satisfy:186

P(x,y)

(
arg max

j
(FA(x)j) 6= y

)
≤ R̂n +

8

n
+

576(‖X‖(L0,∞)> + 1)

γ
√
n

√
R̄
[
log2(32n2Γ̄/γ + 7W̄n)

] 1
2 log(n)

+ 3

√√√√ log
(

4n
δγ

)
2n

+
1

n
log(2 + ‖X‖(L0,∞)>) + 3

√√√√ 1

n

(
L∑
l=1

log
[
(2 + L‖Al‖2)(2 + L‖Ãl‖σ)

])
,

(7)

where

R̂n =
1

n

n∑
i=1

I
[
(FL(xi))yi − max

j≤K,j 6=yi
(FL(xi))j ≤ γ

]
,

R̄ = L2
L∑
l=1

klρ
2
l

(
1

L
+ ‖Al‖2

)2∏
i 6=l

(
1

L
+ ‖Ãi‖σ

)2

,

and

Γ̄ =
L

max
l=0

[(
‖X‖(L0,∞)> + 1

)
e

(
‖Al‖2 +

1

L

)
Ol−1ml

l−1∏
i=1

(
1

L
+ ‖Ãi‖σ

)]
.

B Proofs187

Let us first make the following important points about one of our notational choices.188

Important remarks :189

1. Throughout the proofs, we will be using mixed Lp,q,r norms. Importantly, any sample/batch190

dimension will always be averaged instead of summed! This convention helps reduce191

the number of unnecessary factors of n to drag along. Thus if X ∈ Rn, n is the sample192

dimension and p ≥ 1193

‖X‖p :=

(
1

n

n∑
i=1

|Xi|p
) 1
p

.

Similarly, if X ∈ RI×n×J , n is the sample dimension and 1 ≤ p, q, r ≤ ∞194

‖X‖rp,q,r =

J∑
k=1

 1

n

n∑
j=1

(
I∑
i=1

|Xi,j,k|p
) q
p


r
q

(8)

This notation involving mixed norms will also (in fact, mostly) be used when some or all of
p, q, r are infinite, in which case the factor of 1/n is irrelevant. For instance, ifX ∈ RI×n×J
and n is the sample dimension, we will write

‖X‖(2,∞,∞) = max
j2≤n

max
j3≤J

√√√√ I∑
j1=1

(Xj1.j2,j3)2.

2. We interpret ’tensor multiplication’ for tensors as contracting the last slice of the first195

tensor with the first slice of the second one, when the dimensions match. For instance, if196

A ∈ Ra×b×c and B ∈ Rc×d, AB ∈ Ra×b×d is defined by (AB)i,j,k =
∑c
l=1Ai,j,lBlk.197
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3. The transpose of a tensor is defined by completely swapping the order of the dimensions, and
we sometimes put the transpose in the index when referring to norms. Thus if Y ∈ RJ×n×I ,

‖Y ‖(∞,∞,2)> = ‖Y >‖(∞,∞,2) = max
j2≤n

max
j3≤J

√√√√ I∑
j1=1

(Yj1.j2,j3)2.

B.1 Size-independent covering number bounds for a single convolutional layer198

A key aspect of the proof is that we can use proposition 4.1 to obtain an L∞-covering of the199

map represented by a convolutional layer. Indeed, by viewing each (sample, convolutional patch,200

output channel) trio as an individual data point, we can, for each ε, find Nε filters f1, . . . , fNε with201

‖fi‖Fr ≤ a ∀i such for any convolutional map represented by the filter f (with ‖f‖Fr ≤ a), there202

exists a uf ∈ {1, 2, . . . ,Nε} such that for any input xi, any convolutional patch S, and any output203

channel j, the outputs of f and fuf corresponding to this (input, patch, channel) combination differ204

by less than ε.205

More precisely, we have the following result:206

Proposition B.1. Let positive reals (a, b, ε) and positive integer m be given. Let the tensor X ∈207

Rn×U×d be given with ∀i ∈ {1, 2, . . . , n},∀u ∈ {1, 2, . . . , U}, ‖Xi,u, .‖2 ≤ b. We have208

logN
(
{XA : A ∈ Rd×m, ‖A‖Fr ≤ a}, ε, ‖ .‖∞,∞,∞

)
≤ 36a2b2

ε2
log2

[(
8ab

ε
+ 6

)
nmU + 1

]
,

(9)

where the norm ‖ .‖∞,∞,∞ is over the space Rn×U×m and XA is defined by (XA)u,i,j =209 ∑d
o=1Xu,i,oAo,j .210

Proof. This follows immediately from Lemma 4.1 applied to the following nmU modified data211

points in Rd×m (considered as a simple vector space with the inner product being applied after212

broadcasting) and function class: for all δ ∈ {1, 2, . . . , d} × {1, 2, . . . ,m}, for all i ≤ n, u ≤ U213

and j ≤ m, (xi,u,j)δ = Xi,u,δ1 for δ2 = j and (xi,u,j)δ = 0 otherwise. I.e., for all (sample, patch,214

output channel) combination (i, u, j) (with i ≤ n, u ≤ U, j ≤ m), the corresponding data point is a215

matrix in Rd×m whose jth column is the corresponding convolutional patch in X , and the the other216

columns are 0.217

The function class is defined by

{FA : Rd×m → R : x 7→ 〈x,A〉; ‖A‖2 ≤ a},

where 〈 ., .〉 denotes the inner product after broadcasting: for A,B ∈ Rn1×n2 , 〈A,B〉 := Tr(AB>).218

219

Definition B.2. Let ρ > 0, and G̃ : Rm → Rm be such that for all i ∈ {1, 2, . . . ,m}, G̃i is ρ220

Lipschitz with respect to the L∞ norm. Next, define G as a truncation of G̃ where only the top k221

values are retained, with an arbitrary tie-breaking strategy, so that222

∀i ∈ {1, 2, . . . ,m},

Gi = G̃i if #
({
j ∈ {1, 2, . . . ,m} : G̃j > G̃i ∨ (G̃j = G̃i ∧ j > i)

})
< k

Gi = 0 otherwise. (10)

We will call any function G that can be represented in this way a k-sparse ρ-Lipschitz function (with223

respect to the L∞ norm).224

Next, we have the following key steps in our analysis.225

Corollary B.3. Let n,O,m be natural numbers, Y be a finite dimensional vector space endowed226

with the norm | .|L and let G : RO×m → Y be ρ-Lipschitz with respect to the L∞ norm. Assume also227
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that there exists a number k > 0 such for any y ∈ Y , |y|L ≤ k‖y‖∞. For any X ∈ Rn×O×d such228

that ‖Xi,o, .‖22 ≤ b2 (∀i, o), we have229

logN
({
G(XA) : A ∈ Rd×m, ‖A‖2 ≤ a

}
, ε, ‖ .‖(| . |L,∞)>

)
≤ 36ka2b2

ε2ρ2
log2

[(
8ab

ερ
√
k

+ 7

)
mnO

]
(11)

where for a tensor B ∈ Rn×H ,

‖B‖(2,∞)> = ‖B>‖(2,∞) =
n

max
i=1
|Bi, . |L.

In particular, if Y = Rh1×h1 and G : RO×m → Rh1×h1 is k-sparse the above result holds with230

| .|L = ‖ .‖2 and | .|(L,∞)> = | .|(2,∞)> , and for | .|L = A similar result holds with the norms | .|Ll231

defined as maxima of L2 norms over individual patches. Note thatG need not be continuous. Possible232

choices of G include component-wise Relu followed be replacing the m− k smallest activations by233

zero, or explicitly defining k entries of G(x) as maxima or averages of given subsets of the entries of234

x.235

Proof. This follows immediately from Proposition B.1 the fact that if A ⊂ Rd×m is such that XA is
an (ε, ‖ .‖∞,∞,∞)-cover of {

XA : A ∈ Rd×m, ‖A‖2 ≤ a
}
,

then G(XA) is a (
√
kερ, ‖ .‖(2,∞,∞)>)-cover of{

G(XA) : A ∈ Rd×m, ‖A‖2 ≤ a
}
.

236

B.2 Covering number bound for networks with fixed norm constraints237

With this result in our toolkit, we can prove a first covering number result about neural networks.238

We have the following result.239

Theorem B.1. Suppose we are given an architecture as described in section A, a design matrix X ∈
Rn×U0×w0 , and numbers 0 < a1, a2, . . . , al, s1, s2, . . . , sl. Define the family of tensors obtained
by applying the network FA1,A2,...,AL for values of A1, A2, . . . , AL satisfying norm constraints as
follows

HX :=
{
FA1,A2,...,AL (Xi, . , . ) : ‖Ãl‖σ ≤ si ∧ ‖Al‖2 ≤ al

}
.

Suppose also that ∀i, ‖xi‖2L0
≤ b2 for some b > 0. We have240

logN
(
H, ε, ‖ .‖(∞,L0)>

)
≤ L2b2

L∏
i=1

s2i ρ
2
i

L∑
l=1

36kla
2
l

s2l ε
2

log2

8
(
b
∏l−1
i=1 ρisi

)
nalOl−1ml

ε
+ 7W̄n

 ,

where as usual, W is the maximum width of the network.241

Proof. Note that for any x ∈ RU0×w0 with ‖x‖2 ≤ b and any A1, A2, . . . , Al satisfying the condi-242

tions, we have ‖FA1,A2,...,Al(x)‖2 ≤
∏l−1
i=1 ρisi. Hence, by proposition C.1, it suffices to prove the243

result for L = 1.244

The case L = 1 follows from Corollary B.3 applied to Ō, d̄, m̄ and X̄ ∈ RŌ×n×d̄ where Ō = O0,245

d̄ = d1, m̄ = m1 and for u ≤ Ō = O0, i ≤ n and j ≤ d, X̄u,i,j = Xi,S1,u
j . Note here that246

S1,u
j ∈ {1, 2, . . . , U0} × {1, 2, . . . , w0}.247
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B.3 Joint generalisation bound for fixed norm constraints248

The next step is to use the above, together with the classic Rademacher theorem E.1 and Dudley’s249

Entropy integral, to obtain a result about large margin multi-class classifiers.250

Theorem B.2. Suppose we have a K class classification problem and are given n i.i.d. observations251

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ RU0×w0 ⊗{1, 2, . . . ,K} drawn from our ground truth distribution252

(X,Y ), as well as a fixed architecture as described in Section A, where we assume the last layer is253

fully connected and has width K and corresponds to scores for each class. Suppose also that with254

probability one ‖x‖Lo ≤ b. Suppose we are given 2L numbers a1, a2, . . . , aL and s1, s2, . . . , sL.255

For any δ > 0 and any margin γ > 0, with probability > 1− δ over the draw of the training set, for256

any network A = (A1, A2, . . . , AL) satisfying ∀l : ‖Al‖2 ≤ al ∧ ‖Ãl‖σ ≤ si, we have257

P

(
arg max

j∈{1,2,...,K}
(FL(x))j 6= y

)

≤ R̂γ +
8

n
+

288

γ
√
n

√
R
[
log2(Γn2/γ + 7W̄n)

] 1
2 log(n) + 3

√
log( 2

δ )

2n
, (12)

where

R̂γ ≤
1

n

n∑
i=1

I
(

(FA1,A2,...,AL(xi))yi −max
j 6=yi

(FA1,A2,...,AL(xi))j ≤ γ
)
,

258

R := L2b2
L∏
i=1

s2
i ρ

2
i

L∑
l=1

kla
2
l

s2
l

, and

Γ :=
L

max
l=1

(
b

l−1∏
i=1

ρisialOl−1ml

)
. (13)

Proof. We will apply the classic Rademacher theorem to the function lγ(−M(x, y)), where259

M(x, y) = (FA1,A2,...,AL(x))y − maxj 6=y(FA1,A2,...,AL(x))j , and for any θ > 0 the ramp loss260

λθ is defined by261

λθ(x) :=

{
0 x ≤ −θ

1 + x/θ x ∈ [−θ, 0]
1 otherwise.

Let us define

R̂γ =
1

n

n∑
i=1

lγ(−M(xi, yi)).

Using this, note that we have immediately for any δ > 0, that with probability greater than 1− δ over262

the training set:263

P

(
arg max

j∈{1,2,...,K}
(FL(x))j 6= y

)
≤ E (lγ(−M(x, y)))

≤ R̂γ + 3

√
log( 2

δ )

2n
+ 2R̂n(lγ(−M(x, y))). (14)

Applying Theorem B.1 (with SLj = {j} for each j ∈ {1, 2, . . . ,K} so that ‖ .‖LL = ‖ .‖∞) to F264

and noting that any (ε, ‖ .‖∞)-covering of F (X) (where X is the design matrix) is a (2ε/γ, ‖ .‖∞)265

-covering of lγ(−M(xi, yi)) (i = 1, 2, . . . , n), we obtain that266

logN (Hk, | .|, ε) ≤ L2b2
L∏
i=1

s2
i ρ

2
i

L∑
i=1

36kla
2
l 4

γ2s2
l ε

2
log2

8
(
b
∏l
i=1 ρisi

)
nalOl−1ml

εγ/2
+ 7W̄n

 ,

(15)
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where Hk is the function class of networks of the form FL(x) with weight matrices satisfying267

∀l : ‖Al‖2 ≤ al ∧ ‖Ãl‖σ ≤ si, and kL = 1. Applying Dudley’s entropy formula (31) with α = 1
n ,268

we then obtain, for all k:269

R̂n(lγ(−M(x, y))) ≤ 4α+
12√
n

∫ 1

α

√
logN (F|S, ε, ‖ .‖p)

≤ 4

n
+ 2
√

36
12√
nγ

√
R

∫ 1

1
n

√
log2(16Γn/(εγ) + 7W̄n)

εγ
dε

≤ 4

n
+

144

γ
√
n

√
R

∫ 1

1
n

√
log2(16Γn2/γ + 7W̄n)

ε
dε

=
4

n
+

144

γ
√
n

√
R
√

log2(16Γn2/γ + 7W̄n) log(n)

(16)

Plugging this back into equation (14), we obtain that for every δ > 0 and every k (with kL = 1 as270

usual) we have with probability > 1− δ over the training set:271

P

(
arg max

j∈{1,2,...,K}
(FL(x))j 6= y

)
(17)

≤ R̂γ +
8

n
+

288

γ
√
n

√
Rκ
[
log2(16Γn2/γ + 7W̄n)

] 1
2 log(n) + 3

√
log( 2

δ )

2n
, (18)

as expected.272

B.4 Proof of main Theorems A.2 and A.1273

All the pieces are now in place to present the274

Proof of Theorem A.2. The general proof technique is similar to the proof of the main theorem in [2]275

and further references, the main differences being that we must use our stronger Theorem B.2 to take276

width reduction and weight sharing into account.277

For each choice of positive integers G,B1, B2, . . . , BL, S1, S2, . . . , SL, b, define278

δ(G,B, S, b) =
δ

2G
∏L
l=1BlSl(Bl + 1)(Sl + 1)b(b+ 1)

. (19)

Let also

S(G,B, S, b) =

{
(X, γ,A) :

1

γ
≤ 2G

n
,∀l ≤ L, ‖Al‖2 ≤

Bl
L
∧ ‖Ãl‖σ ≤

Sl
L
, ‖X‖(∞,L0)> ≤ b

}
.

Apply Theorem B.2 for γ−1 = 2G

n , al = Bl, sl = Sl, b = b, we see that with probability279

> 1 − δ(G,B, S, b) over the draw of the training set, every (data, network, margin) combination280

(X, γ,A) ∈ S(G,B, S, b) satisfies281

P(x,y) (EL(x, y))

≤ 1

n

n∑
i=1

I
(
ML(xi, yi) ≤

n

2G

)
+

8

n
+ 3

√√√√ log
(

2
δ(G,B,S,b)

)
2n

+
288× 2G

n
√
n

√√√√L2b2
L∏
i=1

S2
i

L2
ρ2
i

L∑
i=1

klB2
l

S2
l

[
log2(16Γn2/γ + 7W̄n)

] 1
2 log(n)
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≤ 1

n

n∑
i=1

I
(
ML(xi, yi) ≤

n

2G

)
+

8

n

+ 3

√√√√ log
(

2
δ

)
2n

+
1

2n

L∑
l=1

log(Bl(Bl + 1)) + log(Sl(Sl + 1)) +
1

2n
log(b(b+ 1)) +

1

2n
log(2G)

+
288× 2G

n
√
n

√√√√L2b2
L∏
i=1

S2
i

L2
ρ2
i

L∑
i=1

klB2
l

S2
l

[
log2(16Γn2/γ + 7W̄n)

] 1
2 log(n)

(20)

where Γ = maxLl=1

(
bS

l

L Ol−1ml

∏l−1
i=1 ρi

Bi
L

)
,

ML(x, y) := (FA1,A2,...,AL(x))y −max
j 6=y

(FA1,A2,...,AL(x))j ,

and EL(x, y) := {ML(x, y) ≤ 0}. Since
∑

(G,B,S,b) δ(G,B, S, b) = δ, we have that with probab-282

ility > 1 − δ over draw of the training set, the above inequality holds where (G,B, S, b) are the283

smallest integers such that (X, γ,A) ∈ (G,B, S, b). In this case, note that we have284

Bl
L
≤ ‖Al‖2 +

1

L
∀l ≤ L

Sl
L
≤ ‖Ãl‖σ +

1

L
∀l ≤ L

2G−1

n
<

1

γ
≤ 2G

n

‖X‖(∞,L0)> ≤ b ≤ ‖X‖(∞,L0)> + 1 (21)

This allows us to conclude, plugging equation (21) into equation (20) that w.p. > 1− δ, we have:285

P(x,y) (EL(x, y)))

≤ 1

n

n∑
i=1

I
(
ML(xi, yi) ≤

n

2G

)
+

8

n

+ 3

√√√√ log
(

2
δ

)
2n

+
1

2n

L∑
l=1

log(Bl(Bl + 1)) + log(Sl(Sl + 1)) +
1

2n
log(b(b+ 1)) + log(2G)

+
2G288

n
√
n

√√√√L2b2
L∏
i=1

S2
i

L2
ρ2
i

L∑
i=1

klB2
l

S2
l

[
log2

(
16n22G

L
max
l=1

(
be
Sl

L
Ol−1ml

l−1∏
i=1

ρi
Bi
L

)
+ 7W̄n

)] 1
2

log(n)

≤ 1

n

n∑
i=1

I (ML(xi, yi) ≤ γ) +
8

n

+ 3

√√√√√ log
(

4n
δγ

)
2n

+
1

n

(
(2 + ‖X‖(∞,L0)>) +

L∑
l=1

log
[
(2 + L‖Al‖2)(2 + L‖Ãl‖σ)

])

+
576

γ
√
n

√√√√L2(‖X‖(∞,L0)> + 1)2

L∏
i=1

ρ2
i

L∑
i=1

kl(‖Al‖2 + 1/L)2
∏
i 6=l

(
‖Ãl‖σ + 1/L

)2

[
log2

(
32n2

γ

L
max
l=0

(
(1 + ‖X‖(∞,L0)>)

l−1∏
i=1

ρi(‖Ãi‖σ + 1/L)(‖Al‖2 + 1/L)Ol−1ml

)
+ 7W̄n

)] 1
2

log(n),

(22)
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as expected.286

287

Armed with this, the proof of Theorem A.1 is just a matter of simplifying into Õ notation:288

Proof of Theorem A.1. The proof is a matter of simplifying theorem A.2 into the Õ notation. Recall289

that if f, g : Rm → R, f = Õ(x) iff limn→∞
f(xn)

g Polylog(g(xn)) < C for any choice of sequence290

x1, x2, . . . such that limn→∞ xn = ∞ for some absolute constant C. Let f0, f1, f2 be the three291

excess risk terms in Theorem A.2, it is clear that f0 = 8
n = Õ

( √
R

γ
√
n

log (maxl≤LOl−1ml)
)

. As for292

f1, note that log(n) and log(γ) are both O
( √

R
γ
√
n

)
, and be

∏l−1
i=1 ρi

(
1
L + ‖Ai‖Li

)
( 1
L + ‖Al‖2) is293

o(R). Finally, since
‖A‖2L∗

l

Dl ≤ ‖A‖22 ≤ El‖A‖2L∗l , we have for large enough ‖Al‖2, ‖Ãl‖L∗l :294

2

L∑
l=1

log
[
(2 + L‖Al‖2)(2 + L‖Ãl‖L∗l )

]
≤ 5

[
L log(L) + max

l≤L
log(El) + log

(
L∏
i=1

‖Ãi‖L∗i

)]

≤ 5L

(
log(L) + max

l≤L
log(El)

)
+ 5 max

l̄
log

‖Al̃‖2√
Dl̃

∏
i 6=l̃

‖Ãi‖L∗i


≤ 5L

(
log(L) + max

l≤L
log(El)

)
− 5 max

l̄
log
(√
Dl̃
)

+ 5 log
(√

R
)

= O

(
log

(
γ
√
n

√
R

γ
√
n

))
= Õ

( √
R

γ
√
n

)
,

where l̃ = arg min(ki : i ≤ L), and at the last step, we used again the fact that log(n) and log(γ)295

are both O
( √

R
γ
√
n

)
, as well as the fact that L log(L) is Õ(

√
R).296

297

C Chaining covering number bounds.298

In this section, we state and prove a general result about the covering numbers of functions obtained299

through function composition. This result is mostly a combination of lemma A.7 in [2] and the300

beginning of the proof of Theorem 3.3 in the same reference.301

Proposition C.1. Let L be a natural number and a1, . . . , aL > 0 be real numbers. Let302

V0,V1, . . . ,VL be L+ 1 vector spaces, with arbitrary norms | .|0, | .|1, . . . , | .|L, let B1, B2, . . . , BL303

be L vector spaces with norms ‖ .‖1, ‖ .‖2, . . . , ‖ .‖L and B1,B2, . . . ,BL be the balls of radii304

a1, a2, . . . , aL in the spaces B1, B2, . . . , BL with the norms ‖ .‖1, ‖ .‖2, . . . , ‖ .‖L respectively4.305

Suppose also that for each l ∈ {1, 2, . . . , L} we are given an operator F l : Vl−1 × Bl → Vl :306

(x,A) → F lA(x). Suppose also that there exist real numbers ρ1, ρ2, . . . , ρL > 0 such that the307

following properties are satisfied.308

1. For all l ∈ {1, 2, . . . , L} and for all A ∈ Bl, the Lipschitz constant of the operator F lA with309

respect to the norms | .|l−1 and | .|l is less than ρl.310

2. For all l ∈ {1, 2, . . . , L}, all b > 0, and all ε > 0, there exists a subset Cl(b, ε) ⊂ Bl such311

that312

log(# (Cl(b, ε))) ≤
Cl,εa

2
l b

2

ε2
, (23)

where Cl,ε is some function of l, ε and, and, for all A ∈ Bl and all X ∈ Vl−1 such that313

|X|i−1 ≤ b, there exists an Ā ∈ Cl(b, ε) such that314 ∣∣F lA(X)− F lĀ(X)
∣∣
l
≤ ε. (24)

4The proof works with B1,B2, . . . ,BL being arbitrary sets, but we formulate the problem as above to aid the
intuitive comparison with the areas of application of the Proposition.
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For each l and each Al = (A1, A2, . . . , Al) ∈ Bl := B1 × B2 × . . . ,Bl, let us define

F lAl : V0 → VL : x→ F lAl(x) = F lAl ◦ . . . ◦ F
2
A2 ◦ F 1

A1 ,

and FA = FLAL . For each ε > 0, there exists a subset Cε of BL such that for all A =315

(A1, A2, . . . , AL) ∈ B := BL, there exists an Ā ∈ Cε such that the following two conditions316

are satisfied.317

∣∣F lAl(X)− F lĀl(X)
∣∣
l
≤ ε∏L

j=l+1 ρj
(∀l ≤ L), and (25)

log #(C) ≤ |X|
2
1

ε2

L∏
i=1

ρ2
i

 L∑
l=1

C 1
2

l,εal

ρl

 2
3


3

≤ L2 |X|21
ε2

L∏
i=1

ρ2
i

L∑
l=1

C 1
2

l,εal

ρl

2

.

In particular, for any X ∈ V0 and any ε > 0, the following bound on the (ε, | .|L)-covering number318

of {FA(X) : A ∈ BL} holds.319

logN ({FA(X) : A ∈ B}, ε, | .|L) ≤ L2 |X|20
ε2

L∏
i=1

ρ2
i

L∑
i=1

C 1
2

l,εal

ρi

2

. (26)

Proof. The proof draws inspiration from the ideas in [2]. However, we must keep the generality of320

the norms | .|0, | .|1, . . . , | .|L until further into the proof, and we also keep track of the errors at the321

intermediary layers, yielding a stronger result.322

For l = 1, . . . , L, let εl = εαl∏L
i=l+1 ρi

, where the αl > 0 will be determined later satisfying
∑L
l=1 αl =323

1.324

Using the second assumption, let us pick for each l the subset Cl = Cl
(
|X|0

∏l−1
i=1 ρi, εl

)
satisfying325

the assumption. Let us define also the set C := C1 × C2 × . . .× CL ⊂ B.326

Claim 1327

For all A ∈ B, there exists a Ā ∈ C such that for all l ≤ L,328 ∣∣F lA(X)− F lĀ(X)
∣∣
l
≤ ε∏L

j=l+1 ρj
. (27)

Proof of Claim 1329

To show this, observe first that for any 1 ≤ l ≤ L and for any A1, A2, . . . , Al,330 ∣∣F l−1 ◦ . . . ◦ F 2 ◦ F 1(X)
∣∣
l
≤ |X|0

l−1∏
i=1

ρi, (28)

and therefore, by definition of Cl, we have that for any A1, A2, . . . , Al−1, {FA1,A2,...,Al−1,Al(X) :331

Al ∈ Cl} is an (εl, | .|l) cover of {FA1,A2,...,Al−1,Al(X) : Al ∈ Bl}.332

Let us now fix A1, A2, . . . , AL and define Āl ∈ Cl inductively so that F l
Āl

(FĀ1,Ā2,...,Āl−1
(X)) is an333

element of {F lA(FĀ1,Ā2,...,Āl−1
(X)) : A ∈ Cl} minimising the distance to FĀ1,Ā2,...,Āl−1,Al(X) in334

terms of the | .|l norm.335

We now have for all l ≤ L:336

|FA(X)− FĀ(X)|l ≤
l∑
i=1

∣∣∣F(Ā1,Ā2,...,Āi−1,Ai,...,Al)(X)− F(Ā1,Ā2,...,Āi,Ai+1,...,Al)(X)
∣∣∣
l

≤
l∑
i=1

l∏
j=i+1

ρj

∣∣∣F(Ā1,Ā2,...,Āi−1,Ai)(X)− F(Ā1,Ā2,...,Āi)(X)
∣∣∣
l

14



≤
l∑
i=1

l∏
j=i+1

ρjεi =
1∏L

j=l+1 ρj

l∑
i=1

εαi ≤
ε∏L

j=l+1 ρj
, (29)

as expected.337

This concludes the proof of the claim.338

To prove the proposition, we now simply need to calculate the cardinality of C:339

logN ({FA(X) : A ∈ B}, ε, | .|L) ≤ log(#(C)) ≤
L∑
l=1

log(#(Cl))

=

L∑
l=1

Cl,εa
2
l

(
|X|0

∏l−1
i=1 ρi

)2

ε2l
≤ 1

ε2

L∑
l=1

Cl,εa
2
l

(
|X|0

∏l−1
i=1 ρi

)2 (∏L
i=l+1 ρi

)2

α2
l

=
|X|20

∏L
i=1 ρ

2
i

ε2

L∑
l=1

Cl,εa
2
l

ρ2
l α

2
l

. (30)

Optimizing over the αl’s subject to
∑L
l=1 αl = 1, we find the Lagrangian condition(
−2Cl,εa

2
l /ρ

2
l

α3
l

)L
l=1

∝ (1)Ll=1,

yielding

αl =
(
√
Cl,εal/ρl)

2
3∑L

i=1(
√
Ciai/ρi)

2
3

.

Substituting back into equation (30), we obtain340

logN ({FA(X) : A ∈ B}, ε, | .|L) ≤
|X|20

∏L
i=1 ρ

2
i

ε2

[
L∑
i=1

(√
Ciai
ρi

) 2
3

]2
L∑
l=1

(√
Cl,εal

ρl

)2−4/3

≤
|X|20

∏L
i=1 ρ

2
i

ε2

 L∑
l=1

(√
Cl,εal

ρl

)2/3
3

,

as expected. The second inequality follows by Jensen’s inequality.341

D Dudley’s entropy formula342

For completeness, we include a proof of (a variant of) the classic Dudley’s entropy formula. To343

enable a comparison with the results used in [2], we write the result with arbitrary Lp norms. We344

will, however, only use the L∞ version, as in [15].345

Proposition D.1. Let F be a real-valued function class taking values in [0, 1], and assume that346

0 ∈ F . Let S be a finite sample of size n. For any 2 ≤ p ≤ ∞, we have the following relationship347

between the Rademacher complexity R(F|S) and the covering number N (F|S, ε, ‖ .‖p).348

R(F|S) ≤ inf
α>0

(
4α+

12√
n

∫ 1

α

√
logN (F|S, ε, ‖ .‖p)

)
,

where the norm ‖ .‖p on Rm is defined by ‖x‖pp = 1
n (
∑m
i=1 |xi|p).349

Proof. Let N ∈ N be arbitrary and let εi = 2−(i−1) for i = 1, 2, . . . , N . For each i, let Vi denote350

the cover achieving N (F|S, εi, ‖ .‖p), so that351

∀f ∈ F ∃v ∈ Vi

(
1

n

n∑
t=1

(f(xt)− vt)p
) 1
p

≤ εi, (31)
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and #(Vi) = N (F|S, εi, ‖ .‖p). For each f ∈ F ,let vi[f ] denote the nearest element to k in Vi.352

Then we have, where σ1, σ2, . . . , σn are n i.i.d. Rademacher random variables,353

Eσ sup
f∈F

1

n

n∑
t=1

σtf(xt)

= Eσ sup
f∈F

[
1

n

n∑
t=1

σt
(
ft(xt)− vNt [f ]

)
−
N−1∑
i=1

1

n

n∑
t=1

σt
(
vit[f ]− vi+1

t [f ]
)

+
1

n

n∑
t=1

σtv
1
t [f ]

]

≤ Eσ sup
f∈F

[
1

n

n∑
t=1

σt
(
ft(xt)− vNt [f ]

)]
+

N−1∑
i=1

Eσ sup
f∈F

[
1

n

n∑
t=1

σt
(
vit[f ]− vi+1

t [f ]
)]

+ Eσ sup
f∈F

[
1

n

n∑
t=1

σtv
1
t [f ]

]
.

For the third term, pick V1 = {0}, so that354

Eσ sup
f∈F

[
1

n

n∑
t=1

σtv
1
t [f ]

]
= 0.

For the first term, we use Hölder’s inequality to obtain, where q is the conjugate of p,355

N−1∑
i=1

Eσ sup
f∈F

[
1

n

n∑
t=1

σt
(
ft(xt)− vNt [f ]

)]
≤ Eσ

(
1

n

n∑
t=1

|σt|q
) 1
q
(

1

n

n∑
t=1

∣∣ft(xt)− vNt [f ]
∣∣p) 1

p

≤ εN .

Next, for the remaining terms, we define Wi = {vi[f ]− vi+1[f ]|f ∈ F}. Then note that we have356

|Wi| ≤ |Vi||Vi+1| ≤ |Vi+1|2, and then357

Eσ sup
f∈F

[
1

n

n∑
t=1

σt
(
vit[f ]− vi+1

t [f ]
)]
≤ Eσ sup

w∈Wi

[
1

n

n∑
t=1

σtwt

]
.

Next,358

sup
w∈Wi

√√√√ 1

n

n∑
t=1

w2
t = sup

f∈F

∥∥vi[f ]− vi+1[f ]
∥∥

2

≤ sup
f∈F

∥∥vi[f ]− (f(x1), . . . , f(xn))
∥∥

2
+ sup
f∈F

∥∥(f(x1), . . . , f(xn))− vi+1[f ]
∥∥

2

≤ sup
f∈F

∥∥vi[f ]− (f(x1), . . . , f(xn))
∥∥
p

+ sup
f∈F

∥∥(f(x1), . . . , f(xn))− vi+1[f ]
∥∥
p

≤ εi + εi+1 = 3εi+1,

where at the third line, we have used the fact that p ≥ 2. Using this, as well as Massart’s lemma, we359

obtain360

Eσ sup
w∈Wi

[
1

n

n∑
t=1

σtwt

]
≤ 1√

n

√√√√2 sup
w∈Wi

1

n

n∑
t=1

w2
t log |Wi| ≤

3εi+1√
n

√
2 log |Wi| ≤

6√
n
εi+1

√
log |Vi+1|.

Collecting all the terms, we have361

Eσ sup
f∈F

1

n

n∑
t=1

σtf(xt) ≤ εN +
6√
n

N−1∑
i=1

εi+1

√
logN (FS , εi+1, ‖ .‖p)

≤ εN +
12√
n

N∑
i=1

(εi − εi+1)
√

logN (FS , εi, ‖ .‖p)
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≤ εN +
12√
n

∫ 1

εN+1

√
logN (FS , ε, ‖ .‖p)dε.

Finally, select any α > 0 and take N to be the largest integer such that εN+1 > α. Then εN =362

4εN+2 ≤ 4α, and therefore363

εN +
12√
n

∫ 1

εN+1

√
logN (FS , ε, ‖ .‖p)dε ≤ 4α+

12√
n

∫ 1

α

√
logN (F|S , ε, ‖ .‖p)dε,

as expected.364

E Rademacher Theorem365

Recall the definition of the Rademacher complexity of a function class F :366

Definition E.1. Let F be a class of real-valued functions with range X . Let also S =367

(x1, x2, . . . , xn) ∈ X be n samples from the domain of the functions inF . The empirical Rademacher368

complexity RS(F) of F with respect to x1, x2, . . . , xn is defined by369

RS(F) := Eδ sup
f∈F

1

n

n∑
i=1

δif(xi), (32)

where δ = (δ1, δ2, . . . , δn) ∈ {±1}n is a set of n iid Rademacher random variables (which take370

values 1 or −1 with probability 0.5 each).371

Recall the following classic theorem( [17]):372

Theorem E.1. Let Z,Z1, . . . , Zn be iid random variables taking values in a set Z . Consider a set of
functions F ∈ [0, 1]Z . ∀δ > 0, we have with probability ≥ 1− δ over the draw of the sample S that

∀f ∈ F , E(f(Z)) ≤ 1

n

n∑
i=1

f(zi) + 2RS(F) + 3

√
log(2/δ)

2n
.
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