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ABSTRACT
In this paper, we introduce a non-stationary and context-free Multi-

Armed Bandit (MAB) problem and a novel algorithm (which we

refer to as BMAB) to solve it. The problem is context-free in the

sense that no side information about users or items is needed. We

work in a continuous-time setting where each timestamp corre-

sponds to a visit by a user and a corresponding decision regarding

recommendation. The main novelty is that we model the reward

distribution as a consequence of variations in the intensity of the

activity, and thereby we assist the exploration/exploitation dilemma

by exploring the temporal dynamics of the audience. To achieve this,

we assume that the recommendation procedure can be split into

two different states: the loyal and the curious state. We identify the

current state by modelling the events as a mixture of two Poisson

processes, one for each of the possible states. We further assume

that the loyal audience is associated with a single stationary reward

distribution, but each bursty period comes with its own reward

distribution. We test our algorithm and compare it to several base-

lines in two strands of experiments: synthetic data simulations and

real-world datasets. The results demonstrate that BMAB achieves

competitive results when compared to state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ingmethodologies→ Reinforcement learning; •Mathematics of
computing → Information theory.

KEYWORDS
Multi-Armed bandit, Time series, Bursty methods, Audience dy-
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1 INTRODUCTION
Cold-start recommendation (CSR) is one of the fundamental prob-

lems in recommender systems (RS) [24]. Its key question is: How

to profile and recommend items to new users? CSR is challenging

due to the lack of information about the preferences and behavior

of new users. Various techniques have been proposed to solve this

problem, including interview-based approaches [41], exogenous

attribute exploitation [39] and cross-domain recommendation [11].

Especially challenging is the case of CSR where there is not only

a lack of information about user preferences and behavior, but of

any usable side information. Without the ability to profile users and

items densely, a RS can rely only on recent user-item interaction [17,

49]. For example, when a new user visits a news website, a RS needs

to choose an article solely based on user-agnostic information (e.g.,

the average click-through rate) and then observes whether the

new user clicks on the recommended article. The website aims to

catch the users’ attention and maximize the total number of clicks.

Providing effective CSR here requires identifying the ‘trending’

items most popular among the website’s audience.

In this challenging scenario, a popular option is to model CSR as

a multi-armed bandit (MAB) problem [40]: at each trial, the gambler

(RS) selects an arm (e.g., news article) to pull (show to the user) and

observes a reward (a click or lack thereof). Throughout the event

history, an algorithm improves the policy to maximize the reward

(e.g., the number of clicks). The standard MAB setting assumes that

the (unknown) item popularity distribution is stationary [6, 16, 43].

This assumption implies there exists a most popular item fixed over

time.

However, this standard form of the MAB problem is inadequate

in practice: assuming that the items’ popularity is not changing
over time [49] is highly unrealistic. In this paper, we therefore

model CSR as a non-stationary MAB problem. Interestingly, we

therefore continuously face the classic exploration/exploitation

dilemma known from reinforcement learning: the RS must main-

tain a balance between recommending a classic popular item and

recommending the object of the current viral fad. To illustrate this

dilemma, let us consider the following example. Suppose that a RS

must select among videos of two artists: the South Korean singer

Psy and the British singer David Bowie. The gray lines in both

graphs of Figure 1 show the cumulative
1
level of system activity

(only USA audience) associated with both artists. Most of the time,

the rate of growth of the system activity is approximately constant.

However, this linearity is sometimes broken by sudden bursts of

events highlighted by the two vertical lines. The first spike (vertical

red line) matches with the “Gangnam Style” release. The hit had an

1
For a time series T = {t1, t2, · · · , tn }, we denote the numbers of events that

happened before t by N (t ) :=
∑n
i 1{ti <t } .
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Figure 1: Two examples of time series factorization that mo-
tivate our proposed MAB model.Left: loyal and curious sys-
tems’ audiences (separation of loyal and curious audiences
according to [5]). Right: activity related to Psy and David
Bowie. The data is taken from Google Trend (Jan/2008 to
Dec/2020; country: USA; search engine: Youtube). We give a
detailed description of the results in the main text.

unprecedented explosion of popularity
2
and its music video “broke”

the YouTube view counter’s limit. The second burst of events (verti-

cal blue line) coincides with David Bowie’s unexpected death. This

unfortunate exogenous event triggered the audience’s curiosity.

We explain the variations in the users’ activity by the existence

of two types of audiences (disentangled in Figure 1, left graph):

the loyal audience and the curious audience. The loyal audience
(green curve) is constituted by fans who assiduously follow the

topic. In contrast, the curious audience (yellow curve) only turned

their attention to the topic due to an extraordinary event. Thus, the

environmental context in which the RS must make decisions alter-

nates between calm periods (where the users’ behavior is driven

by the loyal audience), and disruptive or ‘bursty’ periods (where

the curious audience is driving sudden bursts of interest in certain

topics). In our real-life example, during stable periods, the ratio

between the singers’ popularity is stable and Bowie is consistently

more popular than Psy (Figure 1, right graph). On the other hand,

during the disruptive period dominated by curious behavior, the
relative popularity between Psy and Bowie changed drastically.

Motivated by this phenomenon, which we entitle audience curios-
ity [5, 9, 32, 47], we propose to detect the state of the environment

(whether the system is in a bursty or calm period) and use this in-

formation to guide the exploration strategy of the RS. For instance,

in the example above, Psy’s sudden burst of popularity after the

release of ’Gangnam Style’ deeply altered the environment and

reward distribution: Psy momentarily became more popular than

David Bowie. As we explain in more detail below, whenever our

algorithm detects such dramatic changes in the environment, it

intensifies its exploratory behavior during the turbulent period to

keep up with changes in the optimal strategy.

Prior work on non-stationary MAB problems [10, 22] has dealt

with the shifts in the items’ popularity in both context-free [4, 10,

12, 20, 48] and context-aware [27, 30, 49] situations. While the first

group solely uses the observed rewards, the latter group requires

user or item features to build its arm-selection strategy. However,

2
The instant popularity p(t ) can be expressed as p(t ) = ∂E(N (t ))/∂t

previous work did not take into account the effect of audience

curiosity in the reward distribution.

In contrast, we model CSR as a non-stationary and context-

free MAB problem and propose a novel algorithm to solve it. Our

formulation is context-free, so it requires no side information about

users or items. By carefully modeling the temporal dynamics of

the audience, our model exploits variations in user activity (e.g.,

sudden bursts). We assume that the recommendation environment

can be split into two different states: the loyal state (stable) and the

curious state (unstable). We identify the current state by modeling

the events as a mixture of two Poisson point processes, one for each

of the possible states. The main contributions of this paper can be

summarized as follows:

• New algorithmWe propose the Burst-induced Multi-Armed
Bandit (BMAB), a non-stationary and context-free MAB al-

gorithm that exploits the temporal audience dynamics to

predict changes in the reward distribution.

• Regret guarantees We prove regret guarantees for our

model BMAB when the states are recoverable and bursts

are separable. We also experimentally analyze the proposed

regret bounds.

• Competitive performance in experimentsWe evaluate

our algorithm and compare it to several baselines in two

experimental strands: synthetic data simulations and real-

world datasets. We compare our method to six state-of-the-

art baselines and achieve competitive results.

2 RELATEDWORK
2.1 Related Work on MABs
MABs were introduced in [43] and more formally defined in [36].

Some classic and broadly used algorithms to solve this problem are

Thompson sampling (TS) [37, 43], ϵ-greedy policies [42], Exp3 [7]

and strategies based on upper confidence bounds (UCB) [40]. The

Thompson sampling algorithm enjoys strong empirical perfor-

mance [14], regret guarantees [3] and has been successfully applied

in a wide variety of RSs domains [1, 2, 25, 28, 38].

In non-stationary MABs, the reward distribution is allowed to

change through time. There are two major classes of non-stationary

MABs: adversarial MABs and piece-wise stationary MABs. In ad-

versarial MABs, an adversary controls the payoff generation, so no

statistical assumptions are imposed [7]. However, the problem is

still stationary in the sense that the aim is to return a single arm that

is the globally optimal action at a fixed time horizon. In contrast, the

reward generation is non-stationary on the whole time horizon in

piece-wise stationary MABs, but it is stationary on several unknown

intervals [48]. Our model belongs to the latter category. Previous

work on piece-wise stationary MABs can be further categorized into

context-aware and context-free approaches, depending on whether

side information (user/item features) are exploited.

In related work on (context-aware) piecewise stationary MABs,

[30] proposed LogUCB, an extension of UCB that estimates the

average reward of a topic through a logistic regression on its fea-

tures. In line with our work, [49] present a MAB algorithm that also

considers temporal influence on the item consumption probability.

They construct the policy algorithm as a probabilistic framework
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that uses as context a high-dimensional vector containing side in-

formation about the users (demographic information) and the items

(query keywords). There are two key differences between this work

and ours: (1) our method is context-free (does not need feature

vectors); and (2) instead of treating the problem as a discrete-time

one, our model actively exploits continuous temporal dynamics to

detect possible changes in the reward environment.

Related work on context-free MABs includes [4], who performed

constant exploration inspired by the EXP3 algorithm to detect

changes in which arm is the best, while [12] achieved this by simply

comparing the rewards in the two last time-intervals of sizew . In

both cases, whenever such a distributional change is detected, the

backbone MAB algorithm is restarted with the aim of finding the

best arm under the new distribution. In the same direction, [48]

proposed a general framework that can be used together with sev-

eral algorithms. After also dividing the event horizon into several

equal-sized windows (of sizew), they compute scores for each arm

based on both the rewards and the number of observations in the

following two intervals: (1) the last window in which a change

in the best arm was observed, and (2) the last observed window.

If the absolute difference between the scores in the two windows

is greater than a hyperparameter ϵ , the algorithm is re-initialised.

Similarly, [21] performed change detection by comparing two pre-

vious time windows. Their model also relies on estimates of the

probability of false-alarm and the probability of missed-detection to

improve robustness. Instead of resetting the algorithm altogether,

[10] adopted a fixed sliding training window while [19] used a dif-

ferent window size for each arm. With a slightly different approach,

[20] proposed the so called ‘Discounted-UCB (DUCB)’ algorithm.

The main idea is to give a higher selection probability to two classes

of arms: the arms which recently returned high rewards and the

arms which were not recently selected. Therefore, instead of re-

setting the whole procedure, DUCB tackles the non stationarity

by maintaining a minimum amount of exploration throughout the

event horizon. By mixing the two previous approaches (discounted

reward and sliding window), [13] assigns more relevance to the

recent rewards. The lastw rewards are not discounted whilst the

remaining ones are. [26] proposed a piece-wise MAB algorithm

that detects abrupt changes in the reward distribution through a

hypothesis test. As a criterion for this hypothesis test they rely

on the Page-Hinkley statistic, which involves a random variable

defined as the difference between the reward time t and the average
reward, cumulated in the lastm steps. Our method’s main difference

from other context-free methods lies in our shift detection proce-

dure. Instead of detecting changes only in the reward distribution,

we analyze the system’s temporal dynamics to identify behavioral

changes in the audience. Our hypothesis is that such behavioral

change is associated with the items’ popularity.

2.2 Related Work on the Dynamics of Human
Communication

Popularity prediction and online trend detection [33, 35, 47] are

fundamentally linked to the recommendation task, especially when

no context is available [17]. Previous works show that item popular-

ity increases and decreases over time [23, 45, 47] and it is triggered

by bursts [8, 9, 35]. One of the first attempts to associate human

communication with the emergence of bursts was [9]. They pro-

posed that human activities tend to alternate between periods of

calm and intense activity. Plenty of works substantiate this premise

[18, 32, 34, 44, 46, 50]. Such alternating behavior points at the pres-

ence of two distinct types of audiences: the loyal audience which
corresponds to the stable activity which occurs during the calm

periods and curious audience, which is highly unpredictable, and

responsible for the bursts in activity in the system [5].

Stochastic point process form the statistical framework to model

random sequences of events [15]. Poisson processes, for exam-

ple, are broadly used to measure stable audiences [5, 29, 31]. On

the other hand, power law distributions and self-exciting point

processes have been used to model the unexpected behavior of

bursts [9, 32, 44, 46]. In this work, we propose that the loyal and

the curious audiences form a mix of two stochastic point processes,

formally defined in Section 3. The difference in the intensity of the

point processes defines the state of the MAB problem.

3 PROBLEM FORMULATION
Let K = {1, 2, · · · ,K} be a set of K arms and T = {t1, t2, · · · , tN }

denote a sequence of N timestamps in the interval (0,T ]. At each
time ti , a gambler chooses one of the K arms and observes the

reward ri ∈ {0, 1}. The reward distribution at time ti depends on
the state si of the system. We set s(ti ) = 0, if ti occurs during the
loyal state, and s(ti ) = 1, if ti occurs during the curious state.

We assume that the time series T is generated by a mixture of

two stochastic point processes: (1) a homogeneous Poisson process

(HPP) with intensity
3 λ(t) = λL , and (2) a piece-wise homoge-

neous Poisson process (PW-HPP) with intensity λC (t). We assume

that the intensity λC (t) of the second process is piecewise con-

stant, with the transitions occurring at the random and unobserved
timestamps M = {m1,m2, · · · ,mn } (by convention we also set

m0 = 0), on whose distribution we make no formal assumption
4
.

Thus, λC (t) can assume (n + 1) values in the interval (0,T ], de-
noted by {c0, c1, c2, · · · , cn }.We write c j for the (unique) value the
intensity λC (t) takes in the interval [mj ,mj+1). A key assumption

of our work is that the underlying distribution has the property

that c j ≪ λL (w.p. 1), if j ≡ 0 mod 2, and c j ≫ λL , otherwise.
This implies that the PW-HPP alternates between silent mode (very

low intensity) and bursty mode (very high intensity). Finally, write

B(t) =
∑
j :mj<t (j mod 2) for the number of PW-HPP transitions

into the bursty mode which occured before t (thus, if s(t) = 1, t

belongs to the B(t)th burst).

The first graph of Figure 2 presents a realization of a mixture of

two stochastic point processes with the properties described above.

In this example, λL = 3, λC (t) alternates between 0.15 and 15,

T = 100 and the elements ofM (vertical red lines) were randomly

selected aiming for the expected number of events of both processes

to be the same (cf. details in the experiments section below). The

HPP models the loyal audience (yellow curve, stable throughout the

observed interval) while the PW-HPP models the curious audience

(green curve, unstable). Note that the label of the event ti is not

3
Recall that the definition of intensity implies that λ(t ) = λ(t |Ht ) =

lim∆t→0 E (N (t, t + ∆t ) |Ht ) /∆t . The intuition behind the intensity function is as

follows: for a small time interval ∆t , the value of λ(t |Ht ) × ∆t is approximately the

expected number of events in (t, t + ∆t ).
4
Other than the fact that the total number of transitions n is finite with probability 1.
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Figure 2: Difference between audiences and states. First graph: mixture of a HPP (green curve, models the loyal audience)
and a PW-HPP (yellow curve, models the curious audience). We only observe the mixture of processes. Parameters: λL = 3,
λC (t) alternates between 0.15 and 15,T = 100. Second graph: point-wise state detection (loyal and curious states) by an optimal
detector. Three last graphs point-wise state detection (loyal and curious states) by the detector proposed in Section 4.4 (we
fixed δ = 0.95 and varied ∆ ∈ {5, 10, 15}). In all graphs, the vertical lines indicate the actual state transitions (i.e., the setM).

observed, that is, it is unknown whether ti ∈ HPP or ti ∈ PW-HPP

(even in a given stable or bursty period). However, our underlying

assumption is that the state s(ti ) of the slot machine at ti does
not depend on the label of ti , but depends instead on the current

dominating audience dynamic: s(t) = 0 in the calm periods, and

s(t) = 1 in the bursty periods. More precisely, s(t) is determined by

s(t) ≡ max(i |mi ≤ s(t)) mod 2.

In our model, the reward distribution is a consequence of the

audience variation: we assume that reward distribution is stationary

in the absence of bursts. Hence, in all pieces of the interval where

s(t) = 0 we model the distribution of arm a’s reward at time t as
r (a, t) ∼ Bernoulli(θ0

a ). In contrast, in the presence of bursts (s(t) =
1) the reward distribution varies: each burst has its own stationary

reward distribution. Therefore, wemodel r (a, t) ∼ Bernoulli(θ
B(t )
a )

when s(t) = 1.

At each time ti , the agent must choose an arm according to a

policy π (t |s(t),B(t)). Let ¯θ ta = E[r (a, t)] be the expected reward

for arm a at time t given s(t) and B(t). As mentioned before, a

common goal is to maximize the expected reward R(T ) over the
entire horizon, which can be written as

E
(
R(T )

)
= E

N∑
i=1

¯θ tiπ (ti |s(ti ),B(ti ))
,

where the expectation runs over both (1) the random choices made

by the algorithm policy and (2) the reward distribution. Note that

we do not let the expectation run over the distribution of the times-

tamps. Thus the left hand side (LHS) is technically a randomvariable.

This is a well-principled choice since it corresponds to expressing

the regret as a function of the number of decisions to be made by

the agent. We also adapt the notion of (expected) regret, which

relies on the concept of the optimal fixed arm. Let
¯θ t∗ = maxj ¯θ tj

be the expected reward of the optimal arm at time t given s(t) and
B(t), the expected regret is then defined as:

E
(
R(T )

)
= E

N∑
i=1

[
¯θ ti∗ − ¯θ tiπ (ti |s(ti ),B(ti ))

]
, (1)

where the expectation is also over the random choices made by the

algorithm policy and the random rewards.

4 BURST-INDUCED MAB
To solve the problem formulated in Section 3 we propose the BMAB

algorithm. In this section we will describe our algorithm according

to the following structure: first, we will present the main ideas of

the Thompson sampling algorithm, which forms the backbone of

our method; second, we will describe the steps of BMAB and show

its regret guarantees; finally we will present our state detector,

which is a crucial component of our algorithm BMAB.

4.1 Thompson sampling algorithm
The Thompson sampling (TS) algorithm is a classical approach

the stationary stochastic MAB problem. In this setting, at time t ,
the slot machine has K arms and, when an arm a is played, the

machine produces a reward r (a). The reward distribution of arm a
is a Bernoulli distribution with fixed and unknown parameter θa .
In summary, an arm a has probability θa of returning 1 as a reward,

and 1 − θa of returning 0.

Also known as posterior sampling, TS assumes an independent

prior belief over each θa . In this Bernoulli reward case, it is natural

to choose a beta-distribution as a prior (since it is a conjugate prior).

Thus for the MAB case, for each arm a, the prior probability density
function of θa is beta-distributed with parameters αa and βa :

p(θa ) =
Γ(αa + βa )

Γ(αa )Γ(βa )
(θa )

αa−1(1 − θa )
βa−1,

where Γ is the gamma function. At each time t , the TS algorithm

samples a vector Θ = { ˆθ1, ˆθ2, · · · , ˆθK }, where ˆθi ∼ Beta(αi , βi )

(i.i.d). Then the policy selects the arm π (t) = argmaxi
ˆθi .REMARK

1: the exploration procedure is probabilistically tackled. At each

step, the probability density function f (θ ) of Beta(α , β) is greater
than zero in the whole domain [0, 1]. Thus any arm has non-zero

probability of being selected.REMARK 2: In the special case when

α = β = 1, θ ∼ Uniform(0, 1).

Due the conjugacy properties of the beta distribution, the Bayesian

update of the parameters α and β is particularly simple: at time t ,

295



Burst-induced Multi-Armed Bandit for Learning Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

after the algorithm selects arm π (t) and observes the reward r (π (t)),
the parameters of the prior distribution of θπ (t ) can be updated as

follows:

[απ (t ), βπ (t )] = [απ (t ) + r (π (t)), βπ (t ) + (1 − r (π (t)))]. (2)

4.2 The BMAB algorithm
The BMAB algorithm is described in Algorithm 1. The core idea is to

use Thompson sampling on each stationary region with a separate

count of α and β for each reward distribution. Thus, for each state,

the reward distribution of each arm a is a Bernoulli(θa ) with prior

θa ∼Beta(α , β). At each time t, the vectors α0 ∈ RK and β0 ∈ RK

(resp. α1 ∈ RK and β1 ∈ RK ) denote the parameters of the priors

related to the K arms in the loyal (resp. curious) state. Each arm a
has reward distribution r (a) ∼Bernoulli(θa ). In the loyal state, the

estimated distribution of θa is θa ∼Beta(α0[a], β0[a]), whereas in
the curious state, we have θa ∼Beta(α1[a], β1[a]) instead.

To support our explanation we will illustrate our algorithm ex-

ecution for the time series displayed in Figure 2. We assume that

K = 3 and [θ1,θ2,θ3] = [0.3, 0.4, 0.5] in the loyal state. Regarding

the curious state, the parameters assume the values [θ1,θ2,θ3] =

[0.3, 0.9, 0.5] (in (m1,m2]) and [θ1,θ2,θ3] = [0.9, 0.4, 0.5] (in (m3,m4]).

Thus in this case, the best arm during the entire loyal state is arm 3,

whilst in the first burst of events it is arm 2, and during the second

burst of events it is arm 1. Figure 3 shows the prior distributions of

θ1,θ2, and θ3 at the times {0,m1,m2,m
5

2
,m3,m4, tN = 100}5. The

first row of graphs corresponds to the priors of the loyal state while

the second row of graphs corresponds to the priors of the curious

state.

Our precise algorithm can be split into three main steps: Initial-
ization [Line 1]:we initialize all entries of the vectors α and β as 1.

Thus, priors are initialised as uniform distributions (at t = 0). Rec-
ommendation and learning procedures [Lines 3-7]: in order

to maximize the reward, BMAB aims to learn (by updating its priors

of) the reward distributions of both stateswith enough confidence to
select the best arm at the event time. Therefore, at each event ti the
algorithm needs to detect the state si . We assume that an oracle ω
is available to provide an estimate of the state at each timestamp in

{t1, t2, · · · , ti } (line 3). When a perfect oracle (i.e. with ω(t) = s(t))
is available, we refer to our algorithm as [BMAB-O]. In practice,

the role of the oracle can be assumed by our realistic state detector

from Section 4.4. We refer to the resulting instance of our algorithm

as [BMAB-R]. In the next step (line 4), we sample
ˆθk (for each

k) according to the current prior distribution Beta((αsi )k , (βsi )k )
corresponding to the current state si and the arm k . Our policy is

to select (recommend) the arm a which has the highest
ˆθk (line

5). Finally, we observe the reward r (a) of the selected arm and up-

date the priors of the state si in accordance with (2). Note that the

loyal state is associated with a single stationary reward distribu-

tion: our method’s estimate of the distribution corresponding to the

loyal state keeps improving throughout the whole event horizon

(first row of graphs, Figure 3). Burst separation [Lines 8-12]: in
the problem definition, we further assume that each bursty period

comes with its own reward distribution. Accordingly, we aim to

treat each bursty period as a separate MAB problem, resetting the

5
Definemn

i as the nth element of the ordered set {tj |tj > mi }, so thatm5

2
is the

fifth time stamp in the stationary section (m2,m3]

Thompson priors at the beginning of each burst, whilst keeping a

global count for the periods where the loyal audience dominates.

However, due to the uncertainty inherent in the state prediction

method (ω(t)), we engineer a soft transition procedure: whenever a

burst appears to be ending, the priors corresponding to the burst are

gradually forgotten rather than discarded immediately. In Figure 3,

observe that from t = 0 to t =m1 the loyal priors have significantly

changed after some reward observations while the curious priors

stay as initialized. During the first bursty period (m1,m2], the curi-

ous priors changed as the model learned the reward distribution

of the burst. One can observe at timem2 that loyal priors remain

the same as those as those atm1, since the interval (m1,m2] is gov-

erned by the bursty dynamic. This can also be seen at the second

bursty period ((m3,m4]). Similarly, when the bursty period appears

to taper off, the learned priors are gradually forgotten as the model

gains confidence in its observation of a return to normality. To

accomplish it, BMAB employs a forgetting-rate γ ∈ [0, 1]: at each

step with si = 0, we compute α1 = γα1 and β1 = γ β1. If some

entry of α1 or β1 is less than 1, we round it to 1 (lines 8-12). The

effects of this forgetting procedure can be observed in Figure 3. At

time t =m5

2
, i.e. five loyal-state events afterm2, an increase of the

variance around the expected value of θs is seen for the curious

state. This smooth forgetting procedure eventually leads to a return

to a uniform prior after sufficiently many loyal-state timestamps,

as can be observed at time t =m3.

4.3 BMAB regret guarantees
In this section, we present regret guarantees for the [BMAB-O]
algorithm (with a perfect oracle). In Section 5.1 we show experi-

mentally that the results also hold for [BMAB-R].

Theorem 4.1. Write nb for the total number of bursts and let the
set N = {N0,N1, · · · ,NB(tN )} contain the number of timestamps
in each period (with N0 corresponding to the entire calm period and
Ni corresponding to the ith burst: N0 =

∑
j 1s(tj )=0

, and for all i ,
Ni =

∑
j 1s(tj )=1∧B(tj )=i ). We assume access to an optimal oracle ω

with ω(t) = s(t) for all t and set γ = 0. For all configurations nb ,N

Algorithm 1 BMAB

Input: Number of arms K ∈ {2, 3, 4, · · · } and forgetting-rate γ ∈

[0, 1]

1: α0 = β0 = α1 = β1 = {1}K

2: for i ∈ {1, 2, · · · ,N } do
3: si = ω(ti )
4: ∀k ∈ {1, 2, · · · ,K} sample

ˆθk ∼ Beta(αsi [k], βsi [k])

5: a = argmaxj
ˆθ j

6: Observe the reward r (a)
7: (αsi [a], βsi [a]) = (αsi [a] + r (a), βsi [a] + (1 − r (a)))
8: if si == 0 then
9: α1 = γα1 , β1 = γ β1

10: ∀k ∈ {1, 2, · · · ,K} if α1[k] < 1 make α1[k] = 1

11: ∀k ∈ {1, 2, · · · ,K} if β1[k] < 1 make β1[k] = 1

12: end if
13: end for

296



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Alves, et al.

Figure 3: Realization of the BMAB algorithm in the mixture of point processes presented in Figure 2 (K = 3; Loyal state:
[θ1,θ2,θ3] = [0.3, 0.4, 0.5] ; and Curious state: [θ1,θ2,θ3] = [0.3, 0.9, 0.5] (in (m1,m2]) and [θ1,θ2,θ3] = [0.9, 0.4, 0.5] (in (m3,m4])). First
row of graphs: prior distribution of θ1,θ2, and θ3 at the times {0,m1,m2,m

5

2
,m3,m4, tN = 100} concerning the loyal state. Second

row of graphs: prior distribution of θ1,θ2, and θ3 at the times {0,m1,m2,m
5

2
,m3,m4, tN = 100} concerning the curious state.

satisfying the (mild) condition Ni > 0 for all i , we have

E
(
R(T )

)
≤ O

(√
nbKN logK

)
,

where N =
∑nb
i=0

Ni is the total number of events.

Proof. From (1) we have:

R(T ) =
N∑
i=1

[
¯θ ti∗ − ¯θ tiπ (ti |s(ti ),B(ti ))

]
=

∑
i ∈Ω0

[
¯θ ti∗ − ¯θ tiπ (ti |0,−)

]
+

nb∑
l=1

∑
j ∈Ω1(l )

[
¯θ
tj
∗ − ¯θ

tj
π (tj |1,l )

]
= R0(T ) +

nb∑
l=1

Rl (T ), (3)

where Ω0 = {a |s(ta ) = 0}, Ω1(l) = {b |s(tb ) = 1 and B(tb ) = l},
R0(T ) is the loyal-state regret and for l > 0, Rl (T ) is the component

of the regret corresponding to the ith burst. The condition Ni > 0

guarantees that the bursts are separable in the sense that B(t) =
#

{
j : ω(tj ) = 0 ∧ ω(tj+1) = 1 ∧ tj+1 ≤ t

}
can be computed by the

oracle. Therefore, we essentially have (nb +1) stationary Thompson

sampling algorithms. Accordingly, applying Theorem 2 from [3] to

equation (3) we obtain:

E[R(T )] =

nb∑
i=0

E[Ri (T )] = O

( nb∑
i=0

√
KNi logK

)

≤ O

(√√√
(nb + 1)

nb∑
l=0

KNl logK

)
= O

(√
nbKN logK

)
,

(4)

where at the second line, we have used Jensen’s inquality (more

precisely, ∥x ∥1 ≤
√
d ∥x ∥2 for all x ∈ Rd ). The theorem follows. □

As expected, we observe that stable systems, where bursts are

rare, expect to have lower regret, as the number of bursts influences

the regret bound by a factor of

√
nb .

4.4 A realistic state detector
In this section, we will propose a realistic state detector, a crucial

step of [BMAB-R]. We assume that the loyal audience rate λL
is known (or can be easily learned [5, 29, 31]). Note that such a

rate does not require prior knowledge of the reward distributions

and can be easily measured through the system’s traffic logs. Our

method requires a positive integer sensitivity hyperparameter ∆
as well as a confidence parameter δ ∈ (0, 1). For all i , we then

write ∆i = ti − ti−∆+1 (if i < ∆, ∆i = ti ). We write qδ (µ, ρ) =
qGamma(µ, ρ,δ ) for the (left) quantile function of the Gamma distri-

bution with shape µ and scale ρ, i.e., P(X ≤ qδ (µ, ρ)) = 1−δ where

X follows a Gamma distribution with shape µ and scale ρ.
In order to detect the the state of the event ti we aim to test the hy-

pothesis that the elements of the set T∆,i = {ti−∆+1, ti−∆+2, · · · , ti }
(if i < ∆, T∆,i = {0, t1, t2, · · · , ti }) are timestamps generated by a

uniform Poisson process with intensity λL . Our state detector is
described in Algorithm 2. Firstly, we compute the size of the inter-

val ∆i that is covered by the set T∆,i (lines 1-5). If the timestamps

in T∆,i were indeed indeed generated by a Poisson process with

intensity λL , then the distribution of ∆i = ti − ti−∆+1 will be a

Gamma distribution with shape ∆ − 1 and scale λL .
Accordingly, we calculate the quantile function qδ (∆−1, λL) and

test the hypothesis stated by comparing qδ (∆− 1, λL) and ∆i (lines
6-11), returning the state 0 (loyal), if the hypothesis is accepted, and

1 (curious) otherwise. Experiments analysed in Section 5.1 show

that our state detector has comparable performance to the optimal

oracle. The three last graphs of Figure 2 illustrate our state detector

for a fixed δ = 0.95 and different values of ∆ ∈ {5, 10, 15}.

5 EXPERIMENTS
To compare BMAB with the baselines we conducted experiments

with two data strands: synthetic data (Section 5.1) and real-world

data (Section 5.2). In the first case, several simulations were per-

formed to verify the performance of BMAB in different ground truth

regimes. Using synthetic data we also experimentally analyze the

reward guarantees (stated in Section 4.3) and show a good match
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Algorithm 2 State Detector ω-R
Input: Event set {t1, t2, · · · , ti }, integer window ∆, confidence in-
dex δ ∈ (0, 1) and loyal audience intensity λL

1: if i < ∆ then
2: ∆i = ti
3: else
4: ∆i = ti − ti−∆+1

5: end if
6: qδ (∆ − 1, λL) = qGamma(∆ − 1, λL ,δ )
7: if qδ (∆ − 1, λL) ≥ ∆i then
8: return 1

9: else
10: return 0

11: end if

between the bounds and the observed reality, even when used in

conjunction with our realistic state detector. In the second strand,

we validated our model on four real recommender systems datasets.

We show that our methods exhibit state-of-the-art performance in

all cases.

Baselines and parameter selection: all the following baselines

were evaluated.

• [TS] Thompson Sampling: traditional stationary MAB al-

gorithm [43]. For more details, see Section 4.1.

• [EXP3] EXP3: broadly used MAB algorithm that considers

a non-stationary environment. EXP3 uses a parameter γ to

control exploration and exploitation during all the period (γ
was selected following Corollary 3.2 of [7]).

• [EXP3DD] EXP3 with Drift Detection: EXP3 with a re-

ward distribution shift detection procedure. When the best

arm changes, EXP3DD re-initializes the algorithm. Hyperpa-

rameter selection was performed acording to Section V of

[4].

• [DUCB] Discounted UCB: A UCB-type method which

tackles non stationarity by maintaining exploratory behav-

ior throughout the event horizon. Hyperarameter tuning

following Section 3.1 of [20].

• [MUCB] Monitored UCB: MUCB detects the change on

the arms’ reward distribution by comparing the rewards in

the two last time-intervals of same size. The parametersw
and b were setting according to Section 5 (Remark 1)[12].

• [WMD]Windowedmean-shift detection:WMD is a frame-

work that uses time-windows to detect shifts in the arms’

reward distribution. As in [48] we set ϵ and τ according to

Section 5 and Theorem 4.1.

In all cases, the cited parameters and sections follow the notation

of the respective papers. We can split the baselines into three groups

depending on which rewards environment they were designed

to work in: stationary and non-stationary [TS]; non-stationary
[EXP3]; and piece-wise stationary, [EXP3DD], [DUCB], [MUCB]
and [WMD]. For [BMAB-O] and [BMAB-R], we empirically se-

lected the forgetting-rate γ = 0.70, the detector confidence index

δ = 0.95, and the detector window ∆ = 10. We assume we know

λL in the synthetic strand. To find λL in the real-world data, we ap-

proximate the PW-HPP by a self-feeding point process (for details,

see [5]; for an illustration, see Figure 1).

5.1 Synthetic data experiments
Generation of the audience dynamics : We proceed in five steps.

STEP 1: Choose a set of parameters {λL , Ñ , PH ,nb ,b}. λL will be

the loyal intensity. The (curious) intensity in the bursty periods

will be set to bλL . PH and Ñ will have the following properties:

Ñ will be the expected number of timestamps so that Ñ = E(N ),

and the expected number of timestamps attributed to the curious

audience (during bursts) will be PH Ñ . nb will be the (fixed) number

of bursts. STEP 2: Generate a Poisson process with event rate λL
along the time interval (0,T ], where T = PH × E[N ]/λL . STEP 3:
Split the interval (0,T ] into the set of nb contiguous sub-intervals

of the same sizeU = {(0,T1], (T1,T2], · · · , (Tnb−1,T ]}. STEP 4: Let
λC (t) = bλL , when s(t) = 1, and λC (t) = 0.05λL , otherwise. We

consider burst intervals of size Tb = ((1 − PH ) ×T )/(nb × b). This
guarantees that the expected number of (curious) events during

bursts is (bλL)nn ((1−PH )×T )/(nb ×b) = (1−PH )λLT = (1−PH )Ñ .

For eachUi = (x ,y] generatem
2(i−1)+1

∼ Uniform(x ,y −Tb ) and
m

2(i−1)+2
=m

2(i−1)+1
+Tb . STEP 5: Generate the PW-HPP given

the setM and λC (t) of step 4.

Comparison with baselines: To compare our method with base-

lines, we designed a reward setting where the rewards depend

strongly on the state of the system. We set the parameters as fol-

lows. We set λL = 1 and varied E[N ] ∈ {1000, 2000, 5000}, PH ∈

{0.25, 0.5, 0.75}, nb ∈ {1, 2, 3} and b ∈ {5, 10, 20}. We set K = 3 and

set the loyal-state parameters as follows [θ0

1
,θ0

2
,θ0

3
] = [0.3, 0.4, 0.5].

During the each burst, the reward parameters are the same as in the

loyal state except for one arm, whose parameter is set to 0.9. The

sequence of arms whose reward changes is selected from {1, 2, 3} by

uniform sampling without replacement. Figure 2 shows an instance

of the generation procedure for λL = 3, E[N ] = 500, PH = 0.5,

nb = 2 and b = 5. The effect of step 5 can be visualized in Figure 3.

For each set of {λL ,E[N ], PH ,nb ,b} we generated 20 samples.

For each sample, we performed [BMAB-O], [BMAB-R] and the

baseline algorithms. Figure 4 and Table 1 show the performed sim-

ulation results. The green lines ("Optimal") in Figure 4 show the

performance of a hypothetical algorithm with the ability to always

select the best arm (with the largest θ ). Thus, in theory, no algo-

rithm can achieve better performance. Each point in Figure 4 is

the average normalized reward R(T )/R
Optimal

(T ), averaged over 20

samples. Table 1 shows the summary of the results for all simu-

lations. Note that both [BMAB-O] and [BMAB-R] consistently
outperform the baselines in all the considered scenarios. In addi-

tion, the proximity of the two BMAB curves reveals [BMAB-R]’s
ability to recover the correct states with high accuracy, with this

fact being particularly marked in the case where there is an even

mix of both point processes (PH = 0.5). Smaller values of nb led to

better performance. This result matches with our theoretical results

presented in Section 4.3.

Experimental verification of regret guarantees and state de-
tector: we performed 1000 simulations to verify empirically the

theoretical results of Section 4.3 and the accuracy of the state de-

tector proposed in Section 4.4. We explore the following parameter
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Figure 4: Summary of the results of the synthetic data experiments. The graphs are organized according to the tuple
{E[N ], PH ,nb ,b}. The green line ("Optimal") is the theoretical reward of the best possible algorithm. Each data point corre-
sponds to the average of 20 simulations.

Figure 5: First two graphs: comparison between theoreti-
cal guarantees and experimental results of the regret (R(T )).
The red line is the function f (x) = x . The second line shows
the function f (x) = ax + b, where a and b are the coefficients
of the linear regression fitting of R(T ) versus O(R(T )). Last
graph: boxplot of the dispersion of the state detector accu-
racy.

values: λL = 1, E[N ] ∈ {1000, 1001, · · · , 5000}, PH ∈ [0.4, 0.6],

nb ∈ {1, 2, 3}, b ∈ {5, 6, · · · , 20}, K ∈ {2, 3, 4}. The reward distri-

bution parameters θ0

i , θ
p
i (i ≤ K ,p ≤ nb ) were generated as iid

U (0, 1). For each simulation, we chose a random combination of

the above parameters and compared the regret the bound to the

regret observed when running BMAB.

The two first graphs of Figure 5 are plots of the theoretical

regret bound versus the empirical regret related to the 1000 sampled

simulations. As expected, all graphs exhibit a linear relation which

matches with our theoretical results. At last, the boxplots on the

right side of Figure 5 show the distribution of the state detector

accuracy as a function of the number of bursts. As can be seen, in

all cases, we achieved high accuracy (in average, more than 90% of

the states where recovered correctly).

5.2 Real-world data experiments
In this section, we present our results on real-data. We selected the

four following recommender systems datasets:

• [Behance]: Behance is a social media platform devoted to

the dissemination and discussion of creative work. In this

RS, each user has the option to appreciate ("like") art.

• [Google trends]: We collected the time series related to

the singers Psy and David Bowie (K = 2) from 2008 to

2020 (YouTube search engine, only USA). The Google trends

API only returns a normalized audience (an integer value,

maximum 100) for each month. As a result, we modeled

each month as 1 unit of time: Jan/2008 ∈ (0, 1], Feb/2008 ∈

(1, 2], · · · , Dec/2020 ∈ (155, 156]. To convert normalized audi-

ences into timestamps we generated events uniformly along

the corresponding month. For instance, if the API returned

x events for Feb/2008, we generated 10x events between 1

and 2.

• [Outbrain]: Outbrain is a web advertising platform that

displays content within websites. The data set contains users’

clicks at recommended content.
6

• [MovieLens]: MovieLens is a non-commercial website for

movie recommendations. We used MovieLens (25M) which

is a broadly used recommendation dataset.
7

For the Behance, Outbrain and MovieLens datasets we selected

the five most popular items as the arms of our bandit problem. The

number of arms K , the observed timeT and number of events N of

all datasets are available in Table 1. In all cases, we split the time

period T into two subsets: the first one (TλL , cf. Table 1) is used
to estimate λL with the procedure described in the beginning of

6
The data is available at https://www.kaggle.com/c/outbrain-click-prediction/data

7
The data is avaiable at https://grouplens.org/datasets/movielens/

299

https://www.kaggle.com/c/outbrain-click-prediction/data


Burst-induced Multi-Armed Bandit for Learning Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Table 1: Description of the real-world databases and summary of the results of the two experiments strands: synthetic data
and real-world data. Metric: average of the observed reward (R(T )/N ) and its standard deviation (higher values are better). For
synthetic data the rewards are normalized by the reward of the Optimal algorithm (R(T )/ROptimal(T )).

Synthetic data Behance Google Trends Outbrain MovieLens
(K,N) − (5, 7122) (2, 19850) (5, 86689) (5, 270403)

T − [Jun to Nov/2011] [2008,2020] [14 to 28/Jun/2016] [Sep/2001,Oct/2019]

TλL − [Jun/2011] [2008] [14/Jun/2016] [Sep/2001,Dez/2003]

BMAB-O 0.9721 ± 0.027 − − − −

BMAB-R 0.9622 ± 0.034 0.5937 ± 0.004 0.7756 ± 0.002 0.5449 ± 0.008 0.22656 ± 0.001
TS 0.8201 ± 0.091 0.3975 ± 0.042 0.6972 ± 0.033 0.4123 ± 0.018 0.22652 ± 0.002
EXP3 0.7777 ± 0.078 0.2202 ± 0.011 0.5249 ± 0.020 0.3053 ± 0.021 0.2223 ± 0.001

EXP3DD 0.7869 ± 0.080 0.2320 ± 0.013 0.5337 ± 0.030 0.3062 ± 0.024 0.2244 ± 0.001

DUCB 0.8516 ± 0.021 0.5014 ± 0.003 0.7616 ± 0.001 0.4852 ± 0.001 0.1701 ± 0.001

MUCB 0.8976 ± 0.047 0.5055 ± 0.006 0.7640 ± 0.002 0.4637 ± 0.001 0.2182 ± 0.001

WMD 0.7854 ± 0.139 0.4197 ± 0.037 0.6951 ± 0.021 0.4237 ± 0.014 0.2039 ± 0.005

Section 5 ; whilst the rest of the data is used to evaluate [BAMB-
R] and the baselines. Note that both BMAB and the baselines are

stochastic. As a result, all the algorithms for each dataset were per-

formed 50 times. For the real datasets the reward is deterministic. At

each time ti , we consider that r (ti ) = 1, if the algorithm (correctly)

recommends the item that the user liked (Behance, MovieLens),

searched (Google trends) or clicked on (Outbrain), and r (ti ) = 0

otherwise. We note that our general strategy can be adapted and

incorporated in different RS contexts. For example, if rewards or

user-reward pairs can be embedded in a dictionary space, we could

use our method with a modified version of Thompson Sampling

where at each observation, each positive component of a virtual

feature vector is Thompson Sampling-updated.

The results are presented in Table 1. We evaluated the perfor-

mance of [BMAB-R] against the baselines by considering the av-

erage reward (R(T )/N ). In real datasets, Optimal and [BMAB-O]
cannot be defined due to the lack of well-defined bursts. We observe

that our algorithm significantly outperformed all the baselines in

all the real datasets except MovieLens, where the performance was

comparable to that of the Thompson Sampling baseline. This is

likely due to the fact that the behavior of the five most popular

items is in fact stationary: thus, our algorithm detects no bursts and

behaves exactly like Thompson Sampling in that case. Note that

in particular, in the Outbrain and Behance datasets, our method

outperformed the second best algorithm ([MUCB] and [DUCB],
respectively) by 12% and 17% (respectively).

6 CONCLUSION
In this paper, we introduced BMAB, a novel algorithm for the piece-

wise stationary multi-armed bandit problem in a continuous-time

context. The main novelty is that we took into account variations

in audience activity when modeling the reward distribution. We

proved regret guarantees and evaluated them experimentally. Syn-

thetic and real-data experiments demonstrate that our algorithm

outperforms many state-of-the-art baselines. By using timestamp

information to guide exploration, our work adds a new perspective

to the discourse on the exploration/exploitation dilemma kicked off

by reinforcement learning. In future work, we plan to investigate

how to exploit audience dynamics in more complex reinforcement

learning scenarios andmore deeply analyze the interaction between

the state detector and the reward process. Another relevant ques-

tion is how susceptible our approach might be to false popularity

attacks. This discussion is related to how connected the popularity

of the items is to the users’ ratings. Thus a reasonable extension is

to assume that, instead of each burst having a stationary rewards

distribution, an adversary influences the observation of the rewards.
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