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Abstract

Pairwise learning refers to learning tasks with loss functions depending on a pair of
training examples, which includes ranking and metric learning as specific examples.
Recently, there has been an increasing amount of attention on the generalization
analysis of pairwise learning to understand its practical behavior. However, the ex-
isting stability analysis provides suboptimal high-probability generalization bounds.
In this paper, we provide a refined stability analysis by developing generalization
bounds which can be

√
n-times faster than the existing results, where n is the sam-

ple size. This implies excess risk bounds of the orderO(n−1/2) (up to a logarithmic
factor) for both regularized risk minimization and stochastic gradient descent. We
also introduce a new on-average stability measure to develop optimistic bounds
in a low noise setting. We apply our results to ranking and metric learning, and
clearly show the advantage of our generalization bounds over the existing analysis.

1 Introduction

In modern machine learning, we frequently encounter problems where the performance of a model
depends on pairs of training instances. As examples consider the following. In ranking problems,
our aim is to learn a function that can predict the ordering of examples [13, 44]. In metric learning,
which plays a key role in clustering problems [9, 28], we wish to learn an adequate distance metric
between instances. In AUC maximization, which is deployed to class-imbalanced learning problems,
we aim to find a classifier that maximizes the probability of scoring a positive example higher than
a negative one [14]. Further examples include learning with minimum error entropy loss functions
[27], multiple kernel learning [31], preference learning [22], and gradient learning [41]. All these
so-called pairwise learning problems involve a loss function based on pairs of training examples.
This is in a sharp contrast to classification and regression, where the loss function depends only on a
single instance. Those problems are referred to as pointwise learning problems.

In machine learning, we frequently build predictive models by optimizing their empirical behavior on
training instances, that is, to achieve a small training error. However, a small training error does not
imply that the learnt models will generalize well to test examples. Generalization analysis—which is
a central topic in statistical learning theory (SLT) [40]—studies the generalization gap between the
training and testing errors. There is a large amount of work on the generalization analysis of learning
algorithms, largely based on either algorithmic stability [7, 17], complexity analysis of models [3, 52],
PAC-Bayesian analysis [38], or integral operators [49, 53]. Most of this work focuses on pointwise
learning, while pairwise learning is far less studied. A difficulty occurring in the generalization
analysis of pairwise learning is that the objective function is not a sum of identically and independently
distributed (i.i.d.) random variables [1, 9, 13, 30]—a fundamental assumption in SLT.
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In this paper, we employ the methodology of algorithmic stability for generalization analysis of
pairwise learning. Appealingly, algorithmic stability considers just the one prediction function output
by the learner [7], while methods based on uniform convergence, such as the Rademacher complexity
[3], bound the difference of training and testing errors for all prediction functions. The latter approach
generally involves a square-root dependency on the input dimension [2, 18, 54]. For comparison,
algorithmic stability enables dimension-independent generalization bounds [20].

While there is preliminary work on the algorithmic stability of metric learning and ranking, the
resulting generalization bounds are not satisfactory. The best existing bounds decay at the order
of O(γ

√
n) [1, 28, 55], where γ is the uniform-stability constant of the learning algorithm. In

regularized risk minimization (RRM), this results in an excess risk bound of order O(n−
1
4 ) at best,

where n is the number of training examples.

As a main contribution of this paper, we show an improved bound for this setting of order O(γ log n),
which translates into O

(
log(n)/

√
n
)

for excess risks of RRM. Remarkably, although the bound
improves the previously best known rate achieved through stability analysis by a factor of

√
n/ log(n),

it applies more generally: we remove the standard assumption of a bounded loss function used in the
prevalent stability analyses [1, 8, 19, 20, 55]. The loss of some of the most commonly used pairwise
learning methods—including rankSVM [29] and MPRank [15]—is unbounded, for which we show,
for the first time, a stability analysis. Based on our connection between generalization and stability,
we also derive, to the best of our knowledge, the first probabilistic generalization bound for stochastic
gradient descent (SGD) in pairwise learning. Our result quantifies how to trade-off optimization and
generalization to achieve a refined excess risk bound in this setting.

The above bound holds generally for any confidence level, which is informative to understand the
variability of the algorithm and is necessary if the algorithm is used many times [20]. Furthermore,
we show a sharper bound, but which holds in expectation and in a realizable case (where zero training
error is achievable). Such bounds are called optimistic bounds in the literature [50]. For this setting,
we show an excess risk bound of order O(n−1). For the proof, we introduce a new on-average
stability measure for pairwise learning and quantify its implication to generalization.

Finally, we consider applications of our general theory to ranking and metric learning, where we
obtain generalization bounds with significantly improved dependence on n as compared to the existing
stability analysis. Furthermore, our stability analysis also removes the dependency on the complexity
of the hypothesis space and the input dimension in the uniform convergence analysis.

Structure. We review related work in Section 2, and give background information in Section 3. We
list main results in Section 4 and give applications in Section 5. We conclude the paper in Section 6.

2 Related Work

In this section, we summarize the related work on the generalization analysis of pairwise learning,
which we categorize according to the employed proof techniques.

In complexity (uniform convergence) analysis, we view generalization gaps between training and
testing errors as U -statistics of order two. We can then bound the supremum of U -statistics over the
hypothesis space—the U -process [9, 13, 34, 44, 54, 58, 61]. To this end, decoupling techniques have
been introduced to represent the objective function as a summation of i.i.d. random variables plus a
degenerate U-statistic [13]. This approach can yield meaningful generalization bounds of the order
O(1/

√
n) for several pairwise learning problems, including ranking [13, 44] and metric learning [9,

54]. The authors of [13, 44] show fast-rate generalization bounds under stronger capacity assumptions
on the hypothesis space and Bernstein-type of assumptions on the relationship between variances and
expectations. Fast generalization bounds were established for metric learning [58], which, however
requires a boundedness assumption on the output model, a bounded gradient assumption and the
learning models to be linear. The complexity approach ignores the interaction between the learning
algorithm and the training dataset in the search of the output model. It therefore implies generalization
bounds depending on the complexity of the hypothesis space [3] and the input dimension. As indicated
in [2, 13, 54], a square-root dependency on the dimension is generally inevitable for the uniform
convergence in metric learning and ranking. This means that such bounds can quickly become
uninformative in high dimensions [1]. For hypothesis spaces with an unbounded complexity, uniform
convergence bounds cannot be applied at all [1]. The stability analysis is preferable in both cases.
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An advantage of uniform convergence approach is that it is able to imply meaningful generalization
bounds in a non-convex learning setting [16, 21, 39]. As a comparison, stability analysis requires
very small step sizes to enjoy good stability for non-convex problems [25], which inevitably leads to
very slow convergence rates of optimization errors.

The second popular approach studies pairwise learning using algorithmic stability, which is a fun-
damental concept in SLT dating back to 1970s [46]. The modern framework of stability analysis
was established in the seminal paper [7], where an important concept called the uniform stability
was introduced. This stability measure was then extended to study randomized algorithms [17],
to investigate the concentration of output models [35], and to exploit the summation structure of
the empirical risk [47]. These stability measures have found applications in privacy learning [4],
stochastic optimization [5, 10, 25, 32, 33], and structured prediction [36]. The fundamental role
of algorithmic stability in SLT was illustrated by establishing its close connection to learnabil-
ity [42, 47]. Very recently, elegant high-probability bounds were established for uniformly stable
algorithms [8, 19, 20, 37]. The above mentioned stability analysis was conducted in the setting
of pointwise learning. There is also some interesting work on the stability analysis of pairwise
learning. For example, the connection between generalization and algorithmic stability was estab-
lished for ranking [1, 23]. Furthermore, it was shown there that kernel-based ranking algorithms
in a regularization setting enjoy uniform stability. Algorithmic stability was further used to yield
dimension-independent bounds for regularized metric learning [28, 55]. The stability and its trade-off
with optimization errors were studied for a variant of SGD in pairwise learning [48], inspired by the
recent work in the pointwise learning setting [11, 25].

We now briefly mention related work on the generalization analysis of pairwise learning using
other proof techniques than complexity analysis or algorithmic stability. Algorithmic robustness was
estimated for pairwise learning [12], which in turn implies generalization bounds [6]. Convex analysis
was applied to study the regret bounds and generalization bounds of online pairwise learning [30, 56].
The tool of integral operators was used to exploit the structure of the specific least squares loss
functions, where the learnt model can be written in a closed-form [59].

3 Background

3.1 Pairwise learning

Assume we are given a training dataset S = {z1, . . . , zn} drawn independently from a probability
measure ρ defined over a sample space Z = X ×Y , where X ⊂ Rd is an input space of dimension d
and Y ⊂ R is an output space. Based on S, we wish to build a model h : X 7→ Y or h : X ×X 7→ R
that can be used to do prediction when we are given some testing examples. We consider a parametric
model where the model hw can be parameterized by an index w ∈ W , whereW ⊆ Rd′ is a parameter
space of dimension d′ (d′ is not necessarily equal to d, and can be infinite). Unlike pointwise learning,
a distinctive property of pairwise learning is that the performance of a model should be measured
over pairs of training examples. That is, the behavior of hw over z, z̃ ∈ Z is measured by `(w; z, z̃),
where ` :W×Z×Z 7→ R+ is a loss function. Then, the empirical behavior of hw can be quantified
by the empirical risk RS(w) defined by

RS(w) =
1

n(n− 1)

∑
i,j∈[n]:i 6=j

`(w; zi, zj), (3.1)

where we use the notation [n] = {1, . . . , n}. We train a predictive model by applying an algorithm A
to S, for which some popular choices include empirical risk minimization, regularized/structural risk
minimization, (stochastic) gradient descent, etc. An algorithm A can be understood as a mapping
from Zn toW , with A(S) being the output of A when applied to S. Typically, the output model
A(S) would enjoy a small empirical risk since we are often fitting training examples. However, this
does not necessarily mean that it also enjoys a small population risk R(w) = Ez,z̃

[
`(w; z, z̃)

]
, which

quantifies the prediction behavior of w over testing examples. The generalization gap of a model w
is defined as the difference between the population risk and empirical risk, i.e., R(w)−RS(w).
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We are particularly interested in RRM, where a regularizer r :W 7→ R+ is added into the data-fitting
term RS to increase the regularity of an algorithm. The resulting algorithm then outputs the model by

wS = arg min
w∈W

[
FS(w) :=

1

n(n− 1)

∑
i,j∈[n]:i6=j

f(w; zi, zj)
]
, (3.2)

where f : W × Z × Z 7→ R+ is defined as f(w; z, z̃) = `(w; z, z̃) + r(w). Although the above
objective function involves O(n2) terms in the summand, one can use SGD to achieve sample-size
independent convergence rates [45]. Let w1 ∈ W . At the t-th iteration, SGD first randomly selects
(it, jt) from the uniform distribution over the set {(i, j) : i, j ∈ [n], i 6= j}, and updates the model by

wt+1 = wt − ηt
(
`′(wt; zit , zjt) + r′(wt)

)
, (3.3)

where {ηt}t is a step size sequence, and `′(wt; zit , zjt) denotes a subgradient of `(·; zit , zjt) at wt.

3.2 Algorithmic stability

Algorithmic stability plays an important role in studying the behavior of a learning algorithm.
Intuitively, we say an algorithm A : Zn 7→ W is stable if the output model A(S) is insensitive to
perturbations of S. There are various notions of stability, including uniform stability, hypothesis
stability, error stability and on-average stability [7, 17, 47]. A particularly interesting stability measure
is uniform stability, which was introduced in [7] and extended in [1] to pairwise learning.
Definition 1 (Uniform Stability). We say a deterministic algorithm A : Zn 7→ W is γ-uniformly
stable if for any training datasets S, S′ ∈ Zn that differ by at most a single example we have

sup
z,z̃∈Z

∣∣`(A(S); z, z̃)− `(A(S′); z, z̃)∣∣ ≤ γ.
We will use the above notion of uniform stability to develop high-probability generalization bounds.
To construct optimistic bounds, we introduce a novel on-average stability for pairwise learning, which
is motivated by the recent work on on-average stability for pointwise learning [24, 32, 33, 47]. The
difference is that we consider perturbations of a training dataset by two examples.
Definition 2 (On-average stability). Let S = {z1, . . . , zn}, S′ = {z′1, . . . , z′n} be independently
drawn from ρ. For any i < j, we denote

Si,j =
{
z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′
j , zj+1, . . . , zn

}
. (3.4)

We say a deterministic algorithm A is γ-on-average stable if

1

n(n− 1)

∑
i,j∈[n]:i 6=j

ES,S′

[
`
(
A(Si,j); zi, zj

)
− `
(
A(S); zi, zj

)]
≤ γ.

It is clear that on-average stability is weaker than uniform-stability since it involves the expectation
over training examples and the average of indices. As a comparison, uniform stability involves a
supremum over both training examples and testing examples z, z̃.

4 Main Results

In this section, we present our main results on generalization bounds based on stability. We always
let ‖ · ‖ be a norm induced by an inner product 〈·, ·〉 in a Hilbert space, i.e., ‖ · ‖2 = 〈·, ·〉. Then its
dual norm is itself. We say a function g :W 7→ R is σ-strongly convex w.r.t. a norm ‖ · ‖ if

g(w)−
(
g(w′) + 〈w −w′, g′(w′)〉

)
≥ σ‖w −w′‖2/2, ∀w,w′ ∈ W.

4.1 Generalization by algorithmic stability

Our first result (Theorem 1) to be proved in Appendix A is a high-probability generalization bound
for uniformly stable algorithms in pairwise learning, motivated by the recent analysis in pointwise
learning [8, 19, 20, 37]. One of the key tools we use in the analysis is a concentration inequality
from [8], which considers a summation of n functions of n independent random variables. However,
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this concentration inequality does not fit the structure of pairwise learning. A difficulty is the inter-
dependency among the n(n− 1) terms in the objective function. Our novelty to tackle this difficulty
is to introduce a new decomposition to exploit the structure of the U -statistic in the pairwise objective
function (3.1). Below, e denotes the base of the natural logarithm. For any α ≥ 0, dαe denotes
the least integer no smaller than α. For any random variable Z, we denote by EZ [·] the conditional
expectation with respect to (w.r.t.) Z.
Theorem 1. LetA : Zn 7→ W be γ-uniformly stable andM > 0. Suppose

∣∣ES [`(A(S); z, z̃)]∣∣ ≤M
for all z, z̃ ∈ Z . Then for all δ ∈ (0, 1/e) the following inequality holds with probability 1− δ

|RS(A(S))−R(A(S))| ≤ 4γ+e
(
12
√
2M(n−1)− 1

2

√
log(e/δ)+48

√
6γdlog2(n−1)e log(e/δ)

)
.

(4.1)
Remark 1. We now compare Theorem 1 with the existing stability analysis. Roughly speaking,
Theorem 1 shows that the generalization gap for γ-uniformly stable algorithms decays as O(γ log n+

n−
1
2 ) with high probability (we ignore log(1/δ) for brevity). Under the same conditions, it was

shown for pairwise learning that [1, 15, 28, 55]

|RS(A(S))−R(A(S))| = O
(√
nγ + n−

1
2

)
. (4.2)

It is clear that our result significantly improves (4.2) by replacing their dominant term
√
nγ with

γ log n. Specifically, if γ = O(n−α) with α ∈ ( 12 , 1] (actually γ = O(1/(nσ)) if FS is σ-
strongly convex [7]), then (4.1) becomes |RS(A(S))−R(A(S))| = O(n−

1
2 ), while (4.2) becomes

|RS(A(S)) − R(A(S))| = O(n
1
2−α). The existing complexity analysis for pointwise learning

suggests σ = O(n−
1
2 ) to get an optimal bound [51, eq (14)]. In this case, γ = O(n−

1
2 ) and our

stability analysis implies the nice bound O(n−
1
2 log n), while (4.2) implies the vacuous bound O(1).

4.2 Generalization bounds for regularized risk minimization

We now apply Theorem 1 to establish generalization bounds for pairwise learning with strongly convex
objective functions. A preliminary step in the application of Theorem 1 is to control ES [`(A(S); z, z̃)].
To this aim, we establish the following lemma to be proved in Appendix B. Let

w∗ = arg min
w∈W

[
R(w) + r(w)

]
, w∗R = arg min

w∈W
R(w).

Lemma 2. Suppose FS is σ-strongly convex w.r.t. a norm ‖ · ‖. Define the algorithm A as A(S) =
argminw∈W FS(w). If A is γ-uniformly stable, then E[‖A(S)−w∗‖2] ≤ 8γ/σ.

In the existing analysis, one often uses the σ-strong convexity of FS to show ‖A(S)‖ = O(1/
√
σ) [9],

which implies a suboptimal bound since the convexity parameter σ is often very small in practice,
i.e., σ = O(n−α) for α ∈ (0, 1) (σ is roughly the regularization parameter which should decay in
this way [19, 51]). As a comparison, Lemma 2 implies that ES [‖A(S)−w∗‖] = O(

√
γ/σ), which

is significantly smaller than O(1/
√
σ) since the uniform stability parameter is often very small [7].

We need the following assumption to derive Theorem 3, whose proof is given in Appendix B.
Assumption 1. Let b, σ0 > 0. We assume 0 ≤ `(0; z, z̃) ≤ b for all z, z̃ ∈ Z . We also assume
Var[`(w∗;Z, Z̃)] < σ2

0 , where Var[`(w∗;Z, Z̃)] denotes the variance of `(w∗;Z, Z̃).

We use the notation B � B̃ if there exist constants c1, c2 > 0 such that c1B̃ < B ≤ c2B̃.
Theorem 3. Let Assumption 1 hold and L ∈ R+. Define A as A(S) = argminw∈W FS(w).
Suppose FS is σ-strongly convex w.r.t. ‖ · ‖ for all S. Assume∣∣`(w; z, z̃)− `(w′; z, z̃)

∣∣ ≤ L‖w −w′‖, ∀z, z̃ ∈ Z,w,w′ ∈ W. (4.3)

Then for δ ∈ (0, 1/e), with probability 1− δ the generalization gap RS(A(S))−R(A(S)) satisfies

|RS(A(S))−R(A(S))| = O
(
(nσ)−1 log n log(1/δ) +

√
n−1 log(1/δ)

)
. (4.4)

Furthermore, if r(w) = O(σ‖w‖2), σ � n−1/2, supz,z′ `(w
∗
R; z, z

′) = O(
√
n) and Assumption 1

holds with w∗ replaced by w∗R, then with probability at least 1− δ we have the following bound on
excess risk R(A(S))−R(w∗R)

R(A(S))−R(w∗R) = O(n−
1
2 log n log(1/δ)). (4.5)

5



Remark 2. We present some comparisons with the existing work. Under similar assumptions and
additional boundedness assumptions, the existing stability analysis implies the generalization bound
|RS(A(S)) − R(A(S))| = O(σ−1n−

1
2 ) for pairwise learning with σ-strongly convex objective

functions [1, 15, 28, 55], which can be
√
n-times slower than the bound (4.4). To see this, assume

σ � n−α with α ∈ [0, 12 ]. If α ∈ [0, 12 ), then (4.4) implies the bound O(n−
1
2 ), while the bounds in

[1, 28, 55] become |RS(A(S))−R(A(S))| = O(nα−
1
2 ). For the special case α = 1/2 suggested in

the existing analysis of pointwise learning [51], Eq. (4.4) implies the bound O(n−
1
2 log n), while the

existing bound becomes O(1) [1, 28, 55]. As we will clarify in Remark B.1, the existing stability
analysis yields at best the excess risk boundR(A(S))−R(w∗R) = O(n−

1
4 ) no matter how σ changes.

As a comparison, our stability analysis yields the bound R(A(S))−R(w∗R) = O(n−
1
2 log n).

Remark 3 (Boundedness assumption). To get the boundO(n−
1
2 log n), the existing stability analysis

requires a boundedness assumption on loss functions as 0 ≤ `(A(S); z, z̃) ≤ B for a constant B > 0
and all S ∈ Zn, z, z′ ∈ Z (B is treated as a constant absorbed in a big O notation) [1, 8, 19, 20, 55]
or a boundness assumption onW [28]. However, one can only show ‖A(S)‖ = O(1/

√
σ) [1] and

therefore the constant B needs to grow as O(1/
√
σ) for popular loss functions (e.g., hinge loss and

logistic loss), from which the stability analysis in [8] can only imply suboptimal boundsO((nσ)−1/2)
even in the case of pointwise learning if one does not impose a boundedness assumption (note σ is
often very small). We develop the generalization bound O(n−

1
2 log n) by relaxing the boundedness

assumption to a variance assumption on `(w∗;Z, Z̃). Note that the expectation of `(w∗;Z, Z̃) is
R(w∗), which is small according to the definition of w∗. Therefore, it is reasonable to assume that the
variance of `(w∗;Z, Z̃) is bounded. To achieve this relaxation, we use a novel application of Theorem
1 to ˜̀(w; z, z̃) = `(w; z, z̃) − `(w∗; z, z̃) instead of `(w; z, z̃) (cf. Line 107 in the Appendix).
Moreover, we introduce a novel lemma (Lemma 2) to show

∣∣ES[˜̀(A(S); z, z̃)]∣∣ = O(1/(
√
nσ)) (cf.

Line 105 in the Appendix).

4.3 Generalization bounds for stochastic gradient descent

As a further application of Theorem 1, we establish generalization bounds for SGD (3.3) in pairwise
learning, which can be considered as a deterministic algorithm if we fix {(it, jt)t} in (3.3). SGD is a
highly popular algorithm with wide applications in the big-data era. Note we do not require a strong
convexity. We say g :W 7→ R is α-smooth w.r.t. a norm ‖ · ‖ if g is differentiable and

‖g′(w)− g′(w′)‖ ≤ α‖w −w′‖, ∀w,w′ ∈ W.

Popular smooth loss functions include the logistic loss, the Huber loss, the squared hinge loss and the
least squares loss [52]. Note that the logistic loss and the Huber loss are also Lipschitz continuous.
The proof is given in Appendix C.
Theorem 4. Let (4.3) hold. Assume for all z, z′, w 7→ `(w; z, z′) is convex and α-smooth w.r.t. the
Euclidean norm, and for any {(it, jt)t} we have

∣∣ES [`(wT ; z, z
′)]
∣∣ ≤M , where wT is produced by

SGD with ηt = c/
√
T , c ≤ 2/α and r(w) = 0. For any δ ∈ (0, 1) with probability 1− δ we have∣∣RS(wT )−R(wT )

∣∣ = O
(
log n log(1/δ)

√
T/n+ n−

1
2 log n log

3
2 (1/δ)

)
. (4.6)

Remark 4. We now show the implication of Theorem 4 on understanding the generalization behavior
and implicit regularization of SGD. We can show (the details are given in Remark C.1)

R(wT )−R(w∗R) =
(
R(wT )−RS(wT )

)
+
(
RS(wT )−RS(w∗R)

)
+O(n−

1
2 ). (4.7)

The first term is the estimation error and the second term is the optimization error. Therefore,
Theorem 4 actually gives an estimation error bound. If we further assume ‖wt‖ ≤ B for some B > 0

and all t, the optimization error was shown to satisfy2 RS(wT )−RS(w∗R) = O(T−
1
2 log T ) [26]

with high probability. Plugging these estimation and optimization error bounds back into (4.7), we
derive with high probability R(wT ) − R(w∗R) = O

(
log n

√
T/n + n−

1
2 log n

)
+ O(T−

1
2 log T ).

It is clear that estimation errors increase as we run more iterations, while optimization errors
decrease. One can take an optimal T � n to trade-off the optimization and estimation errors, and get

2Although they considered step size ηt = c/
√
t [26], their result also holds for ηt = c/

√
T .
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R(wT )−R(w∗R) = O(n−
1
2 log n). To the best of our knowledge, this gives the first high-probability

generalization bound for SGD in pairwise learning. Although we do not use an explicit regularizer in
Theorem 4, our analysis shows that an implicit regularization can be achieved by tuning the number
of iterations [25, 57]. We can compare our results with those based on the existing connection
(4.2) between generalization and stability. Indeed, if we combine the best known optimization error
bounds [26], the uniform stability of SGD established in Lemma C.3 and (4.2) together, we can only
derive vacuous excess risk bound R(wT )−R(w∗R) = O(1) (details are given in Remark C.2), which
are significantly improved to O(n−

1
2 log n) based on Theorem 1. In Appendix F we show O(n−

1
2 )

is minimax optimal for pairwise learning in a general convex setting.

The authors of [48] studied a variant of SGD where the models are updated by

wt+1 = wt −
ηt
t− 1

t−1∑
k=1

`′(wt; zit , zik), ∀t > 1.

Their stability bounds were stated in expectation [48] while we give high-probability analysis.

It should be mentioned that our generalization analysis can be applied to other iterative algorithms
for pairwise learning, including gradient descent, Nesterov’s accelerated gradient descent, the heavy
ball method and stochastic gradient Langevin dynamics [11]. To this aim, it suffices to estimate the
uniform stability of these algorithms in pairwise learning.

4.4 Optimistic generalization bounds

Our key idea to derive optimistic bounds is to use the on-average stability in Definition 2, whose
connection to generalization is established in the following theorem to be proved in Section D.
Theorem 5. If A is γ-on-average stable, then E

[
R(A(S))−RS(A(S))

]
≤ γ.

We now present an optimistic generalization bound for pairwise learning by exploiting the smoothness
of loss functions. By optimistic we mean that the decay rate of generalization bounds depends on the
behavior of the best model. That is, we can get faster bounds if R(w∗R) = o(1). Optimistic bounds
were studied for pointwise learning in the literature [43, 50, 60], which are becoming interesting in
the big-data era where models are often powerful enough to achieve a very small training error. For
any w ∈ W , let F (w) = R(w) + r(w). Theorem 6 is proved in Appendix D.
Theorem 6. Assume for all z, z′, the map w 7→ `(w; z, z′) is α-smooth w.r.t. ‖ · ‖. Let A(S) =
argminw∈W FS(w) and σn ≥ 8α. If for all S ∈ Zn, FS is σ-strongly convex w.r.t. ‖ · ‖, then

E
[
F (A(S))

]
− F (w∗) ≤ E

[
R(A(S))−RS(A(S))

]
≤
(1024α2

n2σ2
+

64α

nσ

)
E
[
RS(A(S))

]
. (4.8)

Furthermore, if r(w) = O(σ‖w‖2) we can take some appropriate σ to get

E[R(A(S))]−R(w∗R) = O
(√

R(w∗R)‖w
∗
R‖n−

1
2 + ‖w∗R‖2n−1

)
. (4.9)

Note if R(w∗R) = O(‖w∗R‖2/n), the above excess risk bound becomes E[R(A(S))] − R(w∗R) =
O(‖w∗R‖2/n). That is, we get a fast excess risk bound if there exists a model with a small population
risk.

5 Applications

5.1 Ranking

For ranking we assume real-valued labels indicating a ranking preference on instances, i.e., yi < yj
means xi has a lower rank than xj . We aim to build a function hw : X 7→ R that ranks instances with
larger labels higher than those with smaller labels [1, 13, 44]. The performance of a model hw at
a pair z, z′ can be measured by the 0-1 loss `0-1(w; z, z′) = I[sgn(y − y′)(hw(x)− hw(x′)) < 0],
where I[·] is the indicator function taking the value 1 if the argument holds and 0 otherwise, and
sgn(a) denotes the sign of the number a. Since the 0-1 loss leads to an NP-hard problem, we consider
loss functions of the form `ψ(w; z, z′) = ψ(sgn(y − y′)(hw(x)− hw(x′))). Here ψ : R 7→ R+ is
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convex and decreasing, for which popular choices include the hinge loss ψ(t) = max{1− t, 0} and
the logistic loss ψ(t) = log(1 + exp(−t)). Below we provide bounds for RRM, SGD and optimistic
bounds.

Regularized risk minimization. The following proposition follows directly from Theorem 3 by
noticing that r(w) = λ‖ · ‖2 is 2λ-strongly convex w.r.t. ‖ · ‖. We omit the proof for simplicity.

Proposition 7. Let Assumption 1 hold for both w∗ and w∗ replaced by w∗R. Consider ranking
problems with f(w; z, z′) = `ψ(w; z, z′) + λ‖w‖2. Assume `ψ is convex w.r.t. w and satisfy (4.3).
Then for A(S) = argminw∈W FS(w), λ � n−

1
2 and any δ ∈ (0, 1/e), with probability at least

1− δ there holds R(A(S))−R(w∗R) = O
(
n−

1
2 log n log(1/δ)

)
.

Remark 5. High-probability bounds for ranking were developed in the literature under some capacity
assumptions on the hypothesis space {hw : w ∈ W} measured by either covering numbers [44, 58]
or VC dimension [13]. The arguments there are based on the uniform convergence of empirical risks
to population risk and ignore the specific property of the learning algorithm, which inevitably depends
on the complexity of the hypothesis space. Furthermore, a dependency on the dimension is necessary
if no structural assumptions are imposed [18]. For example, generalization bounds O(

√
d/n) were

derived for bipartite ranking (AUC maximization) via the uniform convergence approach [2]. As
a comparison, we derive dimension-independent bounds of order O(n−

1
2 log n). Furthermore, the

existing stability analysis implies |RS(A(S))−R(A(S))| = O
(
λ−1

√
1/n

)
[1, 15] and the excess

risk bounds R(A(S))−R(w∗R) = O(n−
1
4 ), which are worse than the results in Proposition 7.

Stochastic gradient descent. The following proposition is a direct application of Theorem 4.

Proposition 8. Consider ranking problems with f(w; z, z′) = `ψ(w; z, z′), i.e. r(w) = 0. Let (4.3)
hold and assume for all z, z′, the map w 7→ `ψ(w; z, z′) is convex and α-smooth. Let wT be produced
by SGD with ηt = c/

√
T , c ≤ 2/α and assume

∣∣ES [`(wT ; z, z
′)]
∣∣ ≤ M . Then for any δ ∈ (0, 1)

and T � n, with probability 1− δ we have
∣∣RS(wT )−R(wT )

∣∣ = O
(
n−

1
2 log n log

3
2 (1/δ)

)
.

Optimistic bounds. Proposition 9 on optimistic bounds is a direct application of Theorem 6.

Proposition 9. Consider ranking problems with f(w; z, z′) = `ψ(w; z, z′)+λ‖w‖2. If `ψ is convex,
α-smooth and A(S) = argminw∈W FS(w), we can choose some λ ≥ 8α/n such that (4.9) holds.

Our results directly apply to bipartite ranking (AUC maximization) [14] with Y = {+1,−1}. To see
this, bipartite ranking is a specific instance of (3.1) with loss functions of the form `ψ(w; z, z′) =
ψ((hw(x)− hw(x′)))I[y = 1, y′ = −1]. We omit this discussion for brevity.

5.2 Metric learning

We consider metric learning for learning a metric to measure the distance between instance pairs. We
consider supervised metric learning with Y = {−1,+1}, where we want an instance pair to be similar
if they have the same class label, and apart from each other if they have different class labels [9, 28, 58].
We consider the Mahalanobis metric hw(x, x′) = 〈w, (x − x′)(x − x′)>〉, where x> denotes the
transpose of x and w ∈ Rd×d. The performance of hw on z, z′ can be measured by the 0-1 loss
`0-1(w; z, z′) = I[τ(y, y′)(1− hw(x, x′)) ≤ 0], where τ(y, y′) = 1 if y = y′ and −1 otherwise. We
often use a convex surrogate ψ : R 7→ R+, which leads to `ψ(w; z, z′) = ψ(τ(y, y′)(1−hw(x, x′))).
We assume supx∈X ‖x‖2 ≤ B for some B > 0, where ‖ · ‖2 is the Euclidean norm.

Regularized risk minimization. Corollary 10 on RRM is proved in Appendix E.

Corollary 10. Let Assumption 1 hold for both w∗ and w∗ replaced by w∗R. Consider metric learning
with Y = {−1,+1}. Consider f(w; z, z′) = ψ(τ(y, y′)(1 − hw(x, x′))) + λ‖w‖2, where ‖ · ‖ is
the Frobenius norm and ψ(t) = max{0, 1− t}. Then for A(S) = argminw∈W FS(w), λ � n−

1
2

and any δ ∈ (0, 1/e), with probability 1− δ it holds R(A(S))−R(w∗R) = O
(
n−

1
2 log n log(1/δ)

)
.

Remark 6. We make some comparisons. It was previously shown that R(A(S)) − RS(A(S)) =
O
(
n−

1
2λ−1

)
[9, 28, 55], which leads to the excess risk boundO(n−

1
4 ). This is significantly improved

to O(n−
1
2 log n) in Corollary 10. A uniform convergence rate O(

√
dn−1) was shown for metric

learning [54], which is not appealing for high-dimensional problems. It was further indicated that a
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strong dependence on d is generally necessary for the uniform convergence if one does not impose a
structural assumption [54]. As a comparison, our bound in Corollary 10 is dimension-independent.

Stochastic gradient descent. Corollary 11 on bounds for SGD is proved in Appendix E.

Corollary 11. Consider metric learning with Y = {−1,+1} and f(w; z, z′) = ψ(τ(y, y′)(1 −
hw(x, x′))), where ψ(t) = log(1 + exp(−t)). Let wT be produced by SGD with ηt = c/

√
T , c ≤

1/8B4 and assume
∣∣ES [ψ(τ(y, y′)(1 − hwT

(x, x′)))]
∣∣ ≤ M . Then for any δ ∈ (0, 1) and T � n,

with probability 1− δ we have
∣∣RS(wT )−R(wT )

∣∣ = O
(
n−

1
2 log n log

3
2 (1/δ)

)
.

Optimistic bounds. We also get optimistic bounds for metric learning. We omit the proof for brevity.

Corollary 12. Let Assumptions of Corollary 10 hold except that we consider the logistic loss
ψ(t) = log(1 + exp(−t)). If A(S) = argminw∈W FS(w) and ‖w∗R‖ = O(1), then we can choose
some appropriate λ such that Eq. (4.9) holds.

6 Conclusion

We analyze the generalization ability of pairwise learning using the methodology of algorithmic
stability. We significantly improve the existing high-probability bounds O(

√
nγ) to O(γ log n) for

γ-uniformly stable algorithms. This allows us to improve the previously best excess risk bounds
O(n−1/4) for RRM and O(1) for SGD to O(n−1/2 log n). As compared to the uniform convergence
analysis, our stability analysis implies the first high-probability risk bound for SGD in pairwise
learning, and yields bounds independent of the complexity of models and the input dimension.
Furthermore, we introduce an on-average stability to develop optimistic bounds as fast as O(1/n) for
learning in a low noise setting. Specific applications are further given to show the advantage of our
generalization bounds over the existing analysis.

Below we mention some interesting directions for future research. First, it would be interesting to
extend the analysis here to other learning settings, such as distributed learning and online learning for
pairwise learning. Second, one could tackle the challenging problem of stability and generalization
bounds for non-convex pairwise learning problems, which are popular in modern machine learning.
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