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Orthogonal Inductive Matrix Completion
Antoine Ledent*, Rodrigo Alves*, and Marius Kloft, Senior Member, IEEE

Abstract—We propose orthogonal inductive matrix
completion (OMIC), an interpretable approach to mat-
rix completion based on a sum of multiple orthonormal
side information terms, together with nuclear-norm
regularization. The approach allows us to inject prior
knowledge about the singular vectors of the ground
truth matrix. We optimize the approach by a provably
converging algorithm, which optimizes all components
of the model simultaneously. We study the generaliza-
tion capabilities of our method in both the distribution-
free setting and in the case where the sampling dis-
tribution admits uniform marginals, yielding learning
guarantees that improve with the quality of the injected
knowledge in both cases. As particular cases of our
framework, we present models which can incorporate
user and item biases or community information in a
joint and additive fashion. We analyse the performance
of OMIC on several synthetic and real datasets. On
synthetic datasets with a sliding scale of user bias
relevance, we show that OMIC better adapts to different
regimes than other methods. On real-life datasets con-
taining user/items recommendations and relevant side
information, we find that OMIC surpasses the state-of-
the-art, with the added benefit of greater interpretability.

I. INTRODUCTION AND RELATED WORK

Matrix completion, the problem of recovering the
missing entries of a partially observed matrix, has
found application in a wide range of domains. As
examples consider the following. (1) A streaming
provider recommends movies to its users, based on an
incomplete database of user-movie ratings. (2) A social
network wants to find missing links in their friendship
network. (3) A chemical producer wants to predict
interactions of chemical compounds from a subset of
known pairwise interactions. These examples—from
the domains of recommender systems [1], [2], social
network analysis [3], and chemical engineering [4]—
highlight the wide range of applications of matrix com-
petition. For simplicity, we use movie recommendation
as running example here, so the data consists of user-
movie ratings. It should be clear that, more generally,

*The first two authors contributed equally to this work
The authors are with TU Kaiserslautern
{ledent,alves,kloft}@cs.uni-kl.de
Code repository: http://github.com/rasalves/OMIC
Accepted for publication in Transactions of Neural Networks and

Learning Systems (TNNLS), DOI: 10.1109/TNNLS.2021.3106155

we can work with type1-type2 pairs, depending on
the application, e.g., user-book, user-user, compound-
compound, etc.

To recover missing entries of a matrix, it is neces-
sary to make an assumption on the structure of the
ground truth matrix. The most common assumption
is that the matrix is of low rank. However, optimally
approximating the observed entries whilst minimizing
the rank is NP-hard. The SoftImpute algorithm [5]
bypasses this difficulty by using the nuclear norm as
a regularizer. Not only does SoftImpute work well in
practice, it also enjoys favorable theoretical guarantees:
only a small number of known entries is required to
recover the underlying low-rank matrix exactly [6],
[7] or approximately [8], [9] from noisy entries.

In practical applications, the following refinements
may help the performance of classic recommender
systems. (1) Incorporating bias [10], [11]. Some users
may generally be more critical than others. This
means they tend to give lower ratings than other users,
regardless of the movie. Moreover, some movies are
intrinsically better than others, so they receive more
favorable ratings. Previous work incorporated user and
movie bias in a pre-processing step, and then trained
matrix completion on the residuals. (2) Incorporating
side information. For movies, we find plenty of side
information (genre, staring actors, director, reviews,
etc.) on the web, and we might have access to user
attributes (age, gender, etc.), from which we can
derive clusters of users (community information).
Inductive matrix completion (IMC) [12] uses such side
information to guide the prediction of the user-movie
ratings. IMC, which is backed up by well-developed
learning theory [12], [13], [14], [15], [16], can be
applied also to new users with no ratings, but for
which side information is given.

Our aim in this work is to create a generic model
that can incorporate all the improvements mentioned
above into a single flexible framework with a well-
principled optimization procedure. To the best of
our knowledge, the only work which attempted to
incorporate some of the above improvements into a
single jointly trained model is [17], which considers

ar
X

iv
:2

00
4.

01
65

3v
6 

 [
cs

.L
G

] 
 2

5 
A

ug
 2

02
1

http://github.com/rasalves/OMIC


2

outputs of the form

fi,j “ xJi Myj ` zi,j , (1)

with nuclear-norm regularization imposed on both Z
and M . The model is trained with gradient descent.
The incorporation of both the standard low-rank term
Z and the IMC term XMY J allows the model
to capture both generic low-rank phenomena, as
well as any behavior related to the side information.
The hyperparameters involved in the nuclear-norm
constraints can be optimized through cross-validation
and allow the model to decide how relevant the side
information is. However, a single given matrix f . , .
can correspond to several possible choices of M and
Z, thereby limiting the interpretability of the model
and the individual terms of the sum (1). Furthermore,
the model does not capture user and item biases.
Our model remedies these failings. Firstly, the corres-
ponding predictors can take the following form as a
particular case:

fi,j “ c` ui `mj ` xJi Myj ` zi,j , (2)

where c is an unknown constant (corresponding to a
global bias of the model), ui and mj are the user bias
and movie quality terms (i.e. free parameters which
are trained based on the sole constraint that the user
bias term ui can only depend on the user i (but not
on the item j) and vice versa), xi and yj are the
known side information vectors of the i-th user and j-
th movie, whilst M and Z “ pzi,jq are parameter
matrices to which nuclear norm regularization is
applied. The nuclear norm of a matrix is defined
as the sum of its singular values. Regularizing the

nuclear norm has a rank-sparsity inducing effect
similar to the sparsity inducing effect of LASSO. Thus,
our regularizer (introduced formally in equation (5)
below) both indirectly encourages M , and therefore
the term corresponding to be xJi Myj to be low rank
(whilst relying on the side information for prediction),
and encourages the residual term Z to have low
rank. In summary, we are able to model biases, side
information terms, as well as residual generic low-rank
effects in a single, jointly trained model.

Furthermore, we will impose orthogonality con-
straints that effectively require each term in the
sum in (2) to live in separate, mutually orthogonal
subspaces. This has two advantages. First, training
can be performed for all components simultaneously,
as we will show. Second, the variables in (2) admit
interpretation. This is because any ground truth matrix
can be represented uniquely (thanks to the orthogon-
ality conditions) through (2). We thus interpret the
magnitude of the summands in (2) as their relevance
to the model. For instance, this implies that the user-
movie match Z is free of any behavior that could be
interpreted as user bias or movie quality.

We note that several specific variations of our
model are possible depending on whether or not
side information is present, how many distinct types
of side information are present, whether or not we
want to include user/item biases, etc. Therefore, we
rely on a unified formal framework to describe all
possible variations of these ideas as follows. Our
general model’s predictors have the following form:

F “ pfi,jq “
K
ÿ

k“1

L
ÿ

l“1

XpkqM pk,lqpY plqqJ. (3)

Figure 1: Visualization of orthogonal inductive matrix completion (specifically, the model choice BOMIC+
explained in Section II-D). The model is a sum of matrix terms, each of the form XMY J. This means each
combination of X and Y gives rise to a term in the sum. We interpret the magnitude of this term as its
relevance to the prediction.



3

Here Xp1q, . . . , XpKq and Y p1q, . . . , Y pLq are so-
called "auxiliary matrices", which define the specific
model choice with respect to the incorporation (or
lack thereof) of biases, side information etc. We
now observe that the terms of equation (2) can all
be written in the form XpkqM pk,lqpY plqqJ for some
suitably defined Xpkq, Y plq. For instance, if we set X
as the identity matrix and Y as a column matrix
of all 1’s, then the matrix XMY J has the user
biases as entries: xiMyJj “ ui for all i, j. If we
set both X and Y as identity matrices, we obtain
the specific user-movie match xiMyJj “ zi,j for
all i, j. In Figure 1, we illustrate an example with
K “ L “ 3 which takes into account user and
item biases, as well as side information in the form
of partitions of users and items into communities
(with the movie communities being genres). This
representative example is described in more technical
detail in Subsection II-D, where we also further
explain how equation (2) can be fully incorporated as
a particular case of (3). To ensure the uniqueness of
the decomposition (3) and thus enable interpretability,
we require that the columns of pXp1q, . . . , XpKqq
and pY p1q, . . . , Y pLqq form orthonormal bases of their
respective spaces. Hence, we refer to our model as
OMIC (Orthogonal Inductive Matrix Completion).
Note that the choice of matrices Xpkqs and Y plqs
happens at the level of model selection (from a pre-
processing of available side information or available
insight into the likely structure of the data). Thus, the
orthogonality assumption is not an assumption on the
ground truth matrix, but a restriction of model choice.
For fixed k, l, the rows of Xpkq and Y plq play a similar
role to "side information vectors" in traditional IMC,
and are not required to be orthogonal. The choice
of auxiliary matrices influences both interpretability
and accuracy: on the one hand, the model’s output
will come in a form that is already divided into
components corresponding to each pair pXpkq, Y plqq.
On the other hand, if the ground truth structure
matches the choice of prior directions, accuracy will
improve. For instance, as we will discuss further below,
choosing Xp1q “ p 1?

m
, . . . , 1?

m
qJ and Xp2q to be

the complement of Xp1q in Rm corresponds to the
assumption that item biases are important: this will
both (1) increase accuracy if item biases indeed play
a role in the ground truth; and (2) in any case direct
interpretability in the direction of the disentanglement
of item biases from other low-rank effects in the
solution given by the algorithm. If we are given raw
side information matrices X,Y , it also makes sense

to create an instance of our model where Xp1q and
Y p1q are orthogonalized versions of X and Y 1. In
that case we obtain an IMC-type model where the
solution consists of four terms depending on whether
side information was used for users and for items.

Three specific choices of auxiliary matrices Xpkqs
and Y plqs yield especially interesting models with
favourable properties in terms optimization and in-
teretability. We develop them in greater detail and we
refer to the corresponding models as BOMIC, OMIC+
and BOMIC+.

Our contributions can be summarized as follows:
1) We propose orthogonal inductive matrix com-

pletion (OMIC), a class of learning algorithms
for matrix completion, which give rise to in-
terpretable solutions, for instance, in terms of
the amount of user bias, movie quality, and
community effects in a learned matrix.

2) We propose an efficient optimization algorithm.
Furthermore, we prove its convergence and give
upper bounds on its convergence rate. See The-
orems II.1 and II.2.

3) We present in more detail three especially inter-
esting models, BOMIC, OMIC+, and BOMIC+,
which are particular cases of our framework. For
all three cases, we provide a scalable implement-
ation (explained in Algorithms 1 and 3) of our
algorithm that allows us to work on large datasets.

4) For the three most relevant models mentioned
above, we prove generalisation bounds both
in the case of a sampling distribution with
uniform marginals, and in the distribution-free
case (where we make no assumption on the
ground truth distribution). The better the model
matches the ground truth, the tighter the bounds.

5) Our empirical analysis shows that OMIC ex-
hibits better performance and flexibility across
the whole spectrum of varying quality of side
information. On a large array of real data, OMIC
surpasses the state-of-the-art in terms of accuracy,
with the added benefit of interpretability.

A. Related work

The idea of training user biases, either as a pre-
processing step or jointly with a model was frequent
in the pre-SoftImpute days [10], [11]. In [18], time-
dependent user and item biases were incorporated into
a maximum margin matrix factorization framework2

1And Xp2q and Y p2q are chosen to satisfy the orthogonality
conditions

2A close cousin of nuclear norm minimisation, cf. appendix
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with both the biases and the low-rank residuals
continuously retrained alternatingly to account for
the time variations.

The idea of training a side information term
XMY J jointly with a residual term Z was expressed
in [17], which is the most related paper to ours. We
note that only this specific case was studied there, and
that no orthogonality/interpretability constraint was
imposed, and thus no imputation algorithm was de-
veloped (alternating optimization and gradient descent
were used instead). Furthermore, the generalization
bounds obtained present differences due to the special
nature of our side information and auxiliary matrices.

In [19] and [16], the authors study a model
equivalent to a single inductive matrix completion
term with non-orthogonal side information and prove
bounds in the uniform sampling regime. None of
these works contain either a sum of IMC terms, cross-
term orthogonality constraints such as ours, user/item
biases, or any distribution-free generalization bounds.

In [20], the authors introduce an interesting model
with similarities (and differences) to both [17] and
the present work. First, the matrices X and Y are
augmented by column vectors of ones resulting in
the matrices X̄ “ rX, 1s and Ȳ “ rY, 1s. Predictors
then take the form E “ X̄MpȲ qJ `∆, with nuclear
norm regularisation imposed on E and L1 (or nuclear
norm) regularisation on M , and Frobenius norm
regularization imposed on ∆, with the constraint that
PΩpEq “ RΩ. In [21], the authors solve an explicit
rank minimization problem under linear constraints on
the matrix (this problem is now commonly referred to
as ’Matrix Regression’ (see also [22])). In [23], the au-
thors propose a very general optimization framework
that encompasses both the matrix regression problem
mentioned above and low rank matrix completion, as
well one-bit matrix completion.

II. DESCRIPTION OF THE MODEL AND
OPTIMIZATION PROCEDURE

We always assume that we have an mˆ n matrix
R whose entries are partially revealed to us. In
this section we assume that the entries are observed
without noise for notational simplicity3, whilst in the
theoretical results from the next section, we will
deal with the more general case of noisy obser-
vations. The set of revealed entries is denoted by
Ω Ă t1, 2, . . . ,mu ˆ t1, 2, . . . , nu, and ΩK denotes
the complement t1, 2, . . . ,mu ˆ t1, 2, . . . , nuzΩ (i.e.,
the set of unobserved entries). The projection on the

3Algorithmic aspects are unchanged

set of matrices with all entries on ΩK being zero is
denoted by PΩ. PΩK is defined similarly. We denote
the matrix of observed entries by RΩ. As explained
in the introduction, our model requires choosing some
auxiliary matrices Xpkq P Rmˆd

p1q
k , Y plq P Rnˆd

p2q
k

representing prior knowledge about the problem. The
columns of the auxiliary matrices are assumed to form
an orthonormal basis of their respective spaces, i.e.

m
ÿ

i“1

X
pk1q

i,j1
X
pk2q

i,j2
“ δk1,k2

δj1,j2 ;

n
ÿ

i“1

Y
pl1q
i,j1

Y
pl2q
i,j2

“ δl1,l2δj1,j2 ;

spank,jpX
pkq
. ,j q “ Rm and

spanl,jpY
plq
. ,j q “ Rn. (4)

A. Orthogonal inductive matrix completion

The general form of the optimization problem we
consider is as follows:

minM LpΩ,M,Λq with

LpΩ,M,Λq “
K
ÿ

k“1

L
ÿ

l“1

λk,l}M
pk,lq

}˚ (5)

`
1

2

ÿ

pi,jqPΩ

`

»

–Ri,j ,

˜

K,L
ÿ

k“1,l“1

XpkqM pk,lq
pY plqqJ

¸

i,j

fi

fl .

Here the λk,ls are non-negative tunable hyper-
parameters. Note that the objective is convex, but
not strongly convex. In particular, any stationary
point is a solution, but the solution may not be
unique (though all solutions correspond to the same
(optimal) value of the objective function). In practical
implementations such as the specific algorithm and
implementation we present below, ` is set to the square
loss4: `px, x1q “ |x´ x1|2.

We note that our orthogonality constraints
offer the additional advantage of interpretab-
ility: it is easy to check that the spaces
!

XpkqMpY plqqJ
ˇ

ˇM P Rd
pkq
1 ˆd

plq
2

)

are orthogonal
with respect to the Frobenius inner product. Thus, each
ground truth matrix R has a unique representation
R “

řK
k“1

řL
l“1X

pkqRpk,lqpY plqqJ. We provide the
detailed proof of these results in Appendix B (see Pro-
position B.1). The norms

›

›XpkqRpk,lqpY plqqJ
›

›

Fr
“

›

›Rpk,lq
›

›

Fr
can be interpreted as the relative importance

4If this loss function is used and the matrix is fully observed,
the problem becomes strongly convex
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of the auxiliary pairs Xpkq, Y plq. Furthermore, the
tuning of the coefficients λk,l can be assisted by
human knowledge. In particular we can dramatically
reduce our cross-validation needs by tying many
parameters with each other, as well as by setting other
parameters corresponding to easy to learn quantities
(such as user/community biases) to zero.

In the next three Sections II-B, II-C and II-D below,
we present the three most significant instances of our
model class, which incorporate user/item biases and/or
community side information.

B. First example: jointly trained user/item biases
(BOMIC)

One notable example of this setting provides a
way to train a low-rank matrix completion model
together with user biases, as discussed in the intro-
duction: if we set Xp1q “ p 1?

m
, . . . , 1?

m
qJ, Y p1q “

p 1?
n
, 1?

n
, . . . , 1?

n
qJ and set Xp2q (resp. Y p2q) to be

the orthogonal complement of Xp1q (resp. Y p1q) in Rm
(resp. Rn), then our model (5) is equivalent to optim-
izing a prediction function fi,j “ c` ui `mj ` Zi,j
where Z is constrained to have columns and rows
summing to zero, and the regularizer is

λ1|c| ` λ2}u}2 ` λ3}m}2 ` λ4}Z}˚.

One would typically set λ2 “ λ3 and λ1 “ 0.
Here, the terms Xp1qM p1,1qpY p1qqJ and

Xp1qM p1,2qpY p2qqJ ` Xp2qM p2,1qpY p1qqJ,
correspond to a general, matrix-wise bias, and a
combination of user/item specific biases respectively.
Meanwhile, the term Xp2qM p2,2qpY p2qqJ represents
purely bias-free low-rank effects: an entry of
Xp2qM p2,2qpY p2qqJ will be large if the item and
user are particularly well-fitted to each other,
independently of the general behavior of either user
or item. This can be especially interesting in terms of
interpretability, or if each user must be paired with a
single item. We refer to this particular case of our
model as BOMIC (Bias-OMIC).

C. Second example: OMIC+

Another highly representative example is the case
where we are given side information about the users
and items in the form of communities, where each
user (resp. item) belongs to exactly one user (resp.
item) community. In this situation, we construct the
columns of Xp1q (resp. Y p1q) as normalized indicator
functions of the user (resp. item) communities. The
columns of Xp2q (resp. Y p2q) can then be chosen as

any orthonormal basis of the orthogonal complement
of Xp1q (resp. Y p1q) in Rm (resp. Rn). In the case
where the user (resp. item) communuties each contain
a fixed number of members, the model becomes
equivalent to the following optimization problem
(up to multiplicatve constants in the regularising
parameters):

min
C,M,U,Z

L with L “ (6)
ÿ

pi,jqPΩ

|Cfpiq,gpjq `Mi,gpjq ` Ufpiq,j ` Zi,j ´Ri,j |
2

` λ1}C}˚ ` λ12}M}˚ ` λ21}U}˚ ` λ22}Z}˚, (7)

subject to
ÿ

iPf´1puq

Mi,v “ 0 @u ď d1, v ď d2,

ÿ

jPg´1pvq

Uu,j “ 0 @u ď d1, v ď d2,

ÿ

iPf´1puq

Zi,j “ 0 @j ď n,

and
ÿ

jPg´1pvq

Zi,j “ 0 @i ď m. (8)

Here, the function f : t1, 2, . . . ,mu Ñ t1, 2, . . . , d1
1u

(resp. g : t1, 2, . . . , nu Ñ t1, 2, . . . , d1
2u) assigns to

each user (resp. item) its community. In terms of
interpretability, note that in the predictors Cfpiq,gpjq`
Mi,gpjq ` Ufpiq,j ` Zi,j above, the contribution from
C corresponds to effects that only depend on the
community of the user and the community of the
item, the contribution from M (resp. U ) corresponds
to ’specific user-item community’ (resp. ’specific item-
user community’) effects, whilst the contribution from
Z corresponds to effects that are purely specific to the
user and the item (independently of their respective
communities).

D. Third example: BOMIC+
We note that several variations of the ideas for

the construction of the auxiliary matrices Xpkq and
Y plq as above are useful in practice. An important
instance is BOMIC+, which combines both of the
ideas above by incorporating both user and item
biases and community side information. This is the
specific model explained in Figure 1, and is further
empirically investigated in the experiments section.
Given community side information, we define our
auxiliary matrices Xpkq and Y plq as follows:
‚ Xp1q and Y p1q are constructed as in the case

of BOMIC (II-B), i.e. Xp1q “ p 1?
m
, . . . , 1?

m
qJ,

Y p1q “ p 1?
n
, 1?

n
, . . . , 1?

n
qJ;
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‚ Let X (resp. Y ) denote a matrix whose columns
are indicator functions of the user (resp. item)
communities. The columns of Xp2q (resp. Y p2q)
form an orthonormal basis of the space tv P
spanpXq : xv,Xp1qy “ 0u (resp. tv P spanpY q :
xv, Y p1qy “ 0u), where spanpXq (resp. spanpY q)
denotes the span of the columns of X (resp. Y ).

‚ Finally, the columns of Xp3q (resp. Y p3q) form
an orthonormal basis of the orthogonal com-
plement of the columns of pXp1q, Xp2qq (resp.
pY p1q, Y p2qq) in Rm (resp. Rn).

Thus, this model corresponds to equation (2),
together with some orthogonality constraints. Indeed,
Xp1qM p1,1qpY p1qqJ is a constant and corresponds to c.
Furthermore, all the rows of Xp1qM p1,3qpY p3qqJ (resp.
columns of Xp3qM p3,1qpY p1qqJ) are equal, so that the
term Xp1qM p1,3qpY p3qqJ (resp. Xp3qM p3,1qpY p1qqJ)
corresponds to u (resp. m). Xp2qM p2,2qpY p2qqJ

is the side information term corresponding to
xiMyJj in (2). Meanwhile, the remaining terms
Xp1qM p1,2qpY p2qqJ ` Xp2qM p2,1qpY p1qqJ `

Xp3qM p3,2qpY p2qqJ ` Xp2qM p2,3qpY p3qqJ `

Xp3qM p3,3qpY p3qqJ correspond to the term Zi,j from
equation (2), further refined into specific components
distinguishing effects involving (1) only the side
information of the users but not that of the items (or
vice versa), (2) interactions between user bias and
item side information (or vice versa) or (3) no side
information or biases whatsoever.

E. Optimization algorithm

In this subsection, we propose an iterative imputa-
tion algorithm to solve the problem (5) with the square
loss. The first step is to develop a method to solve (5)
in the case where Ω “ t1, 2, . . . ,mu ˆ t1, 2, . . . , nu,
the so-called “fully known case”. The final solution
can then be obtained by iteratively using this method.

1) The fully known case: Recall the singular value
thresholding operator Sλ from [5] and [24], which
is defined by SλpZq “

řr
i“1pλi ´ λq`viw

J
i , where

Z “
řr
i“1 λiviw

J
i is the singular value decomposi-

tion (SVD) of Z.
In our case, we now introduce the Generalized

singular value thresholding operator SΛ, which, for
any set of parameters Λ “ pλk,lq kďK

lďL
, and given a

set of auxiliary matrices Xpkq, Y plq (satisfying the
orthogonality conditions (4)), is defined by

SΛpZq “
K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,lpM
pk,lqqpY plqqJ, (9)

where M pk,lq “ pXpkqqJZpY plqq, which ensures Z “
řK
k“1

řL
l“1X

pkqM pk,lqpY plqqJ.
Note that SΛpZq is well-defined since the spaces

Sk,l “
 

XpkqMpY plqqJ
(

Ă Rmˆn are orthogonal
with respect to the Frobenius inner product, and in
particular, linearly independent.

Proposition II.1. The definition in equation (9) is
equivalent to the following:

SΛpZq “
K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZY plq
¯

pY lqJ.

(10)

Furthermore, Z̃ “ SΛpZq is the solution to the
following optimization problem:

min
1

2
}Z̃ ´ Z}2Fr `

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
pXpkqqJZY plq

›

›

›

˚
,

(11)

or equivalently

min
1

2
}Z̃ ´ Z}2Fr `

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
M pk,lq

›

›

›

˚
,

(12)

subject to Z̃ “
K
ÿ

k“1

L
ÿ

l“1

XpkqM pk,lqpY plqqJ. (13)

2) The OMIC algorithm: For any fixed set of
hyperparameters Λ and auxiliary matrices Xpkq, Y plq

(for k ď K, l ď L), the final solution to the
optimization problem (5) is obtained iteratively: at
each step, a target matrix is constructed by setting
the entries of Ω to the observed values and imputing
the values of the previous iteration to the entries of
ΩK. We then apply the fully known case (II.1) to this
target matrix to reach the next iterate. This algorithm
converges for any initial (0th iteration) matrix.

However, if several values of Λ must be calcu-
lated, we can use warm starts to improve efficiency.
Algorithm 1 below does this in the case where the
range of values for Λ is a product V “

ś

k,l Vk,l
where the Vk,l are finite sets of candidate values for
λk,l (ordered in increasing or decreasing order): initial
estimates of Mk,l for each value of λk,l are calculated
by setting each λk1,l1 to infinity for k1 ‰ k, l1 ‰ l and
solving the full problem (5) in this case5. Furthermore,
each of those sets of Mk,l are calculated using warm
starts along the sequence of λk,l P Vk,l. For any real

5"Setting λk1,l1 to infinity" amounts to not including the pk1, l1q
term in the sum (3) which defines our predictors. Thus our warm
starts are computed by training each term in that sum independently.
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number λ, pk,lpλq denotes the set of hyperparameters
Λ with Λk,l “ λ and Λk1,l1 “ 8 otherwise. Note also
that this algorithm depends on the auxiliary matrices
Xpkq and Y plq through the generalized singular value
thresholding operator SΛ, defined in equation (9)
above.

Note that M pk,lq is of dimension dk1ˆd
l
2. Whenever

one of dk1 or dl2 is small, the computation of SVDs is
trivial. For instance, in the specific case of BOMIC,
matrices M pk,lq are vectors whenever k “ 1 or
l “ 1, thus calculating the SVD simply amounts
to normalizing a vector. Therefore, although our
algorithm theoretically requires KL SVD operations
at each iteration, in fact, most of them are trivial. We
refer the reader to Appendix D, for a more thorough
explanation and an empirical evaluation of the lack of
any extra computational burden from the trivial SVDs.
Furthermore, in practice, a rank-restricted version of
the SVD operation can be employed, together with a
suitable warm-start strategy. In Subsection II-F, we
develop novel techniques to optimize the computa-
tional and memory burden of the algorithm in the most
interesting and practically relevant particular cases.

Algorithm 1 OMIC
INPUT: RΩ, set of regularizing parameters V “
ś

k,l Vk,l
OUTPUT: Set of recovered matrices ZΛ for all Λ P V

1: for k P t1, 2, . . . ,Ku do
2: for l P t1, 2, . . . , Lu do
3: Initialize Znew Ð 0
4: for λ P Vk,l do
5: repeat
6: Zold Ð Znew

7: Znew Ð Spk,lpλq
`

RΩ ` PΩKpZ
oldq

˘

8: until converged
9: Zk,l,λ Ð Znew

10: end for
11: end for
12: end for
13: for Λ P V do
14: Znew Ð

řK,L
k,l“1 Z

k,l,λk,l

15: repeat
16: Zold Ð Znew

17: Znew Ð SΛ

`

RΩ ` PΩKpZ
oldq

˘

18: until converged
19: ZΛ Ð Znew

20: end for
21: return ZΛ for Λ P V

3) Convergence guarantees: Our algorithm enjoys
convergence guarantees, which we present here. Here,

we fix a Λ and assume that we perform the iterative
imputation procedure in the algorithm above starting
from Z0 “ 0, with (for each i ě 0)

Zi`1 “ SΛ

`

PΩpRq ` PΩKpZ
iq
˘

. (14)

We have the following two results, whose proofs
are left to the Appendix.

Theorem II.1. Consider our general setting with
auxiliary matrices satisfying the conditions (4) and
the operator SΛ defined accordingly. The sequence
Zi defined in (14) converges to a solution Z8 of the
optimization problem (5) with the squared loss. In
particular, the loss L converges to the minimum L˚
of optimization problem (5).

Theorem II.2. Let L˚ be the minimum value of
the loss L from problem (5). For every fixed Λ, the
sequence Zi has the following worst-case asymptotic
convergence:

LpZiq ´ LpZ8q “ LpZiq ´ L˚ ď 2}Z0 ´ Z8}2Fr

i` 1
,

(15)

where Z8 is the limit of the sequence Zi.

Remark: Note that although the RHS depends on
the limit Z8, it can be further bounded above as
follows

2}Z0 ´ Z8}2Fr

i` 1
ď

2 maxZ˚PS }Z
0 ´ Z˚}2Fr

i` 1

where S “ arg minZpLpZqq is the set of solutions of
Problem (5)6. Thus, the rate 1{pi` 1q holds.

F. A scalable algorithm for BOMIC+

The main computational step at each iteration of the
algorithm we propose to solve (5) is the calculation
of the solution to an instance of the fully known case,
which can be obtained via our generalized singular
value thresholding operator SΛ. Observe that the sum
of the numbers of columns of all Xpkq (resp. Y plq)
is m (resp. n). Thus, if m and n are large (which
is often the case in RSs contexts) it is infeasible to
even store all the auxiliary matrices in memory, let
alone perform operations on them directly. The same
problem can occur with some of the latent matrices
M pk,lq. It is easy to see that the largest M pk,lq has at
least m{K ˆ n{L entries which is also very large.

In this subsection, we show how to circumvent
this difficulty in the specific case of BOMIC+ where

6Note the solution is not necessarily unique, as we discuss in
greater detail at the end of Appendix C.
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K “ L “ 3 and the auxiliary matrices are defined
in Section II-D assuming the side information X,Y
consists of indicator functions of communities. For
instance, the columns of Y could represent sets of
movies belonging to a specific genre, whilst the
columns of X could represent countries, genders
or professions for users. Our strategy heavily relies
on both the “sparse-plus-low-rank” structure present
in the target matrices of the "fully known problem"
solved at each iteration, as well as the specific structure
of community side information.

First, we define some matrices rXp1q, rXp2q, rXp3q,
rY p1q, rY p2q, rY p3q as follows: rXp1q “ Xp1q, rY p1q “
Y p1q, rXp2q “ normalizepXq, rY p2q “ normalizepY q,
rXp3q “ Id and rY p3q “ Id. Here, normalize denotes

the operation of normalizing each column. Note that X
(resp. Y ) is a sparse matrix composed of the indicator
functions of user (resp. item) communities. Therefore,
the matrices rXp1q, rXp2q, rXp3q,rY p1q ,rY p2qand rY p3q can
easily be stored in memory, and it is easy to multiply
them by arbitrary vectors on either side.

To see how these matrices will help us execute
BOMIC+, observe first that due to the rotational
invariance of SVDs, the operator SΛ can be rewritten
as

SΛpZq “
3
ÿ

k“1

3
ÿ

l“1

Sλk,l

´

XpkqpXpkqqJZY plqpY plqqJ
¯

.

(16)

Thus, for a given Z, calculating SΛpZq boils down
to computing the SVD of the matrices Hpk,lq “
XpkqpXpkqqJZY plqpY plqqJ, which are the projections
of Z on the spaces corresponding to each pair of
auxiliary matrices. We perform the SVD computation
through a rank-restricted alternating least squares
algorithm (ALS, see Algorithm 2). This requires an
efficient strategy to compute Hpk,lqW1 and W2H

pk,lq,
where W1 and W2 are any real conformable matrices.

We now observe that for any orthogonal matrix
U , if W1 P Rnˆr, UUJW1 is the projection of W1

on the span of the columns of U . Crucially, if V
is an orthogonal matrix with spanpV q Ă spanpUq,
then for any W1 P Rnˆr, UUJW1 ´ V V

JW1 is the
projection of W1 on the orthogonal complement of
V in U . Applying this to the matrices Y plq and rY plq,
we obtain, for all l ď 3:

Y plqpY plqqJW1

“ rY plqprY plqqJW1 ´rY pl´1qprY pl´1qqJW1. (17)

Similarly, for any W2 P Rmˆr and k ď 3,

XpkqpXpkqqJW2

“ rXpkqp rXpkqqJW2 ´ rXpk´1qp rXpk´1qqJW2.
(18)

Remark II.2. The operation W1 Ð Y p3qpY p3qqJW1

performed as above can be visualized intuitively: it
corresponds to removing from each component of each
column W1 . ,i the average of the components in the
same community (in the same column).

@i ď m, vi Ð vi ´

ř

jPci
vj

#pciq
.

With the above techniques in our tool kit, we can
now present our algorithm for calculating Hpk,lqW1.
We will divide the task into three steps.

First, we evaluate ĂW1 “ Y plqrpY plqqJW1s us-
ing (17).

Next, observe that as a byproduct of the iterative
imputation procedure, Z can be decomposed as the
sum of a sparse matrix ZSp and a low-rank matrix
ZLR as follows:

Z “ ZSp ` ZLR “ ZSp ` ULR

”

DLRVLR
J
ı

.

(19)

Using this decomposition, it is easy to calculate the

quantity Ă

ĂW1 “ ZĂW1 as follows:

Ă

ĂW1 “ ZĂW1 “ ZSpĂW1 ` ULRDLRpVLR
J
ĂW1q.

(20)

Finally, we calculate Hpk,lqW1 “
`

XpkqrpXpkqqJ
Ă

ĂW1s
˘

J using (18). Symmetrically and
with the same arguments we can compute W2H

pk,lq.
Alg. 2 (based on [25]) describes how to compute

SΛpZq for a fixed hyperparameter set Λ and Alg. 3
is our fully scalable implementation of Alg. 1 for the
BOMIC+ case with community side information. In
practice, we can further use warm start strategies such
as the one presented in Alg. 1 to speed up convergence.

Remark: The convergence of Alg. 2 follows from
that of Alg. 2.1 in [25]: for each combination pk, lq 7,
of which there are finitely many, the while loop from
lines 11 to 22 essentially runs Algorithm 2.1 from [25]
on the component matrix Rpk,lq “ pXpkqqJRY plq,
thus the full algorithm converges. The convergence
of Alg. (3) then follows from (1) the convergence of
Alg. 2 (which is used inside the while loop between
lines 3 and 6) together with (2) the convergence of
Alg. II-C, which is established in Theorem II.1

Remark: To avoid manipulating or storing large
matrices, one must perform the operations in the

7leaving aside the extra implementation details required for our
specific model
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correct order, which is defined by the brackets. This
remark applies in particular to Algorithms 2 and 3.

Algorithm 2 (SΛ)-ALS: Generalized restricted trun-
cated singular value thresholding via alternating least
squares
INPUT: Z P Rmˆn decomposed as in (19); threshold-
ing parameters Λ, maximum rank r
OUTPUT: SΛpZq represented in storable low-rank
format as pU,diagpΣq,Vq such that SΛpZq “

UdiagpΣqVJ

1: Procedure Projection(Ep1q,Ep0q,Θ)
2: return Ep1qrpEp1qqJΘs ´ Ep0qrpEp0qqJΘs
3: end Procedure
4: UÐ Σ Ð VÐ NULL
5: rXp0q Ð 0, rY p0q Ð 0
6: for k in (1..3) do
7: for l in (1..3) do
8: U Ð random orthogonal mˆ r matrix
9: D Ð Idrˆr

10: AÐ UD
11: while ABJ not converged do
12: Θ Ð UDpD2 ` λk,lIq

´1

13: rΘ Ð Projection( rXpkq, rXpk´1q,Θ)
14:

r

rΘ “ rΘJZSp ` rprΘ
JULRqDLRsVLR

J

15: B̃ Ð Projection(rY plq, rY pl´1q,
Ă

r

J
Θ)

16: Compute the SVD of B̃D “ Ṽ D̃2RJ and
attribute V Ð Ṽ , D Ð D̃ and B Ð V D

17: Θ Ð V DpD2 ` λk,lIq
´1

18: rΘ Ð Projection(rY plq, rY pl´1q,Θ)
19:

r

rΘ “ ZSprΘ` ULRrDLRpVLR
J
rΘqs

20: ÃÐ Projection( rXpkq, rXpk´1q,
r

rΘ)
21: Compute the SVD of ÃD “ ŨD̃2R̃J and

attribute U Ð Ũ , D Ð D̃ and AÐ UD
22: end while
23: rΘ Ð Projection(rY plq, rY pl´1q, V )
24:

r

rΘ “ ZSprΘ` ULRrDLRpVLR
J
rΘqs

25: M Ð Projection( rXpkq, rXpk´1q,
r

rΘ)
26: Compute the SVD of M : M “ ŪDσR̄

J.
27: UÐ CONCATpU, Ūq
28: Σ Ð CONCATpΣ,

`

pσ1 ´ λk,lq`, pσ2 ´

λk,lq`, . . . , pσr ´ λk,lq`
˘

q

29: VÐ CONCATpV, V R̄q
30: end for
31: end for
32: return U; diagpΣq;V

Complexity analysis: Treating K and L as con-
stants, our algorithm can achieve Op|Ω|r`pm`nqr2q

Algorithm 3 Scalable BOMIC+
INPUT RΩ, regularizing parameters Λ P R3ˆ3,
maximum rank r
OUTPUT: Recovered matrix Z

1: Zs Ð RΩ

2: ZLR Ð tULR Ð 0, DLR Ð 0, VLR Ð 0u
3: while Not converged do
4: Zs Ð RΩ ´ PΩpZLRq
5: ZLR Ð (Sλ)-ALS(Z “ tZs, ZLRu)
6: end while
7: return Z Ð ZLR

complexity all three important cases OMIC+, BOMIC
and BOMIC+. We note that, as explained above,
although in principle the computational burden is
multiplied by KL (which can be as much as 9 in
the case of BOMIC+), in practice, further refinements
can help the algorithm perform at the same speed as
SoftImpute, as is hinted at in Subsection II-E2. We
refer the reader to Appendix D for more details.

III. GENERALIZATION BOUNDS

In this section, we present some generalization
bounds for our model in the three relevant cases
BOMIC, OMIC+ and BOMIC+.

A. Distribution-free bounds

We begin with a distribution-free approach, meaning
that we do not assume anything about the sampling
distribution. In particular, the bounds in this subsection
behave worse than the corresponding bounds under
uniform sampling assumptions such as the ones in the
celebrated works [7], [6].

We first focus on generalization bounds which apply
when the side information corresponds to user/item
biases and/or community side information (OMIC+).

We will write Ck,l for an upper bound on the entries
of the ground truth component XpkqRpk,lqpY plqqJ

where Rpk,lq “ pXpkqqJRY plq. Similarly, we will
write rk,l for the rank of Rpk,lq.

Thus, e.g., if C1,2 is large, one concludes that in
the ground truth matrix, the specific affinities of items
in t1, 2, . . . nu to whole communities of users is a
significant factor in determining the value of each
entry. If C2,2 is large, the individual affinities between
users and items, independently of their respective
communities, is a strong factor.

The following follows from the inequality
?
x `

?
y`

?
z`

?
t ď 2

?
x` y ` z ` t and Theorem E.1

in the Appendix.
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Corollary III.1. Consider the community setting
above and assume the user (resp. item) communities
are of sizes within a ratio of Op1q, as well as that
(wlog) b ě a, and m ě n. For any ε ą 0, the required
number of entries to recover the ground truth matrix
within ε expected loss (with probability ě 1´ δ) is

O

˜

p1{ε2q

ˆ

C2
1,1b
?
ar1,1 ` C

2
1,2n

?
ar1,2`

C2
2,1m

a

br2,1 ` C
2
2,2m

?
r2,2n` logp1{δq

˙

¸

.

Alternatively, using the nuclear norms of the compon-
ent matrices, we have the following sample complexity
bound:

O

˜

p1{ε2q

ˆ

?
bt1,1 ` t1,2

?
n`

t2,1
?
m` t2,2

?
m` logp1{δq

˙

¸

.

Note that the above bounds improve with the quality
of the side information: the better the ground truth
matrix can be approximated by community behaviour,
the closer the bound behaves to the bound one would
obtain for an a ˆ b matrix with each user and item
being assimilated to its community. Furthermore, the
result applies in particular to the BOMIC model
from Section II-B by grouping all users (resp. items)
into a single community. This yields a bound of
the order p1{ε2qpC2

1,1 ` nC2
1,2 ` mC2,1 ` p

?
n `

?
mq
?
mnrC2

2,2 ` logp1{δqq where (e.g.) C2,2 is a
bound on the bias-free part of the ground truth matrix.
Similar bounds hold for the BOMIC+ model II-D (cf.
equation (S.70) in the Appendix).

B. Bounds assuming uniform marginals

In this subsection, we present some bounds under
the assumption that the sampling distribution has
uniform marginals (i.e., whenever an entry is sampled,
the probability of choosing an entry in any given row
(resp. column) is 1{m (resp. 1{n)). In this case, only
the terms containing side information for both users
and items present an improvement.

Corollary III.2. Consider the community setting
above (OMIC+) and assume: (1) each user (resp. item)
community is of equal size; (2) that (wlog) b ě a,
and m ě n and (3) the marginals of the sampling
distribution are uniform. For any ε ą 0, (the required

number of entries to recover the ground truth matrix
within ε expected loss is

O

˜

p1{ε2q

ˆ

C2
1,1br1,1 logpbq ` C2

1,2nr1,2 logpnq`

C2
2,1mr2,1 logpmq ` C2

2,2mr2,2 logpmq

˙

¸

.

Proof. Follows from Theorem E.3 in Appendix E-B.

In the supplementary (Section E-D), we experiment-
ally validate the bound on some synthetic data, and
observe a good match between the bound and the de
facto sample complexities we encounter in practice.

Remark: An interesting observation from the
bounds is that the knowledge of the explicit side
information vectors (i.e. communities or biases) helps
achieve a faster sample complexity (as opposed to
the knowledge of the equivalent low-rank constraint)
whenever either:
‚ the first order term Rp1,1q is significant; or
‚ the distribution is arbitrary (doesn’t have uniform

marginals).
This is explained in detail in Subsection E-C of

the appendix. As our synthetic data experiments
(cf. Subection IV-C) demonstrate, we can still gain
something in practice for moderate-size matrices, even
when it comes to cross-terms in the uniform sampling
case, but such an improvement cannot be captured at
the level of asymptotic results. Remark: Note that
although the proofs are relatively straightforward, even
the generalisation bounds corresponding to a single
term do not follow from standard results on inductive
matrix completion. This is also explained in detail in
Section E-C in the appendix.

IV. EXPERIMENTS

To compare OMIC with the baselines we conducted
two experiment strands: synthetic data simulations and
real-world applications.

In the first case, we propose a matrix generation pro-
cedure that allows us to evaluate how the performance
of BOMIC varies in different ground truth regimes:
we generated sparsely observed matrices composed of
the sum of user and item biases (generic behaviour)
and a non-inductive term (specific behaviour). The
proportion of each term, the number of observed
entries and the distribution of known entries were
varied.

In the latter case, we validated our model on
five real recommender systems datasets: the Amazon
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recommender system dataset, the Douban movie
database, the Goodreads spoiler dataset, and two
versions of MovieLens. We show that our methods
exhibit state-of-the-art performance in all cases.

All the hyperparameter tuning was done through
cross-validation. The range of the parameters was
adjusted according to each model’s needs.

A. Baselines
Our model is a fundamental tool that relies only

on the incomplete matrix and some high-level side
information and has the benefit of interpretability. We
compare our model with other similarly fundamental
models such as IMC [12], [17], [13], [16], [19] and
Softimpute [5], with the understanding that the basic
ideas could be refined and incorporated into more
sophisticated recommender systems.
‚ SoftImpute (SI) is a matrix completion method

that uses nuclear-norm regularization. This is
a standard baseline for non-inductive matrix
completion [5].

‚ Biased SoftImpute (B-SI) is a popular approach
that consists in first, training user and item biases,
and then training the SoftImpute model on the
residuals.

‚ Inductive Matrix Completion with Noisy Fea-
tures (IMCNF) In this model [17] we train a
sum of an IMC term and a residual SoftImpute
term jointly (via alternating optimization). This
model requires side information, and was there-
fore only considered in real data experiments.

B. Metrics
Let R P Rmˆn denote the ground truth matrix,

R̂pkq the matrix predicted by method k and let
Ω̄ be the test set (a subset of entries). Let R̄pkq,
B̂
pkq
U and B̂

pkq
I be respectively the zero-order term

(Xp1qM p1,1qY p1q in BOMIC), the vector of user biases
and the vector of items biases estimated by method
k. In the SoftImpute case we need an extra post-
processing step to estimate the biases: R̄pSIq “
ř

ij R̂
SI
ij {mn, B̂pSIqUi

“
ř

jpR̂
pSIq
ij ´ R̄pSIqq{n and

B̂
pSIq
Ij

“
ř

ipR̂
pSIq
ij ´ R̄pSIqq{m. To assess the meth-

ods we used the metrics presented in the list bellow:
‚ [RMSE] Root-mean-square error: RMSE “
b

ř

i,jPΩ̄pR̃ij ´Rijq
2{|Ω̄|

‚ [MBD] Matrix bias deviation: MBD “
ˇ

ˇR̄´ R̄pkq
ˇ

ˇ

‚ [UBD] (resp. IBD): User (resp. item) bias
deviation: UBD “ }BU´B̂

pkq
U }Fr (resp. IBD “

}BI ´ B̂
pkq
I }Fr )

‚ [SPC] Spearman correlation: SPC “

ρS
´

RΩ̄, R̂
pkq

Ω̄

¯

, the Spearman correlation
between two vectors composed of the entries of
R and R̂pkq on the test set.

Since calculating the metrics MBD,UBD and IBD
requires knowledge of all the entries of T , we only
calculated them for the synthetic experiments. Note
that lower values of RMSE, MBD and UBD and
higher values of the Spearman correlation correspond
to better performance.

C. Synthetic data simulations

For synthetic data simulations, we evaluated the
ability of our model BOMIC to detect and adapt
to different regimes in terms of the importance of
user and item biases. We constructed two fixed
matrices G and S, with the former made up purely
of user/item biases, and the latter free of any implicit
or explicit user or item biases. Then, we considered
combinations Rpαq “ αG`p1´αqS, observed either
uniformly (which we describe with γ “ 1) or in a
biased way designed to fool a naive bias method into
miscalculating the user and item biases (γ “ 4). The
proportion of observed entries pΩ was also varied.

1) Results: For each combination of α, γ and pΩ

we generated 50 different samples of Rpαq. Given a
sampled matrix, we recovered the unknown entries
through BOMIC, B-SI and SI. Figure 2 summarizes
the results of the performed simulations. We observe
that our method consistently outperforms B-SI and
SI, in terms of RMSE, UBD and IBD, and performs
as well as SI in the MBD case. In addition, OMIC’s
ability to recover the correct user and item biases
(UBD and IBD in Figure 2) is particularly marked in
the case of non uniformly sampled entries, as might
be expected, in line with Corollary III.1.

D. OMIC as a recommender system

In this subsection, we present our results on real
data from the field of recommender systems. We begin
by introducing the datasets, then provide our results,
and conclude with a practical exploration of the added
interpretability benefits of our method.

1) Datasets: In this paper, we worked with the
following datasets:
‚ Amazon (R P R164383ˆ101364): Amazon is a

multinational technology company which mainly
focuses on e-commerce. We used the "Electron-
ics" dataset, which we obtained through [26].
Users are Amazon’s clients and items are elec-
tronic products (e.g. smartphones). The rating
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Figure 2: Summary of synthetic data simulations results. The first graph shows the relationship between all
combinations of the parameters (α, γ, pΩ) and the RMSE. The second one shows how (α, γ, pΩ) influences
the correct recovery of user and item biases ((UBD+IBD)/2). Each box plot in the first two graphs is obtained
from 50 simulations. The third graph displays the distribution of the MBD over all of the simulations.

range is from 1 to 5 and the entry pi, jq refers to
the rating given by client i to product j. Since
no systematic side information was provided, we
only investigated the performance of BOMIC and
SoftImpute for this dataset.

‚ Douban (R P R4988ˆ4903): Douban is a social
network where users can produce content related
to movies, music, and events. The ratings matrix
was obtained through [27]. Douban users are
members of the social network and Douban items
are a subset of popular movies. The rating range
is t1, 2, . . . , 5u and the entry pi, jq represents the
rating given by user i to movie j. Feature vectors
were collected by the authors and can be divided
into two distinct parts: general features (e.g year
of production, genres and movie duration) and
the embedding of the description of the movie
given by the pre-trained neural network Bert [28].

‚ Goodreads spoiler dataset (GRS) (R P

R4199ˆ3278): This dataset was released by [29]
and it is available online. Goodreads is a social
cataloging website that allows individuals to
freely search its database of books, annotations,
and reviews. In this case, an entry pi, jq repres-
ents the rating of the user i for the book j on
a scale from 0 to 5. For each user-book pair, in
addition to the rating score, the review text is
also available. Each sentence of the review was
annotated with respect to whether or not spoilers
were present. We generated 89 features such as
the length of the review and which percentage
of the text contains spoilers.

‚ MovieLens: We consider the MovieLens 1M
(R P R6040ˆ3706) and MovieLens 20M

(R P R138493ˆ27032) datasets, which are broadly
used and stable benchmark datasets. MovieLens
is a non-commercial website for movie recom-
mendations. In MovieLens 1M, we chose movies’
genres (resp. age-gender combinations) as item
(resp. user) communities.

Train-test setup: For each dataset, we split the
set of observed entries (uniformly at random) into a
training set (85 %), a validation set (10%) and a test
set (5%).

2) Results: Table I summarizes the results of
the real-world data experiments. We evaluated the
performance of BOMIC, BOMIC+, SI and IMCNF on
all datasets above. For BOMIC+, instead of using the
side information directly, we performed unsupervised
clustering of the corresponding features to translate
them into community information, which we then used
as the X,Y in the BOMIC+ algorithm in Section II-D.
Observe that BOMIC+ has the lowest RMSE on
all datasets and largest SPC in two datasets, whilst
BOMIC has the best SPC on the MovieLens dataset.
It is important to highlight that the standard BOMIC
also beat the baselines. One interesting aspect of
using BOMIC+ is that the unsupervised clustering step
reduces the dimensionality of the side information,
which can have a positive regularizing effect.

3) Illustration of OMIC’s interpretability: As ex-
plained above, one advantage of our method is that
it can provide partial explanations for its predictions:
each prediction is a sum of terms coming from each
of the components of the model. Furthermore, this
sum is uniquely determined, since the components
of the model live in mutually orthogonal spaces
and correspond to distinct intuitive phenomena. For
example, if some auxiliary vectors are constructed
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Figure 3: The first two graphs show the relative influence of the BOMIC+ components on the predictions of
the whole matrix and one individual entry respectively. The last two graphs show the distribution of the users
and item biases obtained by BOMIC on the Douban dataset.

from user community side information, the algorithm
can disentangle the users’ particular tastes from those
of their respective community. In particular, OMIC
can discover facts about community-wide behavior.

We illustrate those effects in Figures 3 and 4. On the
left of Figure 3, we show the norms of each of the com-
ponents of the recovered matrix: our recovered mat-
rix takes the form R “

ř

k,lď3X
pkqM̂ pk,lqpY plqqJ

where the M̂ pk,lq are obtained as the solution to our
optimization problem (5), and each component in
XpkqM̂ pk,lqpY plqqJ in the sum corresponds to an in-
terpretable concept. For instance, Xp2qM̂ p2,1qpY p1qqJ

correspond to user community biases. The norms of
each component can give us an idea of how important
each component is globally. Thus we see that over
the whole GoodReads dataset, the most important
components (excluding the global bias) are: (1) the
specific match between the user and the book, (2) user
generosity and (3) the quality of each book. These
results are intuitively natural and expected.

The second picture presents an explanation for an
individual prediction. In other words, we chose one
entry of R (say, Ri,j) and represented the correspond-
ing entry of each of the above mentioned components:
for instance, the orange bar to the right of the graph
represents the entry pXp3qM̂ p3,3qpY p3qqJqi,j , which
corresponds to the same rating. This number represents
the part of the rating pi, jq which is attributable to a
specific preference of the user for the specific movie
(discounting the parts of this preference which are
shared by the other members of that user’s community
or other movies of the same genre).

Here, the book is not generally considered good by
the users (cf. large negative component corresponding
to the purple bar), but the individual is usually
generous (first orange bar), and the specific book and
user are a good match for each other (cf. large orange

component corresponding to the rightmost bar).
Note that what is interesting here is that our model

was specifically trained in a way that treats each of the
components as a separate entity, with its own cross-
validated hyperparmeter, so that the decomposition
along those components is and intertwined with the
optimization process (rather than collected as a statistic
after applying a standard matrix completion method).

In the last two graphs, we show the distribution of
user biases and movie quality in the Douban dataset.
The distribution is similar to a normal distribution
(squished at the boundaries), allowing us to character-
ize the users (resp. movies) on a spectrum between
haters and lovers (resp. B-movies and blockbusters).

Figure 4 shows bar charts illustrating the affinit-
ies between user communities (gender-age combin-
ations) and four movie genres in the MovieLens
dataset. Note that these affinity scores are part of
our model and can be directly read from the com-
ponent Xp2qM p2,2qpY p2qqJ in BOMIC+. We observe
that BOMIC+ is able to detect noteworthy human
behaviour. For instance, female users tend to prefer
drama and romance while male users enjoy comedies
and thrillers instead. Note also that the biases vary
with users’ ages: older male users like romance movies
more than their younger counterparts.

V. CONCLUSION

In this paper, we introduced OMIC, a matrix
completion framework which relies on orthogonal
auxiliary matrices to guide the model in privileged
directions corresponding to prior knowledge. This
simultaneously allows us to recover interpretable in-
formation about the predicted behavior. Our algorithm
includes, as particular cases, three models (BOMIC,
OMIC+ and BOMIC+) which can train user and item
biases (and/or a community component) jointly with a
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Table I: Performance comparison of our methods vs baselines on the real datasets

Dataset PΩ
RMSE SPC

BOMIC BOMIC+ SI IMVNF BOMIC BOMIC+ SI IMVNF
Amazon 0.0001 1.0406 - 1.0625 - 0.4121 - 0.4110 -
Douban 0.0195 0.7886 0.7510 0.8797 0.8034 0.6280 0.6457 0.5760 0.6017

GoodReads 0.0331 1.0736 1.0540 1.0991 1.0770 0.5113 0.5120 0.4857 0.5052
MovieLens1M 0.0446 0.8534 0.8455 0.8838 0.8559 0.6368 0.6336 0.6289 0.6321
MovieLens20M 0.0051 0.7803 - 0.8025 - 0.6697 - 0.6521 -

Figure 4: Affinity between user communities (grouped by gender and age) and movie genres for MovieLens.
These biases can be directly read from the component Xp2qM p2,2qpY p2qqJ in BOMIC+.

nuclear norm minimization strategy. Finally, synthetic
and real-data experiments demonstrate our algorithm’s
superior ability to adapt to and interpret different
qualitative behaviors in the data.
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APPENDIX A
AN ALTERNATIVE FORMULATION OF THE

OPTIMIZATION PROBLEM

Instead of a nuclear-norm minimization algorithm,
our optimization problem (5) can be equivalently
formulated as below.

Theorem A.1. The optimization problem (5) is equi-
valent to the following optimization problem:

min L
´

RΩ,Λ, tU
pk,lq, V pk,lqukďK,lďL

¯

with

LpRΩ,M,Λq

“

›

›

›

›

›

PΩpRq ´ PΩ

˜

K,L
ÿ

k“1,l“1

U pk,lqpV pk,lqqJ

¸
›

›

›

›

›

2

Fr

`
ÿ

k,l

λk,l

´

}U pk,lq}2Fr ` }V
pk,lq}2Fr

¯

,

subject to (@k, l):

spanppU pk,lqq . ,i : i ď d
pkq
1 q Ă spanppXpkqq . ,i : i ď d

pkq
1 q;

spanppV pk,lqq . ,i : i ď d
plq
2 q Ă spanppY plqq . ,i : i ď d

plq
2 q.

For the proof, we will need the following lemma
(lemma 6 from [5], see also [30], [31]):

Lemma A.1. For any matrix Z, the following holds:

}Z}˚ “ min
U,V ;

UVJ“Z

}U}Fr}V }Fr (S.21)

“ min
U,V ;

UVJ“Z

1

2

`

}U}2Fr ` }V }
2
Fr

˘

(S.22)

Proof. By Lemma A.1, we have that the optimization
problem (5) is equivalent to the following:

min L
´

RΩ,Λ, tU
pk,lq, V pk,lqukďK,lďL

¯

with

LpRΩ,M,Λq

“

›

›

›

›

›

PΩpRq ´ PΩ

˜

K,L
ÿ

k“1,l“1

XpkqM pk,lqpY plqqJ

¸
›

›

›

›

›

2

Fr

`
ÿ

k,l

λk,l

´

}U pk,lq}2Fr ` }V
pk,lq}2Fr

¯

,

subject to M pk,lq “ U pk,lqpV pk,lqqJ @k, l.
(S.23)

Now, note that if for any pk, lq, M pk,lq “

U pk,lqpV pk,lqqJ and Zpk,lq “ XpkqM pk,lqpY plqqJ,
then Z “ pXpkqU pk,lqqpY plqV pk,lqqJ “

Ũ pk,lqpṼ pk,lqqJ, where Ũ pk,lq “ pXpkqU pk,lqq
and Ṽ pk,lq “ pY plqV pk,lqq. Furthermore, for any
matrix A P Rn1ˆn2 and any orthogonal matrix
B P Rn0ˆn1 (resp. C P Rn2ˆn3 ),

}A}Fr “ }BA}Fr “ }AC}Fr “ }BAC}Fr. (S.24)
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Thus we have }Ũ pk,lq}Fr “ }X̃JŨ pk,lq}Fr “

}U pk,lq}Fr, where X̃ is a matrix whose first dk1
columns are identical to those of Xpkq, and whose
columns form an orthonormal basis of Rm. Similarly,
}Ṽ pk,lq}Fr “ }V

pk,lq}Fr. Furthermore, conversely, if
we can write a matrix Z as Ũ pk,lqpṼ pk,lqqJ for some
Ũ pk,lq and Ṽ pk,lq whose columns are in the span
of the columns of Xpkq and Y plq respectively, then
we can write Z “ pXpkqU pk,lqqpY plqV pk,lqqJ “

Ũ pk,lqpṼ pk,lqqJ where
rU pk,lqsi,j “ rpX̃pkqqJŨ pk,lqsi,j @i, j s.t. i ď

d
pkq
1 . The theorem follows.

APPENDIX B
PROOF OF UNIQUENESS OF DECOMPOSITION

Proposition B.1. Let Fk,l “ tR : DM P Rd1
kˆd

2
l :

R “ XpkqMpY plqqJu denote the KL subspaces
corresponding to each pair of auxiliary matrices
pXpkq, Y plqq. Those vector spaces Fk,l are orthogonal
(w.r.t. the Frobenius inner product) and their direct
sum is the whole of Rmˆn:

à

Fk,l “ Rmˆn. (S.25)

In particular, for any R P Rmˆn, there exist a unique
collection of matrices Rpk,lq P Fk,l such that R “
ř

k,lR
pk,lq. In fact,

Rpk,lq “ pXpkqqJRY plq. (S.26)

Proof. We divide the proof into two parts: the proof
that the subspaces are mutually orthogonal, and the
proof that their direct sum is the whole of the matrix
space.

The subspaces Fk,l are mutually orthogonal. Let
A P Fk,l and B P Fk1,l1 where either k ‰ k1 or
l ‰ l. By definition of the subspaces in question,
there exist M P Rd1

kˆd
2
l and N P Rd

1
k1
ˆd2

l1 such that
A “ XpkqMpY plqqJ and B “ Xpk

1
qNpY pl

1
qqJ.

We now compute the (Frobenius) inner product
between A and B in both cases.

Case 1: l ‰ l1, in which case by the assumption on
Y p1q, . . . Y plq, we have pY plqqJY pl

1
q “ 0 P Rd

2
lˆd

2
l1 .

Then,

xA,By “ Tr
´

XpkqMpY plqqJpXpk
1
qNpY pl

1
qqJqJ

¯

“ Tr
´

XpkqMpY plqqJY pl
1
qNJpXpk

1
qqJ

¯

“ Tr
´

XpkqM0NJpXpk
1
qqJ

¯

“ 0

Case 2: k ‰ k1

xA,By “ Tr
´

pXpk
1
qMpY plqqJqJXpkqNpY plqqJ

¯

“ Tr
´

Y plqMJpXpk
1
qqJXpkqMpY plqqJ

¯

“ Tr
´

Y plqMJ0MpY plqqJ
¯

“ 0,

as expected.
The direct sum is the whole of Rmˆn:

À

k,l Fk,l “ Rmˆn.
Let R P Rmˆn. For each column vector v P Rm

we have immediately v “
ř

kX
pkqpXpkqqJv by our

assumption on the X’s. Applying this to each column
of R, we have R “

ř

kX
pkqpXpkqqJR. Similarly,

R “
ř

lRY
plqpY plqqJ. Plugging the second equation

into the first one, we obtain

R “
ÿ

k

XpkqpXpkqqJR

R “
ÿ

k

XpkqpXpkqqJ
ÿ

l

RpY plqpY plqqJq

“
ÿ

k,l

Xpkq
”

pXpkqqJRY plq
ı

pY plqqJ

P
à

k,l

Fk,l,

as expected (this also proves equality (S.26)).

APPENDIX C
PROOF OF CONVERGENCE OF OUR OMIC

ALGORITHM

In this section, we prove Theorems II.1 and II.2. The
proofs rely mostly on adaptations of the techniques
from [5], together with extensive use of the rotational
invariance of the Frobenius and nuclear norms, as well
as the linear independence of the spaces corresponding
to each side information pairs.

Recall the optimization algorithm we propose to
solve is the following one (cf. equations (5))

min LpRΩ,M,Λq with (S.27)

LpRΩ,M,Λq “
ÿ

k,l

λk,l}M}˚

`
1

2

›

›

›

›

›

PΩpRq ´ PΩ

˜

K,L
ÿ

k“1,l“1

XpkqM pk,lqpY plqqJ

¸
›

›

›

›

›

Fr

,

where PΩ is the projection operator on the set
of observed entries: i.e., if an entry is not ob-
served, it is set to zero; if an entry is observed
p times, any Frobenius norm counts that entry p
times. Here, the output is pM pk,lqqkďK,lďL and Z “
řK,L
k“1,l“1X

pkqM pk,lqpY plqqJ.
First, let us finish the proof of the fully-known case:

Proof of Proposition II.1. Equation (10) follows
from the fact that M pk,lq in the decomposition
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is unique and determined by the formula
M pk,lq “ pXpkqqJZY plq. This itself follows
from the orthogonality of the side information
matrices after multiplying each side of equation (13)
by pXpkqqJ on the left and Y plq on the right. The
equivalence between the next two problems also
follows.

As to the fact that SΛpZq is the solution to
problem (12), let us first note that the case K “ L “ 1
with identity side information is just lemma 1 in [5].

Now, note that

}Z̃ ´ Z}2Fr

“
ÿ

k,l

}XpkqM pk,lqpY plqqJ ´XpkqM̃ pk,lqpY plqqJ}2Fr

“
ÿ

k,l

}M pk,lq ´ M̃ pk,lq}2Fr, (S.28)

where at the first equality, we have used the ortho-
gonality of the terms of the sum with respect to
the Frobenius inner product, at the second equal-
ity, we have used the rotational invariance of the
Frobenius norm. Here M̃ pk,lq “ pXpkqqJZY plq, so
that Z “

ř

k,lX
pkqM̃ pk,lqpY plqqJ.

Using this, we can reformulate the problem (12) as
follows:

min
ÿ

k,l

1

2
}Mk,l ´ pXpkqqJZY plq}2Fr

`

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
M pk,lq

›

›

›

˚
, (S.29)

which can be solved as KL independent optimization
problems, with the solution corresponding to index
pk, lq being given by M pk,lq “ Sλk,lppX

pkqqJZY plqq,
by an application of lemma 1 from [5]. The theorem
follows.

Then, let us dispose with the following straightfor-
ward observation:

Lemma C.1. The generalized singular value
thresholding operator SΛ satisfies, for any two
matrices Z1, Z2 P Rmˆn,

}SΛ pZ1q ´ SΛ pZ2q}Fr ď }Z1 ´ Z2}Fr , (S.30)

and in particular, SΛp .q is a continuous map.

Proof. This follows from the corresponding lemma
3 in [5], together with the definition of the operator
SΛ:

}SΛpZ1q ´ SΛpZ2q}
2
Fr

“

›

›

›

›

K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZ1Y
plq
¯

pY plqqJ

´

K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZ2Y
plq
¯

pY plqqJ
›

›

›

›

2

Fr

“

›

›

›

›

›

K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJpZ1 ´ Z2qY
plq
¯

pY plqqJ

›

›

›

›

›

2

Fr

“

K
ÿ

k“1

L
ÿ

l“1

›

›

›
Sλk,l

´

pXpkqqJpZ1 ´ Z2qY
plq
¯
›

›

›

2

Fr

ď

K
ÿ

k“1

L
ÿ

l“1

›

›

›
pXpkqqJpZ1 ´ Z2qY

plq
›

›

›

2

Fr

“ }Z1 ´ Z2}
2
Fr, (S.31)

where at the fourth line, we have used Lemma 3
from [5].

Now, let us define the quantity

QpA|Bq “
1

2
}PΩpRq ` PΩKpBq ´A}

2
Fr

`
ÿ

k,l

λk,l}pX
pkqqJAY plq}˚.

We have that the loss LpZq corresponding to a
matrix Z can be written QpZ|Zq. Furthermore, let
us define Zi`1 “ arg minZ QpZ|Z

iq (since this is
an instance of the fully known case, the solution is
unique and given by the operator SΛ above). We now
have the following lemma, which shows that the loss
decreases monotonically with i:

Lemma C.2. Define the sequence Zi by Zi`1 “

arg minZ QpZ,Z
iq (with any starting point, for in-

stance Z0 “ 0), which is equivalent to definition (14).
We have

LpZi`1q ď QpZi`1|Zkq ď LpZiq. (S.32)

Proof. The proof is almost the same as the proof of
Lemma 2 in [5]. We have

LpZiq
“ QpZi|Ziq

“
1

2
}RΩ ` PΩKpZ

iq ´ Zi}2Fr

`
ÿ

k,l

λk,l}pX
pkqqJZiY plq}˚

ě min
Z

1

2
}RΩ ` PΩKpZ

iq ´ Z}2Fr

`
ÿ

k,l

λk,l}pX
pkqqJZY plq}˚
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“ QpZi`1|Ziq

“
1

2
}pRΩ ´ PΩpZ

i`1q

` pPΩKpZ
iq ´ PΩKpZ

i`1qq}2Fr

`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“
1

2

›

›pRΩ ´ PΩpZ
i`1q

›

›

2

Fr

`
1

2

›

›pPΩKpZ
iq ´ PΩKpZ

i`1qq
›

›

2

Fr

`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

ě
1

2

›

›pRΩ ´ PΩpZ
i`1q

›

›

2

Fr

`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“ QpZi`1, Zi`1q “ LpZi`1q. (S.33)

Next, we have the following lemma:

Lemma C.3. The sequence }Zi ´ Zi´1}Fr is mono-
tone decreasing:

}Zi ´ Zi`1}Fr ď }Z
i ´ Zi´1}Fr. (S.34)

Furthermore,

Zi ´ Zi`1 Ñ 0 as iÑ8. (S.35)

Proof. We have

}Zi ´ Zi`1}2Fr

“ }SΛ

`

PΩKpZ
i´1q `RΩ

˘

´ SΛ

`

PΩKpZ
iq `RΩ

˘

}2Fr

ď }
`

PΩKpZ
i´1q `RΩ

˘

´
`

PΩKpZ
iq `RΩ

˘

}2Fr

By Lemma C.1

“ }PΩKpZ
i´1q ´ PΩKpZ

iq}2Fr (S.36)

ď }Zi ´ Zi´1}2Fr, (S.37)

which proves the first statement (S.34).
As for the second statement (S.35), it will follow

from the following two claims:
Claim 1: PΩpZ

i´Zi`1q Ñ 0. Claim 2: PΩKpZ
i´

Zi`1q Ñ 0.
Proof of Claim 1: Note that by inequality (S.34), the

sequence }Zi ´Zi`1}Fr must converge. In particular,
}Zi ´ Zi`1}Fr ´ }Zi ´ Zi´1}Fr Ñ 0, and by
inequalites (S.36) and (S.37),

}PΩKpZ
i´1q ´ PΩKpZ

iq}Fr ´ }Z
i ´ Zi´1}Fr Ñ 0,

from which we conclude that

}PΩpZ
iq ´ PΩpZ

i`1q}2Fr Ñ 0.

Claim 1 follows.
Proof of Claim 2: We know by inequality (S.32) that

LpZiq must converge, and thus LpZiq´LpZi`1q Ñ 0,
from which it follows that

QpZi`1|Ziq ´QpZi`1|Zi`1q Ñ 0. (S.38)

Now,

QpZi`1|Ziq ´QpZi`1|Zi`1q

“
1

2
}RΩ ` PΩKpZ

iq ´ Zi`1}2Fr

`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

´
1

2
}RΩ ` PΩKpZ

i`1q ´ Zi`1}2Fr

´
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“
1

2
}PΩKpZ

i`1q ´ PΩKpZ
iq}2Fr, (S.39)

which, together with (S.38), implies claim 2.

The next step is to prove that each limit point
of the sequence Zi is a solution to the optimization
problem (5). To prove this, we will need the following
lemma:

Lemma C.4. Let Zni Ñ Z8 be a convergent
subsequence of Zi.

Let pni P B
ř

k,l }pX
pkqqJZiY plq}˚ be a sequence

of subgradients of our regularizer
ř

k,l }M
pk,lq}˚ eval-

uated at Zi. There exists a convergent subsequence
of pmi which converges to some

p P B
ÿ

k,l

}pXpkqqJZ8Y plq}˚,

a subgradient of our regularizer, evaluated at the limit
Z8.

Proof. First, recall from [32] and [5] that the set of
subgradients of the nuclear norm of a matrix A is
given by

B}A}˚ “
 

UV J `W,UJW “ 0 “ VWJ, }W }σ ď 1
(

,

where UDV J is the SVD of the matrix A. Using
the chain rule and the fact that the side information
matrices Xpkq, Y plq are constant, we can calculate the
set of subgradients of our regularizer evaluated at both
Zi and Z8 as follows:

B
ÿ

k,l

}pXpkqqJZiY plq}˚ (S.40)

“

#

ÿ

k,l

U ik,lpV
i
k,lq

J `W i
k,l, pU

i
k,lq

JW i
k,l “ 0,
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W i
k,lV

i
k,l “ 0, }W i

k,l}σ ď 1

+

and

B
ÿ

k,l

}pXpkqqJZiY plq}˚ (S.41)

“

#

ÿ

k,l

Uk,lV
J
k,l `Wk,l, U

J
k,lWk,l “ 0,

Wk,lVk,l “ 0, }Wk,l}σ ď 1

+

,

where Uk,lDk,lV
J
k,l (resp. U ik,lD

i
k,lpV

i
k,lq

J) is the
singular value decomposition of pXpkqqJZ8Y plq(resp.
pXpkqqJZiY plq).

By compactness, there exists a subsequence mi

of ni such that Wmi converges to a value W .
By continuity of the spectral norm, we also have
}W }˚ ď 1. Furthermore, it follows from the con-
vergence of Zni (and in particular, of Zmi) to Z8

that
ř

k,l U
mi
k,l pV

mi
k,l q

J Ñ
ř

k,l Uk,lpVk,lq
J. The result

follows.

Proposition C.5. Every limit point of the se-
quence pZiqiPN defined in (14) is a stationary
point of the loss function LpZq “ 1

2}Z̃ ´ Z}2Fr `
řK
k“1

řL
l“1

›

›pXpkqqJZY plq
›

›

˚
defined in (11). Hence,

it is also a solution to the fixed point equation

Z “ SΛ pRΩ ` PΩKpZqq . (S.42)

Proof. Let Z8 be such a limit point. There exists a
subsequence Zni such that Zni Ñ Z8.

By Lemma C.3 ,we have Zni ´Zni´1 Ñ 0, which
by continuity of the operator SΛ implies that

RΩ ` PΩKpZ
ni´1q ´ Zni Ñ RΩ ´ PΩpZ

8q.
(S.43)

Now, note that by definition of Zi,

@i, 0 P BQpZ|Zi´1q

“ ´pPΩpRq ` PΩpZ
i´1q ´ Ziq

` B
ÿ

k,l

}pXpkqqJZiY plq}˚.

Thus, we can choose, for all i, a pi P

B
ř

k,l }pX
pkqqJZiY plq}˚ such that pi ´ pPΩpRq `

PΩpZ
i´1q ´ Ziq “ 0. Now, by Lemma C.4, there

exists a subsequence Zmi of Zni such that pmi Ñ p
for some

p P B
ÿ

k,l

}pXpkqqJZ8Y plq}˚. (S.44)

Putting equations (S.43) and (S.44) together, we
obtain

0 “ pmi ´ pPΩpRq ` PΩpZ
mi´1q ´ Zmiq

Ñ p´RΩ ´ PΩpZ
8q. (S.45)

Thus, 0 is a subgradient of L evaluated at Z8. The
first statement of the Proposition follows.

As for the second statement, note that

Zmi “ SΛ

`

RΩ ` PΩKpZ
mi´1q

˘

. (S.46)

Furthermore, by Lemma C.3, Zmi ´ Zmi´1 Ñ 0,
and therefore Zmi´1 Ñ Z8. Thus, using the con-
tinuity of the generalized singular value thresholding
operator, we obtain by passing to the limits in (S.46):

Z8 “ SΛ pRΩ ` PΩKpZ
8qq , (S.47)

as expected.

Proof of Theorem II.1. In Proposition C.5, we have
already proved that any limit point of the sequence
pZiqiPN (defined in equation (14)) is a stationary point
of the loss function, and therefore a solution to the
optimization problem (5). Thus, the only thing left to
prove is that the sequence pZiqiPN converges: indeed,
if that is the case, its limit will be its (only) limit
point, and will be a solution to problem (5).

Let us first dispense with the following simple
observation: by Lemma C.2, for any i, we have

LpZiq ď LpZ0q. (S.48)

Since the objective function L is a continuous function
of the matrix Z, the set of matrices Z satisfying
equation (S.48) is compact. Thus, by compactness,
there exists at least one limit point Z̄.

Now, by the continuity of SΛ and the definition of
Zi, we have, for any i:

} sZ ´ Zi}2Fr

“
›

›SΛ

`

RΩ ` PΩKp
sZq
˘

´ SΛ

`

RΩ ` PΩKpZ
i´1q

˘
›

›

2

Fr

ď
›

›

`

RΩ ` PΩKp
sZq
˘

´
`

RΩ ` PΩKpZ
i´1q

˘
›

›

2

Fr

“ }PΩKp
sZ ´ Zi´1q}2Fr ď }

sZ ´ Zi´1}2Fr, (S.49)

where at the first line, we have used Proposition C.5
and the definition of Zi.

We will now show that the sequence pZiqiPN
actually converges to sZ. To do this, we proceed by
contradiction. Assume Zi doesn’t converge towards
Z̄. By definition of convergence, this implies that
there must exist an ε˚ ą 0 such that there exists an
infinite subsequence ZI1 , ZI2 , . . . such that for all i,
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}ZIi´ sZ}Fr ě ε˚. Since the subsequence ZI1 , ZI2 , . . .
is contained in the compact set

Cε˚ :“
 

Z : LpZq ď LpZ0q ^ }ZIi ´ Z̄}Fr ě ε˚
(

,

it must have a limit point rZ P Cε˚ inside that set. In
particular, we have

} rZ ´ sZ}Fr ě ε˚ (S.50)

Set ε “ ε˚
3 . Since sZ is a limit point of pZiqiPN,

there certainly exists an index k such that

}Zk ´ sZ}Fr ď ε. (S.51)

Since rZ is also a limit point of pZiqiPN (specifically, a
limit point of the subsequence pZIiqiPN), there exists
an index l such that l ą k and

}Zl ´ rZ}Fr ď ε. (S.52)

On the other hand, since l ą k by iteratively applying
equation (S.49) l ´ k times, we obtain:

} sZ ´ Zl}Fr ď } sZ ´ Z
k}Fr ď ε, (S.53)

where the last inequality follows from equation (S.51).
Now, by equations (S.53) and (S.52) and the

triangle inequality, we obtain:

} rZ ´ sZ}Fr ď } rZ ´ Z
l}Fr ` }Z

l ´ sZ}Fr (S.54)

ď ε` ε “ 2ε “
2ε˚
3
ă ε˚, (S.55)

which is in contradiction with equation (S.50). Thus,
we deduce by contradiction that Zi indeed converges
to its only limit point sZ (which we refer to as Z8 in
the rest of the appendix). As explained at the beginning
of the proof, this, together with Proposition C.5,
implies Theorem II.1, as required.

We can now proceed with the proof of our The-
orem II.2 on the worst-case convergence.

Proof of Theorem II.2. The proof is exactly the same
as that of theorem 2 in [5] (and also takes inspiration
from [33]), and we reformulate it into our notation
here for the sake of completeness only.

For θ P r0, 1s, we write Zipθq for p1´θqZi`θZ8.
Note that by convexity of our loss function L, we
have LpZipθqq ď p1´ θqLpZiq ` θLpZ8q.

Note also that we have

}PΩKpZ
i ´ Zipθqq}2Fr “ θ2}PΩKpZ

i ´ Z8q}2Fr

ď θ2}Zi ´ Z8}2Fr ď θ2}Z0 ´ Z8}2Fr, (S.56)

where we have used Lemmas C.3 and C.1.

Using these facts and the definition in the construc-
tion of the sequence Zi, we can derive the following
key inequalities:

LpZi`1q

“ min
Z

„

LpZq ` 1

2
}Z ´ Zi}2Fr



ď min
θPr0,1s

„

LpZipθqq ` 1

2
}Zipθq ´ Zi}2Fr



ď min
θPr0,1s

«

LpZiq ` θpLpZ8q ´ LpZiqq (S.57)

`
1

2
θ2}Z0 ´ Z8}2Fr

ff

.

The last expression is minimised for θ “ θi where

θi “ min

ˆ

LpZiq ´ LpZ8q
}Z0 ´ Z8}2Fr

, 1

˙

. (S.58)

(If }Z0´Z8}2Fr “ 0, then Zi “ Z8 @i and there
is nothing to prove.)

Recall also that θi is a decreasing sequence (cf.
Lemma C.2): if θi ď 1, then θj ď 1 @j ą i.
Suppose θ0 “ 1. Then, plugging this back into
equation (S.57), we obtain:

LpZ1q ´ LpZ8q ď 1

2
}Z0 ´ Z8}2Fr, (S.59)

and therefore θ1 ď 1
2 . Thus, in all cases, θi ă

1 @i ě 1. Note also that if θ0 “ 1, inequality (15)
is satisfied (this follows from inequality (S.59)).

Now, for i ě 1, we can just use the explicit
expression (S.58) for θ, which, plugged back into
equation (S.57), gives:

LpZi`1q ´ LpZiq ď ´pLpZ
iq ´ LpZ8qq2

2}Z0 ´ Z8}2Fr

. (S.60)

Now, writing αi for pLpZiq ´ LpZ8qq (which is a
decreasing sequence, as shown by Lemma C.3) and
using the above expression, we obtain

αi ě
α2
i

2}Z0 ´ Z8}2Fr

` αi`1

ě
αiαi`1

2}Z0 ´ Z8}2Fr

` αi`1, (S.61)

which yields:

α´1
i`1 ě

1

2}Z0 ´ Z8}2Fr

` α´1
i . (S.62)
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Summing both sides for the index running from 1 to
i´ 1, we obtain:

α´1
i ě

i´ 1

2}Z0 ´ Z8}2Fr

` α´1
1 . (S.63)

Since θ1 ă 1, by definition of θ1, we obtain
α1

2}Z0´Z8}2Fr
ď 1

2 . Plugging this back into equa-
tion (S.63), we obtain:

α´1
i ě

i´ 1

2}Z0 ´ Z8}2Fr

` α´1
1

ě
i´ 1

2}Z0 ´ Z8}2Fr

`
1

}Z0 ´ Z8}2Fr

“
i` 1

2}Z0 ´ Z8}2Fr

,

which yields inequality (15) after inverting both sides.

Remark: We use the notation Z8 to refer to the
limit of the sequence of iterates, instead of referring
to ’the solution Z˚ of the optimization problem (5)’
because the solution is not necessarily unique and Z8

may actually depend on the initialization. Indeed, the
optimization problem (5) is convex but not strongly
convex. Thus, there can be several solutions, but each
of them corresponds to the same value of the objective
function. To check that the specific problem (5) can
indeed have several equivalent solutions, consider the
following example. Xp1q “ Y p1q “ Id (so that our
algorithm coincides with Softimpute), m “ n “ 2,
and let the observed entries be R2,1 “ R1,2 “ 1
(thus, Ω “ tp2, 1q; p1, 2qu. Here are three equivalent
solutions to the optimization problem with regularising
parameter λ:

A´ “

ˆ

λ´ 1 1´ λ
1´ λ λ´ 1

˙

;

A` “

ˆ

1´ λ 1´ λ
1´ λ 1´ λ

˙

; and

A0 “

ˆ

0 1´ λ
1´ λ 0

˙

.

In all three cases, the nuclear norm is 2´ 2λ, and
the value of the objective function is λp2 ´ 2λq `
1
2 pλ

2 ` λ2q. It is also easy to check that those are
actually solutions of (5) because performing any extra
iteration of the algorithm yields the same matrix: for
A0, after the imputation step we get the target
ˆ

0 1
1 0

˙

“ 1ˆ

ˆ

0
1

˙

`

1 0
˘

` 1ˆ

ˆ

1
0

˙

`

0 1
˘

,

where the second line is the SVD. It is clear from
the SVD that applying the singular value thresholding
operator will return the matrix A0. Thus, the algorithm
converges exactly to A0 in one (zero) iteration(s).

For A`, note that after the imputation step we get
the target

ˆ

1´ λ 1
1 1´ λ

˙

“ p2´ λq ˆ

ˆ

1{
?

2

1{
?

2

˙

`

1{
?

2 1{
?

2
˘

` λˆ

ˆ

´1{
?

2

1{
?

2

˙

`

1{
?

2 ´1{
?

2
˘

,

and it is clear that after applying the SVT operator
we obtain

p2´ 2λq ˆ

ˆ

1{
?

2

1{
?

2

˙

`

1{
?

2 1{
?

2
˘

“

ˆ

1´ λ 1´ λ
1´ λ 1´ λ

˙

“ A`,

as expected. A similar calculation shows that A´ is
also a solution.

APPENDIX D
COMPLEXITY AND RUNTIME ANALYSIS

Runtime analysis of SVT operations in Alg. 1:
Whilst Algorithms 1 and 3 theoretically require KL
SVD operations, in many instances of our model
class (including BOMIC, OMIC+ and BOMIC+) most
of the svd calculations are actually trivial. Indeed,
consider the target matrix T “ PΩJpZ

oldq`RΩ. Note
that M pk,lq :“ pXpkqqJTY plq is a dpkq1 ˆ d

plq
2 matrix.

For instance, if dpkq1 “ 1 or dplq2 “ 1 (cf. BOMIC+,
k “ 1 or l “ 1), this matrix is a vector, making the
computation of an SVD unnecessary. In fact, for any
combination pk, lq such that dpkq1 ` d

plq
2 is small, it is

easy to compute the small matrix pXpkqqJTY plq and
perform its SVD through standard methods.

Figure 5 is a graph which compares the runtimes
of SVD calculations in Softimpute and our al-
gorithm 1. For each datapoint, we randomly selec-
ted a matrix with the following parameters rank P
t5, 6, ¨ ¨ ¨ , 10u;m P t100, 101, ¨ ¨ ¨ , 1000u; d

p1q
1 “

d
p1q
2 P t2, 3, ¨ ¨ ¨ , r0.1msu. More specifically,

the users and items were each divided into
d
p1q
1 “ d

p1q
2 communities and the matrices

Xp1q, Xp2q, Xp3q, Y p1q, Y p2q, Y p3q were constructed
according to the standard procedure for BOMIC+ (see.
Subsection II-D). The matrices M pk,lq were chosen
with iid Gaussian entries.



24

Figure 5: Runtime comparison of main computations
required for one iteration of Softimpute and OMIC.
The red line is the identity.

We then compared, on the one hand (left part of
the figure) the following two operations:

1 Performing the SVD of the full matrix R “
ř

k,lX
pkqM pk,lqpY pkqqJ,

2 Performing the SVDs of all nine matrices M pk,lq

for k, l ď 3;
and on the other hand (right part of the figure), the
following two operations:

1 One full iteration of the Softimpute algorithm,
including imputation and singular value threshold-
ing operator.

2 One full iteration of our algorithm, including the
imputation and the application of the generalized
singular value thresholding operator.

As we can see from the figure, the computational
burden of all 9 SVDs required in our algorithm is not
significantly bigger than that of the single SVD re-
quired in the SoftImpute implementation. Furthermore,
although one full iteration of our algorithm is slower
than one full iteration of the softimpute algorithm due
to extra multiplication steps, this appears to be the
case only by a small constant factor.
Formal complexity analysis: We provide an efficient
implementation for the special cases BOMIC, OMIC+,
and BOMIC+. In those three cases, the number of
iterations required at each step of both Algorithm 3 as
well as the SVD calculation (Algorithm 2) depend on
the many practicalities related to various warm starts
applied in both cases. However, it is possible to write
down the complexity of performing one iteration.

At each iteration of Algorithm 3, the key step is
the SVT operation using Algorithm 2 (the only other
operation being an assignment of Op|Ω|q entries). For
each iteration inside Algorithm 2, the complexity can
be computed from the following operations which are
each required a fixed number of times (here as usual,
r is the fixed maximum rank set as a hyperparameter):

‚ Multiplying each column of a matrix in Rmˆr
or Rnˆr by a different constant (e.g. line 12,17).
Cost: Oppm` nqrq.

‚ Computing the SVD of a Rmˆr or Rnˆr matrix
(e.g., lines 16,26). Cost: Opr3 ` pm` nqr2q.

‚ Performing projections onto the spaces corres-
ponding to Xpkq or Y plq via the procedure from
line 1. Cost: Opm` nq.

‚ Multiplying r vectors by the current target (see
lines 14,19, 24). Cost: Op|Ω|r ` pm` nqr2q.

Since r ď m ` n, this yields an overall complexity
of OpKLr|Ω|r ` pm ` nqr2sq. Note that KL ď 9,
so that the complexity is Op9r|Ω|r ` pm` nqr2sq “

Op|Ω|r ` pm ` nqr2q, the same as the SoftImpute
algorithm [5].

APPENDIX E
PROOFS OF GENERALIZATION BOUNDS

Notation: In this section, we assume the entries are
sampled with i.i.d. noise, so that observations of entry
Ri,j are of the form Ri,j ` δi,j for δi,j „ ∆i,j for
some noise distribution ∆i,j

8. Thus, N i.i.d. obser-
vations indexed by α P t1, 2, . . . , Nu are denoted by
Riα,jα ` δα where piα, jαq is the α’th i.i.d. choice of
entry, and each δα is drawn from ∆iα,jα independently.
The loss function ` : R ˆ R Ñ R` is bounded
by a constant B, with Lipschitz constant bounded
by L`

9. For all k ď K, l ď L, i ď m, j ď n,
we will write xki (resp. ykj ) for the ith row (resp.
jth column) of the matrix Xpkq (resp. Y plq ), X pkq
for maxmi“1 }x

k
i }2 “ maxmi“1 }X

pkq
i, . }2 and Yplq for

maxni“1 }y
l
i}2. For a predictor f : t1, 2, . . . ,mu ˆ

t1, 2, . . . , nu Ñ R, we will write Rpfq for the expec-
ted risk Epi,jq„Dp`pfpi, jq, Ri,j ` δi,jq and R̂pfq for
the empirical risk p1{Nq

řN
α“1 `pfpi, jq, Riα,jα`δαq.

Table (II) summarizes all the notations used in this
appendix and in the paper.

A. Proof of bounds in the distribution-free case

First, let us recall the following lemma from [17],
[34].

Lemma E.1. Let ` be a loss function bounded by B
and with Lipschitz constant bounded by L. Suppose
we are given a matrix R P Rmˆn, which is observed

8Furthermore, Ri,j and ∆i,j are defined so that Ri,j “

arg miny Eδi,j p`pRi,j ` δi,j , yqq.
9These conditions are satisfied, for instance, for a hinge loss

which could be used to estimate the probability of predicting within
a given accuracy, or for the squared loss if one additionally assumes
a fixed upper bound on all entries and predictions (which is a
reasonable assumption in practice).
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with i.i.d. noise, so that observing entry pi, jq results
in an output of Ri,j ` δ where δ „ ∆i,j where
the ∆i,j are distributions. Let FM be the set of
matrices R̃ with }R̃}˚ ď M. Let us write the data-
dependent Rademacher complexity for N samples
indexed by α P t1, 2, . . . , Nu by RN pFMq “

E
´

supR̃PFM
1
N

řN
α“1 σα`pRpiα,jαq ` δα, R̃q

¯

,
where the σα are independent Rademacher random
variables, and the piα, jαq are entries sampled
independently.

We have the following bound on the expected
complexity R “ EΩpRN pFMqq:

R “ EΩpRN pFMqq ď

c

9MBCLp
?
d1 `

?
d2q

N
.

Here, C is the universal constant from [35].

Using this, we can show the following lemma for
side information by absorbing the variation between
entries corresponding to the same communities into
the "noise" of an auxiliary problem to which we apply
Lemma E.1.

Lemma E.2. Let X P RmˆA and Y P RnˆB be aux-
iliary matrices whose columns are indicator functions
of distinct sets forming partitions tc1, c2, . . . , cAu
and ts1, . . . , sBu of t1, 2, . . . , nu and t1, 2, . . . ,mu
respectively. Set t ą 0 and consider the function
class Ft :“

 

XMY J
ˇ

ˇ}M}˚ ď t
(

. The Rademacher
complexity FN pFtq satisfies

RN pFtq ď

g

f

f

e

9tCCL
”?

a`
?
b
ı

N
.

In particular, if we consider instead Gt :“
 

XMY J
ˇ

ˇ rankpMq ď r
(

, we obtain:

RN pGtq ď

g

f

f

e

9
?
CabrBCL

”?
a`

?
b
ı

N
,

where C is a bound on the predicted entries.

Proof. This follows from Lemma E.1 applied to the
modified problem where for u ď A, v ď B, the
observations Ru,v are distributed according to the
distribution of Ri,j ` δi,j where pi, jq is drawn from
D conditioned on i P cu, j P cv (note that Lemma E.1
allows for the observations of Ri,j to be perturbed by
random variables with distributions ∆i,j conditioned
on pi, jq, the differences between the values of the
ground truth matrix at different pairs pi, jq where the
communities of i and j are fixed can be absorbed into
this perturbation).

Proposition E.3. Let A P Rmˆn be a matrix and let
v P Rm and w P Rn be two vectors. We have

}vwJ dA}˚ ď max
i,j
|vi||wj |}A}˚ (S.64)

where d denotes the Hadamard (entry wise) product.

Proof. By an equivalent formulation of the nuclear
norm A.1 (see. also [31])

}vwJ dA}˚

“ min
`

}B}Fr}C}Fr

ˇ

ˇ

BCJ “ vwJ dA
˘

ď min
`

}diagpvqB}Fr} diagpwqC}Fr

ˇ

ˇ

diagpvqBpdiagpwqCqJ “ vwJ dA
˘

“ min
`

}diagpvqB}Fr} diagpwqC}Fr

ˇ

ˇ

pvwJq d pBCJq “ vwJ dA
˘

ď min
`

}diagpvqB}Fr} diagpwqC}Fr

ˇ

ˇ

BCJ “ A
˘

ď min
`

max
i
|vi|}B}Fr max

j
|wj |}diagpwqC}Fr

ˇ

ˇ

BCJ “ A
˘

“ max
i,j
|vi||wj |}A}˚,

as expected.

We are now in a position to present the main result.

Theorem E.1. Consider the OMIC+ setting from
Section II-C (in particular, K “ L “ 2). Let
K denote the maximum ratio between the sizes of
any two user or item communities. Choose some
Mk,l and Ck,l such that }Rpk,lq}˚ ď Mk,l and
maxi,j |R

pk,lq
i,j | ď Ck,l for all pk, lq. Let f̂ be the

solution to the optimization problem

min R̂pfq s.t. @k, l,

f “
ÿ

k,l

pXpkqM pk,lqpY plqqJq; }M pk,lq}˚ ďMk,l;

and }XpkqM pk,lqpY plqqJ}8 ď Ck,l @k, l, j, i
(S.65)

With probability ě 1´ δ over the draw of the train-
ing set, the solution to the optimization problem (S.65)
satisfies

Rpf̂q ď 2L`

c

9C
N

ˆ

1
?
c

a

C1,1M1,1

”?
a`

?
b
ı1{2

`
1
4
?
c

a

C1,2M1,2

“?
a`

?
n
‰1{2

`
1
4
?
c

a

C2,1M2,1

”?
m`

?
b
ı1{2
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`
a

C2,2M2,2

“?
m`

?
n
‰1{2

˙

` 2B

c

logp1{δq

2M
` E . (S.66)

Expressed in terms of matrix ranks instead, we
obtain:

Rpf̂q ď 2L`

c

9C
N

ˆ

?
KC1,1

4
a

abr1,1

”?
a`

?
b
ı1{2

`
4
?
KC1,2

4
?
anr1,2

“?
a`

?
n
‰1{2

`
4
?
KC2,1

4
a

mbr2,1

”?
m`

?
b
ı1{2

` C2,2
4
?
mnr2,2

“?
m`

?
n
‰1{2

˙

` 2B

c

logp1{δq

2M
` E . (S.67)

(Here C is an absolute constant and c is the number
of elements in the smallest community. )

Proof. For convenience we prove a slightly more
general result where c1 (resp. c2) is the size of the
smallest community of users (resp. items). Let X 1

and Y 1 denote matrices whose columns are the (non-
normalised) indicator functions of the communities.
By Lemma E.1, the Rademacher complexity of the
function class “ tX 1MpY 1qJ|}M}˚ ď M1,1 ^

}X 1MpY 1qJ}8 ď C1,1u is bounded by
d

C1,1
9M1,1Cp

?
a`

?
bq

N
.

Now observe that by Lemma E.3, the function class

F1,1 :“ tXMpY qJ|}M}˚ ďM1,1

^ }Xp1qMpY p1qqJ}8 ď C1,1u

satisfies

F1,1 Ă tX
1M 1pY 1qJ|}M 1}˚ ďM1,1c

´1{2
1 c

´1{2
2

^ }X 1M 1pY 1qJ}8 ď C1,1u,

where c1 (resp. c2) is the size of the smallest com-
munity of users (resp. items). It follows that

RpF1,1q ď
1

4
?
c1c2

d

C1,1
9M1,1Cp

?
a`

?
bq

N
.

By the same argument applied to the two
situations where each user or item is a
single community, we obtain the following
results for F1,2 :“ tXp1qMpY p2qqJ|}M}˚ ď

M1,2 ^ }Xp1qMpY p2qqJ}8 ď C1,2u,
F2,1 :“ tX2MpY 1qJ|}M}˚ ď

M2,1 ^ }Xp2qMpY p1qqJ}8 ď C2,1u

and F2,2 :“ tXp2qMpY p2qqJ|}M}˚ ď

M2,2 ^ }X
p2qMpY 2qJ}8 ď C2,2u:

RpF1,2q ď

RpĄF1,2q ď
1

4
?
c1

c

C1,2
9M1,2Cp

?
a`

?
nq

N
;

RpF2,1q ď

RpĄF2,1q ď
1

4
?
c2

d

C2,1
9M2,1Cp

?
m`

?
bq

N
;

and

RpF2,2q ď

RpĄF2,2q ď

c

C2,2
9M2,2Cp

?
m`

?
nq

N
;

after noting that F1,2 Ă rF1,2 :“
tXp1qMpỸ p2qqJ|}M}˚ ď M1,2 ^

}Xp1qMpỸ p2qqJ}8 ď C1,2u “ tXp1qM |}M}˚ ď
M1,2 ^ }Xp1qM}8 ď C1,2u; F2,1 Ă
rF2,1 :“ tX̃p2qMpY p2qqJ|}M}˚ ď M2,1 ^

}X̃p2qMpY p2qqJ}8 ď C2,1u “ tMpY 2qJ|}M}˚ ď
M2,1 ^ }MpY p2qqJ}8 ď C2,1u; and
F2,2 Ă rF2,2 :“ tM |}M}˚ ďM2,2^}M}8 ď C2,2u.
Here X̃p1q “ Xp1q is a matrix whose columns are
the (non normalised) indicator functions of the
communities, and X̃p2q and Ỹ p2q are identity
matrices.

By the subadditivity of Rademacher complexity,
Talagrand’s lemma and the classic Rademacher the-
orem then immediately yield the first result:

Rpf̂q ď 2B

c

logp1{δq

2M
` E`

2L` rRpF1,1q `RpF1,2q `RpF2,1q `RpF2,2qs

ď 2L`

c

9C
N

ˆ

1
?
c

a

C1,1M1,1

”?
a`

?
b
ı1{2

`
1
4
?
c

a

C1,2M1,2

“?
a`

?
n
‰1{2

`
1
4
?
c

a

C2,1M2,1

”?
m`

?
b
ı1{2

`
a

C2,2M2,2

“?
m`

?
n
‰1{2

˙

` 2B

c

logp1{δq

2M
` E . (S.68)

Regarding the second result, note that since the
entries of M1,1 are bounded by C1,1c̄ where c̄ is the
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size of the largest community, we have }M1,1} ď

c̄C1,1

a

abr1,1, }M1,2} ď
?
c̄C1,2

?
anr1,2, }M2,1} ď?

c̄C2,1

a

mbr2,1 and }M2,2}˚ ď C2,2
?
mnr2,2.

Plugging this back into the first result yields the second
result, as expected.

If we set the number of user and item communities
to one, we obtain the BOMIC model. Furthermore,
results can also be similarly extended to the BOMIC+
model, obtaining the full theorem below.

Theorem E.2. For the BOMIC algorithm from Sub-
section II-B, with probability ě 1´ δ over the draw
of the training set, we have

Rpf̂q ď 2L`

c

9C
N

ˆ

C1,1 ` C1,2
4
?
n
“

1`
?
n
‰1{2

` C2,1
4
?
m
“?
m` 1

‰1{2

` C2,2
4
?
mnr2,2

“?
m`

?
n
‰1{2

˙

` 2B

c

logp1{δq

2M
` E . (S.69)

For the BOMIC+ algorithm from Subsection II-B,
with probability ě 1´ δ over the draw of the training
set, we have

Rpf̂q ď 2L`

c

9C
N

ˆ

C1,1

` C1,2
4
?
b
”

1`
?
b
ı1{2

` C2,1
4
?
a
“

1`
?
a
‰1{2

` C2,2
4
a

abr2,2

”?
a`

?
b
ı1{2

` C1,3
4
?
n
“?
n` 1

‰1{2
` C3,1

4
?
m
“?
m` 1

‰1{2

` C2,3
4
?
anr2,3

“?
a`

?
n
‰1{2

` C3,2
4
a

bmr3,2

”?
m`

?
b
ı1{2

` C3,3
4
?
mnr3,3

“?
m`

?
n
‰1{2

˙

` 2B

c

logp1{δq

2M
` E . (S.70)

B. Bounds under the assumption of uniform marginals

In this section, we prove bounds assuming that the
sampling distribution has the probability that each row
and each column each have equal probability of being
sampled.

Proposition E.4. Let FM be the class of functions
R P Rmˆn : }R}˚ ďM, where as usual wlog m ě n
and we also assume m ě 3. Further assume that the

sampling distribution has uniform marginals. We have
the following bound on the expected Rademacher
complexity of F:

EpRN pFqq ď 20pM{
?
nq

c

logpmq

N
. (S.71)

Proof. Writing x1, . . . , xN for the iid samples from
t1, 2, . . . ,mu ˆ t1, 2, . . . , nu, σ1, . . . , σN for the
Rademacher variables and Σ for the matrix with
Σi,j “

ř

k σk1xk“pi,jq, we have by the duality of
the trace norm

EpRN pFqq “ Ex,σ
1

N
sup
RPF

pxR,Σyq

ď
M
N

Ep}Σ}q. (S.72)

Note that σ “
řN
k“1Xk where Xk “ σk1xk .

Note also that the EpXkX
J
k q (resp. EpXJk Xkq) is

a diagonal matrix whose ith entry is the sampling
probability of the ith row (resp. column). Thus, by
our uniform marginal assumption, we have using
the notation from proposition F.3 ρk “

a

1{n and
σ “

a

N{n.
Thus, by the Bernstein inequality in expectation

(proposition F.3), we can continue, assuming without
loss of generality that m ě 2 and N ě m logpmq:

EpRN pFqq

ď
M
N

“

a

8{3σp1`
a

logpm` nqq

`
8

3
p1` logpm` nqq

‰

ď
M
N

“

a

8{3σp1`
a

2 logpmqq

`
8

3
p1` 2 logpmqq

‰

ď
M
N

“

a

8{3σ
a

logpmqp1{
a

logp2q `
?

2q

`
8

3
p1{

a

logp2q ` 2qσ
a

logpmq
‰

ď 20σpM{Nq
a

logpmq

ď
20pM{

?
nq
a

logpmq
?
N

, (S.73)

as expected.

Theorem E.3. Consider the community side informa-
tion setting of Section II-C (OMIC+, in particular,
K “ L “ 2). Let K denote the maximum ratio
between the sizes of any two user or item com-
munities. Assume that the sampling distribution has
uniform marginals. Choose some Mk,l such that
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}Rpk,lq}˚ ďMk,l for all pk, lq. Let f̂ be the solution
to the optimization problem

min R̂pfq s.t. @k, l,

f “
ÿ

k,l

pXpkqM pk,lqpY plqqJq; }M pk,lq}˚ ďMk,l.

(S.74)

In expectation over the draw of the training set, the
solution to the optimization problem (S.74) satisfies

EpRpf̂qq (S.75)

ď
40L`
?
N

«

1

c

M1,1
?
a

a

logpbq `
1
?
c

M1,2
?
a

a

logpmq

`
1
?
c

M2,1
?
b

a

logpnq `
M2,1
?
n

a

logpmq

ff

` E .

Expressed in terms of the ranks and maximum sizes of
the entries rk,l, Ck,l, chosen to satisfy the feasibility
condition rankpRk,lq ď rk,l and }Rpk,lq}8 ď Ck,l,
we have

EpRpf̂qq (S.76)

ď
40L`
?
N

«

KC1,1

b

br1,1 logpbq

`
?
KC1,2

b

mr1,2 logpmq

`
?
KC2,1

b

nr2,1 logpnq

` C2,2

b

mr2,2 logpmq

ff

` E .

Proof. The proof is similar to that of Theorem E.1.
Let ` ˝F be the loss function class associated with

the first problem.
By the Talagrand Lemma and the subadditivity of

Rademacher complexity, we have

Rp` ˝ Fq (S.77)
ď 2L` rRpF1,1q `RpF1,2q `RpF2,1q `RpF2,2qs ,

where Fk,l :“ tXMpY qJ|}M}˚ ďMk,lu.
Next, note, similarly to the proof of Theorem E.1,

that

F1,1 Ă ĄF1,1 :“

t rX1M 1prY 1qJ|}M 1}˚ ďM1,1c
´1{2
1 c

´1{2
2 u,

and thus, by Proposition E.4,

RpF1,1q ď RpĄF1,1q ď
20

?
N
?
c1c2

M1,1
?
a

a

logpbq,

(S.78)

with similar results for the other terms.
Plugging this into equation (S.77) yields the first

result. The final result then follows after noting
that }M1,1}˚ ď

?
c̄1c̄2C1,1

a

abr1,1, }M1,2}˚ ď
?
c̄1C1,2

?
anr1,2, }M2,1}˚ ď

?
c̄2C2,1

a

mbr1,1, and
}M2,2}˚ ď C2,2

?
mnr1,1.

C. In-depth discussion of bounds

In the case of OMIC+ and for a fixed tolerance
threshold ε, our distribution-free sample complexity
bounds scale as

KC2
1,1b
?
ar1,1 `

?
KC2

1,2n
?
ar1,2

`
?
KC2

2,1m
a

br2,1 ` C
2
2,2m

?
r2,2n,

whilst in the case of uniform marginals they scale like

K2C2
1,1br1,1 logpbq `KC2

1,2mr1,2 logpmq

`KC2
2,1nr2,1 logpnq ` C2

2,2mr2,2 logpmq.

In both cases, if C1,1 is much larger than C1,2, C2,1

and C2,2, the bound behaves similarly to the situation
where the users and items are identified with their
category. Whilst this is not very surprising, the
bound does show that this remains true for small
but non zero values of C1,2, C2,1 and C2,2: the model
can effectively learn a combination of community
behaviour and user behaviour with no further difficulty
than if it were learning both problems independently.
Note also conversely that if a, b are very small (as in
the particular case BOMIC where a “ b “ 1), the first
three terms are very small and the bound essentially
tells us that the model is about as hard as learning
the low-rank residual alone.

Note that the bounds show that prior knowledge of
the community structure helps more than knowledge
of the generic low-rank structure. Indeed, consider a
typical situation where the communities are of equal
and small size, C1,2 “ C2,1 “ 0, a “ b, m “ n
and r1,1 “ a, and assume that the absolute values of
the maximum and minimum entries of Rp2,2q are of
the same order so that the maximum absolute value
of an entry of R is » C1,1 ` C2,2. With knowledge
of the community structure, our model requires in
the distribution-free case OpC2

1,1a
2`C2

2,2m
3{2?r2,2q

entries. If we were to apply a generic low rank
method instead, the number of required entries would
then be OppC2,2 ` C1,1q

2m
a

pr2,2 ` aqmq. More
generally, we see that ignoring the change in the
Ck,l’s, absorbing ground truth community component
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of order r into the generic low-rank term results in
an increase of at least Opr

?
r2,2 ` r ´

?
r2,2sm

3{2q

in the number of required entries, whilst the sample
complexity only grows by Opa3{2r

?
r1,1 ` r´

?
r1,1sq

instead when the community side information is duly
considered. Similar results hold for the case of uniform
marginals, where absorbing a community component
of rank r into the generic low rank component
costs Oprm logpmqq in sample complexity, compared
to Opra logpaqq when the side information is duly
considered.

Admittedly, absorbing cross terms (Rp2,1q or Rp1,2q)
into the generic low-rank component does not cause
the bound for uniform marginals to change at the
asymptotic level. On the other hand, the distribution-
free bounds still show a significant advantage in
exploiting the community side information even when
it comes to cross terms. Indeed, consider a similar
situation to above with a “ b “ 1 (BOMIC)
and C2,1 “ C1,1 “ 0. Absorbing the cross term
Rp1,2q into the generic low rank component results
in a sample complexity bound of order OppC2,2 `

C1,2q
2
a

r2,2 ` 1n3{2q. Ignoring again the effects on
the Ck,l for simplicity, this represents an increase of at
least Opr

a

r2,2 ` 1´
?
r2,2sn

3{2q to the fourth term,
compared to a contribution of order Opnq when the
side information is taken into account. This means
that (at least for small values of r2,2), the knowledge
of the specific singular vector (i.e. the singular vector
p1{
?
nqiďn) helps our model more than the simple

knowledge of the equivalent restriction in the rank.
Remarks on proof techniques and comparison

to IMC bounds
The bounds admittedly follow reasonably straight-

forwardly from similar techniques as those used
for standard matrix completion, applied to aux-
iliary problems corresponding to each of the
four terms (Xp1qM p1,1qpY 1qJ, Xp1qM p1,2qpY 2qJ,
Xp2qM p2,1qpY 1qJ and Xp2qM p2,2qpY 2qJ) independ-
ently and then merged via the subadditivity of
Rademacher complexity. Indeed, in the distribution-
free case state-of-the-art bounds take the form (cf. [34],
[17], [36] etc.)

O

˜
c

Mp
?
n`

?
mq

N

¸

(S.79)

where M is a bound on the nuclear norm and in the
case of uniform marginals, bounds of the form

O

˜

c

pM2{nq logpmq

N

¸

(S.80)

were proved in [37].
However, we note that the state-of-the-art bounds

for inductive matrix completion (whose predictors take
the form XMY J for some fixed side information
X , with nuclear norm minimization at work on M ),
applied to any of the first three terms in question do
not yield bounds as tight as ours.

Indeed, there is no suitable equivalent to (S.79)
or (S.80) in the inductive case, and the state-of-the-
art bounds for inductive matrix completion (cf. [36],
[16], etc.), actually scale like O

´

xyM
b

1
N

¯

(or
rd1d2 where d1 and d2 are the dimensions of the
side information) instead, where x (resp. y) stands
for the maximum norm of a row of X (resp. Y ).

In the representative case C1,2 “ C2,1 “ C2,2 “ 0,
our distribution-free bound (S.67) takes the form

O

¨

˚

˚

˝

g

f

f

e

C1,1M1,1

”?
a`

?
b
ı

cN

˛

‹

‹

‚

» O

¨

˚

˚

˝

C1,1

g

f

f

e

K
a

abr1,1

”?
a`

?
b
ı

N

˛

‹

‹

‚

, (S.81)

whereas the bound (S.79) takes the form

1

c
?
N

M1,1 »

?
r1,1

?
abc̄

?
Nc

“

?
r1,1

?
abK

?
N

. (S.82)

In terms of sample complexity, this corresponds to a
required number of entries of the order of abr1,1, in
line with the results of [16]. This sample complexity
bound makes an excellent use of the side information
in the sense that the bound is independent of the size of
the matrix, but further refining the dependence on the
dimensions of the side information, which is relevant
in our case, was not one of the aims of that paper.
In the case where the side information is composed
of identity functions, this result is clearly vacuous,
contrary to our own, which instead then scales as the
state-of-the-art bounds for matrix completion (from
which it was derived).

D. Experimental verification of the bounds under
uniform marginals

In this section, we aim to experimentally validate
our generalisation bounds. We focus on the case of
uniform marginals for the following reasons: even
without side information, for the case of traditional
matrix completion for a square n ˆ n matrix, it is
not clear in what sense the bound Opn3{2

?
rq is tight.
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Indeed, it certainly is tight for a full rank matrix,
but this is not very informative, since in that case, it
simply says that the required number of entries is of
the same order as the number of entries in the matrix.
The case of a lower rank constraint is less clear. This
makes it difficult to design a sampling regime and a
way to evaluate the bound.

To verify and experimentally explore the behaviour
of our bound which applies to the case of uniform
marginals, we construct some ground truth matrices
with C1,2 “ C2,1 “ 0, C1,1 “ 1, a “ b, m “ n. Set
r1,1 “ a and we vary the values of a, C “ C2,2 and
r2,2.

Ground truth matrix generation In each case,
the matrix A :“ Rp1,1q “ aMp1,1q

m is constructed
with iid Rademacher entries, i.e., the entries of the
communityˆcommunity component of the matrix are
iid Rademacher variables. For each rank r “ r2,2, we
construct a matrix B as follows: generate r iid column
vectors V (resp. W ) in Rm´a (resp. Rn´b) whose
entries are Np0, 1{pm´ aqq (resp. Np0, 1{pn´ bqq).
We then form the matrix B̃ :“ Xp2qVWJpY p2qqJ,
and finally obtain the matrix B by dividing by the max-
imum entry in absolute value: B “ B̃{tmaxi,j |B̃|u.
The final matrix is constructed as A` CB.

Sampling regime: we evaluate two sampling regimes
with uniform marginals:
‚ Uniform sampling
‚ Checkerboard sampling: uniformly sample from

entries pi, jq with i “ j mod 2.
Training procedure: we train the bias-free part of

OMIC+ via our algorithm. To isolate variables and for
simplicity, λ1,2 and λ2,1 are both set to 8. To evaluate
the performance of our algorithm on many sparsity
regimes, we pick an ordering O “ tO1, . . . , Opmnq!u
(or O “ tO1, . . . , Opmn{4q!u if in the other sampling
regime) of all entries (here O1 Ă . . . Ă Opmnq! “
t1, 2, . . .mu ˆ t1, 2, . . . , nu are increasing subsets of
the set of entries. We train our algorithm for Ω taking
each value in O, using the previous value as a warm
start to dramatically reduce computation For simplicity,
hyperparameters λ1,1 and λ2,2 are determined through
cross validation on a fixed, reasonably performing
sparsity regime once and for all.

We set a tolerance threshold ε “ 0.1 based on
convergence analysis, and for each configuration of
a, r, C, we compute the minimum Nε such that the
algorithm achieves RMSE ď ε for the set ONε .

Figure 6 is a graph of Nε versus the bound
in III.2 for various values of a,C, r, n. We set
ε “ 0.1, a “ b. We explored the following values:
a P t2, 3, ¨ ¨ ¨ , 8u r P t2, 3, ¨ ¨ ¨ , 8u C P r0.5, 2s

Figure 6: Comparison of our bound in III.2 and the
observed required number of entries to reach 0.1
validation RMSE. The red lines are obtained through
linear regression.

m P t100, 101, ¨ ¨ ¨ , 400u. For each datapoint, we
choose a random combination of the above parameters,
generate a random matrix accordingly, and compare
the Nε to our bound. We observe a very good match
between the bound and the observed de facto sample
complexity.

APPENDIX F
MISCELLANEOUS LEMMAS

Recall the definition of the Rademacher complexity
of a function class F :

Definition F.1. Let F be a class of real-valued func-
tions with range X . Let also S “ px1, x2, . . . , xnq Ă
X be n samples from the domain of the functions in
F . The empirical Rademacher complexity RSpFq of
F with respect to x1, x2, . . . , xn is defined by

RSpFq :“ Eδ sup
fPF

1

n

n
ÿ

i“1

δifpxiq, (S.83)

where δ “ pδ1, δ2, . . . , δnq P t˘1un is a set of n i.i.d.
Rademacher random variables (which take values 1
or ´1 with probability 0.5 each).

Recall the following classic theorem [38], [39],
[40]:

Theorem F.1. Let Z,Z1, . . . , Zn be i.i.d. random
variables taking values in a set Z , and let a ă b.
Consider a set of functions F P ra, bsZ . @δ ą 0, we
have with probability ě 1 ´ δ over the draw of the
sample S that

@f P F , EpfpZqq (S.84)

ď
1

n

n
ÿ

i“1

fpziq ` 2EpRSpFqq ` pb´ aq
c

logp2{δq

2n
.
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With a simple extra integration argument, we obtain
the following version in expectation:

Theorem F.2. Let Z,Z1, . . . , Zn be i.i.d. random
variables taking values in a set Z , and let a ă b.
Consider a set of functions F P ra, bsZ . @δ ą 0, we
have in expectation over the draw of the sample S
that

inf
fPF

˜

EpfpZqq ´
1

n

n
ÿ

i“1

fpziq

¸

ď 2EpRSpFqq ` 3pb´ aq

c

1

n
. (S.85)

Proof. Let X “ inffPF
`

EpfpZqq ´ 1
n

řn
i“1 fpziq

˘

´

2EpRSpFqq. Let us also write φpδq for

pb´ aq
b

logp2{δq
2n . By (S.84), we have

P pX ě φpδqq ď δ (S.86)

For all i ě 1, let us write Ai for the event tX ď

φpδiqu where δi “ 2´i. Let us also write rA1 :“ A1

and for i ě 2, rAi :“ AizAi´1. We have, for i ě 2,
Pp rAiq ď PpAci´1q ď δi´1, and for i “ 1, Pp rA1q ď

1 “ δi´1.
Thus,

EpXq “
8
ÿ

i“1

EpX| rAiqPp rAiq

ď

8
ÿ

i“1

EpX| rAiqδi´1

“

8
ÿ

i“1

φpδiq
1

2i´1

“

8
ÿ

i“1

pb´ aq

c

1` i

2n

1

2i´1

ď pb´ aq

c

2

n

8
ÿ

i“1

2´i{2

ď pb´ aq

c

2

n

1{
?

2

1´ 1{
?

2

“ pb´ aq

c

2

n

1
?

2´ 1

ď 5pb´ aq

c

1

n
,

as expected.

Proposition F.2 (Cf. [41]). Let X1, . . . , XS be inde-
pendent, zero mean random matrices of dimension
mˆ n. For all k, assume }Xk} ď M almost surely,

and denote ρ2
k “ maxp}EpXkX

J
k q}, }EpXJk Xkq}q.

For any τ ą 0,

P

˜
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ě τ

¸

ď pm` nq exp

˜

´
τ2{2

řS
k“1 ρ

2
k `Mτ{3

¸

. (S.87)

Proposition F.3. Under the assumptions of Proposi-
tion F.2, writing σ2 “

řS
k“1 ρ

2
k, we have

E

˜
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

¸

ď
a

8{3σp1`
a

logpm` nqq

`
8M

3
p1` logpm` nqq. (S.88)

Proof. The result in O notation is an exercise
from [42], and a similar result is also mentioned in
both [37] and [43].

For completeness and to get the exact constants,
we include a proof as follows.

Let Y “
›

›

›

řS
k“1Xk

›

›

›
. By Proposition F.2, splitting

into two cases depending on whether τM ď σ2 or
τM ě σ2 we have

PpY ě τq ď min

ˆ

1, pm` nq exp

„

´
3τ2

8σ2

˙

`min

ˆ

1, pm` nq exp

„

´
3τ

8M

˙

.

(S.89)

Now note that writing κ for logpm` nq8M{3, we
have

ż 8

0

1^ pm` nq exp

ˆ

´
3τ

8M

˙

dτ

ď

ż κ

0

1^ pm` nq exp

ˆ

´
3τ

8M

˙

dτ

`

ż 8

κ

pm` nq exp

ˆ

´
3τ

8M

˙

dτ

ď κ`

„

´8M

3
pm` nq exp

ˆ

´
3τ

8M

˙8

κ

“ κ`
8Mpm` nq

3
exp

ˆ

´
3κ

8M

˙

“ κ`
8Mpm` nq

3
“

8M

3
p1` logpm` nqq.

(S.90)

We also have, writing ψ for σ
a

logpm` nq8{3,

ż 8

0

1^ pm` nq exp

ˆ

´
3τ2

8σ2

˙

dτ
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ď

ż ψ

0

1dτ `

ż 8

ψ

pm` nq exp

ˆ

´
3τ2

8σ2

˙

dτ

ď ψ `

ż 8

ψ

exp

ˆ

´
3pτ2 ´ ψ2q

8σ2

˙

dτ

ď ψ `

ż 8

ψ

exp

ˆ

´
3pτ ´ ψq2

8σ2

˙

dτ

ď ψ ` σ
a

2π{3

“ σ
”

a

logpm` nq8{3`
a

2π{3
ı

ď
a

8{3σp1`
a

logpm` nqq. (S.91)

Plugging inequalities (S.90) and (S.91) into equa-
tion (S.89), we obtain:

EpY q ď
ż 8

0

PpY ě τqdτ

ď
a

8{3σp1`
a

logpm` nqq (S.92)

`
8M

3
p1` logpm` nqq,

as expected.

APPENDIX G
DETAILS OF THE MATRIX GENERATION PROCEDURE

FOR THE SYNTHETIC DATA EXPERIMENTS

Our generation procedure can be described as
follows: let ã be the vector with components ãi “
i ´ m`1

2 and let b̃ be the vector with components
ãj “ i ´ n`1

2 . Let a “ ã
}ã} and b “ b̃

}b̃}
. We

also write v1 P Rm for p 1?
m
, 1?

m
, . . . , 1?

m
qJ and

v2 P Rn for p 1?
n
, 1?

n
, . . . , 1?

n
qJ Then we define G “

1
2av

J
2 `

1
2v1b

J and S P Rmˆn where Si,j “ p1{mnq,
if pi, jq P t1, ¨ ¨ ¨ ,m{2u ˆ t1, ¨ ¨ ¨ , n{2u Y tm{2 `
1, ¨ ¨ ¨ ,mu ˆ tn{2` 1, ¨ ¨ ¨ , nu, and Si,j “ ´p1{mnq
otherwise. Therefore, we can generate a matrix R P
Rmˆn as

Rpαq “ αcG` p1´ αqcS, (S.93)

where α P r0, 1s is a parameter that controls the
relative intensities of the user/item biases and the non-
inductive component, and c is a scaling constant. Note
that G is composed of the sum of two terms. The first
term is a matrix with all rows being equal, whilst the
second term’s columns are all equal. Thus G is made
up of user and item biases. On the other hand, the S
matrix can be divided in four blocks of equal sizes.
The top left and bottom right blocks entries have a
constant value of p1{mnq. The remaining block has
entries with the value ´p1{mnq.

To perform the experiments we needed to select the
parameters m,n, c and α. We chose10 m “ n “ c “
100. The parameter α P t0, 0.25, 0.5, 0.75, 1u was
empirically selected in such a way that the expected
intensity of the biases’ component varied. Note that
in the extremes of the α interval the generated matrix
is just composed of one of the components.

To determine the number of observed entries and
the sampling distribution, we considered two extra
parameters: the percentage of observed entries pΩ

and a parameter γ P N that manages the sparsity
distribution. Given a fixed pΩ we randomly selected
γppΩmn{pγ ` 1qq entries in the first m{2 rows and
ppΩmn{pγ`1qq in the remaining ones. The parameter
pΩ was varied in t0.15, 0.30, 0.50u and the parameter
γ as varied in the range t1, 4u (γ “ 1 indicates
uniformly sampled observations).

Note that for SoftImpute we need an extra post-
processing step to estimate the biases. In this case,
we calculate the matrix bias as the average of the
SI-predicted matrix entries. After subtracting the SI
matrix bias, we calculated the users and the items bias
by averaging the columns and the rows, respectively.

APPENDIX H
IN-DEPTH LITERATURE REVIEW

A major step signaling the beginning of the con-
struction of a formal theory of matrix completion
was the introduction of the SoftImpute algorithm [5],
which uses the nuclear norm as a regularizer. Around
the same time, the field witnessed a series of break-
throughs in the study of how many entries are required
to recover a low-rank matrix exactly [6], [7] or
approximately from noisy entries [8], [9]. Those works
assume that the entries of the matrix are sampled
uniformly. A simpler and more complete approach to
the same results was provided in both [41] and [44].
The conclusion of the works on exact recovery is that
if the entries are sampled uniformly, it is possible
to recover the matrix with high probability assuming
Opµrn logpnq2q entries are observed, where n is the
dimension of the matrix, and µ is some notion of
coherence, which is Op1q if the singular vectors have
roughly equal components.

Of course, there is a huge branch of literature
focusing on the optimization aspect of matrix com-
pletion [45], [46], [47], [48], [49], [50], [51], [52].

In [11], user biases were trained jointly with other
methods, including methods taking time dependence

10For a small number of incoherent eigenvectors, which is the
situation in the case described here, the choice c “

?
mn ensure

entries of size close to one.
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into account, but no nuclear-norm regularization was
used.

Other works [53], [54], [55], [56] have focused
on the case of non uniformly sampled entries. The
general form of the results obtained is (similarly to
the uniform case) that Oprn logpnq2q observed entries
are sufficient. However, these results come at the
cost of either making strong explicit assumptions on
the distributions, sometimes with relevant constants
showing up in the bounds, or strong modifications of
the algorithm.

The case of non-uniform entries with absolutely
no assumption on the sampling distribution is an
interesting one that commands a completely different
approach. It was studied in [34], [57]. The most related
work to ours is [17], where the authors study, and
provide generalization bounds for a model composed
of a sum of an IMC term and a standard SoftImpute
model. This model is a particular case of ours. Note
we require to adapt proofs to obtain bounds with a
tighter dependence on the dimensions of both left
and right side information for the bounds to be non
trivial in case of user biases. Furthermore, no notion of
interpretability or orthogonality was presented in [17].

Inductive matrix completion [12], [13], [14], [15] is
the problem of solving matrix completion with some
side information: given some features X P Rmˆd1

and Y P Rnˆd2 , it tries to find a low-rank matrix M
such that R “ XMY J approximates the observed
matrix well. It has found many successful applications
in recent years [58], [59], [60]. Theoretical guarantees
were provided in [46], [61], [62]. Note that in the basic
model, successful IMC requires that the columns of X
(resp. Y ) span the left (resp. right) singular vectors of
the SVD of the ground truth matrix (this case is often
referred to as "perfect" side information). In [17] the
extended model R “ XMY J`N , with nuclear-norm
regularization applied to both M and N was proposed.
Recently, progress was made in the direction of matrix
completion with side information with the need to
extract features jointly [63].

The idea of nuclear-norm minimization was also
extended to tensors in various ways [64], [65], [66]
as there is no unique approach which provides all the
benefits the nuclear norm enjoys in the matrix case.

A. Models with similarities to ours

In this section, we explain the particulars of some
recently proposed models which may be understood
as using combinations of side information and generic
low rank constraints, or other variations of parts of

the ideas we propose. We note that in each case,
substantial differences remain between the works in
question and the present paper.

In [20], the authors introduce a model with simil-
arities (and differences) to both [17] and the present
work: assuming one is given side information matrices
X and Y , the authors present the following model:
first, the matrices X and Y are augmented by a
columns of ones resulting in the matrices X̄ “ rX, 1s
and Ȳ “ rY, 1s. Predictors then take the form
E “ X̄MpȲ qJ`∆, with nuclear norm regularisation
imposed on E and L1 (or nuclear norm) regularisation
on M , and Frobenius norm regularization imposed on
∆, with the constraint that PΩpEq “ RΩ where RΩ

denotes the observed entries. Thus, similarly to [17],
the authors allow hyperparameters to decide how
much to trust the side information by employing
nuclear norm regularisation on both the M inside
the IMC term and nuclear norm regularisation on
the whole predictor. However, the strategy remains
different from [17], which applies nuclear norm
regularisation to a residual term instead. The authors
prove generalisation bounds in the uniform sampling
regime which scale as the bounds in [61] in the
case where the corresponding realizability assumptions
are satisfied and scale as the state-of-the-art bounds
in [34], [17] in the case where the side information is
not good and the model must rely purely on the generic
nuclear norm regularisation. A similarity between that
model and ours is the augmentation of the matrices
X and Y by a vector of ones (which also modifies
the corresponding realizability assumptions). As such
the proposed predictors involve a combination of
lower order terms (which depend on one of the side
information terms but not the others: xvJ`ywJ where
x, y are the side information vectors and u,w are
trainable parameters) and higher order terms (xMyJ

where M is trainable). Thus if the side information
is categorical, the model predictors will be similar
to the predictors in our model OMIC+. However,
the extra interpretability and optimization benefits we
reap from the cross-term orthogonality constraints are
absent in that work. Further, the optimization problem
remains different and the generalization bounds do
not explicitly exploit community structure. Contrary
to our models BOMIC and BOMIC+ (but similarly
to our model OMIC+, to which it is more closely
related), there are also actually no user or item biases
in that work (unless the matrices X and Y include
identity matrices as submatrices), although there is a
matrix-wise bias.

In [21], the authors solve an explicit rank minimiz-
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ation problem under linear constraints on the matrix
(this problem is now commonly referred to as ’Matrix
Regression’ (see also [22])). In that formulation,
instead of observing entries of the matrix, iid measure-
ments of the form vJMw are made where w, v are
Gaussian vectors. As such, the problem is related to
both inductive matrix completion (because the vs and
ws play a similar role as side information vectors in
IMC) and classic matrix completion (because different
observations never correspond to the same v or w
and the dimensions of v and w are the same as
the ground truth matrix). In this context and with
an explicit low-rank assumption the authors show a
sample complexity bound of Opr3n logpnqq, which is
in line with bounds for classic matrix completion
under a uniform sampling assumption. A similar
problem with nuclear norm regularisation was studied
in [62], together with its link to IMC. As explained
in our Theory section, none of the bounds in either
of those works give tight bounds for the community
setting. Later in [67], an ingenious new algorithm
was proposed, reducing the sample complexity to
Oppm` nqrq.

In [23], the authors propose a very general op-
timization framework that encompasses both the
matrix regression problem mentioned above and low
rank matrix completion, as well as one-bit matrix
completion.

B. Matrix completion with graph side information

In [68], [69], the authors propose a model based
on user biases combined with neighborhood-based
models. In [70], [71], [72], [73], [74], [75], the
authors construct various low-rank matrix completion
problems with regularizers inspired from the graph
side information (typically, the feature vectors of
adjacent nodes in the graph are regularised to be
close to each other). In [76], the authors ingeniously
combine this idea with user biases. Notably, in [77],
some generalization guarantees were provided for such
regularization strategies.

C. Community discovery

In [78], the authors propose a probabilistic model
to solve binary matrix completion with graph side in-
formation based on the assumption that the users form
communities: the assumption is that each user’s rating
is a noisy measurement of the preference of the cluster.
The clusters are recovered from the graph information
via the Stochastic Block Model (SBM), and the cluster
preferences are then recovered from the observed data.

Generalisation bounds and an asymptotic analysis are
provided for this model. In [79] a similar model with
further twists such as the existence of atypical users
and items is introduced, and a thorough and impressive
complexity and generalization analysis is performed.

In [80], the authors consider the problem of sim-
ultaneously clustering users and items in an efficient
way based on a single fully observed matrix. In [81],
another similar matrix factorization approach was
provided to cluster users based on side information.

Those works rely heavily on the more general prob-
lem of community discovery, which is concerned with
recovering "groups" or clusters of users given some
side information such as a graph of interaction [82],
[83], [84], [85], [86], [87], [88], [89]. These models
typically rely on the assumption that the graph we
observe is generated under the Stochastic Block Model,
i.e., each edge in the graph is present or absent with
a given probability that depends (only) on the cluster
assignments of the two relevant nodes. We refer the
reader to [82] for a survey.

We note that the above approaches are crucially
different from ours in that they do not allow for non
random user-specific behaviour within each cluster:
in all of these works (except [79]), the behaviour of
users/items is an independent noisy measurement of
cluster behaviour, whilst in our model, users exhibit
their own behaviour on top of the cluster-specific
behaviour. In particular, in the works above, there
is no difference between predicting the matrix and
predicting the clusters, whilst in our setting, we usually
assume the clusters are given and recover the matrix
from them. In that respect, our setting is more similar
to the regularization-based techniques [70], [71], [72],
[73], [74], [75], but our method is different. The
paper [79] is to the best of our knowledge the only
work that incorporates item specific behavior in a
community detection context. They do so in a discrete
fashion with the concept of "atypical" movies and
users, whilst our approach is a continuous one, which
includes the possibility of representing any matrix (at
a regularization cost).

We note in passing that a different approach to
extracting community information from graphs is
offered by graph neural networks [90], [91], [92],
[93], [94].

D. On some variants of the matrix completion problem

In [95], the authors study a different problem,
closely related to matrix completion, which assumes
the existence of an exact dictionary, then introduce
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a much weaker condition than uniform sampling
and incoherence, and show that typical optimization
algorithms can recover the matrix. Before that, in [96],
similar results were shown under different assump-
tions. In [22], the author gives recovery guarantees for
the more general problem of linear matrix equations.
In [97], the authors study a multi-view model for
image data where a common low-rank representation
of several different views of the data points is
constructed, to be later fed to a matrix completion
algorithm.

Recently, [98] and [99] studied a form of transfer
learning problem, where the same users rank different
media such as movies, music, series etc. In [100],
the authors perform non negative matrix completion
with multiple sources of side information through a
regularization-based approach different form the IMC
setting.

Very recently, progress was made in the direction
of establishing theoretical guarantees for matrix com-
pletion with "side information" where features are
extracted jointly through a shallow network [63]. This
opens up an interesting new avenue of research for
matrix completion methods such as ours, which could
perhaps be further combined with these techniques in
the future. We note that this preliminary work [63]
only deals with the case of fixed rank constraints.
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