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An Empirical Study on Data Distribution-Aware Test

Selection for Deep Learning Enhancement

QIANG HU, YUEJUN GUO, and MAXIME CORDY, University of Luxembourg

XIAOFEI XIE, Singapore Management University

LEI MA, University of Alberta

MIKE PAPADAKIS and YVES LE TRAON, University of Luxembourg

Similar to traditional software that is constantly under evolution, deep neural networks need to evolve upon
the rapid growth of test data for continuous enhancement (e.g., adapting to distribution shift in a new envi-
ronment for deployment). However, it is labor intensive to manually label all of the collected test data. Test
selection solves this problem by strategically choosing a small set to label. Via retraining with the selected
set, deep neural networks will achieve competitive accuracy. Unfortunately, existing selection metrics in-
volve three main limitations: (1) using different retraining processes, (2) ignoring data distribution shifts, and
(3) being insufficiently evaluated. To fill this gap, we first conduct a systemically empirical study to reveal the
impact of the retraining process and data distribution on model enhancement. Then based on our findings,
we propose DAT, a novel distribution-aware test selection metric. Experimental results reveal that retraining
using both the training and selected data outperforms using only the selected data. None of the selection
metrics perform the best under various data distributions. By contrast, DAT effectively alleviates the impact
of distribution shifts and outperforms the compared metrics by up to five times and 30.09% accuracy improve-
ment for model enhancement on simulated and in-the-wild distribution shift scenarios, respectively.
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1 INTRODUCTION

Deep neural networks (DNNs) are increasingly integrated into large software systems in
various applications, such as face recognition [39], autonomous vehicles [2], speech recognition
[52], and video gaming [44]. Despite the impressive success and great potential of DNNs, there
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are crucial accidents caused by quality issues of deep learning (DL) systems, such as Tesla/Uber
accidents [45]. Therefore, similar to traditional software products, DNNs are required to undertake
careful testing to check whether they match the expected requirements for reliable deployment. In
practice, DNNs are mostly tested on a set of examples—the test set—that is extracted from the same
dataset as the training set. As a result, by default, the test set and training set follow the same data
distribution.

However, in real-world applications, DL systems face an important hurdle: the effectiveness (e.g.,
prediction accuracy) of the embedded DNN declines over time due to changes in data distribution.
These distribution shifts [49] originate from multiple causes, such as changes in user behavior,
seasonal data patterns, and benign alterations in the inputs. In such cases, software engineers
have no choice but to manually re-engineer the DNN (i.e., design the architecture, set the hyper-
parameters, and train on the data anew). And these re-engineering activities require considerable
human and computational effort that is akin to the original production of the model. Distribution
shift, therefore, constitutes one of the most important obstacles to the widespread dissemination
of DL.

Similar to the general problem of software maintenance in conventional software engineering,
distribution shift concerns enhancing the capability of the machine learning (ML) model to deal
with unseen inputs. With the rapid growth of data that could follow a different data distribution,
DL models may exhibit a misleading sense of achieving high performance on the original test data
while having unexpected performance on the new data. Therefore, DL systems—in particular, the
DNNs that are the essential backbone of these systems—also need to be evolved upon having the
massive amount of collected new test data for continuous enhancement.

Fortunately, DL systems do not need to be re-engineered each time a distribution shift occurs
but can rather cope with such shifts through a development strategy that promotes incremental-
ity. Common strategies to combat drifts include retraining the DL model—that is, updating the
DNN weights through additional training epochs using the new data. The retraining process can
be entirely automated and therefore can avoid the heavy human and computational overhead of
complete re-engineering. (Re)training a DNN requires labels of the collected data to calculate the
loss information and guide the tuning of the model weights. However, data labeling is another im-
portant practical overhead. The reason is that although collecting massive new data (usually raw
and unlabeled) is cheap and easy, labeling all of them is often manual, expensive, and prohibitively
time consuming. For example, labeling the first version of the ImageNet dataset took groups of
people more than 3 years [5]. In particular, the manual task of labeling can be more challenging
in specific applications, when domain-specific knowledge is required.

Test selection refers to the area of research concerned with selecting, from a large set of unlabelled
data, those data that are more likely to reveal errors in a given DNN [27]. Research has recently
developed selection metrics to address this problem [3, 8, 16, 24, 38] as well as reduce the labeling
effort. Once fault-revealing data have been found and labeled, the same data can be used to retrain
the model (removing the errors that these data represent) and thereby improve its generalization.
Although these metrics have demonstrated their potential to test and improve DNNs, we observed
fundamental and experimental gaps that we aim to address in this article:

(1) Utilization of two different retraining processes: The retraining process plays a key role in
the model enhancement, which leads the model to learn new information while keeping the
original knowledge. However, in existing studies, two different retraining processes are used
for model enhancement, and the impact of each process is still unclear and not explored.
Taking three state-of-the-art metrics as an example, the multiple-boundary clustering

and prioritization (MCP) [38] and the surprise adequacy guided metric [16] retrain a DNN
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using only this subset. On the contrary, DeepGini [8] uses both the original training data and
this subset.

(2) Unaware of data distribution shift: The shift of data distribution refers to the phenomenon
that the distributions of training and test data are different, such as the images taken un-
der different brightness. Usually, the data following the same or a different distribution are
regarded as in-distribution (ID) or out-of-distribution (OOD) data, respectively. The dis-
tribution shift can be divided into two types: (1) synthetic distribution shift that comes from
the computer-generated perturbation and (2) natural distribution shift that comes from un-
seen and unperturbed data. Data distribution has been proved to be critical in DL testing,
especially for practical deployment of DL models [1, 6]. However, this factor is not consid-
ered in existing test selection metrics.

(3) Evaluated by narrow experimental setups: We observe that the effectiveness of existing se-
lection metrics for model retraining is insufficiently evaluated. For instance, MCP is only
evaluated on a combination of original test data (80%) and new data (20%), whereas Deep-
Gini only selects data from the new data (100%) and retrains the model accordingly. The
other combinations of data are uncovered and should be considered in the evaluation.

To elaborate on and address these limitations, in this article we conduct an empirical study to
evaluate existing selection metrics under various data distribution shifts and answer the following
three research questions:

RQ1: Which retraining process achieves better model enhancement?
RQ2: How effective are different test selection metrics under different data distributions for

model enhancement?
RQ3: Concerning data distribution and class bias, what are the characteristics of the data selected

by different metrics?

Overall, our empirical study evaluates six selection metrics over five datasets (including three
image datasets and two text datasets) and two DNN architectures for each dataset (including both
feed-forward neural networks (FNNs) and recurrent neural networks (RNNs)). In total, we
retrained 71,280 models. By investigating the preceding research questions, we found that retrain-
ing using both the original training data and selected data achieves better results for model en-
hancement. Moreover, we observed that using this retraining process, existing selection metrics
perform differently under different data distributions. For example, when OOD data are more than
70% in the new set, Random selection performs surprisingly the best. In addition, we found that
class bias is another potential characteristic in addition to data distribution for data selection. Based
on these findings, we further propose DAT, a distribution-aware test selection metric to alleviate
the impact of distribution shifts on model retraining. The key idea of DAT is to select uncertain

and representative data from the ID and OOD sets, respectively. In detail, we first utilize an OOD
detector to split the new data into the ID set and OOD set. Afterward, for the ID set, DAT selects
the most uncertain data that follow the same distribution as the training data but are not well
learned by the model. For the OOD set, DAT selects the most representative data, which means
that the selected data can represent the whole set. To demonstrate the effectiveness of our met-
ric, we conduct experiments to answer the next two research questions. The experimental results
show that DAT achieves the best performance among all the existing metrics. The two research
questions are as follows:

RQ4: Under synthetic distribution shifts, how effective is DAT for model enhancement?
RQ5: Under natural distribution shifts, how effective is DAT for model enhancement?

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 78. Publication date: July 2022.



78:4 Q. Hu et al.

In summary, the main contributions of this article are the following:

• To the best of our knowledge, we are the first to conduct a systemically empirical study of
investigating how the retraining process and data distribution impact the test selection for
model enhancement.
• This is the first study that analyzes and explores the characteristics of data selected by dif-

ferent metrics in terms of both data distribution and class bias.
• We propose DAT, the first distribution-aware test selection metric, which can reduce the im-

pact of data distribution on model enhancement. In addition, we release our implementation
and datasets for future use and research.1

The rest of the article is organized as follows. Section 2 introduces some background knowl-
edge of this work. Section 3 highlights the problem we target. Section 4 presents the design of our
empirical study. Section 5 details the results of our empirical study. Section 6 introduces and eval-
uates our DAT metric. Section 7 discusses the main findings and limitations of this work. Section 8
presents the related works, and Section 9 concludes the article.

2 BACKGROUND

We briefly introduce the background related to this work, including DNN, DL testing, and OOD
detection.

2.1 Deep Neural Networks

A DNN is a type of artificial neural network with one or multiple hidden layers between the input
and output layers. “Deep” in the name refers to the layers of the network being multiple. Each layer
includes a large number of neurons that forms the basis of a DNN. The neurons in successive layers
are connected with different weights that are tuned during the training process by minimizing the
error between the prediction and the ground truth among a certain number of epochs.

Generally, building a DNN model requires three sets of data: the training set, validation set, and
testing set. The training set is used to feed the model and tune the parameters during the training
process. The validation set contributes to the training process to estimate how well a model has
been trained. In practice, it is used for avoiding overfitting or underfitting, determining a stopping
point for a possible best performance, finding the “optimal” number of hidden layers, and so on.
The test set represents the unseen data for the trained model, which is independent of the training
and validation sets. This set reveals how the model would behave when being applied to real-world
data.

2.2 DL Testing and Test Selection

Software testing tries to reveal bugs in the software systems [31]. Normally, conventional soft-
ware systems are designed and built by human logic. Testers could follow such logic to decide
the test oracle, choose the testing techniques, and write test cases to test the systems. However,
since DNNs are driven by training data and training processes, the logic inside the DNN models
is unclear (known as their black-box property). As a result, it is hard to define bugs and design
testing strategies for the DNNs. Recent works have proposed multiple techniques for DL testing
[3, 7, 8, 16, 24, 26, 32, 38, 40, 43] that target different properties (e.g., fairness, adversarial robust-
ness, and correctness) of a DNN model. For a review of ML testing, we refer to a survey by Ren
et al. [34].

1https://github.com/code4papers/DAT.
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Among massive testing approaches, test selection in DL is a technique that aims at solving two
common problems: (1) to select data that can be used to represent the whole set and estimate
the performance of the model on this set and (2) to select the data that are more likely to be
misclassified by the model and then retrain an accurate model using the selected data. In this
work, we focus on the second problem—how to utilize test selection to enhance the pre-trained
model? Given that the data, in reality, are more complex than the data (which are carefully selected
and organized) used for training a model, a pre-trained model goes through a retraining process
with new unseen data to adapt to a specific application. In this article, we focus on testing the
accuracy of a DNN model against new unseen data. In other words, given a pre-trained model
and a set of unseen data, we retrain it by using a small subset of the unseen data to ensure high
accuracy on both the original test data and this unseen data. Due to the high labeling cost, only
a small set of data is selected in practice. Note that in contrast to the existing work [38], when
testing the retrained model, both the original test data and the new unseen data are considered.

A related topic of test selection is active learning [30] in the ML community in the sense of
reducing labeling cost. In active learning, a DNN is obtained iteratively through multiple steps. In
each step, a set of data is selected to label and to update a pre-trained DNN obtained by the previous
step. However, active learning and test selection have the following differences. One difference is
the initial state. Generally, active learning starts from an early-stage DNN, whereas test selection
already has a well-trained DNN. A second difference is the procedure. Active learning attains a
DNN by multiple steps, and each step goes through a full training process. In test selection, the
pre-trained DNN is enhanced using the selected data by retraining within several epochs (usually
fewer than a full training process, such as only 5 or 10 epochs). Namely, test selection only needs
one step. A thir difference is the goal. In active learning, the goal is to select a small amount of
data to train a DNN that achieves similar performance as that using the entire data, whereas in
test selection, the goal is to enhance the performance of a pre-trained DNN by retraining with a
small amount of data.

2.3 OOD Detection

Generally, although we introduce some bias (e.g., applying image transformations to the training
data [41]) into the model during the training process, the DNN model can mainly correctly predict
the data that follow the same distribution as the training data. When testing the accuracy of DNNs
on new data, the prediction may be erroneous and unreliable since the data may follow a different
distribution compared with the training data.

The OOD technique, also known as outlier detection and anomaly detection, aims at distinguish-
ing data concerning the distribution. Existing OOD approaches [14, 22, 25, 33, 36] use different
methodologies to predict an anomaly score for a test input as the likelihood of following a learned
distribution by a DNN model. However, the main goal of these approaches is to detect the data
that come from two different datasets (e.g., MNIST and Fashion MNIST). In this work, we try to
use the OOD detection method to detect the data that are from the mutated version derived from
a dataset. The mutated version is generated by image transformations or adversarial attacks.

3 OBJECTIVES AND PROBLEM FORMULATION

Let us consider an N -class classification task over data X ⊆ Rd and labels Y ⊆ Z. Let f : x → y
refer to a DNN trained on X in ⊂ X , with x ∈ X and y ∈ Y . We denote the distribution of the data
X in asDin and refer to these data as the ID data. Now letX out be a set of data that follows a mixture
of distributions Din ,Dout , where Dout is an arbitrarily complex (possibly a mixture) distribution
that differs from Din . In other words, X out is a data sample that results from a distribution shift
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Fig. 1. Procedure of data preparation. All candidate sets are unlabeled, and the others are labeled.

from Din to Din ,Dout . We furthermore assume that X out is unlabeled and name these data the
OOD data.

Our goal is to decrease the computational and human effort to improve models when distribution
shift occurs. We aim to maximize the performance (e.g., accuracy) of the DNN on some X out

test ⊂
X out . We assume that we are allowed to change neither the architecture nor the hyperparameters
of the DNN. Instead, we follow the straightforward and low computation cost method that consists
of retraining the model for an additional numbern of epochs with an independent sampleX out

tr ain ⊂
X out that has no overlap with X out

test . Given that we aim to minimize labeling cost, we also want
|X out

tr ain | to be under a pre-defined data budget b.
To address this challenge, we empirically investigate two key factors that may affect the effec-

tiveness of retraining: the retraining process and the selection metric (i.e., the metric used to select
X out

tr ain from X out ). Our analysis of the literature has revealed two types of retraining processes:
retrain with X t

tr ain only or with a mixture of X out
tr ain and Xin . As for selecting X out

tr ain , we consider
selection metrics that have been proposed in the literature and have also been used for retraining
[3, 8, 16, 24, 38].

4 EMPIRICAL STUDY METHODOLOGY

First of all, to answer the first three research questions, we conduct a comprehensive empirical
study to explore how retraining processes and data distribution affect the effectiveness of selection
metrics for model retraining. This study provides the motivation for our proposed distribution-
aware selection metric (Section 6).

4.1 Study Design

To conduct the empirical study, we first prepare the data as shown in Figure 1. Given a dataset,
we randomly split it into three separate sets—the training set, ID candidate set, and ID test set—to
build pre-trained DNNs. Afterward, we partition the distribution shift (OOD) dataset into the OOD
candidate and test sets. Please refer to Section 4.4 for details on obtaining distribution shift datasets.
Finally, we combine ID and OOD data with a certain ratio to simulate different distribution shifts.
For instance, 10% ID + 90% OOD indicates that the new data has a dramatic shift where 90% data
are unseen by pre-trained DNNs. In our study, we use 11 different combinations with the ratio
ranging from 0% to 100% at a 10% interval. The candidate set represents new unlabeled data for
selection and retraining, and the test set follows the same distribution as the candidate set for
performance evaluation.

Figure 2 gives an overview of our empirical study. We first prepare pre-trained models for each
dataset, then utilize different selection metrics to select and label data. Next, we use the selected
data to retrain the pre-trained model with another few epochs. Finally, we test the retrained models
on both the ID and new test sets.
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Fig. 2. Overview of our empirical study.

One factor that could highly affect the performance of the retrained model is the retraining
process. In the literature, there are mainly two processes for model retraining. One is to retrain
using only the selected data [16, 38]. The other is using both the training and selected data [8]. To
answer RQ1, we apply both processes separately to produce two retrained DNNs. Next, we test
the retrained models on test sets and compute their performance. Later, based on the findings of
RQ1, we will apply the better retraining process to analyze how the data distribution would affect
the effectiveness of each selection metric for model retraining and answer RQ2. In this phase, we
only consider the test accuracy of retrained models. Furthermore, we investigate the properties of
selected data by different selection metrics to answer RQ3.

4.2 Datasets and DNNs

In our empirical study, we consider five publicly available datasets: MNIST [21], Fashion-MNIST
[51], CIFAR-10 [19], IMDb [28], and Newsgroups [20]. MNIST is a collection of grayscale images of
handwritten digits (e.g., 1, 2). Fashion-MNIST includes grayscale images of fashion products (e.g.,
coat, shirt). CIFAR-10 contains color images (e.g., airplane, bird). IMDb is a dataset containing
movie reviews that are widely used for sentiment analysis (i.e., positive or negative). Newsgroups
is a text dataset that includes 20 different newsgroup subjects (e.g., space, baseball). For MNIST,
Fashion-MNIST, and CIFAR-10, we randomly pick 10,000 data from the training set as the candidate
set. For IMDb and Newsgroups, we randomly collect 5,000 and 4,000 data from the training set and
the candidate set, respectively. For each dataset, we use two different well-known DNN models in
previous research. For the image datasets, we consider the famous convolutional neural networks
(e.g., LeNet and ResNet(. Since RNNs are good at handling sequential data, we utilize embedding
layers to encode the text into vectors first, then we use RNNs to process the vectors and predict
sentiment results. In addition, we follow Hendrycks and Gimpel [13] to build the fully connected
neural network for the Newsgroups dataset. Hence, our study covers image and text data, as well as
FNNs and RNNs. All of the detailed model architectures and hyperparameters are available on our
project website.1 Table 1 shows details of the datasets and DNNs. We measure model performance
in terms of accuracy, as it is the metric originally used for the tasks and datasets that we study.
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Table 1. Datasets and DNN Models

Dataset Data Type #Training #Test #Classes DNN #Layers #Parameters Test Accuracy (%)

MNIST Image 60,000 10,000 10
LeNet-1 5 3,246 97.91
LeNet-5 7 107,786 98.90

Fashion-MNIST Image 60,000 10,000 10
LeNet-1 5 3,246 87.29
LeNet-5 7 107,786 90.29

CIFAR-10 Image 50,000 10,000 10
ResNet-20 20 274,442 85.79

NiN 23 972,658 87.16

IMDb Text 25,000 5,000 2
LSTM 5 2,694,206 85.61
GRU 5 2,661,694 86.46

Newsgroups Text 4,000 1,000 20
NN1 2 450,650 86.70
NN2 3 452,600 81.30

“Test accuracy” is the accuracy (%) of the ID test set (see Figure 1).

Note that since we do not use all of the training data to train the model, the test accuracy of each
model may not achieve the state of the art.

4.3 Selection Metrics

Various selection metrics have been proposed and evaluated for data prioritization and data label-
ing effort reduction. In this study, we choose four metrics (MCP, DeepGini, CES, and DSA) pro-
posed in the SE community. Note that MCP, CES, and DSA have been evaluated as the best metrics
in a recent study [38] compared with the others, such as likelihood-based surprise adequacy (LSA)
[16] and adaptive active learning (AAL) [23]. DeepGini is a newly proposed method for enhanc-
ing the performance of DNNs. In addition, we take the Random selection metric as the baseline.
Given that the task of active learning within each stage is similar to test selection (please refer to
Section 2.2 for more details), the most basic and popular metric, Entropy, [46] is also considered
for comparison. We briefly introduce each metric as follows.

Throughout the article, we use pi (x), 0 ≤ i ≤ N to represent the predicted probability of x

belonging to the ith class.
Random. Random selection is basic and the simplest selection method. It draws data directly

from the given set regardless of the model’s behavior. Each data is randomly selected—namely, it
has the same probability of being chosen.

Multiple-boundary clustering and prioritization. MCP [38] selects test data limited in decision
boundary areas. Concretely, it proceeds in three steps. First, the DNN model runs on each test
sample to give a sequence of output probabilities. Second, MCP conducts a boundary area cluster-
ing to divide the data into different clusters. A cluster (the boundary area between two classes) is
formed according to the top-2 classes of test data. In addition, for each test data, MCP computes
its priority in its belonging cluster as the ratio of the probability of the first class to the probability
of the second class. Finally, test data with high priorities are evenly selected from each non-empty
cluster. The intuition behind MCP is that if the top-2 probabilities of a test sample are close, this
sample is close to the decision boundary between the corresponding two classes.

Cross entropy based sampling. The main idea of cross entropy based sampling (CES) [24] is to
select a subset of test data that can maximally represent the distribution of the entire test dataset
via the cross entropy. More specifically, this subset should have the minimum cross entropy with
the entire test dataset. To solve this optimization problem, CES utilizes a similar algorithm to the
random walk [35]. It starts with a random subset T (smaller than the budget) with a few test data,
then repeatedly enlarges T by merging another subset P that is randomly selected and has the
minimum cross entropy with T .

Distance-based surprise adequacy. Distance-based surprise adequacy (DSA) [16] is an ade-
quacy criterion that aims at measuring how surprising a test sample is to a DNN model concerning
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the training data. It computes the surprise adequacy by the Euclidean distance between the model’s
behaviors represented by the activation traces of the test sample and the training set. Finally, the
data with high adequacy are selected.

DeepGini. Similar to Entropy, DeepGini [8] also selects the most uncertain data using the output
probabilities by

arg max
x∈X

�
�1 −

N∑

i=1

(pi (x))2�
� . (1)

Entropy-based metric (Entropy). As a widely used information-theoretic metric, entropy, also
known as Shannon entropy [37], measures the average level of information required to obtain
a possible prediction. In other words, it calculates the uncertainty for a DNN model to output
a prediction. Based on this concept, Entropy [46] selects the test data that have the maximum
uncertainties, and its formal definition is

arg max
x∈X

�
�−

N∑

i=1

pi (x) logpi (x)�� . (2)

Most of the aforementioned metrics (MCP, CES, DeepGini, and Entropy) are only designed for
classification tasks since they require the output probability of each class in their methodologies.
The only exception is DSA, which also works for regression tasks. Our metric DAT is also designed
for classification tasks—one objective of DAT is to collect data with balanced classes. Therefore, in
our study, we only focus on the classification tasks. Nonetheless, to the best of our knowledge, our
study is the largest one that considers both image and text classification tasks with both synthetic
and natural distribution shifts.

4.4 OOD Data Preparation

In our study, we consider two types of distribution shift: synthetic and natural. Both are widely
studied in recent works [13, 42].

4.4.1 OOD Data with Synthetic Distribution Shift. Synthetic distribution shift comes from the
computer-generated perturbation. In the literature [1, 17, 38, 43], there are two types of image
mutation methods to generate noise data: image transformation [41] and adversarial attack [34].
Table 2 describes the six image transformations and the two adversarial attacks used in our study.
Image transformation applies basic geometric transformations to mimic different real-world con-
ditions such as changing the contrast or brightness of images and rotating the camera. Here, we
consider transformations that are common in the real world and whose relevance has been shown
in previous studies [1, 38, 41]: rotation, shear, translation, scaling, brightness, and contrast. We
follow Berend et al. [1] and Shen et al. [38] to set up the parameters of these transformations. For
example, for MNIST-scale, we set the scale coefficient as 0.8. All parameters of image transfor-
mations can be found on our project site.1 Adversarial attacks add an imperceptible perturbation
into an image to mislead DNNs. These attacks have been associated with distribution shifts and
can be useful to improve the generalization ability of ML models [10]. We use two of the most
common attack algorithms: FGSM [10] and PGD [29]. We utilize the Linf distance to calculate the
perturbation with a commonly used [29, 50] maximum size of 0.3 (8/255) for MNIST and Fashion-
MNIST (CIFAR-10).

To make sure that each mutation method (i.e., each image transformation and adversarial attack)
introduces distribution shifts, we empirically show that there is a greater distribution difference
(1) between the original training set and the original test set and (2) between the original training
set and the mutated test set. If (2) is greater than (1), then it would mean that the mutations induce a
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Table 2. Description of Mutation Operators

Type Mutation Operator Description

Transformation

Rotation Rotate an image by a certain angle
Shear Shear an image horizontally
Translation Translate several pixels down right
Scale Change the size of an image
Brightness Adjust the brightness of an image
Contrast Adjust the contrast of an image

Attack
FGSM Fast gradient sign method
PGD Project gradient descent

Table 3. JSD Between Training Set and Other Sets

Test Brightness Contrast Rotration Scale Shear Translation FGSM PGD OOD

MNIST 0.05 0.77 0.52 0.61 0.62 0.57 0.56 0.73 0.65 0.77
Fashion-MNIST 0.05 0.62 0.36 0.48 0.53 0.55 0.52 0.56 0.38 0.44

CIFAR-10 0.07 0.21 0.50 0.51 0.57 0.47 0.47 0.40 0.25 0.60

distribution shift compared to the natural difference that is due to data generalization. To measure
such distribution differences, we combine a state-of-the-art outlier exposure (OE) detector [14]
(more details in Section 6.1) and Jensen-Shannon divergence (JSD) score [9]. OE enables the
identification of data that do not belong to a given distribution (in our case, the original training
set determines the distribution). It assigns a score to each example, where a higher score means that
the example is farther from the given distribution. To build the OOD detector, we need a baseline of
OOD that are clearly not from the original distribution. In our case, to build the OOD detectors for
MNIST, Fashion-MNIST, and CIFAR-10, we respectively use Fashion-MNIST, MNIST, and SVHN.
The reason behind this choice [1] is that MNIST and Fashion-MNIST are black-and-white images,
whereas CIFAR-10 and SVHN are colored. Once we have an OOD detector, we predict the score
of the examples in the two test sets and build the corresponding two histograms. We calculate the
JSD between the two histograms. JSD is an established metric for the dissimilarity between two
probability distributions. A higher JSD indicates higher dissimilarity.

Table 3 lists the results. The JSD between the original training and test sets (at most 0.07) is
much smaller than the JSD between the training and mutated sets (at least 0.21). For Fashion-
MNIST, some mutated sets have an even greater JSD scores than the OOD sets, revealing that the
shifts that mutations induce can be more significant than a shift to a completely different dataset.
In conclusion, these results confirm that the used mutations are indeed appropriate to emulate
distribution shifts.

OOD data with natural distribution shift. Natural distribution shift comes from unseen environ-
ments. For the text datasets, it is easy to collect this kind of OOD data that targets the same task as
the ID data (e.g., we can collect the movie reviews from different websites and groups of people).
We obtain such datasets (IMDb and Newsgroups) from the baseline work [13] directly. Following
the same settings as Hendrycks and Gimpel [13], for the IMDb dataset, we use the combination of
customer reviews and movie reviews as the OOD data. For Newsgroups, we randomly choose 10
groups as the ID data and 10 groups as the OOD data.

Table 4 lists the average accuracy of models on test sets under different distributions. We can
see that the accuracy degrades gradually when the test set includes OOD data, which confirms
that distribution shift indeed weakens the reliability of the pre-trained DNN and it is necessary to
enhance this DNN.
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Table 4. Average Test Accuracy (%) of the Test Set (see Figure 1)

MNIST Fashion-MNIST CIFAR10 IMDb NewsgroupsDistribution

ID + OOD LeNet-1 LeNet-5 LeNet-1 LeNet-5 NiN ResNet20 LSTM GRU NN NN2
Average

0% + 100% 28.65 36.23 22.62 20.19 51.05 46.90 68.36 67.58 0.40 6.90 34.89
10% + 90% 35.59 42.44 29.11 27.37 54.68 50.85 70.04 69.44 9.00 14.00 40.25
20% + 80% 42.40 48.66 35.51 34.33 58.35 54.69 71.78 71.56 17.50 21.90 45.67
30% + 70% 49.28 54.82 41.86 41.30 61.95 58.50 73.64 73.94 26.20 29.60 51.11
40% + 60% 56.19 61.03 48.31 48.02 65.48 62.51 75.48 75.56 35.20 37.50 56.53
50% + 50% 63.14 67.46 54.87 54.95 68.99 66.29 77.34 77.60 44.40 45.00 62.00
60% + 40% 70.14 73.67 61.36 61.95 72.74 70.27 79.04 79.46 53.10 52.30 67.40
70% + 30% 77.04 79.74 67.75 68.97 76.34 74.28 81.26 81.52 61.70 60.00 72.86
80% + 20% 84.10 86.06 74.26 76.17 79.90 78.03 83.08 83.52 69.70 66.50 78.13
90% + 10% 90.88 92.24 80.79 83.18 83.51 81.95 84.46 85.20 78.20 73.70 83.41
100% + 0% 97.91 98.90 87.29 90.29 87.16 85.79 86.06 86.94 86.70 81.00 88.80
Average 63.21 67.39 54.88 55.16 69.10 66.37 77.32 77.48 43.83 44.40 61.91

Fig. 3. Test accuracy of original test data and new test data after using a Random selection metric to select

different budgets of data and retrain the model. Note that 5-ori means the test accuracy on original test data

after retraining the model with five epochs.

4.5 Retraining Settings

Like previous studies [8, 16, 38] and following our working assumptions, during the retraining
process, the hyperparameters are set in the same way as the pre-trained DNN, such as the DNN
architecture, momentum, batch size, activation function, dropout, optimization, learning rate, and
loss function. In addition, for the number of epochs, we retrain LeNet-1 and LeNet-5 with an addi-
tional 5 epochs as in the work of Shen et al. [38], and 10 epochs for ResNet-20 and NiN as in the
work of Zhang et al. [55]. We do not follow the same setting as Shen et al. [38] to use 5 epochs to
retrain the CIFAR-10 based models. The reason is that in some cases we found that 5 epochs are
not enough for the model weights to converge. As shown in Figure 3, for MNIST-based models,
the test accuracy of original test data and new test data are almost the same after using 5, 10, and
15 epochs to retrain the models. However, for the CIFAR-10-based models, there are clear gaps of
the test accuracy on the new data when using 5 epochs to retrain models compared with using
10 and 15 epochs to retrain, especially when the labeling budgets are 3% and 5%. Since this is the
first work to evaluate the aforementioned selection metrics for model retraining on text datasets,
we follow our practical experience to set 5 epochs to retrain IMDb- and Newsgroups-based
models.
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4.6 Repetitions and Infrastructure

Each experiment is repeated five times to reduce the randomness introduced in the training process.
All experiments run on a high-performance computer cluster, and each cluster node runs a 2.6-GHz
Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16-G SXM2 GPU.

5 EXPERIMENTAL RESULTS

We report the experimental results to answer each research question and summarize our findings.
Remember that the combined candidate set without labels represents the new coming data where
selected data for model retraining come from. The combined test set with labels is for testing
the resulting accuracy of DNNs. We create these two sets in a way that they contain the same
percentage of ID data and OOD data.

5.1 RQ1: Different Retraining Processes

Our goal is to analyze which retraining process can maintain high accuracy on original test data
and meanwhile achieve high accuracy on new data. We denote by Type 1 the process that retrains
the model with the new data only, and by Type 2 the process that retrains the model using a
combination of new data and previous training data. To determine which retraining process is
better, we compare the accuracy improvement of DNNs after retraining using each process. For
each DNN, we create 11 sets of unlabeled data as well as 11 sets of test data following different
data distributions by combining ID and OOD data. Next, each metric (of 6) selects a certain ratio
(budget) of data from each unlabeled candidate set for labeling and model retraining. In our study,
the ratio of selected data is set to 1%, 3%, 5%, and 10% as in the work of Shen et al. [38]. In addition, to
exclude the effect of selection metrics on the retrained models, we also consider using all candidate
data (i.e., with budget 100%) to retrain the DNN models by different retraining processes. Finally,
we calculate the accuracy improvement of DNNs after retraining. In total, we have retrained 71,280
DNN models, 3 datasets× 2 models× (6 selection metrics× 4 budgets + 1 budget)× 11 distributions
× 8 operators × 5 repetitions image-based models, and 2 datasets × 2 models × 6 selection metrics
× 4 budgets × 11 distributions × 5 repetitions text-based models. Tables 5 and 6 show the statistical
improvements of test accuracy over the 71,280 DNNs of the original and new test data, respectively.
In each table, the first column represents the data distribution of the candidate set. For instance,
10% + 90% indicates that the candidate set consists of 10% ID data and 90% OOD data.

In the case of maintaining performance on original test set, as demonstrated by Table 5, in most
cases (512 out of 550) over five datasets, the retraining process of Type 2 achieves better results
than Type 1. And on average, in all cases, the retraining process of Type 2 achieves better (by
up to 29.52%) results than Type 1. Namely, retraining using the combination of new selected data
and training data is a better option than using only the new selected data for this objective. Now
looking at Table 6, surprisingly, retraining with only the new data does not ensure higher accuracy
on the new test data in most cases. In general, in only 153 cases (out of 550 cases), the retraining
process of Type 1 achieves better accuracy than Type 2. On average, we can see that only when
more (at least 80%) OOD data are included in the candidate set, the retraining process of Type 1
can achieve better results (by up to 4.28%) than Type 2. Note that, meanwhile, the accuracy of the
original test data is greatly sacrificed. For instance, in the case of 100% OOD data and Budget 10%,
Type 1 improves the accuracy on the new test set by 48.46%, but the accuracy on the original test
set drops significantly by 29.84%. In addition, this outperformance on new test sets degrades when
a smaller budget is available. Overall, on average, retraining using both the training data and
the newly selected data better enhances the model without losing the high performance on the
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Table 5. Average (over All Selection Metrics) Improvement of Test Accuracy (%) on Original Test Sets

(ID Test Data) with Different Selection Budgets

Budget 1% Budget 3% Budget 5% Budget 10% Budget 100% Budget 1% Budget 3% Budget 5% Budget 10% Budget 100%Distribution

ID + OOD Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

0% + 100% –8.50 0.36 –18.87 0.32 –16.82 0.27 –22.28 0.25 –29.04 –0.06 –13.41 –0.03 –25.70 –0.03 –25.95 –0.04 –35.98 –0.01 –30.84 0.01
10% + 90% –5.25 0.40 –15.35 0.35 –14.64 0.34 –21.11 0.27 –8.27 –0.02 –12.39 –0.02 –22.47 –0.04 –23.83 –0.03 –28.27 –0.02 –4.21 0.02
20% + 80% –4.70 0.40 –11.79 0.34 –9.96 0.31 –21.46 0.27 –5.35 –0.01 –10.37 –0.03 –19.42 0.00 –18.54 0.01 –23.72 –0.02 –2.61 0.02
30% + 70% –3.71 0.39 –9.30 0.35 –9.08 0.35 –17.07 0.28 –3.92 0.04 –8.14 –0.04 –17.83 –0.06 –15.01 –0.03 –18.59 –0.01 –1.78 0.05
40% + 60% –2.39 0.39 –9.68 0.37 –9.08 0.37 –15.11 0.26 –2.91 0.08 –7.70 –0.04 –12.87 –0.04 –11.73 –0.04 –13.30 –0.01 –1.37 0.02
50% + 50% –1.07 0.41 –5.54 0.38 –6.99 0.38 –13.08 0.28 –2.27 0.15 –6.70 –0.03 –9.99 –0.01 –8.53 0.01 –9.84 0.01 –1.05 0.04
60% + 40% –0.92 0.40 –4.97 0.38 –4.58 0.37 –7.82 0.31 –1.82 0.20 –4.11 –0.05 –6.40 –0.03 –5.53 –0.01 –9.51 –0.01 –0.73 0.05
70% + 30% –0.65 0.39 –3.14 0.40 –3.91 0.37 –6.76 0.34 –1.41 0.20 –3.32 –0.03 –4.91 0.00 –4.72 0.02 –6.09 0.02 –0.53 0.05
80% + 20% –0.89 0.42 –2.62 0.38 –2.42 0.40 –3.05 0.35 –1.07 0.25 –1.84 0.01 –3.48 –0.01 –3.22 0.01 –4.40 0.03 –0.38 0.04
90% + 10% –0.36 0.42 –1.44 0.41 –1.22 0.38 –1.36 0.40 –0.66 0.30 –0.96 0.03 –2.62 0.04 –1.66 0.04 –2.23 0.06 –0.27 0.05
100% + 0% 0.07 0.42 0.07 0.44 0.14 0.47 0.19 0.47 0.16 0.47 –0.75 0.06 –0.69 0.08 –0.18 0.07 –0.20 0.07 –0.07 0.06

MNIST

LeNet1

Average –2.58 0.40 –7.51 0.37 –7.14 0.37 –11.72 0.32 –5.14 0.14

MNIST

LeNet5

–6.34 –0.02 –11.49 –0.01 –10.81 0.00 –13.83 0.01 –3.99 0.04
0% + 100% –20.65 0.07 –23.08 –0.02 –24.28 –0.35 –23.59 –0.15 –28.63 –1.05 –19.26 0.07 –22.65 0.00 –20.98 –0.22 –20.46 –0.07 –25.62 –0.24
10% + 90% –13.23 0.19 –16.27 0.07 –17.83 –0.26 –17.57 –0.14 –9.24 –0.92 –13.63 0.00 –19.67 0.05 –18.48 –0.24 –18.42 –0.05 –5.90 –0.22
20% + 80% –9.80 0.17 –13.47 0.01 –14.81 –0.24 –15.03 –0.07 –6.81 –0.77 –9.83 0.04 –16.87 0.05 –17.59 –0.06 –17.33 0.00 –4.35 –0.11
30% + 70% –6.05 0.04 –11.65 0.05 –13.12 –0.07 –13.26 0.03 –5.45 –0.72 –8.23 –0.01 –14.81 0.05 –17.23 –0.09 –15.42 –0.05 -3.14 -0.04
40% + 60% –3.60 0.08 –10.37 0.12 –10.72 0.01 –11.72 0.03 –4.45 –0.49 –6.97 0.04 –13.98 0.00 –15.21 –0.11 –14.14 –0.04 –2.36 0.07
50% + 50% –3.31 0.14 –9.43 0.12 –10.02 0.00 –10.25 0.04 –3.85 –0.47 –6.51 0.02 –11.44 0.02 –13.79 –0.03 –13.91 0.04 –1.89 0.08
60% + 40% –2.51 0.11 –5.56 0.22 –8.26 0.01 –9.48 0.05 –3.18 –0.32 –4.03 0.09 –9.71 0.14 –12.37 –0.18 –11.77 0.10 –1.57 0.16
70% + 30% –1.97 0.12 –3.99 0.17 –5.94 –0.04 –6.88 0.10 –2.48 –0.21 –2.70 0.10 –9.22 0.15 –10.84 0.05 –10.12 0.19 –1.28 0.21
80% + 20% –1.84 0.03 –2.45 0.20 –4.01 0.01 –5.21 0.18 –1.89 –0.13 –1.91 0.23 –6.31 0.16 –8.84 0.08 –7.62 0.18 –0.93 0.26
90% + 10% –1.07 0.04 –1.55 0.24 –2.38 0.16 –2.70 0.19 –1.19 0.04 –1.33 0.24 –4.44 0.17 –5.96 0.07 –4.37 0.24 –0.59 0.35
100% + 0% –0.40 –0.03 –0.57 0.30 –0.52 0.10 –0.25 0.29 0.01 0.27 0.00 0.23 0.11 0.25 –0.02 0.15 –0.45 0.35 0.12 0.44

F-MNIST

LeNet1

Average –5.86 0.09 –8.94 0.14 –10.17 –0.06 –10.54 0.05 –6.10 –0.43

F-MNIST

LeNet5

–6.76 0.10 –11.73 0.09 –12.85 –0.05 –12.18 0.08 –4.32 0.09
0% + 100% –6.64 –0.43 –9.39 –0.61 –9.31 –0.52 –11.37 –0.59 –8.08 –0.39 –14.28 –0.58 –16.17 –0.70 –18.82 –0.57 –22.54 –0.63 –13.47 –0.45
10% + 90% –3.74 –0.59 –7.97 –0.37 –6.84 –0.54 –9.94 –0.58 –3.70 –0.31 –12.13 –0.56 –17.90 –0.51 –15.82 –0.58 –18.16 –0.47 –6.87 –0.41
20% + 80% –2.10 –0.52 –6.19 –0.38 –5.92 –0.39 –8.66 –0.44 –2.97 –0.34 –7.56 –0.51 –12.84 –0.54 –13.40 –0.45 –16.12 –0.43 –5.77 –0.29
30% + 70% –2.13 –0.46 –6.44 –0.35 –4.50 –0.40 –7.38 –0.26 –2.31 0.00 –3.31 –0.48 –9.54 –0.36 –11.45 –0.35 –16.14 –0.28 –5.14 –0.24
40% + 60% –1.33 –0.57 –3.54 –0.32 –2.98 –0.24 –5.92 –0.23 –1.82 –0.21 –2.34 –0.46 –3.92 –0.40 –8.29 –0.35 –14.24 –0.23 –4.75 –0.30
50% + 50% –0.37 –0.38 0.11 –0.28 –2.67 –0.24 –6.14 –0.38 –1.58 –0.03 –1.81 –0.41 –3.05 –0.33 –4.72 –0.34 –12.74 –0.29 –4.28 –0.18
60% + 40% 0.88 –0.35 0.61 –0.30 –0.04 –0.20 –4.69 –0.18 –1.26 0.08 –1.78 –0.41 –2.82 –0.28 –3.64 –0.33 –10.09 –0.29 –3.83 –0.21
70% + 30% 1.06 –0.30 0.55 –0.25 –0.09 –0.21 –4.61 –0.16 –0.77 0.09 –1.66 –0.39 –2.95 –0.31 –3.78 –0.37 –9.59 –0.19 –3.19 0.00
80% + 20% 1.18 –0.24 0.51 –0.17 0.29 –0.19 –3.43 –0.14 –0.43 0.15 –1.63 –0.36 –2.98 –0.32 –3.51 –0.25 –8.20 –0.15 –2.67 –0.02
90% + 10% 1.18 –0.19 0.58 –0.19 0.26 –0.18 –2.97 –0.13 0.12 0.18 –1.61 –0.35 –2.72 –0.25 –3.30 –0.24 –7.59 –0.21 –2.29 0.13
100% + 0% 1.14 –0.24 0.57 –0.21 0.66 –0.13 –4.35 –0.14 0.60 0.27 –1.64 –0.30 –2.48 –0.36 –3.40 –0.23 –7.20 –0.18 –1.97 0.21

CIFAR-10

ReNet20

Average –0.99 –0.39 –2.78 –0.31 –2.83 –0.29 –6.31 –0.29 –2.02 –0.05

CIFAR-10

NiN

–4.52 –0.44 –7.04 –0.40 –8.19 –0.37 –12.96 –0.30 –4.93 –0.16
0% + 100% –0.44 0.68 –2.20 0.78 –3.76 0.75 –2.13 0.71 –6.07 0.78 –0.03 0.54 –1.78 0.42 –4.42 0.34 –4.36 0.46 –4.78 0.59
10% + 90% –0.16 0.64 –1.27 0.70 –1.12 0.69 –0.68 0.71 –0.31 0.68 –0.12 0.47 –2.34 0.34 –1.30 0.48 –1.88 0.47 0.36 0.67
20% + 80% –0.25 0.49 –1.54 0.82 –1.29 0.81 0.09 0.63 1.23 1.01 –0.06 0.51 –0.57 0.56 –1.68 0.37 –0.52 0.42 0.69 1.01
30% + 70% –0.30 0.75 –1.32 0.78 –0.10 0.77 0.35 0.78 0.81 1.07 –0.18 0.45 –0.42 0.47 –0.52 0.56 –0.32 0.52 0.35 1.03
40% + 60% –0.49 0.81 –0.03 0.86 0.38 0.85 0.33 0.87 1.57 1.16 –0.31 0.49 –0.18 0.54 –0.02 0.47 0.12 0.48 1.19 0.88
50% + 50% 0.27 0.90 –0.21 0.85 0.39 0.85 0.67 0.87 1.75 1.31 0.16 0.41 –0.08 0.63 0.18 0.64 0.46 0.60 1.05 1.25
60% + 40% 0.36 0.93 –0.45 0.86 0.49 0.86 0.58 0.97 1.73 1.30 0.13 0.61 0.05 0.47 0.43 0.67 0.43 0.73 1.81 1.40
70% + 30% 0.27 0.87 –0.34 0.86 0.08 0.95 0.79 1.01 1.92 1.60 0.11 0.49 0.25 0.52 0.19 0.64 0.74 0.67 1.97 1.49
80% + 20% 0.18 0.85 0.48 0.90 0.68 0.90 0.96 0.95 1.77 1.47 0.09 0.64 0.18 0.51 0.24 0.67 0.64 0.76 1.95 1.52
90% + 10% 0.35 0.89 0.18 0.80 0.45 1.04 1.14 1.00 2.04 1.58 0.15 0.57 0.16 0.66 0.39 0.58 0.84 0.75 2.06 1.56
100% + 0% 0.17 0.85 0.63 0.98 0.74 0.94 0.89 1.03 2.01 1.65 0.16 0.52 0.10 0.65 0.63 0.67 0.85 0.78 1.95 1.71

IMDb-

LSTM

Average 0.00 0.79 –0.55 0.83 –0.28 0.86 0.27 0.87 0.77 1.24

IMDb-

GRU

0.01 0.52 –0.42 0.52 –0.53 0.55 –0.27 0.60 0.78 1.19
0% + 100% –27.82 0.33 –62.95 0.46 –66.43 0.39 –67.55 0.19 –79.23 –2.37 –73.60 0.75 –72.67 0.16 –67.37 0.36 –63.77 –0.31 –72.62 –0.03
10% + 90% –18.86 0.43 –47.79 0.29 –45.39 0.40 –37.10 0.50 –29.82 –1.37 –48.54 1.27 –32.12 0.59 –29.14 0.44 –27.85 0.31 –16.06 1.83
20% + 80% –14.97 0.30 –32.33 0.51 –31.81 0.40 –25.16 0.38 –15.26 –0.54 –38.16 1.18 –25.26 0.88 –18.47 0.27 –20.16 0.78 –5.90 2.40
30% + 70% –12.22 0.31 –16.04 0.48 –20.89 0.45 –15.80 0.40 –7.11 –0.08 –25.13 1.11 –18.88 1.04 –15.75 1.16 –13.60 0.80 –2.32 3.10
40% + 60% –9.20 0.54 –7.64 0.44 –15.92 0.52 –10.75 0.57 –4.53 0.11 –18.16 1.19 –16.44 0.85 –13.18 1.19 –9.46 1.52 –0.39 3.01
50% + 50% –2.75 0.57 –6.31 0.56 –11.86 0.58 –7.54 0.50 –2.20 0.75 –12.45 1.73 –10.30 1.62 –9.17 1.40 –8.39 1.94 1.83 4.14
60% + 40% –1.72 0.42 –3.69 0.60 –6.30 0.60 –3.81 0.69 –0.31 1.37 –9.84 1.52 –8.13 1.65 –7.01 2.26 –6.43 2.04 3.18 4.77
70% + 30% –0.16 0.66 –3.23 0.68 –2.68 0.81 –1.69 0.75 0.41 1.84 –8.34 1.34 –6.69 1.82 –4.93 2.05 –3.83 2.48 3.88 5.16
80% + 20% 0.14 0.79 –0.69 0.79 –0.53 0.72 –0.55 0.96 1.36 2.17 –7.94 1.56 –4.04 1.90 –3.24 2.02 –1.81 2.64 4.65 5.71
90% + 10% 0.21 0.60 0.01 0.65 –0.14 0.89 0.18 1.11 1.73 2.22 –2.83 1.76 –4.30 2.18 –1.46 2.58 0.78 2.96 5.19 6.14
100% + 0% 0.20 0.62 –0.01 0.68 0.57 0.84 0.66 1.14 2.22 2.59 –5.62 1.81 –1.45 2.17 –0.12 2.74 1.90 3.45 6.19 6.30

Newsgroups

NN

Average –7.92 0.51 –16.42 0.56 –18.31 0.60 –15.37 0.65 –12.07 0.61

Newsgroups

NN2

–22.78 1.38 –18.21 1.35 –15.44 1.50 –13.87 1.69 –6.58 3.86
Budget 1% Budget 3% Budget 5% Budget 10% Budget 100%Distribution

ID + OOD Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

0% + 100% –18.46 0.18 –25.55 0.08 –25.81 0.04 –27.40 –0.01 –29.84 –0.32
10% + 90% –12.80 0.22 –18.32 0.15 –17.44 0.07 –18.10 0.10 –8.40 –0.01
20% + 80% –9.78 0.20 –14.03 0.22 –13.35 0.10 –14.81 0.15 –4.71 0.24
30% + 70% –6.94 0.21 –10.62 0.24 –10.76 0.23 –11.72 0.22 –3.00 0.42
40% + 60% –5.25 0.25 –7.86 0.24 –8.68 0.27 –9.42 0.32 –1.98 0.43
50% + 50% –3.46 0.34 –5.62 0.36 –6.72 0.33 –8.07 0.36 –1.25 0.70
60% + 40% –2.35 0.33 –4.11 0.37 –4.68 0.41 –6.26 0.44 –0.60 0.88
70% + 30% –1.74 0.32 –3.37 0.40 –3.66 0.43 –4.80 0.52 –0.15 1.04
80% + 20% –1.44 0.39 –2.14 0.43 –2.46 0.44 –3.27 0.58 0.24 1.14
90% + 10% –0.63 0.40 –1.62 0.47 –1.50 0.53 –1.83 0.64 0.61 1.26
100% + 0% –0.67 0.39 –0.37 0.50 –0.15 0.56 –0.80 0.73 1.12 1.40

Average

Average –5.77 0.29 –8.51 0.32 –8.66 0.31 –9.68 0.37 –4.36 0.65

Note: The better result between the two types of retraining processes is highlighted in gray. Type 1: Using only the
new data; Type 2: using the combination of new selected data and training data. “Distribution” represents different
distribution shifts by different percentages of ID and OOD data in the candidate set. Baseline: Please refer to Table 1
for the accuracy of pre-trained DNNs.

original test data. We can conclude that this retraining strategy achieves a good balance between
the original and new test sets.

Answer to RQ1: Retraining DNNs with only the new selected data sacrifices accuracy on the
original distribution for improvement on the new distribution. By contrast, mixing the training
data with the new data can achieve high accuracy on both the original and the new distribu-
tions. More specifically, retraining on new data achieves higher test accuracy only when there
are more than 80% OOD data in the candidate set. Overall, combining training data and selected
data remains the best option.

5.2 RQ2: Effectiveness of Different Selection Metrics

Based on the answer of RQ1, we use the retraining process that combines the training and new
data for our remaining studies. In addition, since the accuracy on the original test set is highly
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Table 6. Average (over All Selection Metrics) Improvement of Test Accuracy (%) on New Test Sets with

Different Selection Budgets

Budget 1% Budget 3% Budget 5% Budget 10% Budget 100% Budget 1% Budget 3% Budget 5% Budget 10% Budget 100%Distribution

ID + OOD Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

0% + 100% 6.71 9.86 15.22 16.73 19.23 21.43 35.63 30.88 61.87 63.82 23.99 21.55 32.05 33.18 37.09 41.18 43.69 49.33 60.56 61.27
10% + 90% 5.79 9.20 12.49 14.84 15.84 18.57 29.51 27.38 54.96 56.97 19.12 19.55 27.68 30.81 30.78 36.63 35.81 44.37 54.19 55.13
20% + 80% 4.99 8.20 9.41 13.02 13.24 16.50 24.31 24.04 48.24 50.11 15.57 16.92 22.03 27.33 25.75 32.92 29.77 39.61 47.97 48.84
30% + 70% 4.41 7.47 8.20 11.57 11.15 14.48 18.63 20.24 41.50 43.33 12.62 15.54 16.96 24.34 20.89 28.31 23.88 34.48 41.89 42.70
40% + 60% 3.79 6.70 5.97 9.95 8.58 12.64 14.06 17.64 34.92 36.56 10.26 13.74 13.15 20.99 16.82 24.82 18.51 29.87 35.88 36.62
50% + 50% 2.87 5.61 3.89 8.42 6.29 11.00 9.93 14.92 28.46 29.89 8.59 11.89 9.84 17.70 12.36 20.97 14.03 24.95 29.74 30.35
60% + 40% 2.44 4.62 3.23 7.00 4.28 9.03 6.65 12.22 22.01 23.24 6.66 9.69 6.99 14.29 8.51 16.56 9.71 19.90 23.74 24.24
70% + 30% 1.36 3.40 1.82 5.46 2.53 6.95 3.85 9.30 15.82 16.58 4.40 7.06 3.79 10.69 5.25 12.43 7.53 14.96 17.83 18.17
80% + 20% 0.70 2.28 0.53 3.85 1.30 4.63 2.69 6.20 9.54 10.09 2.50 4.62 1.84 7.20 2.87 8.07 4.27 9.62 11.61 11.82
90% + 10% 0.32 1.32 0.14 2.01 0.66 2.42 1.68 3.09 3.87 4.20 1.06 2.53 –0.05 3.65 1.29 4.04 1.66 4.71 5.58 5.66
100% + 0% 0.07 0.41 0.07 0.43 0.14 0.47 0.18 0.47 0.15 0.46 –0.76 0.09 –0.68 0.12 –0.16 0.11 –0.17 0.10 –0.04 0.10

MNIST

LeNet1

Average 3.04 5.37 5.54 8.48 7.57 10.74 13.38 15.13 29.21 30.48

MNIST

LeNet5

9.46 11.20 12.15 17.30 14.68 20.55 17.15 24.72 29.91 30.44
0% + 100% 10.15 4.59 19.07 8.02 26.35 12.59 32.24 20.28 54.49 51.27 14.66 12.28 28.15 19.80 36.37 26.75 45.44 37.14 59.74 61.99
10% + 90% 4.11 4.28 13.73 6.79 21.94 9.67 28.71 16.44 47.60 45.19 10.44 11.05 24.13 17.14 31.04 23.07 39.44 32.33 53.26 55.27
20% + 80% 3.21 3.81 8.59 5.96 15.37 8.56 22.37 13.21 41.54 39.82 8.39 9.99 17.91 15.31 23.70 19.84 32.33 28.22 46.84 48.83
30% + 70% 2.68 3.78 6.45 5.46 10.70 7.52 15.81 11.83 35.43 34.12 6.11 8.69 12.13 13.29 18.85 17.63 26.16 24.74 40.81 42.43
40% + 60% 1.51 3.12 4.82 4.66 8.39 6.76 12.07 10.09 29.68 28.58 4.11 7.45 9.03 11.60 13.67 15.45 20.12 21.23 34.76 36.08
50% + 50% 0.57 2.60 2.73 4.11 5.05 5.74 8.28 8.53 23.54 22.90 2.87 6.12 6.28 10.26 9.05 13.26 13.79 17.76 28.80 29.48
60% + 40% –0.36 1.98 1.65 3.20 3.20 4.60 5.07 6.87 18.01 17.60 1.83 5.10 4.53 8.55 6.11 10.62 9.18 14.25 22.52 23.11
70% + 30% –0.31 1.52 1.50 2.64 1.48 3.39 2.86 5.09 12.92 12.53 0.80 3.95 1.57 6.77 2.54 8.18 5.12 10.73 16.46 17.08
80% + 20% –0.71 1.12 0.84 1.98 –0.20 2.32 0.57 3.49 7.55 7.41 0.29 2.67 –0.53 4.63 –0.46 5.39 1.62 6.89 10.30 10.94
90% + 10% –0.66 0.68 –0.32 1.14 –0.98 1.24 –0.63 1.71 2.83 2.92 –0.33 1.48 –2.10 2.29 –2.28 2.66 –0.42 3.24 4.55 5.05
100% + 0% –0.40 0.26 –0.56 0.31 –0.53 0.12 –0.26 0.30 0.02 0.27 –0.02 0.22 0.11 0.25 –0.02 0.14 –0.42 0.35 0.12 0.44

F-MNIST

LeNet1

Average 1.80 2.52 5.32 4.02 8.25 5.68 11.55 8.90 24.87 23.87

F-MNIST

LeNet5

4.47 6.27 9.20 9.99 12.60 13.00 17.49 17.90 28.92 30.06
0% + 100% 12.94 7.30 14.70 8.65 18.00 10.76 22.69 14.49 33.81 27.26 4.89 7.88 4.67 8.55 7.50 10.21 11.60 13.83 27.54 28.19
10% + 90% 7.41 6.27 9.63 7.21 13.33 8.58 18.37 11.84 29.76 23.95 2.68 6.94 2.81 6.60 5.75 7.79 8.84 10.42 24.06 25.09
20% + 80% 6.56 5.74 7.82 5.99 9.31 7.21 12.66 9.39 26.08 20.95 –0.22 6.23 –0.04 5.69 2.97 6.60 5.01 8.05 20.72 21.57
30% + 70% 5.49 4.96 5.85 5.52 7.27 6.14 8.66 7.74 22.37 17.83 –2.87 5.44 –1.62 4.75 –0.26 5.51 0.97 6.75 17.24 18.42
40% + 60% 4.53 4.13 4.55 4.20 5.74 4.84 6.28 5.59 18.62 14.55 –2.68 0.93 –2.41 4.00 –2.68 4.48 –1.16 5.49 13.83 15.17
50% + 50% 3.59 3.44 3.67 3.49 3.94 3.96 4.06 4.43 15.10 11.58 –2.26 –0.24 –2.67 3.11 –3.68 3.52 –3.12 4.45 10.70 11.95
60% + 40% 2.81 0.40 2.96 2.47 2.76 2.99 2.24 3.21 11.46 8.81 –2.85 –0.89 –2.74 2.33 –3.48 2.73 –4.64 3.33 7.10 9.02
70% + 30% 2.33 –0.08 2.12 1.75 1.85 1.93 0.08 1.93 7.95 6.03 –2.45 -1.64 –3.19 1.59 –3.40 1.82 –6.40 2.33 4.32 6.13
80% + 20% 1.85 –0.64 1.52 0.98 1.34 1.17 –1.31 1.09 4.91 3.68 –2.08 -2.32 –3.07 0.77 –3.42 0.98 –6.97 1.41 1.72 3.54
90% + 10% 1.46 –1.11 1.01 0.20 0.67 0.34 –2.45 0.20 2.33 1.53 –2.07 -2.72 –2.62 0.25 –3.11 0.32 –7.13 0.53 –0.47 1.41
100% + 0% 1.11 –1.46 0.55 –0.22 0.63 –0.13 –4.34 –0.48 0.60 0.27 –1.92 -3.15 –2.45 –0.34 –3.36 –0.23 –7.32 –0.74 –1.92 0.22

CIFAR-10

ReNet20

Average 4.55 2.63 4.94 3.66 5.90 4.34 6.08 5.40 15.73 12.40

CIFAR-10

NiN

–1.08 1.50 –1.21 3.39 –0.65 3.98 –0.94 5.08 11.35 12.79
0% + 100% 0.83 0.42 0.88 0.65 1.17 0.55 1.28 0.63 2.63 1.89 1.44 1.56 0.39 1.45 0.07 1.47 0.00 1.45 2.74 3.00
10% + 90% 0.48 0.57 0.50 0.71 0.92 0.46 0.93 0.59 1.90 2.01 1.37 1.52 –0.30 1.56 0.54 1.42 –0.11 1.35 2.58 2.88
20% + 80% 0.36 0.57 0.44 0.72 0.80 0.66 1.14 0.58 1.87 1.59 0.94 1.14 –0.12 1.11 –0.79 1.36 0.26 1.51 2.15 2.21
30% + 70% 0.26 0.51 0.07 0.54 0.71 0.61 0.53 0.54 1.83 1.67 0.86 1.09 0.03 1.10 0.23 1.18 0.01 0.95 1.93 1.94
40% + 60% 0.01 0.48 0.37 0.55 0.27 0.33 0.85 0.41 1.67 1.51 0.62 1.07 0.28 1.05 0.81 1.16 0.57 1.10 2.44 1.72
50% + 50% 0.33 0.60 0.17 0.51 0.64 0.53 0.94 0.63 2.03 1.14 0.41 1.02 0.16 1.09 0.57 1.13 0.83 0.99 2.10 1.98
60% + 40% 0.34 0.55 –0.30 0.74 0.21 0.59 0.94 0.74 1.70 1.45 0.33 0.87 0.32 0.89 0.42 0.90 1.01 0.94 2.11 1.64
70% + 30% 0.17 0.33 –0.39 0.66 0.11 0.53 1.06 0.65 2.14 1.21 0.31 0.60 0.44 0.69 0.41 0.67 1.13 0.72 2.39 1.51
80% + 20% 0.11 0.59 0.31 0.67 0.58 0.65 1.03 0.61 1.81 1.18 0.25 0.63 0.20 0.57 0.40 0.70 0.90 0.71 2.11 1.66
90% + 10% 0.32 0.80 0.17 0.75 0.48 0.95 1.15 0.96 2.02 1.43 0.21 0.53 0.16 0.63 0.32 0.63 0.93 0.78 2.12 1.46
100% + 0% 0.17 0.85 0.63 0.98 0.74 0.94 0.89 1.03 2.01 1.65 0.16 0.52 0.10 0.65 0.63 0.67 0.85 0.78 1.95 1.71

IMDb-

LSTM

Average 0.31 0.57 0.26 0.68 0.60 0.62 0.98 0.67 1.97 1.52

IMDb-

GRU

0.63 0.96 0.15 0.98 0.33 1.03 0.58 1.03 2.24 1.97
0% + 100% 18.78 7.65 30.21 17.30 37.25 26.71 48.27 44.86 94.37 93.90 24.99 10.82 34.88 23.09 45.11 32.40 55.98 46.03 86.88 85.08
10% + 90% 14.13 6.20 21.24 14.69 26.63 22.30 38.04 38.34 81.79 83.70 15.89 8.42 26.31 20.39 33.01 26.86 44.90 39.01 75.94 76.00
20% + 80% 12.52 5.24 14.22 12.40 21.84 19.64 31.35 32.65 72.48 73.93 9.18 6.60 18.75 16.92 25.30 23.10 36.39 33.74 66.53 67.30
30% + 70% 9.28 4.97 9.91 9.33 16.12 15.57 25.12 26.33 63.41 64.06 4.85 5.47 12.70 13.49 19.80 18.53 29.51 28.41 57.79 58.76
40% + 60% 6.41 3.93 7.62 7.79 9.67 11.87 20.53 21.43 52.36 53.43 0.47 3.99 6.67 10.48 12.93 14.74 21.26 21.65 48.04 48.83
50% + 50% 3.13 2.92 4.26 5.42 5.83 8.48 14.03 15.84 41.83 42.38 –2.20 3.15 3.29 7.72 7.32 11.24 15.80 16.87 39.35 39.73
60% + 40% 2.56 2.25 2.98 4.25 5.09 5.82 10.33 11.10 31.67 31.86 –1.73 2.60 1.36 5.89 4.63 8.03 10.56 12.43 31.13 31.06
70% + 30% 1.27 1.64 1.55 3.15 3.69 4.38 6.53 7.05 21.60 22.35 –3.11 2.00 0.40 4.64 2.55 6.71 7.16 9.28 23.29 23.71
80% + 20% 0.95 1.60 0.95 1.94 2.15 2.42 2.95 3.76 13.16 13.07 –4.58 1.84 –1.20 3.17 0.52 4.36 3.92 6.09 15.85 16.00
90% + 10% 0.53 0.91 0.68 1.15 1.06 1.79 1.17 2.01 5.24 5.67 –2.13 1.89 –3.23 2.67 –0.25 3.20 2.49 4.20 9.23 9.89
100% + 0% 0.20 0.62 –0.01 0.68 0.57 0.84 0.66 1.14 2.22 2.59 –5.62 1.81 –1.45 2.17 –0.12 2.74 1.90 3.45 6.19 6.30

Newsgroups

NN

Average 6.34 3.45 8.51 7.10 11.81 10.89 18.09 18.59 43.65 44.27

Newsgroups

NN2

3.27 4.42 8.95 10.06 13.71 13.81 20.90 20.11 41.84 42.06
Budget 1% Budget 3% Budget 5% Budget 10% Budget 100%Distribution

ID + OOD Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

0% + 100% 11.94 8.39 18.02 13.74 22.81 18.41 29.68 25.89 48.46 47.77
10% + 90% 8.14 7.40 13.82 12.07 17.98 15.54 24.44 22.21 42.61 42.62
20% + 80% 6.15 6.44 9.90 10.45 13.75 13.64 19.56 19.10 37.44 37.51
30% + 70% 4.37 5.79 7.07 8.94 10.55 11.55 14.93 16.20 32.42 32.53
40% + 60% 2.90 4.55 5.00 7.53 7.42 9.71 11.31 13.45 27.22 27.30
50% + 50% 1.79 3.71 3.16 6.18 4.74 7.98 7.86 10.94 22.17 22.14
60% + 40% 1.20 2.72 2.10 4.96 3.17 6.19 5.11 8.50 17.15 17.20
70% + 30% 0.48 1.88 0.96 3.80 1.70 4.70 2.89 6.20 12.47 12.53
80% + 20% –0.07 1.24 0.14 2.57 0.51 3.07 0.97 3.99 7.86 7.94
90% + 10% –0.13 0.63 –0.62 1.48 –0.21 1.76 –0.16 2.14 3.73 3.92
100% + 0% –0.70 0.02 –0.37 0.50 –0.15 0.57 –0.80 0.64 1.13 1.40

Average

Average 3.28 3.89 5.38 6.57 7.48 8.46 10.53 11.75 22.97 22.99

Note: The better result between the two types of retraining processes is highlighted in gray. Type 1: Using only the
new data; Type 2: using the combination of new selected data and training data. “Distribution” represents different
distribution shifts of the candidate set. Baseline: Please refer to Table 4 for the accuracy of pre-trained DNNs.

maintained, we only consider the performance on the new test set in the following research
questions.

We observe that the evaluation of existing selection metrics for model retraining lacks insights
regarding the amplitude of the distribution shift. For example, MCP is evaluated by only using one
data combination (80% original test data + 20% mutated data), and DeepGini is evaluated by only
(100%) mutated data. Thus, the actual effectiveness of these metrics when facing different data
distributions is ambiguous. In this research question, we explore how different distributions of
candidate data affect the effectiveness of each metric for model enhancement. To achieve this, we
still follow the same experimental setting as our first study. In total, for each image dataset, each
test combination has 64 (2 models× 8 operators× 4 budgets) retraining performances averaging on
five repetitions. In this section, we only report the results of image datasets because we use natural
OOD data for text datasets, whereas we can experimentally control the OOD data produced for
images. Therefore, there are only a few combinations (8) for text data, and the statistical results
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are insufficient to give conclusions. We report the results of text datasets in Section 6.4 (where we
consider real-world distribution shift) by using the test accuracy improvement after retraining as
the measurement metric.

Table 7 lists the frequency of each selection metric achieving the top-1 and top-3 best test ac-
curacy over the 64 cases in each test combination. Note that we also report top-3 results since if
the metric achieves top-3 best performance, it outperforms half of the metrics. Interestingly, when
the new set contains more than 70% OOD data, Random selection defeats the other five carefully
designed metrics in most cases (20 out of 24). Moreover, in total, the frequency of Random selec-
tion being the best is almost twice as the second-best metric. For example, the Random selection
obtains 90 times the top-1 best performance in the 100% OOD test set, whereas the second-best,
CES, only reaches 47 times. In addition, when the included OOD data are more than 70%, the two
metrics CES and DSA outperform the uncertain-based metrics Entropy, DeepGini, and MCP. The
reason is that when the new data consists of too much OOD data, a massive amount of informa-
tion related to the new distribution has not been learned by the pre-trained model. In this case,
the model needs to learn more from a representative sample of the new data rather than from the
most uncertain data. Among all studied metrics, Random selection is the most effective because it
does not bias the selection toward specific data and therefore achieves better representativeness.

With the increase of ID data in the candidate set and test set, the uncertain-based metrics (En-
tropy, DeepGini, and MCP) achieve better results than the other three metrics (CES, DSA, and
Random selection). More specifically, in total, when the proportion of OOD data is between 40%
and 70%, MCP performs consistently better than all of the others. However, when the test set con-
tains more (≥80%) ID data, Entropy and DeepGini achieve the best results. This is because as a
higher ratio of ID data is part of the new distribution, the pre-trained model has already learned
more from this new distribution. The OOD data, in this case, can be seen as outliers that generate
uncertainty in the model and are therefore naturally selected by the uncertainty-based metrics.
Hence, retraining on these data fills the gap in model learning and achieves better performance.

Answer to RQ2: None of the selection metrics outperforms the others across all ranges of
distribution shifts. When the new set contains much more (≥70%) OOD than ID data, the
simple but effective Random selection defeats the others. On the contrary, when the new set
contains more ID data, the uncertain-based metrics are more effective.

5.3 RQ3: Distribution and Bias of Selected Data

Following our findings presented previously, in this research question we further explore another
property that may impact the effectiveness of the selection metrics: class bias of the data selected
by each metric. In other words, we check if the selected data are evenly chosen from different
classes, which is done by calculating the variance of labels of selected data. For example, given a
three classes task, we select 100 data. If the numbers of selected data for each class is 30, 30, 40,
the variance isVariance (30, 30, 40) = 22.22, whereas if the label numbers are 90, 5, 5, the variance
should be Variance (90, 5, 5) = 1, 605.55. A small variance indicates a slight bias in data.

First, Figure 4 illustrates the data distribution of selected data by different metrics. Compared
with the data distribution in the candidate set (black dashed line), three metrics, CES, DSA, and
random, select ID and OOD data following almost the same distribution. On the contrary, the
uncertain-based metrics, Entropy, DeepGini, and MCP, tend to pick more OOD than ID data. The
reason is that the uncertain-based metrics always choose the most informative data, and the OOD
data have likely not been learned by the pre-trained DNNs. Thus, there is more chance for OOD
data to be selected by these uncertain-based metrics.
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Table 7. Frequency of Being the Top-1 and Top-3 Best of the Six Selection Metrics Under Different

Data Distributions

Entropy DeepGini MCP CES DSA Random Entropy DeepGini MCP CES DSA RandomDistribution

ID + OOD Top-1 Top-3

0% + 100% 1 0 1 19 4 39 3 4 36 60 26 63
10% + 90% 1 2 6 14 9 32 2 8 32 60 30 60
20% + 80% 0 3 7 20 8 26 5 13 36 51 30 57
30% + 70% 4 5 17 16 1 21 12 19 44 48 21 48
40% + 60% 5 9 21 11 5 13 20 32 47 35 19 39
50% + 50% 3 12 28 9 2 10 29 40 52 29 13 29
60% + 40% 8 16 23 3 6 8 36 50 54 19 10 23
70% + 30% 7 25 23 3 4 2 54 58 54 10 9 7
80% + 20% 20 26 14 0 1 3 59 59 57 3 5 9
90% + 10% 29 26 6 0 2 1 60 59 59 0 7 7
100% + 0% 15 17 13 9 3 7 40 34 33 30 27 28

MNIST

Average 8.45 12.82 14.45 9.45 4.09 14.73 29.09 34.18 45.82 31.36 17.91 33.64
0% + 100% 0 2 3 13 11 35 3 3 26 60 40 60
10% + 90% 1 0 6 14 8 35 2 3 30 60 42 55
20% + 80% 0 0 4 12 15 33 1 5 32 58 40 56
30% + 70% 1 2 8 12 16 25 6 4 41 53 35 53
40% + 60% 0 0 14 14 19 17 6 9 38 49 42 48
50% + 50% 1 4 16 9 20 14 14 17 39 36 36 50
60% + 40% 6 9 23 3 16 7 21 31 43 25 40 32
70% + 30% 6 14 30 2 9 3 31 40 52 20 27 22
80% + 20% 15 16 22 3 5 3 44 42 56 13 21 16
90% + 10% 22 16 18 2 4 2 50 53 58 9 14 8
100% + 0% 16 15 9 10 9 5 35 36 37 32 26 26

Fashion-

MNIST

Average 6.18 7.09 13.91 8.55 12.00 16.27 19.36 22.09 41.09 37.73 33.00 38.73
0% + 100% 8 14 5 15 6 16 28 36 25 33 31 39
10% + 90% 7 15 3 10 10 19 29 39 14 37 30 43
20% + 80% 17 14 0 11 6 16 35 41 11 39 24 42
30% + 70% 15 18 1 9 4 18 38 47 17 30 20 40
40% + 60% 14 22 4 7 8 9 41 49 18 32 21 31
50% + 50% 19 24 1 4 11 5 43 50 23 21 20 35
60% + 40% 18 25 4 5 8 4 47 48 24 23 22 28
70% + 30% 24 19 7 5 5 4 48 51 34 21 16 22
80% + 20% 25 24 6 2 2 5 51 49 46 14 14 18
90% + 10% 20 27 6 4 3 4 49 54 46 16 12 15
100% + 0% 10 15 20 6 7 6 37 36 48 31 22 18

CIFAR-10

Average 16.09 19.73 5.18 7.09 6.36 9.64 40.55 45.45 28.00 27.18 21.09 29.73
0% + 100% 9 16 9 47 21 90 34 43 87 153 97 162
10% + 90% 9 17 15 38 27 86 33 50 76 157 102 158
20% + 80% 17 17 11 43 29 75 41 59 79 148 94 155
30% + 70% 20 25 26 37 21 64 56 70 102 131 76 141
40% + 60% 19 31 39 32 32 39 67 90 103 118 82 116
50% + 50% 23 40 45 22 33 29 86 107 116 86 69 112
60% + 40% 32 50 50 11 30 19 104 129 121 67 72 83
70% + 30% 37 58 60 10 18 9 133 149 140 51 52 51
80% + 20% 60 66 42 5 8 11 154 150 159 30 40 43
90% + 10% 71 69 30 6 9 7 159 166 163 25 33 30
100% + 0% 41 47 42 25 19 18 112 106 118 93 75 72

Total

Average 30.73 39.64 33.55 25.09 22.45 40.64 94.5 107.6 117.7 90.6 69.5 96.1

Note: The best result is highlighted in gray. “Distribution” represents different distribution shifts of the candidate set.

Second, Table 8 shows the class bias presented by the variance of labels of selected data. Com-
pared with the other selection metrics, random always selects data evenly from different classes.
However, the variances of two uncertainty-based metrics (Entropy and DeepGini) are more than
twice the others. Although MCP is designed to select data evenly from different boundary areas,
this metric has a higher bias than CES and Random selection. The reason for Entropy, DeepGini,
and MCP selecting bias classes is that they all use the predicted probability to measure the uncer-
tainty, which is highly affected by the accuracy of the pre-trained model on the new data. When
there are more OOD data, the prediction is more unreliable. For instance, MCP tends to decrease
the bias in data when the proportion of ID data is above 50%.

Considering the results of RQ2, we conjecture that when there are more OOD (e.g., ≥70%) data
in the candidate set, it is better to select data with a better class balance to retrain the model. As an
illustration of this hypothesis, Random selection and CES achieve both higher accuracy and class
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Fig. 4. Comparison of data distributions of the selected set by different metrics. Baseline: The selected set

has the same data distribution (same percentage of OOD and ID data) as the candidate set.

Table 8. Class Bias (Label Variance) of Selected Data by Different Metrics

Distribution

ID+OOD
Entropy DeepGini MCP CES DSA Random

0% + 100% 479.42 429.86 361.13 213.13 279.09 188.75
10% + 90% 444.59 395.74 280.83 211.27 267.65 184.97
20% + 80% 423.30 377.19 270.06 210.26 263.01 182.18
30% + 70% 408.98 365.81 262.70 208.08 258.92 186.39
40% + 60% 387.65 350.30 250.64 207.57 256.99 181.09
50% + 50% 370.65 338.58 240.68 208.34 255.24 178.84
60% + 40% 350.82 324.47 233.23 209.83 255.07 177.36
70% + 30% 326.56 309.37 224.24 208.23 257.25 177.05
80% + 20% 307.41 299.57 218.07 207.98 261.64 178.10
90% + 10% 299.48 300.55 211.54 209.48 265.95 177.30
100% + 0% 392.50 385.06 216.62 213.89 268.97 177.93
Average 381.03 352.41 251.80 209.83 262.71 180.91

Note: The best result is highlighted in gray. “Distribution” represents different distribution
shifts of the candidate set. The number means the average (over all selection metrics)
variance in the number of examples that the metric selects for each class.

balance. Since in the candidate set most of the data have not been learned by the model, a better
class balance can help represent a more diverse distribution and, in turn, lead the model to learn
more diverse information.

Answer to RQ3: Uncertain-based selection metrics (Entropy, DeepGini, and MCP) tend to
select more OOD data, and do so in a way that creates class imbalance in the set of retraining
data. On the contrary, CES and random select data with more balanced classes and better
representativeness of the new distribution. These two factors contribute to the difference in
the effectiveness of the selection metrics, depending on how much ID data are still part of the
new distribution.

6 DISTRIBUTION-AWARE TEST SELECTION

According to the findings of our empirical study, when the new data contain more (≥60%) ID than
OOD data, the uncertain-based metrics outperform others in enhancing the performance of DNNs.
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However, when there are more (≥70%) OOD data, none of the existing metrics (Entropy, DeepGini,
MCP, CES, and DSA) defeats the Random selection. Therefore, there is room for proposing a new
metric to deal with the second case in a better way than random. Intuition: since different selection
metrics behave differently on different data distributions, we should consider different selection
strategies for different distributions of data. From the ID data, we need to select the uncertain
ones, whereas for the OOD data, we should consider the data representativity. Given our previous
findings, the guiding principles of our new metric are twofold: (1) it must consider how much
the data distribution has changed (by using OOD detector), and (2) it should preserve the balance
between classes (by comparing the label balance between the selected data and the whole data).
Based on these two principles, we propose a distribution-aware test selection metric named DAT.

6.1 OOD Detector

Before looking into DAT, we introduce an OOD detection approach employed in our metric. The
OE detector [14] is currently the best OOD detection method as assessed in a recent empirical
study [1]. Given a distribution Din , the detector aims at identifying if a sample is derived from
Din or not. The main idea is to separately train a DNN that additionally optimizes the loss on OOD
data. In real applications, the distribution Dout is unknown and difficult to be inferred precisely.
Therefore, in practice, the OOD data (OE dataset, following DOE

out ) fed into the detector can be the
same as or disjoint from the test OOD data. Given a DNN f that learned the distribution Din and
an OE dataset, the objective of the OOD detector is to minimize:

E(x,y )∼Din

[
L ( f (x ) ,y) + 0.5 ∗ Ex ′∼DO E

out

[LOE ( f (x ′))
] ]
, (3)

where L is the loss function of f . The OE loss function LOE is set as the cross entropy from
f (x ′) to the uniform distribution. In particular, although learning from DOE

out , the OOD detector
has been proved [1, 14] to generalize well toDout . Our experimental results in Table 3 (Section 4.4)
also confirm this conclusion.

Concretely, given a pre-trained model f and its training set X in ∼ Din , first, we prepare the ID
data and OOD data to train the OOD detector. For image datasets, we use all of the eight considered
image mutation operators to mutate the training set and generate eight mutated sets. Then, we

evenly select |X
in |
8 data from each mutated set and combine them as the OOD training set X out ∼

DOE
out . For the text datasets, we split the data from the OOD set asX out directly. Note that the OOD

data we select for training the OOD detector are not from the candidate set and test data. Next,
an OE model is trained using both X in and X out according to Equation (3). This model predicts
an OE score (probability) of a test being OOD. Finally, we train a regression classifier based on the
OE scores of data in X in and X out predicted by the OE model. All OOD detectors in this article are
available on our project site.1

Figure 5 shows the distribution of OE scores of three image candidate sets: MNIST, Fashion-
MNIST, and CIFAR-10. For the description of candidate sets, please refer to Section 4. The blue and
orange histograms represent the distributions of the ID and OOD data, respectively. For MNIST
and Fashion-MNIST, the OOD detector can recognize and separate the ID and OOD data clearly,
and the performance on CIFAR-10 is also acceptable. In addition, we calculate the area under the

curve of receiver characteristic operator (AUC-ROC) score of our OOD detectors. The AUC-
ROC provides an overall evaluation of the ability of the OOD detector to distinguish between OOD
and ID data. A high AUC-ROC indicates good performance. For MNIST, the AUC-ROC scores are
87.74% and 92.69% of LeNet-1 and LeNet-5, respectively. For Fashion-MNIST, the scores are 88.62%
and 90.81% of LeNet-1 and LeNet-5, respectively. For CIFAR-10, the scores are 74.52% and 74.36%
of ResNet-20 and NiN, respectively.
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Fig. 5. Histograms of OE scores of image candidate sets.

6.2 DAT Algorithm

In Algorithm 1, we present our proposed DAT selection metric.
Basically, DAT includes five steps to select data:

(1) Given a candidate set Xc , we first utilize the OOD detector, OODDetector , to divide this
dataset into ID and OOD sets, X id

c and X out
c (line 1). If the OOD score given by the

OODDetector is greater than (less than or equal to) δ , we say the input sample is OOD (ID)
data. By default, we set δ to 0.5; however, the appropriate value depends on the used detector
(we discuss this in more details later).

(2) From the results of CES, DSA, and Random selection in Table 7 and Figure 4, we know that
the selected set, Xs , from Xc should follow a similar data distribution. Thus, we determine
the labeling budgets, nid and nout , for the ID and OOD data in Xs by the proportion of ID
data inXc (lines 2 through 7). Note that in practice, we select slightly more OOD data like all
of the selection metrics do because OOD data are more informative for a pre-trained DNN.
Here, we use a pre-defined threshold δ to limit the amount of ID data used for retraining.

(3) We first select the ID data. According to our study, we try to select more uncertain data from
ID set. As the result shown in Table 7 suggest, DeepGini is appropriate for this because it
achieves the highest average top-1 performance among the uncertain-based metrics when
the OOD data are below 70%. Thus, we apply DeepGini to select the most uncertain data,
X id , from X id

c (line 8).
(4) To select the OOD data, we consider the class bias as suggested by RQ3. Using the test data,

Xt , as a reference, we select OOD data within several iterations. In detail, first, we create the
histogram, LDt , of the predicted labels, Yt , of Xt by the pre-trained DNN model f (lines 9
and 10). In each iteration, a set of OOD data, X out

∗ , are randomly selected from X out
c (line

13). Based on the distance of histograms between the selected and test sets, X out is updated
to be more balanced (lines 11 through 20).

(5) Output the combination of the selected ID and OOD data (lines 21 and 22).

6.3 RQ4: Effectiveness of DAT on Synthetic Distribution Shift

To evaluate the effectiveness of DAT, we conduct a similar comparison as RQ2. First, we consider
the synthetic distribution shift. An important component in DAT is the OOD detector that deter-
mines the threshold δ to control the size of selected ID and OOD data. Generally, δ is set to 0.5,
which means the data sample is OOD (ID) if the detector score of this sample is greater (smaller)
than 0.5. However, we experimentally found out that it might be better to set a smaller δ to reduce
the number of selected ID data. This is because the OOD detector may not be able to perfectly
separate ID data from OOD data. In our experiments, we set δ as 0.01, 0.1, and 0.3 for MNIST,
Fashion-MNIST, and CIFAR-10, respectively. In addition, we set the iteration number as 1,000 for
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ALGORITHM 1: DAT: Distribution-Aware Test Selection
Input :OODDetector : out-of-distribution detector

f ,Xt ,Xc : DNN, test set, candidate set
uncertainSelect : uncertainty-based selection metric
δ : threshold to limit the size of selected ID data
n: size of labeling budget
ite: number of iterations

Output :Xs : selected data
/* Step1: Check data distribution of Xc */

1 X in
c ,X

out
c = OE_Detector (Xc ,δ )

/* Step2: Determine data distribution of Xs */

2 if
|X in

c |
|Xc | > δ then

3 nin = δ × n
4 else

5 nin = δ × |X
in
c |
|Xc |

6 end

7 nout = n − nin

/* Step3: Select ID data */

8 X in = uncertainSelect
(
X in

c ,n
in
)

/* Step4: Select OOD data */

9 Yt = f (Xt )

10 LDt = histoдram (Yt ) ; // Histogram of labels

11 dmin = ∞
12 for i = 0→ ite do

13 Xout
∗ = randomSelect

(
Xout

c ,nout
)

14 LDr = histoдram (Yr )

15 if |LDt − LDr | < dmin then

16 Xout = Xout
∗

17 dmin = |LDt − LDr |
18 end

19 end

/* Step5: Output selected data */

20 Xs = X id ∪ Xout

21 return X s

all datasets. For the backbone uncertainty metric that DAT uses to select ID data, we choose Deep-
Gini as discussed before.

Table 9 lists the frequency of each selection metric achieving the top-1 and top-3 accuracy im-
provement over 64 and 192 cases, respectively. On average, DAT is the best metric regardless of
the distribution shift and dataset. For example, in the case of “Top-1,” DAT is five and two times
better than the worst (Random) and the second-best (MCP), respectively. In the case of “Top-3,”
although the gap between metrics becomes smaller, DAT still achieves nearly 24% better than the
second-best (MCP). Particularly, DAT always outperforms the others when there are more than
70% OOD data. In the other distribution ratios, there is no unique winner, but DAT remains gen-
erally competitive.

In addition, to check whether it is important and useful to consider the data distribution
in DAT, we conduct an ablation study. Elaborately, we remove the distribution detection steps
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Table 9. Effectiveness of DAT: Comparison of Frequency of Being the Top-1 and Top-3 Best

of Seven Selection Metrics

Entropy DeepGini MCP CES DSA Random DAT Entropy DeepGini MCP CES DSA Random DATDistribution

ID + OOD Top-1 Top-3

0% + 100% 1 0 0 15 3 22 23 2 1 15 48 11 55 60
10% + 90% 0 0 2 6 1 20 35 2 5 10 46 15 56 58
20% + 80% 0 2 6 10 3 9 34 2 9 17 39 16 46 63
30% + 70% 3 4 10 5 0 10 32 9 12 30 39 11 36 55
40% + 60% 3 4 18 10 5 12 12 16 28 33 33 17 34 31
50% + 50% 3 6 26 7 2 8 12 20 31 44 25 11 26 35
60% + 40% 6 8 20 3 5 7 15 28 40 43 18 10 20 33
70% + 30% 6 12 20 3 4 2 17 50 50 46 7 8 6 25
80% + 20% 18 12 11 0 1 3 19 55 51 50 3 4 8 21
90% + 10% 25 16 5 0 2 1 15 56 49 50 0 7 7 23
100% + 0% 13 7 10 7 3 5 19 30 28 29 26 26 25 28

MNIST

Average 7.09 6.45 11.64 6.00 2.64 9.00 21.18 24.55 27.64 33.36 25.82 12.36 29.00 39.27
0% + 100% 0 1 3 10 8 16 26 1 3 7 45 30 52 54
10% + 90% 1 0 4 8 8 15 28 1 0 11 40 31 50 59
20% + 80% 0 0 3 6 8 15 32 1 2 11 35 33 52 58
30% + 70% 0 2 4 7 8 12 31 4 2 20 38 28 46 54
40% + 60% 0 0 10 11 6 14 23 3 5 29 40 33 31 51
50% + 50% 0 2 10 4 5 10 33 5 9 31 40 25 31 51
60% + 40% 5 7 18 2 1 7 24 14 25 38 20 18 31 46
70% + 30% 6 12 20 1 1 5 19 26 34 47 17 11 21 36
80% + 20% 13 15 16 2 0 1 17 40 37 45 12 11 19 28
90% + 10% 21 14 16 1 1 2 9 49 53 52 6 7 12 13
100% + 0% 4 7 4 3 2 5 39 31 32 29 18 23 13 46

Fashion-

MNIST

Average 4.55 5.45 9.82 7.45 4.27 6.91 25.55 15.91 18.36 29.09 32.09 26.00 25.45 45.09
0% + 100% 5 11 4 9 5 13 17 26 29 21 30 19 29 38
10% + 90% 6 15 3 8 7 6 19 22 34 12 35 19 30 40
20% + 80% 15 14 0 7 4 4 20 33 35 10 30 18 26 40
30% + 70% 15 15 1 3 4 10 16 35 37 10 22 15 32 41
40% + 60% 11 13 4 7 6 7 16 36 40 15 32 20 21 28
50% + 50% 16 16 1 4 10 4 13 37 44 21 19 19 26 26
60% + 40% 15 17 4 5 7 4 12 40 38 22 23 21 22 26
70% + 30% 22 9 6 5 4 4 14 38 45 30 17 15 20 27
80% + 20% 24 16 5 2 2 5 10 44 47 40 12 12 16 21
90% + 10% 17 18 5 3 3 4 14 45 48 40 14 10 10 25
100% + 0% 9 9 18 6 7 4 11 32 32 45 26 17 15 25

CIFAR-10

Average 14.09 13.91 4.64 5.36 5.36 5.91 14.73 35.27 39.00 24.18 23.64 16.82 22.45 30.64
0% + 100% 6 12 7 51 34 16 66 29 33 43 136 123 60 152
10% + 90% 7 15 9 41 22 16 82 25 39 33 136 121 65 157
20% + 80% 15 16 9 28 23 15 86 36 46 38 124 104 67 161
30% + 70% 18 21 15 32 15 12 79 48 51 60 114 99 54 150
40% + 60% 14 17 32 30 23 25 51 55 73 77 95 98 68 110
50% + 50% 19 24 37 16 16 22 58 62 84 96 92 69 61 112
60% + 40% 26 32 42 13 9 19 51 82 103 103 62 59 62 105
70% + 30% 34 33 46 7 9 13 50 114 129 123 43 35 44 88
80% + 20% 55 43 32 10 2 4 46 139 135 135 36 26 35 70
90% + 10% 63 48 26 6 4 7 38 150 150 142 23 21 29 61
100% + 0% 26 23 32 12 15 15 69 93 92 103 58 75 56 99

Total

Average 25.73 25.82 26.09 22.36 15.64 14.91 61.45 75.73 85.00 86.64 83.55 75.45 54.64 115.00

Note: The best result is highlighted in gray. “Distribution” represents different distribution shifts of the candidate set.

(steps 1 through 3) in Algorithm 1 and only use the fourth step to select all candidate data. In this
way, DAT ignores the data distribution. Table 10 provides the results of our ablation study. Com-
pared with taking into consideration the data distribution (Table 9), the performance drops a lot
(presented by the numbers in brackets). On average, the frequencies of being the best top-1 and top-
3 have reduced by 12.09 and 11, respectively. This ablation study demonstrates that considering
data distribution is critical for DAT.

Answer to RQ4: On the synthetic distribution shift, when there are more OOD data in the
new coming set (OOD data ≥ 70%), DAT outperforms other compared metrics in all of our
considered datasets. In lower ratios of OOD, DAT is not always the best metric, but it remains
competitive overall. In addition, our ablation study demonstrates the importance of taking into
account the data distribution when selecting data.
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Table 10. Ablation Study of DAT That Shows the Importance of Considering the Data Distribution

DAT with the OOD Detector DAT without the OOD Detector Improvement DropDistribution

ID + OOD Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

0% + 100% 23 60 19 57 4 3
10% + 90% 35 58 24 56 11 2
20% + 80% 34 63 25 57 9 6
30% + 70% 32 55 25 50 7 5
40% + 60% 12 31 8 28 4 3
50% + 50% 12 35 10 33 2 2
60% + 40% 15 33 14 30 1 3
70% + 30% 17 25 14 25 3 0
80% + 20% 19 21 17 20 2 1
90% + 10% 15 23 14 22 1 1
100% + 0% 19 28 16 26 3 2

MNIST

Average 21.18 39.27 16.91 36.73 4.27 2.55
0% + 100% 26 54 20 51 6 3
10% + 90% 28 59 22 55 6 4
20% + 80% 32 58 30 53 2 5
30% + 70% 31 54 31 54 0 0
40% + 60% 23 51 17 49 6 2
50% + 50% 33 51 25 47 8 4
60% + 40% 24 46 20 45 4 1
70% + 30% 19 36 18 30 1 6
80% + 20% 17 28 13 25 4 3
90% + 10% 9 13 7 10 2 3
100% + 0% 39 46 26 38 13 8

Fashion-

MNIST

Average 25.55 45.09 20.82 41.55 4.73 3.55
0% + 100% 17 38 16 30 1 8
10% + 90% 19 40 12 33 7 7
20% + 80% 20 40 16 33 4 7
30% + 70% 16 41 11 31 5 10
40% + 60% 16 28 11 24 5 4
50% + 50% 13 26 9 21 4 5
60% + 40% 12 26 10 22 2 4
70% + 30% 14 27 12 24 2 3
80% + 20% 10 21 10 20 0 1
90% + 10% 14 25 12 23 2 2
100% + 0% 11 25 9 22 2 3

CIFAR-10

Average 14.73 30.64 11.64 25.73 3.09 4.91
0% + 100% 66 152 55 138 11 14
10% + 90% 82 157 58 144 24 13
20% + 80% 86 161 71 143 15 18
30% + 70% 79 150 67 135 12 15
40% + 60% 51 110 36 101 15 9
50% + 50% 58 112 44 101 14 11
60% + 40% 51 105 44 97 7 8
70% + 30% 50 88 44 79 6 9
80% + 20% 46 70 40 65 6 5
90% + 10% 38 61 33 55 5 6
100% + 0% 69 99 51 86 18 13

Total

Average 61.45 115.00 49.36 104.00 12.09 11.00

“Distribution” represents different distribution shifts of the candidate set. “Improvement drop” presents the drop of
accuracy (%) improvement of DAT without the OOD detector compared with using the OOD detector when
selecting data. Baseline: Please refer to Table 4 for the accuracy of pre-trained DNNs.

6.4 RQ5: Effectiveness on Natural Distribution Shifts

In addition to testing on synthetic distribution shifts, we further evaluate DAT on natural distri-
bution shifts. In our study, we consider three datasets: iWildCam, IMDb, and Newsgroups.

Datasets. iWildCam is from a recently released benchmark with real-world distribution shifts—
WILDS [17]. The shift of iWildCam comes from camera traps. Concretely, researchers collect data
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using specific camera traps, then use these data to train an ML model for animal recognition.
However, when users deploy this model in the wild, the change of camera traps may cause distri-
bution shifts and harm the performance of the model. In total, iWildCam contains 129,809 training
data (ID), 14,961 OOD validation data, 7,314 ID validation data, and 42,791 OOD test data. The data
are divided into 182 different categories. Please refer to Section 4.2 for details on IMDb and News-
groups.

Setup. For iWildCam, we use all training data to train a ResNet-50 model as our pre-trained
model. We chose ResNet-50 because it is the recommended model architecture by the WILDS
benchmark. Then, we randomly split the test data (all of which are OOD) into three parts: one
(20,000 data) for training the OOD detector with the ID training data, one (10,000 data) as the
candidate set for selection, and the rest (12,791 data) as the test data. In addition, we follow setup
simular to that in the work of Kossen et al. [18], which reduces the number of training data to
check the performance of each metric on the model that has bad performance, to train models
with a small number of training data. In this way, we can check the effectiveness of each metric
on both the well-trained model and the model trained by limited labeled data. Thus, we train the
other two models using randomly selected 1,000 and 2,000 training data for our evaluation. For
IMDb and Newsgroups, we follow the same procedure as iWildCam to split the OOD data into the
training data for the OOD detector, the candidate set for selecting, and the test set for evaluation,
respectively. After the preparation, we employ different selection metrics to select the candidate
data and retrain the pre-trained models. Finally, we record the test accuracy improvement on the
test data before and after retraining. This setting is the same as the (0% + 100%) distribution combi-
nation in the previous research questions. The AUC-ROC scores of the OOD detectors we trained
for this RQ are 79.77%, 68.87%, 70.44%, 82.09%, and 77.37% for iWildCam-ResNet50, IMDb-LSTM,
IMDb-GRU, Newsgroups-NN, and Newsgroups-NN2, respectively. We set the δ in Algorithm 1 for
iWildCam, IMDb, and Newsgroups as 0.5, 0.5, and 0.1, respectively.

Results. Figure 6 depicts the accuracy improvement on the test data by using each metric to
select (3%, 5%, and 10%) candidate data for model retraining. It is worth noting that since both
DSA and CES cause out-of-memory problems, we cannot run these two metrics on the iWild-
Cam dataset. In the figure, Model-fully, Model-1000, and Model-2000 represent the model that is
pre-trained by all training data, 1,000 training data, and 2,000 training data, respectively. The test
accuracy of each model on the test data before retraining is 70.85%, 32.94%, and 35.53%, respec-
tively. From the results, we can see that DAT outperforms the other metrics in all cases. Specif-
ically, on average, DAT can improve test accuracy by 9.25%, 8.60%, 8.65%, and 1.61% more than
Entropy, DeepGini, MCP, and Random. When the model is well trained (using all training data),
in addition to DAT, DeepGini is a promising metric. However, when the model is trained by lim-
ited training data, DeepGini, Entropy, and MCP perform much worse than Random selection and
DAT. Compared with the Random selection, in addition to the higher test accuracy improvement,
DAT is more stable, and the standard deviation of DAT (0.83) is 47% lower than the Random selec-
tion (1.56).

Figure 7 shows the results of IMDb and Newsgroups. In most cases (10 out of 12), DAT outper-
forms the other metrics. On average, for IMDb, DAT can improve the test accuracy by 0.42%, 0.55%,
0.51%, 1.07%, 2.66%, and 0.44% more than Entropy, DeepGini, MCP, Random, CES, and DSA, respec-
tively. The test accuracy improvement seems to be insignificant. We checked the models retrained
using all of the new data, and the test accuracy improvement is less than 3%. One possible reason is
that the natural OOD data for IMDb is similar to the ID data. For Newsgroups, DAT improves the
test accuracy by 9.85%, 11.12%, 9.46%, 4.75%, 30.10%, and 8.77% more than Entropy, DeepGini, MCP,
Random, CES, and DSA, respectively. Additionally, in this dataset, the Random selection defeats
the other metrics except for DAT, which is consistent with our conclusion in RQ2.
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Fig. 6. Box plot of the accuracy improvement of different selection metrics on the dataset iWildCam, DNN

ResNet-50. The pre-trained models are learned by using the entire training set (first row), 1,000 data (second

row), and 2,000 data (third row), respectively. The budgets for retraining are 3% (first column), 5% (second

column), and 10% (third column), respectively.

Answer to RQ5: In the three datasets with real-world distribution shifts, DAT outperforms
existing selection metrics by up to 30.10% test accuracy improvement after retraining.

7 DISCUSSION

Based on our study, we first highlight our novel findings and research guidance, then discuss the
threats to the validity of our work.

7.1 Novel Findings and Research Guidance

(1) Retraining process: Both retraining strategies for model enhancement (only using the selected
new data and merging the new data with training data to process retraining) are commonly
used in the literature. According to our comprehensive comparison (RQ1), the second process
works better. Indeed, only using the new data can improve the accuracy on the new test
data; however, the accuracy on the original test set is greatly sacrificed, especially when the
new data include more OOD than ID data. By contrast, combining the original training data
and new data to retrain a DNN can enhance the performance on the new data, meanwhile
maintaining the high accuracy on the original test set.

Research guidance. Based on our experimental results, retraining DNNs by adding new
data to the original training set is a better option. There is still room for improving this
process. For example, how much original training data is really necessary? Can we reduce
the size of the original data to achieve better efficiency? Instead of only selecting new data,
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Fig. 7. Box plot of the accuracy improvement of different selection metrics on the dataset IMDb and

Newsgroups.

proposing a metric to carefully select both the original training data and new data for re-
training might be a promising research direction.

(2) Test selection under different data distributions: Our experiments have demonstrated that
none of the existing selection metrics (Entropy, DeepGini, MCP, CES, DSA, and Random)
can always outperform others under different data distributions. Most of them (Entropy,
DeepGini, and MCP) can select useful data for model retraining when the new data mostly
contains the ID data. However, for the contrary case where OOD data occupy more in the
new data, they fail to win against the Random selection. To deal with this specific case, we
propose the distribution-aware metric, DAT, and it has been proved to be effective.

Research guidance. For model retraining, in the case of more ID data existing in the new
data, uncertain-based metrics are better options, whereas when OOD data are more than ID,
our metric DAT can alleviate the influence of distribution shifts and outperform other met-
rics. Before choosing a metric, the distribution of ID and OOD data should first be checked
by some methods (e.g., OOD detector). However, it is still challenging to develop an almighty
metric that can deal with all data distributions. A promising solution could be considering
multiple existing metrics strategically in the retraining process based on the distribution of
new data.
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(3) Data distribution and bias of selected data: In terms of data distribution, since OOD data are
more likely than ID data to be unlearned by pre-trained DNNs, the uncertain-based selection
metrics (Entropy, DeepGini, and MCP) choose more OOD data for retraining under all of the
different distributions, whereas CES, DSA, and Random selection can follow almost the same
data distribution of the candidate data to pick data. However, concerning the class bias of
the selected data, CES and Random selection seem to make a good balance among different
classes. Yet there is no clear clue to show that using more OOD or balanced data is more
helpful in model enhancement.

Research guidance. Concerning the importance of data distribution and class bias, it could
be promising to further improve the effectiveness of uncertainty-based metrics (Entropy,
DeepGini, and MCP) by considering these two factors. In addition, we observe that most
selected data by the uncertainty-based metrics are misclassified by pre-trained DNNs. Thus,
the prediction accuracy of the selected data might be another factor that impacts the retrain-
ing performance.

7.2 Threats to Validity

The external threat to validity mainly comes from the DNN models and datasets used in our study.
Regarding the datasets, we consider six commonly used and public datasets in the literature. To
reduce the threat from the DNN models, we employ two well-known architectures for each dataset
(except iWildCam, in which we use the state-of-the-art model recommended by the WILDS bench-
mark) to limit the impact of model dependency to some extent. Our datasets include both image
and text data, and our models cover both FNN and RNN.

The internal threat could be caused by the implementation of DAT and the selection metrics
in comparison. To counter this issue, we borrow the available implementations of the compared
methods from released codes by their authors and carefully check our code.

The construct threat lies in the OOD detector in DAT, the hyperparameter setting, and the ran-
domness in the training process. Following the guidance of a comprehensive empirical study [1],
we incorporate the current-best OOD detector into our new metric. In addition, we utilize their
implementation and recommend settings to train our OOD detectors. We believe that with a bet-
ter OOD detector, our method will achieve better results as well. For the hyperparameter, δ is
important since it determines how to consider data as ID or OOD. It also limits the ratio of ID
data selected for retraining. By default, we set δ to 0.5—that is, up to 50% of the selected data can
come from the original distribution. This default ratio worked well for real-world datasets (WILDS
and IMDb). For the other datasets, we experimentally found out that setting a lower δ increases
the effectiveness of retraining with DAT. Ultimately, at the cost of additional labeling, we can im-
prove the effectiveness of DAT through the setting of a better δ value. In practical applications,
this opens the perspective to determine better δ values from past distribution shifts. Regarding
the randomness, we repeat each experiment five times and retrained more than 71,280 models.

8 RELATED WORK

We review related works in three aspects: test selection in DL systems, distribution-aware DL
testing, and empirical study for DL systems.

Test selection in DL systems. In the literature, many selection metrics have been proposed to
reduce the labeling effort. Based on the similarity between the training set and test data, Kim
et al. [16] proposed the surprise-guided testing metrics for model retraining. DeepGini [8] was
proposed to prioritize the test data and select the most informative data that are more likely to be
misclassified by the model. Its authors have also demonstrated that DeepGini is useful to guide the
model retraining. MCP [38] is another uncertainty-based selection metric. It selects data close to
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the decision boundaries by the top-2 predicted probabilities. Wang et al. [47] proposed robustness-
oriented testing metrics as well as selection metrics. However, their objective is the adversarial
robustness of DNNs, which is different from our study. Thus, those metrics are not considered in
our article. Wang et al. [48] proposed a new selection metric that uses image mutation and DNN
model mutation to select data that are likely to be misclassified by the model for revealing DNN
bugs. Recently, Guo et al. [12] proposed a novel active learning approach that can train a more
robust model. Meanwhile, they demonstrated that this approach can be used for test selection
based model enhancement.

In our work, we study all selection metrics that are proposed for selecting data and enhancing
the model. We also propose a novel selection metric (DAT). Different from existing metrics, DAT
is the first one to consider the data distribution in test selection.

Distribution-aware DL testing. Recently, researchers have revealed that data distribution might
impact DL testing, especially in the scenario of test generation. Berend et al. [1] conducted a com-
prehensive empirical study to explore the relationship between DL testing criteria and data distri-
bution. In addition, they provided some research guidance—for example, DL testing tools should
be aware of distribution. Different from their study, our work mainly focuses on how distribution
affects test selection.

Dola et al. [6] proposed a distribution-aware test generation method that is based on variational
auto-encoder (VAE). They first studied the validity of the data generated by existing test generation
methods (e.g., DeepXplore), then proposed the test generation method to check if the generated
data are valid or not at the generation time. Different from their work, we focus on how to select
data with the distribution information rather than generating test data.

Empirical study for DL systems. DL systems are continuously adopted in many SE applications
(e.g., DL for code function prediction). SE researchers pay more attention to study DL systems,
and a few empirical studies have been conducted. Ma et al. [27] performed a comparison study
on different selection metrics for testing DL systems. They revealed that neuron coverage based
selection metrics cannot achieve competitive results, and more efficient metrics are on demand.
Guo et al. [11] studied the performance difference between different DL frameworks as well as the
model changes after model migration. Zhang et al. [54] conducted a comparative study to explore
how different uncertainty metrics distinguish adversarial examples from benign examples. Hu et al.
[15] empirically explored the limitations of active learning, which is a commonly used training
process for both SE and ML tasks. In addition, a series of works [4, 53] have been performed to
study the challenges in deploying DL systems.

Compared with the existing empirical study works, our study investigates the potential prob-
lems in test selection for model enhancement that is missing in the literature.

9 CONCLUSION

In this article, we first conducted a systemically empirical study to explore how different retraining
processes and data distributions impact the test selection for model enhancement. In total, based
on six selection metrics in comparison, we retrained 71,280 models over five popular datasets
and 10 DNN models for our empirical study. In terms of enhancing the performance on new data
under various distributions and meanwhile maintaining the high accuracy on the original test set,
our experimental results reveal that using the combination of training and selected data is better
than only using the selected data. In addition, none of the existing selection metrics can always
outperform the others across all data distributions. Interestingly, when the new set contains more
(≥70%) OOD data, the simple but effective random manner defeats the others, which gives us
an insight that this special case has not been uncovered in existing metrics. Thus, based on the
findings, we propose DAT, a novel and effective distribution-aware metric, to deal with this case. In
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the experiments, we compared DAT with our studied test selection metrics, the results demonstrate
that DAT outperforms other metrics by up to five times better for model enhancement when deals
the synthetic distribution shift. Besides, the results on the datasets with natural distribution shifts
also prove that DAT can achieve better model enhancement than the other metrics when facing the
in-the-wild scenario. Moreover, based on our findings from the five research questions, we open
research directions for further improving the performance of existing metrics as well as proposing
new selection metrics.
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