
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2022

Cross-lingual transfer learning for statistical type inference Cross-lingual transfer learning for statistical type inference

Zhiming LI

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Haoliang LI

Zhengzi XU

Yi LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
LI, Zhiming; XIE, Xiaofei; LI, Haoliang; XU, Zhengzi; LI, Yi; and LIU, Yang. Cross-lingual transfer learning for
statistical type inference. (2022). Proceedings of the 31th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Conference, 2022 July 18-22. 239-250.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7194

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Zhiming LI, Xiaofei XIE, Haoliang LI, Zhengzi XU, Yi LI, and Yang LIU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7194

https://ink.library.smu.edu.sg/sis_research/7194

Cross-Lingual Transfer Learning for Statistical Type Inference

Zhiming Li
Nanyang Technological University

Singapore
zhiming001@e.ntu.edu.sg

Xiaofei Xie∗

Singapore Management University
Singapore

xfxie@smu.edu.sg

Haoliang Li
City University of Hong Kong

Hong Kong, China
haoliang.li@cityu.edu.hk

Zhengzi Xu
Nanyang Technological University

Singapore
zhengzi.xu@ntu.edu.sg

Yi Li
Nanyang Technological University

Singapore
yi_li@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore
yangliu@ntu.edu.sg

ABSTRACT

Hitherto statistical type inference systems rely thoroughly on super-
vised learning approaches, which require laborious manual effort to
collect and label large amounts of data. Most Turing-complete im-
perative languages share similar control- and data-flow structures,
which make it possible to transfer knowledge learned from one lan-
guage to another. In this paper, we propose a cross-lingual transfer
learning framework, Plato, for statistical type inference, which
allows us to leverage prior knowledge learned from the labeled
dataset of one language and transfer it to the others, e.g., Python
to JavaScript, Java to JavaScript, etc. Plato is powered by a novel
kernelized attention mechanism to constrain the attention scope of
the backbone Transformer model such that model is forced to base
its prediction on commonly shared features among languages. In
addition, we propose the syntax enhancement that augments the
learning on the feature overlap among language domains. Further-
more, Plato can also be used to improve the performance of the
conventional supervised-based type inference by introducing cross-
language augmentation, which enables the model to learn more
general features across multiple languages. We evaluated Plato

under two settings: 1) under the cross-domain scenario that the
target language data is not labeled or labeled partially, the results
show that Plato outperforms the state-of-the-art domain transfer
techniques by a large margin, e.g., it improves the Python to Type-
Script baseline by +14.6%@EM, +18.6%@weighted-F1, and 2) under
the conventional monolingual supervised scenario, Plato improves
the Python baseline by +4.10%@EM, +1.90%@weighted-F1 with
the introduction of the cross-lingual augmentation.

CCS CONCEPTS

·Computingmethodologies→Machine learning; · Software

and its engineering→ Software notations and tools.

∗Xiaofei Xie is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534411

KEYWORDS

Deep Learning, Transfer Learning, Type Inference

ACM Reference Format:

Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu.
2022. Cross-Lingual Transfer Learning for Statistical Type Inference. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’22), July 18ś22, 2022, Virtual, South Korea. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3533767.3534411

1 INTRODUCTION

Deep learning (DL) has achieved tremendous success in many appli-
cations such as image classification and audio recognition. Recently,
DL has also been widely applied in software engineering tasks and
obtains superior results over the traditional rule-based approaches,
such as clone detection [42, 44], code summarization [6, 49], code
translation [29], etc.

To apply deep learning techniques, large amount of labelled data
is required for the training of high-performance neural networks.
However, it is well-known that manual labeling of data samples for
deep learning is extremely laborious and expensive [28]. It is more
challenging for software engineering tasks, since labeling requires
considerable domain knowledge. Hence, it would be extremely
valuable if we are able to learn models for new languages based on
existing labelled data on another language, avoiding the need to
invest additional efforts in labelling.

Transfer learning is becoming increasingly popular, where a
model developed for a domain is reused as the starting point for
training a model for another similar domain. The key purpose of
transfer learning is to learn more general features on the data to
improve the generalization in another domain. For example, in
natural language processing, some techniques [20, 30] have been
proposed to transfer the knowledge between two languages (e.g.,
English and Nepali). Considering the similarities between different
programming language, a natural idea is to adapt the model trained
from one language to another language based on transfer learning.
Although transfer learning has been extensively studied in the fields
of computer vision (CV) and natural language processing (NLP),
there is still little research on its applications in program analysis
tasks.

However, learning from source code is usually more challeng-
ing than in other domains such as images and natural languages.
Comparing with other tasks, it is more challenging to capture pro-
gram semantics with deep learning, due to the complex program

239

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3533767.3534411
https://doi.org/10.1145/3533767.3534411

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

structures, e.g., loops, function calls, recursion, and arithmetic cal-
culations. The existing study has shown that DL models learning
from programs can easily overfit to some tokens while it is difficult
to learn the real program semantics [48]. It is unclear whether the
existing transfer learning techniques on CV and NLP can still work
well on program domain.

In this paper, we study cross-lingual transfer learning for statis-
tical type inference of optionally-typed programming languages,
i.e., adapting the type inference tool trained on programs written in
one language to programs in another language. Type inference [5,
23, 38] aims to automatically deduce the type of variables or func-
tions in a dynamic programming language, which is a fundamental
program analysis technique used in bug localization, program un-
derstanding, reverse engineering and de-obfuscation [17, 22]. There
have already been some recent attempts on DL-based type infer-
ence of optionally-typed languages [5, 23]. These techniques adopt
the mono-lingual supervised learning approach, which works on a
given set of labelled data of the same language, while the trained
model is known to have limited transferability to other datasets.

Motivated by the fact that the data labeling process for entity
types in optionally-typed programming languages is not only labor-
intensive but also demands significant expertise knowledge. It is of
great potential if we were able to leverage existing labelled dataset
from another language to warm start a type inference tool for a
new optionally-typed language with scarce data. Notice that most
Turing-complete imperative languages share similar control- and
data-flow structures (e.g., variable definitions, if-else branches, and
loops), which makes the transfer of cross-lingual knowledge possi-
ble. To this end, we propose Plato, a cross-lingual transfer learning
framework, aiming to train type inference models with better trans-
ferability (i.e., learn more general features). The key insight of im-
proving transferability is to increase attention on domain-invariant

features while decreasing attention on domain-specific features (i.e.,
language details). Specifically, we first perform reaching definition
analysis to determine how closely related different tokens are in
terms of the type inference. This information together with the syn-
tax information in abstract syntax tree is then encoded as a novel
kernelized attention mechanism, which is used as the backbone of
our novel kernelized model. The idea is to constrain the attention
scope of variables in a code sequence during training. Besides, we
apply a syntax enhancement strategy which uses srcML [12] meta-
grammar representation to enhance the input representation of
the model in order to increase the feature overlap among language
domains. Finally, we adopt a 𝜅- bagging ensemble strategy that
combines kernelized model and unkernelized model for the infer-
ence. It is to compensate the negative effect of kernelized model on
language-specific corner cases.

To evaluate the effectiveness and usefulness of Plato, we con-
ducted experiments on three different scenarios. 1) The target
language dataset is not labeled. We adopt Plato on two popular
optionally-typed programming languages: Python and JavaScript,
i.e., to use the model trained from the labelled dataset in one lan-
guage to make predication on the unlabelled data of another lan-
guage. We compared Plato with three widely used domain adap-
tation techniques [16, 20, 40]. 2) The target language dataset is
partially labeled. 3) Plato can also be used on the conventional

Syntax

Enhancement

Variable

Type

Closeness

Unsupervised

XPLM

Pre-training

Supervised

Type Inference

Fine-tuning

Training

unkernelized

model

kernelized

model

bagging ensemble

ensembled

model

Source

Dataset

(labelled)

Target

Dataset

(unlabelled)

Figure 1: Overview of Plato.

mono-lingual supervised based setting, where more general pro-
gram semantics could be learned from multiple languages. The
results demonstrate that our method significantly outperforms the
baseline methods under all settings, e.g., under the first setting, from
Python to JavaScript, Plato improves the best domain adaptation
baseline performance by +14.6% and +18.6% in terms of EM and
weighted-F1. For the second setting, Plato consistently excels the
baseline model under all ratios of target domain data. And for the
third setting, Plato improves the Python supervised baseline by
+4.10%@EM and +1.90%@weighted-F1.

In summary, we made the following contributions.

• We proposed a cross-lingual transfer learning framework for
statistical type inference, which is the first of its kind to the best
of our knowledge. The framework is powered by the kernelized
attention mechanism capturing variable type relations and the
syntax enhancement techniques to improve the transferability
of the model.

• We demonstrate the feasibility of exploiting the similarity/trans-
ferability between different languages in supporting cross-lingual
program analysis tasks. Our work opens up new opportunities
for a wide range of learning-based approaches to be further stud-
ied in the future, especially to apply transfer learning in software
engineering tasks with multiple languages.

• We conducted extensive experiments to demonstrate the useful-
ness and effectiveness of our approach on real-world datasets.
The results show that Plato significantly outperforms other
domain adaptation techniques as well as traditional rule-based
models.

• We demonstrate that Plato can also be used to improve the
performance of supervised based methods based on the cross-
language augmentation. Specifically, by learning more general
features among languages, the model can mitigate the overfitting
issue in traditional mono-lingual supervised based methods.

• We have made our tool and data available on our website [2].

2 METHODOLOGY

In this section, we present our framework Plato for cross-lingual
transfer learning of statistical type inference in detail.

2.1 Overview

Figure 1 gives an overview of our Plato framework, which consists
of four major parts: (1) variable type closeness matrix extraction, (2)
syntax enhancement, (3) training and (4) ensemble-based inference.
The inputs to our system include the source code sequence, its

240

Cross-Lingual Transfer Learning for Statistical Type Inference ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

b

module

def

args assign ifassign

compa BinOpb printa

1 2 b / 3 b!=

def foo(b):
 a = 1 != 2
 b = b / 3
 if a:
 print(b)

Figure 2: Type-closeness graph of the sample code.

corresponding srcML meta-grammar sequence and variable type
closeness matrix. The output is the trained model that can predict
the corresponding type annotations for each token in the given
code sequence.

Given an optionally-typed language, our key insights in achiev-
ing cross-lingual transfer learning of type inference are to exploit

the task-relevant features common to the type systems of different

programming languages, and to reduce the impact of the irrelevant

features. For example, the def-use relationship between variables
has a strong connection to their types, which can be assumed as
a common knowledge in many programming languages. For the
simple code snippet, ła = 1!=2; ... print(a)ž, we can infer
the type of the variable łaž in the łprintž statement as Boolean,
based on the first statement ła = 1!=2ž where łaž was previously
defined. Such knowledge may seem trivial, but is difficult for deep
learning-based models to pick up without prior knowledge.

To obtain such knowledge, we first perform a reaching defini-
tion analysis [4] on each program for both the source and target
dataset. For each program, based on the result of reaching definition
analysis, we define a measurement (i.e., an adjacency matrix) using
graph kernel, which we call Variable Type Closeness (VTC) (see Def-
inition 2.3), to quantify the closeness of different tokens in a code
sequence in terms of types. During training, instead of learning
with the traditional attention without constraint, we use the kernel-
ized attention based on VTC in order to regularize model to focus
on the most relevant features for type inference. In this way, the
trained model constrains the attention scope of a token only to the
tokens related to its type in the sequence and eliminates those that
are irrelevant, therefore it can decrease the negative effect (noise)
of the irrelevant features which hinder the transferability.

We further propose a syntax enhancement strategy which is to
augment the input representation with srcML meta-grammar [15,
33]. With srcML meta-grammar representation, features shared
between different language domains are augmented such that com-
mon semantics can be learnt.

One problem is that the kernelized attention model may not be
perfect in some predictions. For example, it may overfit to some
language-specific features that are mismatched with target lan-
guages (see Section 2.5). To mitigate this challenge, we propose
an ensemble-based strategy that combines the kernelized model
and un-kernelized model (i.e., attention model learned from code
sequence directly without being constrained by kernel) during

b
a

a
b

…
…

b a …… a b

Figure 3: Variable type closeness adjacency matrix A
Q
K

ob-

tained from program shown in Figure 2.

the inference. With such an ensemble strategy, the kernelized and
unkernelized models complement each other and produce better
results.

2.2 Variable Type Closeness

In this part, we introduce the concept of variable type closeness
and how it is derived from graph kernel.

Kernelized Attention. For traditional attention mechanism, the
embedding of a word depends on its relations with all the other
words in an input sequence, i.e., there is no constraint to its attention
scope during gradient-based learning. For example, consider a code
sequence łvar a := true; var b := 0ž, when calculating
embedding for the token łaž, the traditional attention takes all
the other tokens in the input sequence into consideration. Yet,
when performing type inference for łaž, the statement łvar b :=

0;ž is irrelevant and should not be considered when making the
prediction. On the other hand, if the prediction is erroneously based
on łbž or ł0ž, the model would hardly generalize. Therefore, we
propose a kernelized attention mechanism, which uses a shortest-
path graph kernel [8] to constrain the attention scope of tokens in
code sequence. In this way, given a query token, the model tends
to use the set of tokens that are more useful for the type inference,
i.e., the closest tokens in the closeness graph for prediction.

To define such a graph kernel, we first introduce a type-closeness
graph data structure and define a distance measurement based on
the graph. We then present how to derive the variable type closeness
adjacency matrix with an example.

Type-Closeness Graph. Intuitively, a type closeness graph (TCG)
is an annotated AST with extra RDA edges derived from reaching
definition analysis on the Control Flow Graph (CFG).

Definition 2.1 (Type-Closeness Graph). A type-closeness graph

is a graph 𝐺 = (𝑉 , 𝑁, 𝐸𝐴𝑆𝑇 , 𝐸𝑅𝐷𝐴), where 𝑉 and 𝑁 are terminal
and non-terminal nodes from the AST, respectively, 𝐸𝐴𝑆𝑇 are AST
edges, and 𝐸𝑅𝐷𝐴 contains edges between pairs of terminal nodes
𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 if and only if 𝑣𝑖 is within a reaching definition of 𝑣 𝑗 on
the control flow graph.

An example TCG is shown in Figure 2, where the circles represent
terminal nodes 𝑉 , the rectangles represent non-terminal nodes 𝑁 ,
and the solid (dashed) lines represent 𝐸𝐴𝑆𝑇 (𝐸𝑅𝐷𝐴).

241

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

Type-Closeness Distance. The type closeness distance (TCD) is a
distance measure 𝑑 (·, ·) defined over the type closeness graph. The
smaller the TCD between the target token 𝑣𝑖 and the token 𝑣 𝑗 , the
more important the token 𝑣 𝑗 is for the type inference of 𝑣𝑖 .

Definition 2.2 (Type-Closeness Distance). For a pair of terminal
nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , the type-closeness distance from 𝑣𝑖 to 𝑣 𝑗 is de-
fined as 𝑑 (𝑣𝑖 , 𝑣 𝑗) = min(𝑑𝐿𝐶𝐴 (𝑣𝑖 , 𝑣 𝑗), 𝑑𝑅𝐷𝐴 (𝑣𝑖 , 𝑣 𝑗)), where 𝑑𝐿𝐶𝐴
and 𝑑𝑅𝐷𝐴 are the lowest common ancestor (LCA) distance and the
reaching definition distance, respectively.

The LCA-distance from 𝑣𝑖 to 𝑣 𝑗 is defined as the length of the
shortest path between 𝑣𝑖 and the lowest common ancestor [3] of 𝑣𝑖
and 𝑣 𝑗 . More formally,

𝑑𝐿𝐶𝐴 (𝑣𝑖 , 𝑣𝑗) = 𝑑𝐴𝑆𝑇 (𝑣𝑖 , 𝐿𝐶𝐴(𝑣𝑖 , 𝑣𝑗)), (1)

where 𝐿𝐶𝐴(·, ·) denotes the lowest common ancestor of two nodes
and 𝑑𝐴𝑆𝑇 (·, ·) denotes the distance of the path between two nodes
on the AST. For example, as shown in Figure 2, consider node 𝑏 and
node 𝑎, their lowest common ancestor is the non-terminal node
if, and it takes two hops from node 𝑏 to reach node if, therefore
𝑑𝐿𝐶𝐴 (𝑏, 𝑎) = 2. Intuitively, with the 𝑑𝐿𝐶𝐴 , a token is closer to
another token within the same statement, compared with other
tokens from other statements.

Next, we introduce 𝑑𝑅𝐷𝐴 that captures the def-use relations
between tokens. Specifically, given a variable node 𝑣𝑖 , we hard-wire
it to the set of nodes 𝑉𝐷 = {𝑣 | (𝑣𝑖 , 𝑣) ∈ 𝐸𝑅𝐷𝐴} that comprise its
reachable definition statement. For example, the dashed lines in
Figure 2 illustrates the RDA edges of node 𝑏. The RDA-distance
𝑑𝑅𝐷𝐴 from 𝑣𝑖 to all 𝑣 𝑗 ∈ 𝑉𝐷 is defined to be 1, while for others that
are unreachable, the distance are set to be +∞. More formally,

𝑑𝑅𝐷𝐴 (𝑣𝑖 , 𝑣𝑗) =

{

1, 𝑖 𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸𝑅𝐷𝐴

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

Finally, given two nodes 𝑣𝑖 , 𝑣 𝑗 in the TCD space, the type-closeness
distance from 𝑣𝑖 to 𝑣 𝑗 is defined as the minimum of their LCA dis-
tance and RDAdistance:𝑑 (𝑣𝑖 , 𝑣 𝑗) = min(𝑑𝐿𝐶𝐴 (𝑣𝑖 , 𝑣 𝑗), 𝑑𝑅𝐷𝐴 (𝑣𝑖 , 𝑣 𝑗)).

Variable Type Closeness. Based on the TCD distance measure-
ment, we derive the variable type closeness adjacency matrix, which
is used as an input to our model to regularize its learning behavior.

Definition 2.3 (Variable Type Closeness). Given a code sequence x,
for each token 𝑡 ∈ x, the variable type closeness vector of 𝑡 , denoted
as At

x, is defined as a distance vector that consists of the distance
of 𝑡 from all the tokens in x under the TCD defined space, i.e.,
A𝑡
x = [𝑑 (𝑡, 𝑡 ′)]𝑡 ′∈x ∈ R

1×|x | . Then by stacking the distance vectors
of all tokens within x, forms the variable type closeness adjacency
matrix of sample x: Ax ∈ R

|x |× |x | .

Figure 3 shows the variable type closeness (VTC) adjacencymatrix
derived from the TCG graph of the example program x shown in
Figure 2. The variable type closeness distance vector of 𝑏: A𝑏

x is
illustrated in the last row of the matrix. For example, the LCA of
𝑏 and 𝑏 is def, which takes three hops to reach from 𝑏 through
𝐸𝐴𝑆𝑇 : 𝑑𝐿𝐶𝐴 (𝑏, 𝑏) = 3, and there is no RDA edge that connects
them: 𝑑𝑅𝐷𝐴 (𝑏, 𝑏) = +∞, thus the first element of its distance vector
A𝑏
x [0] = min(𝑑𝐿𝐶𝐴 (𝑏, 𝑏), 𝑑𝑅𝐷𝐴 (𝑏, 𝑏)) = 3; and in order to reach 3 in

the definition statement, it takes one hop from 𝑏 through the 𝐸𝑅𝐷𝐴:
𝑑𝑅𝐷𝐴 (𝑏, 3) = 1 (illustrated as dashed lines), while 𝑑𝐿𝐶𝐴 (𝑏, 3) = 3,
thus A𝑏

x [8] = min(𝑑𝐿𝐶𝐴 (𝑏, 3), 𝑑𝑅𝐷𝐴 (𝑏, 3)) = 1.

Table 1: Subset of unified srcML elements.

𝐽𝑠 𝑃𝑦 𝐽𝑎𝑣𝑎 𝑠𝑟𝑐𝑀𝐿

Function definition function def NA def
Equality === == == ==
Non-equality !== != != !=
Logical AND && & &, && &
Logical OR | | | |, | | |

Exception throw raise throws throws

2.3 Syntax Enhancement
For human programmers who manage to master one language,
it is relatively easy to switch to another, because many reserved
keywords and operators share the same syntactic and semantics
roles across different language domains. Deep learning models
are hard to exploit this similarity easily, hence limiting the trans-
ferability. To address this, we propose a strategy to augment the
syntactic feature overlap shared among different language domains
by incorporating a srcML meta-grammar embedding into the in-
put representation beyond the source code embedding. At the
high level, srcML meta-grammar provides each token in a code
sequence with a corresponding markup tag that represents the
abstract syntax role of that token which is unified among lan-
guages. Table 1 shows a subset of the unified tags provided by
srcML. Specifically, given a code sequence x = (𝑥1, ..., 𝑥𝑛) and its
corresponding srcML sequence s = (𝑠1, ..., 𝑠𝑛), we map them to
their respective embedding 𝑒𝑚𝑏 (x) = (𝑒𝑚𝑏 (𝑥1), ...𝑒𝑚𝑏 (𝑥𝑛)) and
𝑒𝑚𝑏 (s) = (𝑒𝑚𝑏 (𝑠1), ...𝑒𝑚𝑏 (𝑠𝑛)). Then the augmented input repre-
sentation c is the weighted sum of 𝑒𝑚𝑏 (x) and 𝑒𝑚𝑏 (s). Formally:

c = 𝑒𝑚𝑏 (x) ⊙ 𝛼 + 𝑒𝑚𝑏 (s) ⊙ 𝛽 (3)

where 𝛼 and 𝛽 are weight vectors for x and s respectively, and ⊙
denotes element-wise multiplication. In our work, we used srcML
to extract the meta grammar representation for Java, and since
srcML does not support Python and TypeScript, we implement
an approximate meta grammar mapping for the two optionally-
typed languages on our own. Our empirical results (see Section 3.3)
demonstrate that the syntax enhancement technique is useful in
improving the transferability across domains.

2.4 Training

In this work, we use BERT since it is shown that BERT based
model can achieve state-of-the-art performance by leveraging self-
supervised pre-training [26]. Specifically, we use a two-stage train-
ing mechanism following [13, 43]: (1) self-supervised cross pro-
gramming language model (XPLM) pre-training, and (2) supervised
type inference fine-tuning.

2.4.1 Unsupervised XPLM Pre-Training. In this phase, we use data
from multiple language sources to pre-train the XPLM model. As
shown in the model architecture in Figure 4, during the self-
supervised pre-training stage, for each code sequence sample x,
the XPLM backbone model receives two inputs: namely, its cor-
responding augmented input vector c and variable type-closeness

adjacency matrixAx. The detailed formulation of the model is given
in Equation (4).

𝜅-emb(x𝑖) = g𝜎 (Ax) ⊙ 𝑎𝑡𝑡𝑛(c𝑖 ; c) · c (4)

242

Cross-Lingual Transfer Learning for Statistical Type Inference ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

…
…

…
…⊙

if

<if>

…

<name>… …
[]

[]

source

code

<srcML>

+

<&>

⊙
⊙

bool[…]

XPLM block

XPLM block

BERT

Variable Type

Closeness

a &

Gaussian

function

FFNN+softmax

…

Type Closeness

Graph

…

a<mask>[]

FFNN+softmax

if &……

Figure 4: Model architecture.

c𝑖 is the augmented vector of a token x𝑖 in the sample code sequence
x. We first obtain the attention vector 𝑎𝑡𝑡𝑛(c𝑖 ; c) ∈ R

1×|x | of c𝑖 w.r.t
all the vectors in c. Then we constrain the attention by taking
element-wise multiplication of 𝑎𝑡𝑡𝑛(c𝑖 ; c) with a regulatory weight
vector g𝜎 (A𝑥), where g𝜎 (·) is a radial basis function kernel [41]
parameterized by a learnable parameter 𝜎 . Intuitively, the more
distant two tokens are in the TCD defined space, the smaller their
regulatory weight is. In this way, the model is constrained from
using tokens that are irrelevant for embedding. Finally, by taking
dot product with c, we obtain the kernelized attention embedding
for token x𝑖 .

The model is then pre-trained with masked language model
(MLM) loss, next sentence prediction (NSP) loss [13] together with
a regularization loss of𝜎 . The regularization loss is used to constrain
the attention scope from getting large during training. The detailed
loss is as follows:

Lpre = LMLM + LNSP + L𝜎

=

∑

x[MASK]∈x[MASK]

−x[MASK] log[P(x[MASK] |x\x[MASK])]

+
∑

(si,sj)∼S×S

−yijlog[P(ŷij | [si : sj])] + 𝜆𝜎
2

(5)

where x[MASK] is a set of randomly sampled masked tokens in a
sample x, (si, sj) is a pair of randomly selected code sequence and
𝑦𝑖 𝑗 is a binary label indicates whether they follow each other, ŷij is
the model’s predicted probability, 𝜆 is a hyper-parameter chosen
on a validation set.

2.4.2 Supervised Type Inference Fine-Tuning. After obtaining a pre-
trained language model from the self-supervised pre-training stage.
We fine-tune this model on our downstream type inference task in a
supervised manner. In this supervised learning phase, we have the
labelled source language samples 𝑆 and the labelled target language
samples 𝑇 . Note that, the number of 𝑇 is usually small or zero,
indicating that we have little or no labelled target language data.

The input of the supervised fine-tuning stage is the same as the
pre-training stage, shown in Figure 4. To allow the model making

Algorithm 1 𝜅- bagging BERT

Input:

1: submodels:
2: 𝑆 = {unkernelizedBERT : BERT, kernelizedBERT : 𝜅-BERT};
3: dataset: D = {x1, x2, ..., xn };
4: confidence threshold: 𝜃 ;
5: combination weight: 𝜆;
6:

7: 𝐷′ ← ∅

8: for 𝑖 ← 1, 2, ..., |𝐷 | do

9: obtain logit of each sample from each model:
10: hBERT ← 1

𝜃 [BERT(xi)]

11: h𝜅-BERT ← 𝜅-BERT(xi)

12: hensemble ← 𝜆 · h𝜅-BERT + (1 − 𝜆) · hBERT
13: D′ ∪ { 1

|S|
argmax hensemble }

14: end for

Output:

15: output ensembled predictions: D′

prediction, we attach a linear layer (FFNN+softmax in Figure 4) after
the last hidden layer of the pretrained XPLM to predict the types
for each tokens. We fine-tune all the parameters in the model with
a classification loss on the labelled parallel corpus of code sequence
and type annotations. Specifically, the fine-tune loss function is as
follows:

Lfine = (1 − 𝑓 (𝛾)) · L𝑆
fine + 𝑓 (𝛾) · L

𝑇
fine

= (1 − 𝑓 (𝛾))
∑

(xi,yi)∈𝑆

−yi log[𝑃 (ŷi |xi)]

+ 𝑓 (𝛾)
∑

(xj,yj)∈𝑇

−yj log[𝑃 (ŷj |xj)],

(6)

where L𝑆
fine

and L𝑇
fine

are the negative log likelihood loss for
samples that are from the source domain and the target domain,
respectively. P(ŷi |xi) and P(ŷj |xj) denotes the output probability
distribution over the possible type classes for source language sam-
ple xi and target language sample xj. We embrace a decay training

scheme [16], 𝑓 (𝛾) = 2
1+exp(−𝛾)

− 1 is a regularization term used to

control the weight for the loss of the source and target language
samples, 𝛾 ∈ [0, 1] is the training process. Intuitively, when the
size of both dataset are imbalanced(i.e., |𝑆 | >> |𝑇 |), we force the
model to gradually focus more on the target domain data and less
on the source data during the training process in order to mitigate
the imbalance problem.

Note that, 𝑆 usually represent the full source language data that
has been labeled, but the size of 𝑇 could be changed. Based on the
size of 𝑇 , we define different scenarios:

• |𝑇 | = 0 and the model is trained to predict on the target language.

In this setting, all the target training data is not labelled and we
conduct the unsupervised cross-lingual domain adaptation from
only source language.
• |𝑇 | is a small number and the model is trained to predict on the

target language. In this setting, a small part of target training
data (i.e., partially) is labelled and we conduct the cross-lingual
transfer learning from source language data as well as the given
target language data.

243

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

𝐽𝑠 Sets : var foo = new Set([1, 2, 3])

𝑃𝑦 Sets : foo = {1, 2, 3}

𝑃𝑦 Lists : foo = [1, 2, 3]

Figure 5: An example kernel corner case.

• |𝑇 | is a small number and the model is trained to predict on the

source language. This setting corresponds to the common super-
vised based learning on the source language 𝑆 . The difference is
that we also have some labeled training data with other languages
(i.e.,𝑇) beyond the full labeled source language training set. Here,
Plato considers𝑇 as the augmented data (i.e., the cross-language
augmentation) and trains a model for the type inference on the
language 𝑆 .

2.5 Ensemble-Based Inference

While the kernelized model is able to use explicit syntactic and
semantic relations to improve the performance of type inference, it
may fail to cover some corner cases. For example, features within
the kernelized attention scope may be language-specific, thus do
not generalize to other language domains and lead to negative trans-
fer. As shown in Figure 5, if we use Python as the source language
and TypeScript as the target language, by using the graph kernel,
the XPLM would be constrained to leverage ł{,}ž and ł[,]ž as
primal features to classify Python Sets and Lists. However, when
applied to TypeScript Sets sample, the kernelized model would po-
tentially leverage ł[,]ž which results in erroneously classifying the
variablełfoož into Lists instead of Sets. To this end, we propose an
ensemble strategy which combines the kernelized and unkernelized
model during inference stage such that the combined model can
make the best of both worlds.

Algorithm 1 shows the detail of the ensemble strategy, which
we call 𝜅- bagging. Specifically, it is a bagging-based regression en-
semble strategy [9]. Given two submodels, the unkernelized model
BERT and the kernelized model 𝜅-BERT, we first pass the sample
in the test set through both the kernelized and unkernelized models
to obtain their corresponding output probability distribution hBERT
and h𝜅-BERT (Line 10-11). Then we apply an indicator function 1

𝜃

on hBERT which returns the original probability distribution vector
if its maximum value is larger than the confidence threshold 𝜃 other-
wise it returns a zero vector of the same size, such that the ensemble
model only uses the prediction of the unkernelized model when
it is confident enough. Finally, the output ensemble distribution
hensemble is the weighted sum of hBERT and h𝜅-BERT using a com-
bination weight 𝜆 ∈ [0, 1] (Line 12). 𝜃 and 𝜆 are hyper-parameters
empirically selected on the validation set.

3 EVALUATION

We have implemented Plato based on PyTorch with about 6K
lines of code.1 To demonstrate the effectiveness and usefulness of
Plato in the cross-lingual type inference task, we evaluate under
three settings (see Section 2.4.2): (1) no labeled target language data
available (NTL), (2) partial labeled target language data available

1The implementation details and more results can be found on the website [2].

(PTL) and (3) the supervised learning on source language data (SL).
Specifically, we study the following research questions.

• RQ1: How effective is Plato compared with other domain adap-
tation techniques without any labeled target language data?

• RQ2: How do different components of Plato affect the results?

• RQ3:How effective is Platowhen partial labeled target language
data available?

• RQ4: How useful is Plato in improving the supervised based
methods by introducing cross-domain knowledge?

3.1 Experimental Setup

3.1.1 Dataset Preparation. In our experiments, we selected three
languages including two optionally-typed languages (i.e., Python
and TypeScript) and one strongly-typed language (i.e., Java). Specif-
ically, for TypeScript, we used a TypeScript dataset [23] provided
by Hellendoorn et al. We generated the corresponding AST of each
sample using Esprima [1]. For Python, we used the dataset pro-
vided by Allamanis et al. [5] and extracted corresponding ASTs
from their self-defined graphs. For Java, we used the CodeSearchNet
dataset [25] and extracted the ASTs using JavaParser and extracted
the type annotations for variables, function parameters, and return
types using srcML [10]. After eliminating the samples that can-
not be parsed, we collected 13,248 Python programs with 325,129
variables, 28,587 TypeScript programs with 977,072 variables, and
9,126 Java programs with 100,869 variables, all programs are at
function-level. We pre-train the backbone XPLM model on a large
multi-lingual corpus that consists of 1.1M datapoints across the
above mentioned three languages collected from GitHub.

Label Calibration. The sets of types for different languages may
vary. For example, there are 13,491, 15,050, and 4,108 types in the
TypeScript, Python, and Java datasets, respectively. To facilitate
transferability, we need to calibrate the types such that the labels
in the training samples (e.g., the source language) and the test
samples (e.g., the target language) have the same labels if they have
similar functionalities and data structures. Specifically, we have the
following configurations:

(1) For RQ1 and RQ2, we assume there is no any labeled target
language data and aim to evaluate the transferability of type
system among different languages. Following the similar setting
in computer vision and natural language processing domains,
we relabel the datasets such that the source language and the
target language have the same co-domain labels set. Specifically,
we mainly consider the commonly-used types in both source
and target languages. We consider 7 meta-types in Python and
Java, i.e., boolean, integer, float, bytes, string, list, and dict. For
TypeScript, there is only one numeric type: number, thus we
consider 5 meta-types boolean, number, string, list, and dict.

(2) ForRQ3, to simulate the real life scenario, we assume that there
some target language data that have labels. Here, we consider a
more practical setting by using all types in both source language
and target language. Suppose𝑇𝑠 and𝑇𝑡 are the set of types in the
source language data and the target language data, respectively,
the co-domain types we used are 𝑇𝑠

⋃

𝑇𝑡 .

(3) For RQ4, we compared Plato with the state-of-the-art super-
vised based techniques by adding some cross-language data. The

244

Cross-Lingual Transfer Learning for Statistical Type Inference ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Table 2: The comparative results with different methods on overlapped types.

Methods
Python→ TypeScript Java→ TypeScript TypeScript→ Python Java→ Python
EM weighted-F1 EM weighted-F1 EM weighted-F1 EM weighted-F1

TAPT 0.601 0.546 0.608 0.587 0.518 0.483 0.496 0.437
MMD 0.574 0.550 0.595 0.571 0.557 0.503 0.512 0.426
ADV 0.530 0.501 0.560 0.540 0.540 0.504 0.512 0.435

Supervised𝑖 0.552 0.503 0.513 0.512 0.499 0.484 0.404 0.420
Plato 0.747 0.736 0.736 0.704 0.588 0.579 0.532 0.473

Improvement (Δ) 14.6% 18.6% 12.8% 11.7% 3.10% 7.50% 2.00% 3.60%

Supervised𝑜
TypeScript→ TypeScript Python→ Python

0.866 0.869 0.723 0.711

expectation is that, by introducing the cross-domain knowledge,
the trained model by Plato can learn more general features
from multiple domains. Specifically, we aim to conduct the type
inference on the labeled dataset 𝑆 by augmenting the mono-
lingual data with another small labeled dataset 𝑇 that uses a
different programming language from 𝑆 .

3.1.2 Evaluation Metrics. The data distribution of the type system
is imbalanced, e.g., string takes up a much larger proportion than all
the other types in all languages. Therefore, the widely used Exact

Match (EM) [5, 23] is suboptimal, because when using EM, a weak
classifier that is biased towards predicting types with the highest
occurrences in the training set could still get spuriously good result.
Therefore, we use weighted-F1 to account for the precision and
recall trade-off as well as the data imbalance. Formally, weighted-
F1 calculates the F1-score for each class and takes their average
weighted by support:

weighted-F1 =
∑

i∈C

|Ci |

|C |
F1-scorei, (7)

where |𝐶𝑖 | is the size of class 𝐶𝑖 , and |𝐶 | is the size of the entire
dataset. In our evaluation, we report both the EM values and the
weighted-F1 scores.

3.1.3 Configurations. We used a BERT [13] encoder with 4 stacked
attention layers, 4-headed attention as the backbone XPLM. The
dimension of all the token embedding is 256. We train the models
using Adam optimizer [27] with a initial learning rate of 10−4.
All models are fine-tuned for 30 epochs and early stopped if the
validation performance does not improve for 10 consecutive steps.
For the inputs, we truncate the input sequence at a maximum length
of 700 in order to fit in the memory. We conducted all experiments
on a Ubuntu 16.04 server with 24 cores of 2.2GHz CPU, 251GB RAM
and two GeForce RTX 3090 GPU with a total of 48GB memory.

3.2 RQ1: Comparison with Baselines When No
Labeled Target Data Is Available

Baselines. To evaluate the transferability among different lan-
guages and effectiveness of our method under the NTL setting,
we compared Plato with three popular domain adaptation meth-
ods, which are widely used in text and image classification tasks [16,
20, 40].

TAPT.We adopted the Task-Adaptive Pre-Training (TAPT) [20, 24],
which leverages the task-relevant data to adapt the pretrained back-
bone model to specific downstream domain, as a baseline. Specifi-
cally, TAPT utilizes the unlabeled task-specific samples from both
the source and target domain to further fine-tune the pretrained
language model such that it is much more task- and domain- rele-
vant. In this work, we use the whole unlabeled corpus from both
the source and target programming languages to adapt the XPLM.

MMD.We adopted Maximum Mean Discrepancy (MMD) [18, 40]
as the second baseline domain adaptation method. The key idea of
MMD is to minimize the latent feature discrepancy between the
source and the target domains such that they become indistinguish-
able by the model. Concisely, MMD attaches a discrepancy loss
term on the last hidden layer of the backbone model and maximizes
the loss during the type inference training phase.

ADV. For the third baseline, we adopted adversarial domain adap-
tation [11, 16]. ADV transfers knowledge from the source to the
target domain by using reversed gradient drawn from domain clas-
sification loss to confuse the features from the source and target
domains. Specifically, ADV introduces a gradient reversal layer
on top of the last hidden layer of the backbone model. A domain
classifier is used to distinguish the domain of samples. The updated
gradient from the domain classifier is reversed by the gradient
reversal layer before being used to update the model.

Setting. We randomly split the target language dataset into train-
validation-test sets in 70-15-15 proportions. The validation set is
used for the choice of hyper-parameters and the test set is for the
model evaluation.

In addition to the three baselines, we also calculate the results
with supervised learning as reference. Specifically, we train a clas-
sifier with supervised learning on the in-domain source dataset
(denoted as Supervised𝑖) and then use the classifier to evaluate
the out-domain dataset without any domain adaptation techniques,
which can be regarded as the lower bound of the domain adaptation
techniques. On the other hand, we adopt supervised learning to
train another classifier on the out-domain target dataset and evalu-
ate it on the out-domain dataset (denoted as Supervised𝑜), which
can be regarded as the upper bound. For the baseline methods, the
loss weight for MMD and ADV are set to be 0.1.

Results. Table 2 shows the detailed results of different methods in
terms of exact match and weighted-F1. Columns show the transfer
results from different source language domains to different target

245

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

Table 3: Results on the impact of different components.

Methods
Python→ TypeScript TypeScript→ Python
EM weighted-F1 EM weighted-F1

w/o SE 0.639 0.610 0.531 0.509

w/o VTC 0.721 0.717 0.554 0.555

-Kernel 0.734 0.720 0.573 0.561
-Sequence 0.721 0.717 0.554 0.555

Plato 0.747 0.736 0.588 0.579

language domains. For example, for the domain adaptation between
optionally-typed languages, column łPython→ TypeScriptž shows
the cross-lingual transfer results from Python to TypeScript. We
also included the results of using the strongly-typed language (i.e.,
Java) as the source language, which represents the scenario that
if we do not have an existing labeled optionally-typed language
dataset, we can use the strongly-typed language data as the source
because their types can be obtained automatically.

Overall, the results demonstrate that our method significantly
outperforms the three domain adaptation techniques in terms of all
metrics using either optionally-type language (TypeScript/Python)
or strongly-typed language (Java) as the source language. Row łIm-
provement (Δ)ž shows the improvement of Plato over the best
result of the baselines. Specifically, from Python to TypeScript,
the performance of exact match and weighted-F1 is increased by
+14.6% and +18.6%, respectively. From TypeScript to Python, it is
increased by +3.1% and +7.5%, respectively. When using Java as
the source language: from Java to TypeScript, the results are im-
proved by +12.8%@EM, +11.7%@weighted-F1; from Java to Python,
the results are improved by +2.0%@EM, +3.6%@weighted-F1. In-
terestingly, by using strongly-typed language Java as the source
language, we can achieve comparative performance compared with
using optionally-typed language as source language. Furthermore,
we compare Plato with the rule-based type inference tools and
it is shown that Plato achieve comparative or even better perfor-
mance. E.g., CheckJS2 achieves 79.0%@EM, 69.9%@weighted-F1
while Plato manages to achieve 74.7%@EM, 73.6%@weighted-F1;
Pytype3 achieves 12.1%@EM, 17.5%@weighted-F1 while Plato

achieves 58.8%@EM, 57.9%@weighted-F1. The results show the
transferability of the trained model among languages. With Plato,
one can achieve comparative or even better performance by us-
ing cross-lingual labeled data instead of implementing rule-based
tool from scratch that requires significant manual effort and expert
knowledge.

Consider the results of supervised learning baseline, not surpris-
ingly, Supervised𝑖 performs the worst on the out-domain data due
to that it does not have any knowledge of the out-domain target
data. Consider Supervised𝑜 , we observe that, although our tech-
nique has already achieved the best result in the domain adaptation
setting, there is still a gap with the supervised learning setting
which leaves room for future progress.

2https://www.typescriptlang.org/tsconfig/checkJs.html
3https://github.com/google/pytype

pred: Timer

pred: boolean

exports.config = {node: {showcolors: true,
timeoutinterval: 0, print: function(){}}}

sequence model

kernelized model
exports.config = {node: {showcolors: true,
timeoutinterval: 0, print: function(){}}}

Figure 6: Illustrative example of kernelizedmodel compared

with original sequence model. The first and second row de-

note their attention vectors of variable showcolors.

Answer toRQ1: Plato can significantly outperform the state-
of-the-art domain adaptation methods and rule-based tools
on NTL, i.e., the target language dataset is not labeled.

3.3 RQ2: Usefulness of Different Components

Setup. In this section, we perform an ablation study to study the
contribution of different components of our method in the results of
𝑅𝑄1. We build the following baselines to evaluate each component:

• Platowithout syntax enhancement (w/o SE). We remove the
component of syntax enhancement and let the neural network
to learn the syntax mapping (e.g., different keywords) itself.

• Platowithout VTC-based Kernelized Attention (w/o VTC).
We remove the VTC-based kernelized attention to evaluate its
effect.

• Ensemble Inference. To evaluate the usefulness of 𝜅- bagging
strategy, we use the unkernelized model (Sequence) and the kern-
erlized model (Kernel) to perform the inference separately.

Usefulness of Syntax Enhancement. As shown in (Row w/o SE)
of Table 3, the performance is significantly reduced compared with
Plato. Specifically, after removing the meta-grammar representa-
tion, from Python to TypeScript, the results drop by 10.8%@EM,
12.6%@weighted-F1; while for TypeScript to Python, the results
drop by 5.7%@EM, 7.0%@weighted-F1. The results indicate that
by enhancing the input representation with srcML meta-grammar
representation, the overlapped features among language domains
are significantly increased thus improve the transferability of the
model.

Usefulness of Variable Type Closeness. Consider the results in
Row w/o VTC, we found that the performance decreases in each
task. Note that when removing VTC from the model, it degenerates
into using the code sequence without the kernelized attention.
Specifically, without VTC, from Python to TypeScript, the exact
match and weighted-F1 are decreased by 2.6% and 1.9%, respectively.
From TypeScript to Python, the performance is decreased by 3.4%
and 2.4%, respectively. It demonstrates the usefulness of the VTC-
based kernelized attention strategy.

We provide a case study to further demonstrate the usefulness
of the VTC-based kernelized attention in Figure 6. Specifically, we
visualize the final layer attention vector of the boolean variable
łshowcolorsž for both the original sequence model and the kernel-
ized model. For the sequence model, it is shown that model spuri-
ously leverages the irrelevant token łtimeoutintervalž for predic-
tion while completely ignoring the ground-truth evidence łtruež.

246

Cross-Lingual Transfer Learning for Statistical Type Inference ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

(a) Py→ TS intra EM (b) Py→ TS intra weighted-F1 (c) Py→ TS inter EM (d) Py→ TS inter weighted-F1

(e) TS→ Py intra EM (f) TS→ Py intra weighted-F1 (g) TS→ Py inter EM (h) TS→ Py inter weighted-F1

Figure 7: The evaluation results when partial labeled data is available.

Table 4: Comparison of Plato’s performance with baseline

methods on TypeScript dataset

Method
intra-project inter-project

EM weighted-F1 EM weighted-F1
LambdaNet 0.646 0.623 0.535 0.481
Transformer 0.695 0.654 0.532 0.484
TypeBert 0.723 0.698 0.551 0.504
Plato 0.760 0.729 0.567 0.529

Δ +3.70% +3.10% +1.60% +2.50%

Thus the variable is erroneously classified as Timer. And by incor-
porating the VTC-based kernelized attention, model robustly infers
the variable as boolean based on ground-truth evidence. The visual-
ization shows that VTC-based kernelized attention forces the model
to base its inference on relevant, domain-invariant features thus
makes it more robust and transferable among language domains.

Impact of Ensemble-based Inference. Rows ł-Seuquencež and
ł-Kernelž show that Plato substantially outperforms the two sub-
models. Note that the results of Platow/oVTC and Plato-Sequence
are the same because the sequence model is the version of Plato
without the VTC-based kernelized attention. The 𝜅- bagging en-
semble strategy can make the best of the kernelized model and
compensate its weakness when dealing with language-specific cor-
ner cases.

Answer to RQ2: Each component in Plato is useful for the
cross-lingual transfer learning of statistical type inference
task. In conclusion, syntax enhancement improves the per-
formance significantly by introducing feature overlap among
language domains. The VTC-based kernelized attention mod-
ule improves performance consistently. 𝜅-bagging ensemble
strategy manages to make the best of it by compensating for
the language-specific corner cases.

Table 5: Comparison of Plato’s performance with baseline

methods on Python dataset

Method
intra-project inter-project

EM weighted-F1 EM weighted-F1
Typilus 0.516 0.484 0.441 0.412

Transformer 0.463 0.372 0.431 0.425
TypeBert 0.522 0.490 0.435 0.428
Plato 0.559 0.514 0.482 0.447

Δ +3.70% +2.40% +4.10% +1.90%

3.4 RQ3: Using Partial Labeled Target
Language Data

Setting. In the real-world settings, during the early stage of an
optionally-typed programming language, the type hint annotations
of the language provided by developers are scarce, especially for
primitive types. Thus, it would be extremely valuable if we were
able to quickly build a functional type inference tool by leveraging
existing cross-lingual labeled dataset to augment the training data
of the model. We select 10%, 20%, . . . , 100% chunks of samples from
the target dataset together with 10% of the known source language
dataset to train the model. Note that we only select a few source
language data (i.e., 10%) because we try to reduce the effect of the
size of source data on the final results. The following baselines are
selected to demonstrate the usefulness of Plato:

• Bert with Supervised Learning. Since our method is based on Bert,
we fine-tune the pretained XPLM model on the multi-lingual
partial labeled data (i.e., the partial labeled target language data
and the source data) with fully-supervised learning.

• Plato without Kernel. To show the effect of the kernelized atten-
tion on PTL, we evaluate the unkernelized sub-model of Plato,
i.e., removing the kernelized model from Plato.

247

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

We follow the settings in previous works [5, 23] and evaluate
the results under two settings: (1) intra project: the training and test
dataset come from same project sets; (2) inter project: the training
and test dataset come from different project sets.

Results. Figure 7 shows the results. First, we can see that Platow/o
kernel steadily outperforms the baseline cross-lingual Bert model
under both settings. Particularly, the improvement is more signifi-
cant when the size of labeled data is small (ratio < 0.5). For example,
under the intra-project setting for Python→ TypeScript, when
ratio = 0.1, it improves the baseline model by +10.0%@EM and
+15.8%@weighted-F1. Besides, even when using full target train-
ing set (ratio = 1.0), it improves the baseline Bert by +1.3%@EM
and +1.2%@weighted-F1. The results demonstrate that using out-
domain cross-lingual data with syntax enhancement can already
obtain a considerable boost in performance. Then, we consider the
results of Plato, for Python→ TypeScript, as shown in the first
row of Fig. 7, Plato significantly improves over Bert and Platow/o
kernel under all ratios of labeled target data for both the intra- and
inter-project settings. For example, under the intra-project setting,
when ratio = 0.1, Plato increases the Bert baseline by +12.7%@EM
and +18.2%@weighted-F1; when ratio = 1.0, Plato manages to
increase it by +3.7%@EM and +3.1%@weighted-F1. The result is
consistent forTypeScript→ Python. The results indicate that using
our kernerlized attention can further boost the performance.

Answer to RQ3: As more labeled target language data is
available, the performance of Plato is steadily increased and it
outperforms the baseline models consistently under all ratios
of target language data.

3.5 RQ4: Evaluation on Supervised Learning

Setting. In this evaluation, we applied Plato in the supervised
based scenario to evaluate whether cross-domain information could
be used to improve the learning. We used the same dataset as in
RQ3, where all labels of the source language dataset 𝑆 are avail-
able. The conventional supervised based methods directly train and
evaluate the model on the dataset with the same language (i.e., 𝑆).
Differently, Plato introduces a small part of labeled dataset using
other languages (i.e., 10% of the target language data) and performs
the transfer learning. For the supervised baselines, we select the
following state-of-the-art baselines: for TypeScript, we compare
Plato with TypeBert[26], LambdaNet[43] and the vanilla Trans-
former model. For Python, we compare with TypeBert, Typilus and
Transformer.

Table 4 and Table 5 show the results on TypeScript and Python, re-
spectively. It is obvious that for both TypeScript and Python, Plato
significantly improves all baselines. For example, for intra-project
TypeScript inference, Plato improves over the best TypeBert base-
line model by +3.70%@EM and +3.10%@weighted-F1; for inter-
project Python inference, it improves the baseline by +4.10%@EM
and +1.90%@weighted-F1, indicating that the augmentation from
cross-domain language could improve the performance. Our in-
depth analysis reveals that the supervised learning on one language
dataset tends to be prone to overfitting while the cross-domain aug-
mentation can mitigate this issue. Figure 8 shows a concrete case,

pred: boolean

pred: errorTypeBert

PLATO sequence

PLATO kernelized

pred: boolean

handleServerError({isFatal: false, message:
error.message, stackTrace: error.stackTrace,},
error.method,);

handleServerError({isFatal: false, message:
error.message, stackTrace: error.stackTrace,},
error.method,);

handleServerError({isFatal: false, message:
error.message, stackTrace: error.stackTrace,},
error.method,);

Figure 8: Visualization of models’ attention vector for the

variable isFatal under fully supervised setting.

where we aim to infer the type for the boolean variable isFatal.
We visualize the attention of the TypeBert model and ours. TypeBert
model trained on only TypeScript language heavily focuses on the
variable name (e.g., 𝑖𝑠𝐹𝑎𝑡𝑎𝑙) while completely ignores the ground
truth evidence false, thus erroneously predicts the variable type.
Using the cross-domain information (see Plato sequence and Plato
kernelized), the overfitting problem can be mitigated and Plato

identifies the more important token (i.e., false) for inferring the
result boolean. Compared with Plato sequence, Plato kernelized
incorporates the kernelized attention that ignores more irrelevant
tokens (e.g., handleServerError). Note that, we also considered the
impact of the training data size, i.e., adding cross-domain data may
increase the size of the training data. Therefore, we control the data
size by removing the same amount of data from the training data
as the cross-domain data we introduced. The results still show that
Plato can outperform the baselines by using cross-domain data.
Due to the space limit, more results can be found on our website.

Answer to RQ4: The supervised approaches on one language
data could overfit to some irrelevant tokens. By introducing
the small amount of cross-domain data, Plato can signifi-
cantly outperforms the baselines.

3.6 Threats to Validity

The implementation of the baselines is a threat to the validity of
the results. Since these techniques were not originally built for
program analysis tasks, we gave our best efforts in adapting them
for our tasks, and fixed all bugs we could identify. The selection
of the datasets may not be representative and our results may
not generalize. To mitigate this, we selected the two well-known
benchmarks which were previously used in type inference tasks.
Finally, the label calibration (see Section 3.1) could be another threat
to the accuracy of the type prediction. This can be mitigated by
outputting specific type names within a meta-type in a ranked list
to developers. The data used in the training process could be a
threat, we randomly selected the data for all methods in RQ3 and
RQ4.

4 RELATED WORK

4.1 Unsupervised Domain Adaptation

As an important case of transfer learning, unsupervised domain
adaptation (UDA) has drawn significant attention from the deep

248

Cross-Lingual Transfer Learning for Statistical Type Inference ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

learning communities. The UDA research can mainly be catego-
rized into two streams [37], namely model-centric and data-centric.
The goal of model-centric methods are to minimize the distance
among domains via feature alignment. Tzeng et al. [40] first pro-
posed using the maximum mean discrepancy (MMD) to minimize
the distance between images from two distributions on image classi-
fication tasks. Recently, NLP community also started to investigate
the possibility of applying the above techniques to language tasks,
e.g., sentiment classification [31, 39], POS tagging [47], etc. Pan et
al. [35] proposed spectral feature alignment for sentiment classi-
fication; the syntax enhancement approach we used in this work
lies in this category. The goal of data-centric methods are to bridge
the domain gap by manipulating data from source and target do-
mains. Han et al. [21] proposed the adaptive pre-training, which
adapts contextualized word embeddings from target domain by
masked language modeling. Gururangan et al. [20] further intro-
duced task-specific pre-training (TAPT) that studies the effect of
second-stage pre-training on the transferability across domains. In
the software engineering community, transfer learning techniques
started to gain attention recently. Nam et al. [34] proposed using
transfer learning to improve the performance for cross-project de-
fect prediction. SAR [10] leverages generative adversarial network
for API mappings. Although UDA has been broadly explored in
the CV and NLP fields, it has not been paid enough attention in
the programming language and software engineering community.
Yet, considering the fact that we have abundant labeled dataset for
high-resource programming languages, there is great potential for
knowledge transfer to the relatively low-resource programming
languages via UDA.

4.2 Statistical Type Inference

Type inference for optionally-typed language is widely studied in
light of the widespread usage of languages such as Python and
JavaScript. The ability to infer types automatically makes program-
ming tasks easier, leaving the programmer free to omit annotations
while still permitting type checking. Statistical type inference is
gaining attention due to its superior performance over traditional
rule-based methods. JSNice [38] proposed the first probabilistic
type inference system based on conditional random fields (CRFs).
DeepTyper [23] introduced the first deep learning based JavaScript
type inference model based on recurrent neural networks. And
TypeBert [26] achieves the state-of-the-art performance thanks to
unsupervised pre-training. Following this line, several deep learn-
ing based type inference tools for Python are proposed [5, 36].
Plato advances over these works by allowing the deep learning
models to still work even without adequate labeled data.

4.3 Program Representation Learning

Leveraging deep learning models for solving software engineering
problems is increasingly gaining popularity. Most of these works
focus onmonolingual tasks. Zhang et al. [49] used a recurrent neural
network for code summarization in Python; code2vec [7] used an
attention model for method name prediction in Java; Graph neural
networks [50, 51] have been used for the vulnerability detection
and security patches tasks of C. Recently, researches started to
investigate the power of multi-lingual language models for program

analysis tasks. Transcoder [29] introduced a neural transcompiler
that is able to translate functions between C++, Java, and Python
using unsupervised machine translation.

5 CONCLUSION

In this work, we set out to conduct the first trial of cross-lingual
transfer learning of statistical type inference. Our experimental re-
sults are positive: by incorporating graph kernel-based kernelized
attention, incorporating syntax enhancement using meta-grammar.
Our framework not only improves previous domain adaptation base-
lines significantly when no labeled target language data is available,
but also manages to consistently improve the supervised baseline
when labeled target language data is available. Our findings indicate
great potential of leveraging data across different programming lan-
guages for other neural model architectures and other different deep
learning-based software engineering tasks. In the future, we plan to
extend our method to more code learning based applications such
as code search [19] and code summarization [32], and improve the
quality of the trained models with existing techniques [14, 45, 46].

ACKNOWLEDGMENTS

This research is partially supported by the National Research Foun-
dation, Singapore under its the AI Singapore Programme (AISG2-
RP-2020-019), the National Research Foundation, Prime Ministers
Office, Singapore under its National Cybersecurity R&D Program
(Award No. NRF2018NCR-NCR005-0001), NRF Investigatorship
NRF-NRFI06-2020-0001, the National Research Foundation through
its National Satellite of Excellence in Trustworthy Software Systems
(NSOE-TSS) project under the National Cybersecurity R&D (NCR)
Grant award no. NRF2018NCR-NSOE003-0001, the Ministry of Ed-
ucation, Singapore under its Academic Research Fund Tier 1 (21-
SIS-SMU-033), Tier 2 (MOE2019-T2-1-040) and Tier 3 (MOET32020-
0004). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of the Ministry of Education, Singapore.

REFERENCES
[1] 2021. Esprima. https://esprima.org.
[2] 2022. cltl4sti. https://sites.google.com/view/cltl4sti/home.
[3] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. 1976. On finding lowest

common ancestors in trees. SIAM Journal on computing 5, 1 (1976), 115ś132.
[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2020. Compilers:

principles, techniques and tools.
[5] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:

neural type hints. In Proceedings of the 41st acm sigplan conference on programming
language design and implementation. 91ś105.

[6] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
conference on machine learning. PMLR, 2091ś2100.

[7] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1ś29.

[8] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on
graphs. In Fifth IEEE international conference on data mining (ICDM’05). IEEE,
8śpp.

[9] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123ś140.
[10] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: learning cross-language

API mappings with little knowledge. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 796ś806.

[11] Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger.
2018. Adversarial deep averaging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Computational Linguistics 6 (2018),

249

https://esprima.org
https://sites.google.com/view/cltl4sti/home

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, and Yang Liu

557ś570.
[12] Michael L Collard, Michael John Decker, and Jonathan I Maletic. 2013. srcml: An

infrastructure for the exploration, analysis, and manipulation of source code: A
tool demonstration. In 2013 IEEE International Conference on SoftwareMaintenance.
IEEE, 516ś519.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
stellar: Model-based quantitative analysis of stateful deep learning systems. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 477ś487.

[15] Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representa-
tions using multilingual correlation. In Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics. 462ś471.

[16] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning. PMLR, 1180ś
1189.

[17] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantify-
ing detectable bugs in JavaScript. In 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 758ś769.

[18] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723ś773.

[19] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933ś944.

[20] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A Smith. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. arXiv preprint arXiv:2004.10964 (2020).

[21] Xiaochuang Han and Jacob Eisenstein. 2019. Unsupervised domain adaptation of
contextualized embeddings for sequence labeling. arXiv preprint arXiv:1904.02817
(2019).

[22] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and
Andreas Stefik. 2014. An empirical study on the impact of static typing on
software maintainability. Empirical Software Engineering 19, 5 (2014), 1335ś1382.

[23] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 152ś162.

[24] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[25] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[26] Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. 2021. Learning type
annotation: is big data enough?. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1483ś1486.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097ś1105.

[29] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. arXiv preprint
arXiv:2006.03511 (2020).

[30] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model
pretraining. arXiv preprint arXiv:1901.07291 (2019).

[31] Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018. What’s in a domain?
learning domain-robust text representations using adversarial training. arXiv

preprint arXiv:1805.06088 (2018).
[32] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2021. Retrieval-

Augmented Generation for Code Summarization via Hybrid GNN. In International
Conference on Learning Representations. https://openreview.net/forum?id=zv-
typ1gPxA

[33] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013. Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013).

[34] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning.
In 2013 35th international conference on software engineering (ICSE). IEEE, 382ś
391.

[35] Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen.
2010. Cross-domain sentiment classification via spectral feature alignment. In
Proceedings of the 19th international conference on World wide web. 751ś760.

[36] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
writer: Neural type prediction with search-based validation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 209ś220.

[37] Alan Ramponi and Barbara Plank. 2020. Neural Unsupervised Domain Adaptation
in NLPÐA Survey. arXiv preprint arXiv:2006.00632 (2020).

[38] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from" big code". ACM SIGPLAN Notices 50, 1 (2015), 111ś124.

[39] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance
guided representation learning for domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[40] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[41] Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. 2004. A primer on kernel
methods. Kernel methods in computational biology 47 (2004), 35ś70.

[42] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code.. In IJCAI. 3034ś3040.

[43] JiayiWei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. Lambdanet: Probabilis-
tic type inference using graph neural networks. arXiv preprint arXiv:2005.02161
(2020).

[44] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 87ś98.

[45] Xiaofei Xie, Wenbo Guo, Lei Ma, Wei Le, Jian Wang, Lingjun Zhou, Yang Liu, and
Xinyu Xing. 2021. RNNrepair: Automatic RNN repair via model-based analysis.
In International Conference on Machine Learning. PMLR, 11383ś11392.

[46] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146ś157.

[47] Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev. 2017. Robust multilingual
part-of-speech tagging via adversarial training. arXiv preprint arXiv:1711.04903
(2017).

[48] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models
of code. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1ś30.

[49] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1385ś1397.

[50] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. arXiv preprint arXiv:1909.03496 (2019).

[51] Yaqin Zhou, Jing Kai Siow, ChenyuWang, Shangqing Liu, and Yang Liu. 2021. SPI:
Automated Identification of Security Patches via Commits. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1ś27.

250

https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA

	Cross-lingual transfer learning for statistical type inference
	Citation
	Author

	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Variable Type Closeness
	2.3 Syntax Enhancement
	2.4 Training
	2.5 Ensemble-Based Inference

	3 Evaluation
	3.1 Experimental Setup
	3.2 RQ1: Comparison with Baselines When No Labeled Target Data Is Available
	3.3 RQ2: Usefulness of Different Components
	3.4 RQ3: Using Partial Labeled Target Language Data
	3.5 RQ4: Evaluation on Supervised Learning
	3.6 Threats to Validity

	4 Related work
	4.1 Unsupervised Domain Adaptation
	4.2 Statistical Type Inference
	4.3 Program Representation Learning

	5 Conclusion
	Acknowledgments
	References

