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Research on platform ecosystems is growing rapidly as digital platforms pervade the new 
economy faster than ever (McIntyre & Srinivasan, 2017). Platforms coordinate autonomous 
innovators by standardized interfaces instead of hierarchy or market, such that a vast number 
of external actors can join the platform ecosystem and create complementary products for 
platform users (Cennamo, 2018). Much of this literature focuses on platform governance, 
that is, how platform owners utilize rules, constraints, and inducements to address market 
failures and enable interactions (Boudreau & Hagiu, 2009; Zhang, Li, & Tong, 2020).

In a platform ecosystem (e.g., Android’s ecosystem), we can distinguish between the plat-
form (i.e., Android), platform owner (i.e., Google), platform providers (e.g., Samsung and 
Huawei), and complementors (e.g., app developers). Both platform providers and comple-
mentors are “producers” in the ecosystem, while “consumers” are end users. Platform 
research to date emphasizes how platform governance can prompt positive externalities (or 
indirect network effects) between producers and consumers (Boudreau, 2012; Cennamo & 
Santaló, 2013; Zhu & Iansiti, 2012). Yet increasingly, digital technologies have enabled firms 
to organize as platforms around which various types of producers coalesce into ecosystems 
(Jacobides, Cennamo, & Gawer, 2018; Shi, Li, & Chumnumpan, 2020). The multilateral 
interdependent relationships among different groups of producers could be a source of fric-
tions in collaborative production (Adner, 2017) to which platform research has paid limited 
attention (with exceptions, such as Hagiu, 2014; Simcoe & Watson, 2019).

In this article, we address the research question of how platform governance may create 
unintended costs for complementors. Platform scholars describe “open governance” by the 
extent to which important decision rights about the platform’s attributes and interfaces are 
devolved by the platform owner (Boudreau, 2010; Chen, Pereira, & Patel, 2020; Tiwana, 
2014).1 While open governance empowers various platform providers (e.g., smartphone pro-
ducers) to manage the interface through which users consume complements (e.g., as is the 
case of Android; Eisenmann, 2008; Eisenmann, Parker, & Van Alstyne, 2009), it also breeds 
a more complex ecosystem, relative to rival platform ecosystems (e.g., iOS), in the eyes of 
the complementors (e.g., app developers; Kapoor & Agarwal, 2017). Potential complemen-
tors will face an increasing number of unique platform interfaces and intensified needs for 
accompanying product redesigns (Agarwal & Kapoor, 2019). We propose that the invest-
ments required to attain customized complementarity with a more complex platform ecosys-
tem deters complements’ multihoming to that ecosystem. Multihoming refers to the cases 
where an iOS app becomes available on Android, a PlayStation video game becomes avail-
able on Switch, or a Chrome extension becomes available on Firefox.

Our analysis leverages the context of the iOS- and Android-based smartphone ecosys-
tems. The diversity of hardware devices and operating systems provides a unique setting to 
study the idea of ecosystem complexity and its implications for app developers’ multihom-
ing. We assemble a proprietary sample of newly launched top-performing mobile apps and 
track their entry into a new platform ecosystem. Survival analysis supports our prediction 
that a new platform ecosystem’s complexity relative to the original ecosystem where the app 
has been launched reduces the likelihood of the app’s multihoming. We further show that app 
developer firms’ experience with the new ecosystem and the extent to which they modularize 
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app development using components like software development kits (SDKs) attenuate the 
aforementioned negative effect. Our results remain robust after accounting for the selection 
bias and endogenous treatment regarding the original ecosystem entry.

The study makes three contributions to the literature. First, we shift attention from plat-
form competition to its repercussion for complementors. Current literature emphasizes plat-
form owners’ governing of the complementors (Eaton, Elaluf-Calderwood, Sorensen, & Yoo, 
2015; Rietveld, Schilling, & Bellavitis, 2018), while much less is known about the behaviors 
and challenges of complementors (Agarwal & Kapoor, 2019; Rietveld & Eggers, 2018; 
Zhang et al., 2020). Our article elucidates complementors’ multihoming decisions based on 
the hidden cost they face in diversifying into a new ecosystem. We extend the recent debate 
attributing similar coordination frictions to platforms’ architectural design and technological 
transition (Cennamo, Ozalp, & Kretschmer, 2018; Ozalp, Eggers, & Malerba, 2019). Second, 
our study enriches the platform governance literature. Previous research on governance 
revolves around contractual and institutional arrangements. To fully understand the implica-
tions of platform governance, we link contractual control (i.e., open vs. proprietary plat-
forms) with technological consequences. We show that open governance, while favorable in 
prompting ecosystem growth (Simcoe & Watson, 2019), may cause unintended technologi-
cal complexity for complementors due to increased platform interfaces. That sheds light on 
the key organizational challenge for platform owners to balance variety with ecosystem com-
plexity (Cennamo & Santaló, 2019). Third, we explicate how complementors may contribute 
to alignment of the platform ecosystem. Extant research maintains that the responsibility for 
leading interdependent parties toward realignment lies with the ecosystem leader (Adner, 
2017). In examining how complementors overcome multihoming costs, we reveal comple-
mentors’ strategies of coping with coordination frictions; they can either build ecosystem-
specific knowledge to absorb them internally or eschew such investment by leveraging 
modular components outside their organizational boundaries. Taken together, we find that 
complementors play a more salient role in maintaining ecosystem-level complementarities 
than portrayed in the existing literature.

Literature and Theory

Complementor Multihoming in Platform Ecosystems

We consider a platform a stable set of common technological assets and standards used 
across a product family (Thomas, Autio, & Gann, 2014). The functionality of a platform can 
be extended by third-party innovators that leverage the platform’s standardized interface 
upon which they can create their own, complementary products (Gawer & Cusumano, 2014). 
We define an ecosystem as comprising a multilateral set of firms that are individually autono-
mous yet depend on one another to materialize a value proposition (Adner, 2017). In technol-
ogy industries, that typically includes firms cospecializing in varying domains of expertise 
and originating from diverse industries, such as those providing hardware devices, networks, 
software products, and content (Yoo, Henfridsson, & Lyytinen, 2010).

The very logic of organizing as a platform is to leverage the generative potential of dis-
tributed innovation agency and economies of specialization (Cennamo & Santaló, 2019). 
Platform scholars maintain that a platform owner should strive to attract an increasing num-
ber of complementors, which are the source of indirect network effects (Cennamo & Santaló, 

632 Journal of Management / March 2022



2013), while preventing them from supplying the same complementary product to its rival 
platforms (i.e., multihoming; Landsman & Stremersch, 2011).2 To platform owners, comple-
mentors’ multihoming will undermine the platform’s advantages derived from network 
effects as well as its differentiated market position (Venkataraman, Ceccagnoli, & Forman, 
2018). Complementors, on the other hand, often have incentives to multihome due to cross-
platform scale economies (Landsman & Stremersch, 2011). Relative to the cost of product 
development, the returns from expanded market reach could be substantial (Corts & 
Lederman, 2009). Multihoming also allows complementors to counter the risk of hold-up 
and expropriation by platform owners (Huang, Ceccagnoli, Forman, & Wu, 2013).

Nevertheless, multihoming does not come by easily for complementors. Extant literature 
suggests that complementors face multihoming costs ensuing primarily from the platform’s 
technological design (Cennamo et al., 2018). While advanced technological architecture is a 
source of differentiation and competitive advantage for platform owners, it may limit the 
overall content available and impair the quality of multihomed complements (Anderson, 
Parker, & Tan, 2014; Ozalp, Cennamo, & Gawer, 2018). This is because reconfiguring an 
existing complement to a more advanced architectural design incurs significant costs due to 
asset specificity in product development. Such costs are often noncontractible and may dis-
courage potential complementors. To extend this research, we further examine the costs of 
customization in relation to ecosystem participants other than the platform owner itself. We 
ascribe the source of such costs to platform governance.

Platform Governance Design

It is widely recognized that platform owners assume the unitary role of orchestrating the 
functioning of platform ecosystems (Gawer & Cusumano, 2008). They do so by setting non-
pricing governance rules for complementors and other ecosystem participants (Rietveld, 
Seamans, & Meggiorin, 2020; Thomas et al., 2014). In this study, we view a platform’s gov-
ernance design through the partitioning of decision rights between the platform owner and 
ecosystem participants to access, augment, or distribute the platform technology (Chen et al., 
2020; Karhu, Gustafsson, & Lyytinen, 2018; Tiwana, 2014).

An open-governance design implies the devolution of decision rights from platform own-
ers (Boudreau, 2010). Greater decision rights will translate into more autonomy to third-
party producers that adopt the platform (Eisenmann et al., 2009; Wareham, Fox, & Cano 
Giner, 2014). Since these cospecialized producers possess more comprehensive knowledge 
about the immediate market they serve than does the platform owner, an open design would 
result in enhanced specialization and better servicing of customers’ heterogeneous needs, 
thereby improving the overall value proposition of the ecosystem (Parker, Van Alstyne, & 
Jiang, 2017). A closed design, by contrast, allows the platform owner to retain proprietary 
control by limiting other parties’ decision rights to the platform (Schilling, 2009; West, 
2003). The strategic trade-off on how much decision rights the platform owner should relin-
quish has been a central question in platform research (Karhu et al., 2018).

At any point in time, rival platforms may display differentiated governance designs rang-
ing from fully open to fully closed ones (Chen et al., 2020; Schilling, 2009). In more open 
platforms, platform owners devolve more decision rights to platform providers and allow 
them to maintain the interface through which users consume complementary goods and 
experience the platform (Eisenmann, 2008; Eisenmann et al., 2009). Current research on 
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platform governance primarily concerns the direct access granted to complementors and the 
platform owner’s role as a self-interested orchestrator in regulating complementors (Eaton 
et al., 2015; Parker & Van Alstyne, 2018; Rietveld, Ploog, & Nieborg, 2020). In extending 
this inquiry, we draw on ecosystem theory to consider how platform governance design may 
lead to frictions in collaborative production in an ecosystem. Next, we explicate the interrela-
tions among platform governance design, ecosystem complexity, and multihoming cost in 
the context of smartphone ecosystems.

Hypotheses

Ecosystem Complexity and Multihoming Decision

Ecosystem complexity refers to the structure of interdependence for complementors, 
defined by the number of unique components in the ecosystem that they need to interact with 
to materialize their value proposition (Kapoor & Agarwal, 2017). The greater the number of 
unique components, the higher the ecosystem complexity for complementors. Within a plat-
form ecosystem, complexity stems particularly from the allocation of decision rights between 
platform owners and platform providers (Eisenmann, 2008). Different platform providers 
seek to augment the platform interface in ways that best suit their own customers’ immediate 
needs and differentiate from rivals. However, platform interfaces are the main junction points 
in the ecosystem (Agarwal & Kapoor, 2019). Decentralizing control of the interface could 
undermine the stability of standardized assets and raise ecosystem complexity (Baldwin & 
Woodard, 2009).

Consider smartphone ecosystems. Open governance delegates the role of platform provid-
ers to smartphone producers (Eisenmann et al., 2009). Android’s open platform permits 
handset makers, such as Samsung, HTC, and Huawei, to not only produce and distribute 
Android-based devices but also manage the interface between app developers and consumers 
by reprogramming the platform. That results in a diverse range of sizes, features, and capa-
bilities among Android handsets and, most importantly, many differentiated, nonstandard-
ized versions of Android operating system (Karhu et al., 2018). Each configuration of 
operating systems and handsets constitutes a unique platform interface (Kapoor & Agarwal, 
2017). The growing number of unique interfaces leads to a more complex structure of inter-
dependence in a smartphone ecosystem (Garud, Jain, & Kumaraswamy, 2002).3

From the ecosystem perspective, platform openness enhancing the variance in hardware 
devices also increases the risk of ecosystem complexity for complementors. That results in 
frictions between hardware development and complement production because of their con-
flicting goals: While hardware producers seek differentiation in their market, complementors 
pursue a wider market reach with minimum marginal cost. To multihome, a complementor 
must reconfigure an existing complement to the specifications of the destination ecosystem 
and particularly to a new set of platform interfaces (Agarwal & Kapoor, 2019). The greater 
the number of unique interfaces a complement is customized against, the more complex 
trade-offs complementors will face in product redesign. A design interacting well with one 
interface may fall short in compatibility with another. That elevates nonfungible, ecosystem-
specific learning and adaptation costs for complementors (Jacobides et al., 2018). Thus, com-
plementors will be less likely to customize an existing complement to a more complex 
constellation of interdependence (i.e., the destination ecosystem).
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Hypothesis 1: The greater the complexity of a destination ecosystem relative to a complement’s 
original ecosystem, the less likely the complement is to multihome onto that destination 
ecosystem.

Heterogeneity of Complementors and Complements

While the complexity of destination ecosystems deters multihoming because of increased 
costs in reconfiguring an existing complement, this main effect is likely to be heterogeneous. 
In this section, we focus on certain characteristics of complementors and complements that 
are associated with variations in multihoming costs. We examine how the main effect of rela-
tive ecosystem complexity varies depending on the complementor’s destination ecosystem 
experience and the complement’s modular components.

Destination ecosystem experience. In examining complementor heterogeneity in tackling 
ecosystem complexity, we first emphasize the importance of internal capability building. Past 
experience generates trial-and-error learning that guides future behavior (Levitt & March, 
1988). Intrafirm learning can occur in platform owners, which helps them respond to new 
market situations positively (Seamans & Zhu, 2017). We extend it to complementors and 
explore how experiential knowledge helps absorb complexity-induced multihoming cost.

We have argued that due to ecosystem complexity, potential complementors will encoun-
ter a greater number of unique platform interfaces and intensified needs for accompanying 
product redesigns. Complementors’ redesign process involves experimenting with a range of 
alternative designs to accommodate the broad variations of platform interfaces that interact 
with their own unique design solutions. Greater structural interdependence also implies 
increased accompanying design changes in response to ongoing changes in various inter-
faces (Sanchez & Mahoney, 1996; Schilling, 2000). Such knowledge is often acquired 
through learning by doing. This is because of a lack of formal communication channels 
among loosely coupled organizations in an ecosystem where coordination is achieved via 
standardized interfaces instead of overt communication (Sanchez & Mahoney, 1996). 
Complementors with more experience with the destination ecosystem understand better the 
integration of their existing designs with unique interface specifications and where adapta-
tions may be necessary to accommodate customization requirements. Given improved search 
efficiency and diminished experimentation costs, experienced complementors will need less 
investment to attain customized complementarity. That enables them to multihome and 
exploit cross-platform scale economies, despite the high level of destination ecosystem com-
plexity presented.

Moreover, in digital innovations, user participation constitutes an important channel of 
knowledge acquisition and alleviates the cost of feasibility test in product development (Ye 
& Kankanhalli, 2018). Each renewed product version builds on previous versions by incor-
porating users’ incremental feedback on the complement’s actual performance. More experi-
enced complementors have more chances of receiving feedback on the fit between their 
design solutions and users’ devices. Such a hill-climbing approach to knowledge accumula-
tion is subject to time compression diseconomies, and the resulting knowledge is internalized 
into routines that guide complementors in improving complementarity with the same ecosys-
tem. That allows experienced complementors to identify which design solutions can be 
deployed to reconfigure an existing complement in a way that efficiently accommodates a 
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destination ecosystem’s complex interfaces. Therefore, we propose that porting a comple-
ment to a more complex ecosystem incurs diminishing learning and adaptation costs for 
complementors with more experience with that ecosystem.

Hypothesis 2: Complementors’ experience with the destination ecosystem positively moderates the 
negative relationship between relative ecosystem complexity and the likelihood of multihoming.

Modular components. Now we explore complementors’ external capability search in pur-
suit of ecosystem-specific customization. Due to modularity in platform architectures, know-
ing the detailed workings of all other interdependent parties is not necessary (Baldwin & 
Woodard, 2009; Schilling, 2000). Without such knowledge, complementors can still leverage 
the capability of cospecialized parties in product design, production, and delivery (Thomas 
et al., 2014). Following Adner and Kapoor (2010), we direct attention to modular component 
providers that are part of a platform ecosystem.

The modular architecture of platforms not only facilitates the supply of complements but 
also induces continuous development of technical inputs comprising these very comple-
ments. Modular technologies allow fungible inputs to be separated and recombined into new 
innovations (Schilling, 2000). Input modules, used as building blocks, can be created inde-
pendently without knowing how they will be ex post bundled by various complementors 
(Yoo, Boland, Lyytinen, & Majchrzak, 2012). That opens a competitive market for third-
party firms and individuals who cospecialize with complementors and supply heterogeneous 
input modules. They may build on platform owners’ technological resources to introduce 
more advanced and diverse functionalities. They may also assimilate certain complementors’ 
innovative features and best practices into input modules. We argue that complementors can 
eschew some of the multihoming cost as they draw on modular components in product 
development.

To illustrate, consider technical development facilities, such as SDKs, in the smartphone 
context. With embedded digital capabilities, SDKs can perform a whole range of function-
alities deemed desirable by complementors. While smartphone platform owners often offer 
such basic platform resources as code libraries, third-party vendors have become the major 
supplier of discrete functional toolkits, including SDKs. To create more value, SDK provid-
ers tend to offer cross-platform components that allow an app to perform the same function 
in multiple platform ecosystems at a minimal marginal cost (Corts & Lederman, 2009; 
Ozalp et al., 2018). As the app developer takes advantage of SDKs in developing an app for 
the original ecosystem, it is made aware of the same SDKs that are also offered for other 
platforms.

The value of a cross-platform component depends partly on the extent to which it can 
achieve adequate customized complementarity with each of the major ecosystems. While 
ecosystem complexity prevents an existing complement from exploiting cross-platform 
scale economies, these preprogrammed modular components can help complementors com-
ply with the new platform’s unique interfaces and release them from the complex structural 
interdependence that forms the primary cost of multihoming (Tiwana, 2014). In other words, 
part of the technical and product development capability that complementors deploy to 
overcome complexity problems lies outside of their organizational boundaries (Jacobides & 
Hitt, 2005). Complementors can focus all the customization efforts on their own domain of 
expertise (Iansiti & Levien, 2004) while engaging in capability search that locates pockets 
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of external modular components for coping with multiple platform interfaces (Selander, 
Henfridsson, & Svahn, 2013). From an ecosystem perspective, modular components can 
mitigate the friction between platform providers and complementors by filling the gap in 
their alignment. For complements containing more modular components, ecosystem com-
plexity would incur less nonfungible customization cost in multihoming. Therefore we pro-
pose the following:

Hypothesis 3: Complements’ use of modular components positively moderates the negative rela-
tionship between relative ecosystem complexity and the likelihood of multihoming.

Method

Research Setting and Data

Since the launch of iOS App Store and Google Play (formerly Android Market) in 2008, 
the mobile apps industry has been experiencing exponential growth. In 2015 alone, mobile 
apps were downloaded 156 billion times, generating $34.2 billion in annual revenues (IDC, 
2016). The smartphone context is a classic market in which modern platform ecosystems 
compete. Apple’s iOS ecosystem is notably hierarchical, in that it exerts tight control over 
hardware devices and software distribution. To catch up with Apple, Google openly licensed 
the Android operating system to smartphone producers in a bid to accelerate the diffusion of 
its platform (Bresnahan, Davis, & Yin, 2015). One of the main reasons for multihoming is to 
avoid being overcommitted to a losing platform (Tiwana, 2014). For developers in general, 
Android has been by far the biggest platform since the number of Android device shipments 
long surpassed that of iOS; the gap was ever widening until Android claimed around 75% of 
the global smartphone market.4 While there is a trade-off between market reach and financial 
success given the varied positioning of the platforms (Cennamo, 2019), both present equally 
appealing opportunities to app developers (Bresnahan et al., 2015). Hence, our context is apt 
for examining multihoming behaviors.

We focus on mobile apps from the Health and Fitness category on both platforms. Given 
previous research on platform competition (Cennamo & Santaló, 2013), we purposely choose 
a nongame category, where it is relatively rare to use exclusivity contracts, which prevent an 
app from multihoming for an extended period of time. The Health and Fitness category 
includes a variety of apps related to bodybuilding and working out (e.g., Nike Training Club), 
healthy eating (e.g., MyFitnessPal), health tracking (e.g., Flo), pedometers and sports GPS 
(e.g., Pacer), and yoga and meditation (e.g., Calm), among others. While most apps are fully 
functional on a smartphone, some popular ones, such as Fitbit and Garmin Connect, need to 
be paired with additional hardware (e.g., smart wearables) for distinct functions (e.g., track-
ing sleep and stress). Unlike apps in some categories that are predominantly reliant on in-app 
purchase for value capture, Health and Fitness apps do not appear to have a predisposition to 
one platform ecosystem than another, reducing the confounding effects on the apps’ initial 
homing choices. Our main data source is the leading mobile intelligence firm Apptopia 
(www.apptopia.com), which tracks and archives information about app downloads, reve-
nues, and usage for more than 50 countries. The full data set includes over 4,000 top-ranked 
apps, accounting for more than 80% of downloads and revenues earned by the Health and 
Fitness category. Apps in the sampling frame are less likely to be developed by amateurs, 
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who may differ from professional entrepreneurs in motivations and are indifferent to multi-
homing (Boudreau, 2018).

We select newly launched apps in the two platform ecosystems based on release informa-
tion from Apptopia as well as the other two leading market analysts, App Annie and Sensor 
Tower. Our final sample comprises 91 iOS apps and 47 Android apps that were launched in 
the last quarter of 2014.5 We choose Quarter 4 2014 because Google Play–edition phones—
Google’s initiative to reduce unique platform interfaces and mitigate fragmentation—were 
phased out by then. Thus, our sample is not confounded by platform owners’ countermea-
sures on complexity. We track the multihoming behavior of these apps from release to the 
end of 2015. Following Kapoor and Agarwal (2017), we aggregate daily data, for example, 
app rankings, downloads, and revenues provided by the intelligence firm, to the monthly 
level to smooth out data fluctuations. Combined with other data sources, that is, Sensor 
Tower, Search Man, and Mobile Action, we collect all the information about the main explan-
atory and control variables for our study, such as app developer experience, app size, and app 
update frequency. To measure ecosystem complexity, we obtain data from Statista on monthly 
market shares of the top 10 smartphone OEMs within the Android ecosystem. Our final data 
set covers 997 monthly observations of the 138 apps. It is an unbalanced panel because apps 
drop out of the data set once they multihome.

Dependent Variable

Multihoming. In our context, multihoming refers to app developers publishing the same 
app on both Google Play and iOS App Store. We examine the multihoming choice of app 
developers by observing whether they introduce the same app in the rival ecosystem after its 
initial launch. We use a dummy variable taking a value of 1 if an app appears in more than 
one ecosystem from its initial launch to December 31, 2015. We observe 98 single-homed 
apps and 40 multihomed apps, of which 20 apps launched first on iOS and the other 20 apps 
launched first on Android, in our sample. On average, app developers that had first launched 
the app on Google Play spent less time (4.22 months) until porting the same app to iOS App 
Store than the other way around (6.10 months).

Independent Variables

Relative ecosystem complexity. The variable is measured by the complexity of the desti-
nation ecosystem minus that of the original ecosystem. In our context, ecosystem complexity 
refers to the structural interdependence that the app developer needs to accommodate when 
developing for a given smartphone ecosystem. It is characterized by the diversity of configu-
rations of operating systems and handsets with which an app’s design and production must 
be aligned in order to fully realize its functions as conceived. In the Android ecosystem, app 
developers need to customize their apps to various unique combinations of Android ver-
sions and hardware specifications. Handset manufacturers, such as Samsung, Sony, Huawei, 
Xiaomi, and HTC, introduce a whole range of devices with varying sizes, features, and capa-
bilities. Conversely, the rival platform owner Apple maintains a hierarchical system with full 
control over hardware specifications.

The platform interfaces an app needs to interact with primarily include existing smart-
phones rather than new sales. Complementors may ensure that the app functions well only on 

638 Journal of Management / March 2022



a subset of all compatible smartphones, often leading brands, due to design trade-offs. The 
measure proxies for unique interfaces that an app must accommodate to reach a given market 
share of smartphones in an ecosystem. Following Kapoor and Agarwal’s (2017) approach, 
we measure ecosystem complexity by the sum of the squares of monthly global market shares 
for smartphone OEMs in the ecosystem. It ranges from 0.09 to 0.12 for the Android ecosys-
tem and takes a value of 1 for the iOS ecosystem.6 To facilitate interpretation, we take the 
inverse value of ecosystem complexity and compute the difference between the complexity 
of the competing ecosystem and that of the original ecosystem to measure relative ecosystem 
complexity, such that, for instance, an iOS app multihoming to Android would face greater 
complexity. Unlike Kapoor and Agarwal (2017), we use the global market share of handsets 
to calculate the variable, assigning more balanced weights to other major brands of Android 
devices, such as Huawei, LG, and Samsung.

Moderators

Destination ecosystem experience. This refers to the app developer firm’s experience 
with the destination ecosystem before the focal app was ported to the same ecosystem. We 
combine data from Apptopia with those from Sensor Tower, Search Man, and Mobile Action 
and manually collect information about the number of apps that were released (in all catego-
ries in a given platform ecosystem) by the developer (Kapoor & Agarwal, 2017). Due to data 
skewness, we log-transform this variable. In the robustness checks, we use (a) an alternative, 
dummy variable to reflect the qualitative difference between developers having and not hav-
ing destination ecosystem experience and (b) a product term of the number of prior apps and 
time since the last app was released in order to account for the recency effect. The results are 
consistent. We test the moderating effect of destination ecosystem experience while control-
ling for app developers’ experience with the original ecosystem.

Complement modularity. This is measured by the log of 1 plus the ratio of an app’s SDK 
to its size. SDK is the collection of technical modules for app development available on an 
ecosystem’s central technology platform (Tiwana, 2014). App developers use SDKs to add 
features they desire when developing an app. Without utilizing SDKs, developers must write 
an app from scratch for each platform ecosystem. Previous research shows that app size is 
reflective of coding efforts and development cost (Ghose & Han, 2014), and the number 
of SDKs indicates the extent to which complementors utilize modular components. While 
SDKs can increase app size, the ratio of SDK to app size can generally reflect the degree of 
modularity relative to the total programming efforts into a new app (Schilling, 2000). More 
SDKs alongside a smaller app size indicate limited own coding and reduced development 
cost. Fewer SDKs combined with a larger app size suggest a greater amount of own coding. 
When using the number of SDKs instead of the ratio, we obtain consistent results.

In line with our hypothesis development, we use app SDKs in the original ecosystem to 
account for the cost of porting to a new ecosystem resulting from product development 
choices. Our extensive conversations with app developers suggest that when the complemen-
tor utilizes SDKs in developing a complement for the original platform ecosystem, it should 
be made aware of the same third-party modular components that are also offered by this SDK 
provider and compatible with other platform ecosystems. That would, ex ante, reduce their 
own work on customization.
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Control Variables

We control for a number of app-level, developer-level, and ecosystem-level variables that 
may influence an app’s tendency of multihoming. Our app-level control variables consist of 
app size, total updates, total revenue, downloads, rankings, and hardware. We measure them 
using data from the original ecosystem to reflect their ex ante impacts on multihoming. App 
size, that is, the digital storage an app occupies (logged), reflects the app’s development cost 
and, by extension, its multihoming cost (Ghose & Han, 2014). Total updates refers to the 
frequency of updates of an app (logged), indicating how much the developer has invested in 
this app in the original ecosystem.

Developers may use the first platform to test the market and later leverage the success by 
outbound multihoming (Cennamo et al., 2018). We therefore control for total revenue per 
month (logged), including revenues from sales, in-app purchases, and advertising earned by 
the app in the original ecosystem (Garg & Telang, 2014). Similarly, we control for monthly 
downloads (logged) in the original ecosystem. Both total revenue and downloads are proxies 
for market performance of an app; highly downloaded apps do not necessarily, and indeed 
often do not, generate significant revenue. Furthermore, app developers tend to face signifi-
cant ex ante uncertainty about an app’s quality. We use app ranking to measure the perceived 
quality of an app in the original ecosystem. It takes a value of −1 if the app ranks in the top 
150, −2 for rankings between 151 and 300, −3 for rankings between 301 and 450, and −4 for 
rankings beyond 450. Higher values denote higher rankings of the app and could predict its 
perceived quality by users of competing platforms. In a robustness test, we replace app rank-
ing with app rating (from 1 to 5) to control for quality. The results remain consistent. 
Hardware is a dummy variable that takes a value of 1 if an app is associated with tangible 
components in usage, such as smart wearables, and 0 otherwise. The bundling of an app with 
complementary hardware may preclude app multihoming when the hardware is ecosystem 
specific. In much the same way as we measure destination ecosystem experience (modera-
tor), we control for the developer’s original ecosystem experience by the logged number of 
apps that were released before the focal app was launched in the original ecosystem. Greater 
original ecosystem experience may delay an app’s outbound multihoming.

Finally, we control for ecosystem-level variables. Competition by similar apps in the des-
tination ecosystem is likely to be an impediment for app developers to port their apps to that 
ecosystem. To measure app-specific competition, we count the number of similar apps as the 
focal app in the same subcategory during 1 month before and after its release. Original eco-
system volatility describes the fluctuation of downloads in the Health and Fitness category of 
the original ecosystem. We measure volatility using the total number of daily top 20 down-
loaded apps’ downloads as a proxy for performance dynamics.7 A volatile market environ-
ment may prompt developers to seek cross-platform scale economies. Table 1 provides the 
descriptions of the variables.

Estimation Approach

We employ discrete-time proportional hazard survival models to test our hypotheses. The 
models are intended to estimate the likelihood of an app launched in the original ecosystem 
multihoming to the destination ecosystem in a given time period. The estimation method 
allows for a fully nonparametric estimation of the baseline hazard. Survival models can 
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Table 1

Variable Descriptions

Variable Time Variant Measurement

Relative ecosystem 
complexity

Yes Ecosystem complexity measured by the sum of the squares of 
monthly global market shares for smartphone OEMs in the 
ecosystem; for ease of interpretation, we take the inverse 
value of ecosystem complexity to compute the difference 
between the complexity of the destination ecosystem and that 
of the original ecosystem

Destination ecosystem 
experience

Yes Logged number of apps that were released in the destination 
ecosystem before the focal app was ported to the same 
ecosystem

Complement 
modularity

No Logged ratio of software development kits to app size

App size No Logged digital storage an app occupies
Original ecosystem 

experience
No Logged number of apps that were released before the time when 

the focal app was first launched
Total updates Yes Logged frequency of updates of an app
Top rank Yes Takes a value of −1 if the app ranks top 150, −2 for rankings 

between 151 and 300, −3 for rankings between 301 and 450, 
and −4 for rankings beyond 450

Total revenue Yes Total revenue per month (logged), including revenues from 
sales, in-app purchases, and advertising earned by the app in 
the original ecosystem

Hardware No A dummy variable that takes a value of 1 if an app is associated 
with tangible components in usage and 0 otherwise

Downloads Yes Total monthly downloads of an app (logged)
Competition No Number of similar apps as the focal app in the same subcategory 

in the destination ecosystem during 1 month before and after 
its release

Original ecosystem 
volatility

Yes Volatility measure using the total number of daily top 20 
downloaded apps’ downloads in the Health and Fitness 
category of the original ecosystem

Complexity difference Yes Google ecosystem complexity minus iOS ecosystem complexity
Business model No Takes a value of 1.5 for apps that charge a higher-than-average 

price for download and in-app purchase revenue / total 
revenue > advertising revenue / total revenue; 1 for apps that 
are free or paid at a lower-than-average price for downloads 
and in-app purchase revenue / total revenue > advertising 
revenue / total revenue; 0.5 for apps that are not free and in-
app purchase revenue / total revenue ≤ advertising revenue / 
total revenue; 0 for apps that are free to download and in-app 
purchase revenue / total revenue ≤ advertising revenue / total 
revenue

handle time-varying covariates, besides controlling for unobserved individual heterogeneity. 
That helps identify the effects of survival time on duration in multihoming. The right-censor-
ing problem, in that some apps in our sample did not multihome within the observation 
period, can also be accommodated (Allison, 1984). Since our data are analyzed on a monthly 
basis, we employ a complementary log-log (cloglog) transformation (Tsoukas, 2011). The 
cloglog model is a discrete-time implementation of the Cox proportional hazard model that 
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assumes continuous failure times (Prentice & Gloeckler, 1978). We thereby obtain the dis-
crete-time representation of an underlying continuous-time proportional hazard. It allows for 
hazard rate analysis with extreme maximum and extreme minimum distributions, and it has 
the advantage of not being symmetrical around the inflection point.

Results

Table 2 provides descriptive statistics and the correlation matrix. We note a relatively high 
and negative correlation between relative ecosystem complexity and complement modular-
ity. That suggests that Android apps tend to use more SDKs than iOS apps, as one would 
expect. The variance inflation factor values range from 1.31 to 9.79, which are below the 
common cutoff of 10 regarding multicollinearity.

Table 3 reports the results from the cloglog model. The model estimates the hazard rate 
that an app launched in the original ecosystem multihomes to the destination ecosystem and, 
hence, exits from a single-homing strategy. A cloglog model allows the regression coeffi-
cients to have a proportional hazard rate interpretation. The reported coefficients can be 
exponentiated to obtain hazard ratios, interpreted as the multiplier of the baseline hazard of 
the app exiting from its single-homing strategy when the explanatory variable increases by 
one unit. An increase in hazard can also be interpreted as shortening the time period for 
which an app remains exclusive to the original ecosystem and as increasing the likelihood of 
multihoming to the destination ecosystem. All standard errors are clustered by app. Model 1 
is the baseline model that includes control variables only. In Model 2, we include the variable 
relative ecosystem complexity, as well as the main effects of destination ecosystem experi-
ence and complement modularity, to test Hypothesis 1. In Model 3, we include the interac-
tion term between relative ecosystem complexity and destination ecosystem experience to 
test Hypothesis 2. In Model 4, we include the interaction term between relative ecosystem 
complexity and complement modularity to test Hypothesis 3. Model 5 is the fully specified 
model that includes all predictors and interaction terms.

Hypothesis 1 posits that the higher the complexity of the destination ecosystem relative to 
that of the original ecosystem, the lower the likelihood of multihoming. This prediction is 
supported in all models (Models 2, 3, 4, and 5). The coefficients for relative ecosystem com-
plexity are negative and marginally significant (b = −0.01, p < 0.1, in Model 2). Thus, higher 
relative ecosystem complexity is associated with a lower likelihood of an app “exiting” from 
single-homing and adopting the multihoming strategy.

Hypothesis 2 suggests that the effect of relative ecosystem complexity on the likelihood 
of multihoming will be positively moderated by destination ecosystem experience, such that 
the negative relationship will become weaker when the developer’s destination ecosystem 
experience is higher. We find support for Hypothesis 2, as the coefficient for the interaction 
term between relative ecosystem complexity and destination ecosystem experience is 
positive and statistically significant in Model 3 (b = 0.10, p < .001) and Model 5 (b = 0.07, 
p < .001).

Hypothesis 3 predicts that the effect of relative ecosystem complexity on the likelihood of 
multihoming will be positively moderated by complement modularity, such that the negative 
relationship will become weaker when the degree of complement modularity is higher. We 
find support for Hypothesis 3, too, as the coefficient for the interaction term between relative 
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ecosystem complexity and complement modularity is positive and statistically significant in 
both Model 4 (b = 0.08, p < .001) and Model 5 (b = 0.11, p < .001).

Figure 1 illustrates the moderation effects by plotting the predicted hazard of an app’s 
multihoming as a marginal function of relative ecosystem complexity, given high (blue line) 
and low values (red line) of the developer’s destination ecosystem experience and comple-
ment modularity, respectively. The y-axis is the marginal probability of multihoming with 
respect to relative ecosystem complexity, and the x-axis is relative ecosystem complexity. To 
plot the relationships, we use estimates from the full model (Model 5) and hold all other 
variables at their respective means. High and low measures refer to values of one quarter 
standard deviation above and below the respective means (i.e., to ensure that the values of the 
variables fall in the range between min and max values). In Figure 1a, both lines are below 
zero, indicating the negative effect of relative ecosystem complexity on the probability of 
multihoming (i.e., the main effect, Hypothesis 1). In addition, the red line is consistently 
above the blue line, indicating that high destination ecosystem experience “elevates” the 
marginal effect of relative ecosystem complexity on the probability of multihoming. In other 
words, destination ecosystem experience positively moderates the negative effect of relative 
ecosystem complexity (i.e., Hypothesis 2). Figure 1b exhibits a similar pattern for the mod-
erating effect of complement modularity (i.e., Hypothesis 3).

Robustness Tests

We consider various sources of confounding factors that might bias our results. First, we 
contemplate how the entry sequence may introduce endogeneity. Our hypothesis implies that 
apps entering a more complex ecosystem first may be more likely to multihome to the less 
complex one. In other words, Android apps may have a higher propensity to be ported to iOS 
than the other way around, such that an app’s original ecosystem entry and the rate of multi-
homing could be simultaneously determined. Furthermore, the original ecosystem choice 
might not be random but rather a function of app-specific and developer-specific character-
istics, raising further concerns of endogeneity. This systematic effect of entry sequence on 
the rate of multihoming could be tackled by either a Heckman’s two-stage model correcting 
for selection biases (Heckman, 1979) or an endogenous treatment-effects model correcting 
for endogenous entry (Rietveld, 2018).

To correct for selection biases, we perform a two-stage Heckman model by separating our 
sample into two as per the app’s entry choice for the original ecosystem. We use prior app-
level and ecosystem-level variables to predict the first-stage ecosystem entry choice. We 
include ecosystem complexity difference (i.e., the difference between the complexity of 
Android and that of iOS), complement modularity, original ecosystem experience, app size, 
and hardware.8 Previous research suggests that a complement’s performance is dependent on 
the demand-side characteristics of platform adopters (Rietveld & Eggers, 2018). By exten-
sion, app developers may base the first homing decision on the fit between the app’s business 
model and platform users’ characteristics.9 Since business model is unlikely to be related to 
the error term of multihoming, which is driven by cross-platform scale economies, we use it 
as an exclusion restriction. Our context has a distinct feature in that the two platforms have 
users of different willingness to pay. An important ex ante reason for the app developer to 
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Figure 1
Graphical Plots of Interaction Effects: (a) Relative Ecosystem Complexity, 

Destination Ecosystem Experience, and Multihoming and (b) Relative Ecosystem 
Complexity, Complement Modularity, and Multihoming
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choose iOS versus Android as the first home is whether the app is intended to generate rev-
enue from users or advertisers. Taking inspirations from the exploitation/exploration litera-
ture (Lavie & Rosenkopf, 2006; Stettner & Lavie, 2014), we code business model as 1.5 for 
apps that charge a higher-than-average price for download and if in-app purchase revenue / 
total revenue > advertising revenue/total revenue; 1 for apps that are free or paid at a lower-
than-average price for downloads and if in-app purchase revenue / total revenue > advertis-
ing revenue / total revenue; 0.5 for apps that are not free and if in-app purchase revenue / total 
revenue ≤ advertising revenue / total revenue; and 0 for apps that are free to download and if 
in-app purchase revenue / total revenue ≤ advertising revenue / total revenue. We generate 
inverse Mills ratio from the first-stage model and include it in our second-stage regression, 
which predicts the likelihood of multihoming. As shown in Table 4, we find an insignificant 
inverse Mills ratio in the sample that first entered iOS. Ecosystem complexity difference 
matters only when apps are first released on Google Play. This is possibly due to a lower 
baseline probability of iOS apps multihoming to Android and hence a “floor effect,” which 
is consistent with Figure 1, where relative ecosystem complexity exhibits a diminishing mar-
ginal effect as it increases in value. When apps are first released on iOS, the positive effect 
of the developer firm’s Android experience (destination ecosystem experience) is strength-
ened, due to the transition from a less complex ecosystem to a more complex one. For the 
subsample entering Android first, the positive effect is much smaller in terms of magnitude, 
and a Wald test indicates significant difference between the coefficients (χ² = 3.85, p < .05). 
We obtain similar results for complement modularity: The positive effect of complement 
modularity is strengthened as apps are ported from a less complex ecosystem to a more com-
plex one. The results largely support our hypotheses.

To further correct for endogeneity that arises from entry sequence, we follow Rietveld 
(2018) to perform a endogenous treatment-effects model. In a setup similar to the Heckman 
model, we use the first stage regression to model the impacts of endogenous treatment for the 
original ecosystem entry on our key explanatory variable, relative ecosystem complexity. 
That allows us to correct for nonrandom assignment of apps into the first platform ecosystem 
and, conditional on that, estimate the influences of our hypothesized variables on the deci-
sion to multihome. We use the command stset in Stata to process the original data in a way 
consistent with duration models, and thus we can continue to account for right-censoring. 
After the endogenous treatment is factored in, the results of the second stage (i.e., multihom-
ing entry) remain supportive of our hypotheses, as shown in Table 5.

Although the entry sequence effect is corrected for, we exercise caution regarding the two 
moderators that may too be endogenous in our context. One might wonder why an app devel-
oper with destination ecosystem experience would choose to launch a new app first in another 
ecosystem. Our discussions with practitioners suggest that a once-Android-oriented devel-
oper (i.e., having successfully launched numerous apps on Android) can and does launch new 
apps on iOS first when the business model is reliant on in-app purchase and the target market 
is high-willingness-to-pay users. A corroborative fact is that destination ecosystem experi-
ence and original ecosystem experience appear uncorrelated in our sample (r = .04). In this 
regard, our Heckman and endogenous treatment models help alleviate the concern of endo-
geneity. Nonetheless, there may be other unobserved reasons for an experienced developer to 
enter a certain ecosystem first, and we cannot rule that out.

With respect to SDKs, our theory suggests that the extent to which an app’s initial devel-
opment relies on SDKs may have an impact on its portability later on. There remains a risk 
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of reverse causality in that multihoming apps may simply be more complicated and require 
more SDKs. While we cannot fully rule out this risk, our SDK measure and the control vari-
able of app size can partially account for that. Another confounding issue is whether iOS and 
Android systematically differ in their use of SDKs. If Android apps inherently have more 
SDKs, it may be easier for them to multihome to iOS than the other way around, creating an 
alternative explanation vis-à-vis ecosystem complexity. In our sample, Android apps do have 
more SDKs than iOS apps on average. This is likely because Android apps rely more heavily 
on advertising in generating revenues, which in turn drives their use of third-party SDKs. 
Given that these SDKs tend to be Android specific, they would not influence how portable 
the app is to iOS and hence should not confound our results.

Third, some apps in our sample were launched simultaneously in both ecosystems, which 
may raise the issue of left truncation and result in possible estimation biases. Industry wis-
dom suggests that it takes usually 1 week, and rarely but up to 4 weeks, for iOS App Store to 
review and approve the release of an app, while the process is less stringent and much faster 
for Google Play. In this regard, we have 24 apps (among a total of 162) that simultaneously 
launched (in the same month) on both iOS App Store and Google Play, accounting for 15% 
of the full sample. In our main specification, we do not include apps that were released simul-
taneously, because (a) they may deal with complexity in ways different from our theory and 
(b) it is hard to distinguish between the original and destination ecosystems for them. Yet the 
way we constructed our data may erroneously identify some sequential multihomers as 
simultaneous multihomers. Therefore, we include these apps in a robustness check. We use 
two criteria to decide which of the two ecosystems is the original ecosystem before we run 
the models. We first regard as the original ecosystem the one on which the app was released 
earlier by date. Alternatively, in cases where the app was introduced on the same day, we 
refer to the ecosystem with which the developer of the app had more experience. We consider 
whether the very first app developed by the firm was released in one ecosystem or the other. 
In addition to the cloglog model, we apply conventional binary-response panel data models 
(i.e., probit and logit models) with normal random effects when estimating discrete-time 
duration models. Such models can help correct for unobserved heterogeneity. All the results 
reported in Table 6 remain qualitatively consistent. But we caution against extending our 
findings to the group of simultaneous multihomers since our theory may not say much about 
how these apps are developed. In an unreported regression, we also reconstruct our data to 
the weekly level. Given that it could take as little as 1 week for the platform owner to approve 
a new app release, we use 1 week as a gap to weed out simultaneously multihoming apps. We 
also employ an alternative cutoff of 4 weeks to account for the review process in iOS App 
Store. All results are consistent and support our hypotheses.

Finally, since Apple’s smartphones tend to introduce major improvements on the previous 
model, one might argue that the diversity of Apple’s smartphone configurations presents 
varied interfaces to app developers. To examine the sensitivity of the results, we acquired 
data from Localytics and Unity on various generations of smartphones within the iOS eco-
system and followed Kapoor and Agarwal’s (2017) approach to calculate the sum of the 
squares of monthly global market shares. It is based on the premise that the sales dispersion 
over different generations of iPhone may affect the score of relative complexity between iOS 
and Android, to the extent that the rate of multihoming could change with the varying com-
plexity of the iOS ecosystem, all else equal. The complexity score for iOS does vary from 
0.16 to 0.21. Our analysis obtains qualitatively consistent results.
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Discussion

In this article, we examine the implications of ecosystem complexity resulting from its 
central platform’s governance design. While an open design is desirable from a platform 
owner’s perspective, it may lead to unintended frictions between different ecosystem partici-
pants, a situation characterized by ecosystem complexity (Kapoor & Agarwal, 2017). We 
show that one consequence of complexity involves greater customization cost for comple-
mentors’ multihoming to a more complex ecosystem. Since multihoming is a key avenue for 
market expansion, platform governance design may have critical impacts on start-up comple-
mentors’ survival and growth. Nonetheless, we find that complementors can cope with eco-
system complexity through internal capability building or external capability searching. 
Placing platform governance at the nexus of multilateral interactions in ecosystems, our 
study yields new insights into the dynamics among platform governance, ecosystem com-
plexity, and complementors’ innovation cost.

Our study confirms that ecosystem complexity discourages multihoming. We view com-
plexity as a new type of transaction cost typical of ecosystems. It arises not from asset speci-
ficity or uncertainty in bilateral contracts but from structural misalignment of interdependent 
parties upon whose multilateral interactions the value proposition depends (Adner, 2017). In 
our context, such transaction costs determine the boundary of the complementor—whether 
or not it extends to a new platform ecosystem and forms cooperative relationships with a new 

Table 6

Robustness Test: Alternative Models for the Sample Including Simultaneous 
Multihoming Apps

Variable

(1) (2) (3)

Cloglog Probit Logit

Relative ecosystem complexity 
(Hypothesis 1)

−0.03 (SE = 0.01; p = .070) −0.03 (SE = 0.01; p = .000) −0.03 (SE = 0.01; p = .001)

Destination ecosystem 
experience

0.06 (SE = 0.02; p = .001) 0.05 (SE = 0.01; p = .000) 0.05 (SE = 0.02; p = .001)

Complement modularity 0.08 (SE = 0.02; p = .000) 0.07 (SE = 0.02; p = .000) 0.07 (SE = 0.02; p = .000)
Relative Ecosystem Complexity 
× Destination Ecosystem 
Experience (Hypothesis 2)

0.04 (SE = 0.02; p = .080) 0.03 (SE = 0.01; p = .026) 0.04 (SE = 0.02; p = .068)

Relative Ecosystem Complexity 
× Complement Modularity 
(Hypothesis 3)

0.11 (SE = 0.00; p = .000) 0.11 (SE = 0.02; p = .000) 0.11 (SE = 0.01; p = .000)

App size 0.02 (SE = 0.03; p = .541) 0.01 (SE = 0.02; p = .540) 0.02 (SE = 0.03; p = .559)
Original ecosystem experience −0.02 (SE = 0.00; p = .000) −0.02 (SE = 0.00; p = .000) −0.02 (SE = 0.00; p = .000)
Total updates 0.00 (SE = 0.02; p = .876) 0.00 (SE = 0.01; p = .961) 0.00 (SE = 0.02; p = .912)
App ranking −0.02 (SE = 0.02; p = .213) −0.02 (SE = 0.01; p = .247) −0.02 (SE = 0.01; p = .239)
Total revenue 0.00 (SE = 0.00; p = .135) 0.00 (SE = 0.00; p = .000) 0.00 (SE = 0.00; p = .050)
Hardware 0.05 (SE = 0.05; p = .324) 0.04 (SE = 0.04; p = .369) 0.04 (SE = 0.05; p = .358)
Downloads 0.00 (SE = 0.00; p = .080) 0.00 (SE = 0.00; p = .003) 0.00 (SE = 0.00; p = .057)
Competition 0.00 (SE = 0.00; p = .003) 0.00 (SE = 0.00; p = .000) 0.00 (SE = 0.00; p = .002)
Original ecosystem volatility 0.02 (SE = 0.01; p = .090) 0.01 (SE = 0.01; p = .090) 0.02 (SE = 0.01; p = .104)
N 1021 1021 1021
Log pseudolikelihood −81.11 −83.89 −82.40

Note: Coefficients are reported as marginal effects.
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configuration of interdependent parties (Santos & Eisenhardt, 2005). Unlike traditional 
transaction costs, coordination frictions in an ecosystem are too complex to decompose into 
a collection of independent, dyadic interactions (Davis, 2016). As the central platform is 
most deeply involved in the network of multilateral interactions, whether the platform owner 
can balance conflicting goals without requiring hierarchical governance and remain an 
omnipotent orchestrator should not be assumed (Cennamo & Santaló, 2019). Our study 
shows that when an open-governance design causes the platform owner to lose control over 
coordination of hardware development and complement production, it is complementors 
who are left to shoulder the cost of misalignment and frictions. Although open governance 
favors platform owners in the short term (Boudreau, 2010), it may have long-term ramifica-
tions for the entire ecosystem.

Another notable feature of the platform-centric research is that it assumes complementors 
to play a submissive role (McIntyre & Srinivasan, 2017). Being subject to platform owners’ 
market power and control, it seems that complementors can only absorb adverse impacts of 
platform strategies or exit the market outright. The agency for tackling complexity and 
realigning ecosystem participants also arguably lies with the platform owner (Adner, 2017). 
By contrast, we lay emphasis on complementor heterogeneity, arguing that some comple-
mentors can cope with ecosystem complexity better than others. We show that complemen-
tors can build technical capabilities internally or leverage capabilities of other ecosystem 
participants. Utilizing user feedback to achieve customized complementarity involves an 
incremental process of experimentation and experiential learning. That is consistent with the 
organizational learning thesis (Levitt & March, 1988).

Furthermore, complementors can circumvent the adaptation needs by leveraging the mod-
ular product architecture. Modularity allows complementors to utilize development capabili-
ties lying outside of their organizational boundary but within the ecosystem (Adner & 
Kapoor, 2010). We view this as essentially an exchange relationship: Platform owners dele-
gate the task of realignment to modular component providers, who seize the rent-generation 
opportunities in return. In doing so, platform architecture affords ecosystems sufficient flex-
ibility without involving overt managerial fiat or explicit coordination from an ecosystem 
leader (Jacobides et al., 2018). This has implications for the platform market structure. While 
we cannot empirically verify whether and how ecosystem complexity affects app developers’ 
first homing choice, our model reasonably assumes that the initial entry is driven primarily 
by commercial reasons (i.e., business models) and that complexity affects the multihoming 
decision to the extent that many apps may remain available only on the less complex plat-
form. Researchers maintain that more outbound multihoming weakens the platform’s dif-
ferentiation and more inbound multihoming reduces users’ switching cost to a rival platform 
ecosystem (Landsman & Stremersch, 2011). Hence, one implication of our findings is that 
complex platforms would face higher risk of market tipping to their disadvantage. As modu-
larity curtails the impact of ecosystem complexity, it also helps prevent market tipping 
(Simcoe & Watson, 2019).

We note several caveats in our findings, which nonetheless pave the way for future 
research. First, we cannot effectively control for platform owners’ openness to complemen-
tors. In our context, that typically occurs through app review policies and tends to change 
from time to time. Future research on complementors may explore the entry barrier arising 
from both technology openness and market openness. Similarly, in addition to our measure 
of complexity capturing the number of interfaces in a platform ecosystem, additional factors, 
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such as the quality of interfaces, may raise cospecialization requirements. Despite that eco-
systems are evolving along increasingly divergent pathways (Simcoe & Watson, 2019), a 
growing amount of middleware is produced, which may lessen the influence of cospecializa-
tion requirements and facilitate simultaneous multihoming (Miric & Ozalp, 2020). We 
encourage future research to further explore the implications of middleware for a comple-
ment’s market-entry choice and timing. Second, despite our use of a two-stage model to 
control for selection biases, complementors’ first homing choice could still be subject to 
unobserved confounding effects, including complementors’ firm-specific homing sequence. 
As with previous studies, we cannot definitively establish causality for the experience effects. 
We thus caution about the potential endogeneity around app developers’ experience that is 
left uncorrected for. That nonetheless invites future research to investigate how complemen-
tors’ innovation routines affect their ecosystem-specific investments. Similarly, since some 
SDKs perform functions related to an app’s business model (e.g., monetization), the use of 
specific SDKs could be endogenous to the first homing decision. That would be translated 
into a risk of reverse causality as SDK uses are determined ex ante by the intended release 
pattern. Last, the sampled app category lacks exclusivity arrangements, and exclusivity may 
play a dampening role in multihoming decisions. That could render our theory less applicable 
to other contexts (e.g., video games).

Taking up recent calls for greater research attention to complementors (McIntyre & 
Srinivasan, 2017; Yoo et al., 2012), this study investigates the inhibiting and facilitating fac-
tors for complementor multihoming in the context of platform ecosystems. Given the grow-
ing importance of ecosystems in today’s digital economy, understanding the organization and 
coordination of broader ecosystem participants—beyond the dyadic relationship between 
platforms and complementors—will prove an important agenda.
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Notes
1. This article focuses on openness to platform providers instead of openness to complementors.
2. We examine voluntary homing; that is, complementors can choose to sponsor one or more platform ecosys-

tems. Hence, our empirical context is one in which contractual exclusivity clauses are rare.
3. The phenomenon, referred to by practitioners as “fragmentation,” is a common feature of open platforms. 

One example is Java ME. The widely adopted open-source computing platform suffered fragmentation well beyond 
its designers’ anticipation.

4. Source: https://www.theverge.com/2016/6/1/11836816/iphone-vs-android-history-charts, accessed 
January 1, 2020.

5. We note that there are 24 apps that were launched simultaneously on both platforms in the last quarter of 
2014. We did not include these apps in our initial tests, for two reasons. First, this is a relatively small portion of the 
sample, suggesting that the majority of the newly launched apps chose to multihome, if at all, in different points in 
time. Second, our focus is on the attractiveness of a second home relative to the original home. In the cases of simul-
taneous launch, it is hard to identify which ecosystem is the original home. However, we do conduct a robustness 
test including these apps; as reported later in the article, the results are statistically consistent.
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6. We obtained quarterly global market shares of the top 10 smartphone OEMs for the Android ecosystem from 
Statista. Then we simulated monthly global shares of the top 10 Android smartphone OEMs (Samsung, LG, Lenovo/
Motorola, ZTE, Sony, XIAOMI, Coolpad, OPPO, VIVO, and HTC).

7. Volatility is computed as follows (Bourgeois, 1985; Kochhar & Hitt, 1998):

Volatility
days of a month

m =

−( )
=∑

X X

X

j

j

2

1 ,

where i = platform-level characteristics (in our study, we use the number of downloads of the daily top 20 down-
loaded apps), j = days in a month (1~28/30/31), Xj = ij+1 – ij.

8. Relative ecosystem complexity (our main measure) in the first stage of the Heckman model (either Android 
or iOS) would not make sense, as the second platform choice is not determined before the first platform choice is 
made. Thus, we use Android complexity minus iOS complexity to reflect the role of complexity difference in both 
stages of the model. An increase in this measure implies an increase in the relative complexity of Android to iOS 
ecosystem.

9. We are grateful for a reviewer’s suggestion.
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