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KEY FINDINGS

n Automated optimal hedging solutions using reinforcement learning (RL) have been gain-
ing popularity in recent years because of its flexibility in handling real-world dynamics
and restrictions, which are often ignored and difficult to adapt to using traditional
approaches.

n Current RL-based option hedging agents are trained to adjust the size of the hedging
portfolio using market conditions such as stock price and (optionally) closed-form induc-
ing factors such as delta or vega based on the Black–Scholes model, with the reward
function being constructed following problem-specific heuristics.

n Future research directions in RL-based derivative hedging include new training method-
ologies in model architecture and optimization procedure, a wider coverage of hedging
targets and instruments, and different types of hedging strategies.

ABSTRACT

Hedging is a common trading activity to manage the risk of engaging in transactions that 
involve derivatives such as options. Perfect and timely hedging, however, is an impossible 
task in the real market that characterizes discrete-time transactions with costs. Recent years 
have witnessed reinforcement learning (RL) in formulating optimal hedging strategies. Spe-
cifically, different RL algorithms have been applied to learn the optimal offsetting position 
based on market conditions, offering an automatic risk management solution that proposes 
optimal hedging strategies while catering to both market dynamics and restrictions. In this 
article, the author provides a comprehensive review of the use of RL techniques in hedging 
derivatives. In addition to highlighting the main streams of research, the author provides 
potential research directions on this exciting and emerging field.

Reinforcement learning (RL) is a fast-growing research area with applications in 
many fields. RL could learn the optimal policy from a set of observable states 
and determine the optimal action to guide the sequential decision-making 

process. It is particularly useful in a model-free setting when the dynamics of the 
learning environment, including the transition probabilities among states and reward 
function, are unknown. Such a learning framework, backed by Bellman’s principle of 
optimality, shows promise for solving many problems in the realm of finance such 
as portfolio management and hedging. For example, Halperin (2017) first introduced 
the Q-Learning Black–Scholes (QLBS) model that applies the Q-learning method to 
solve for the optimal option hedging strategy in a dynamically replicating portfolio of 
cash and stock. When the replicating portfolio continuously rebalances the wealth 
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allocation between cash and stock, it could hypothetically match the exact value of 
the option at all times.

The vanilla European option is probably the most widely studied product when it 
comes to derivative hedging using RL. The traditional approach relies on the delta 
hedging strategy based on the option pricing model from Black and Scholes (1973) 
and Merton (1973), jointly referred to as the BSM model, in which the optimal off-
setting position can be derived by differentiating the option price with respect to the 
underlying stock price, assuming a frictionless market and continuous-time setting 
with constant volatility. The hedge portfolio is then dynamically rebalanced between 
cash and stock in a self-financing manner, which ends up generating the same payoff 
as the derivative. In practice, however, such rebalancing only happens on a periodic 
basis such as daily, making it a discrete-time exercise and therefore leading to track-
ing error as the underlying stock moves in value; it is impossible to achieve exact 
replication at all times. In addition, the transaction cost, first considered in option 
pricing by Leland (1985), inevitably enlarges the tracking error because of frequent 
trading of stock. An optimal hedging strategy will thus need to balance between 
minimizing the mis-hedging risk (caused by imperfect replication) and reducing the 
transaction cost (because of stock trading), where the relative weight is determined 
by the risk aversion parameter of the hedger. Indeed, underhedge or overhedge is 
preferred compared with exact delta neutrality when the transaction cost is nontrivial.

When the system under study becomes complex, deriving the analytic optional 
solution in closed form is more challenging, as in the case of applying the theoretical 
delta hedging in a realistic market setting. Specifically, factors such as transaction 
cost and volatility risk, which are not considered in the original BSM model, will 
increase the mis-hedging risk of the replicating portfolio. A fully end-to-end approach 
is thus desired, in which one can automatically learn an optimal hedging strategy from 
the real market conditions and continuously adjust its strategy based on the latest 
change in these conditions. To this end, Ritter and Kolm (2019) developed the first 
fully automated RL solution that optimally hedges an option with transaction cost. By 
formulating trading cost and hedging variance as the feedback to the RL framework, 
the learning agent could be designed to optimize over the hedging objective while 
considering the system constraints such as transaction cost. The RL agent, when 
properly trained, will then guide the sequential decision-making process to rebalance 
the hedge position based on the current set of market indicators, such as stock price, 
so as to minimize the mis-hedging risk.

The use of RL techniques in hedging derivatives is a promising area of research. 
On one hand, the RL community witnesses new methodological innovations frequently, 
offering more powerful function approximators to optimal hedging strategies. On the 
other hand, there are many areas yet to be explored when using the fully automated 
RL solution to hedge derivatives, for example, using RL to hedge other types of product 
(nonvanilla options) and properties (Greeks other than delta), learn different types of 
hedging strategies (static, dynamic, or both), and so on. In the rest of the article, we 
will first cover the fundamentals of derivative hedging using RL, followed by a thorough 
literature review of the recent advances in this growing area.

FUNDAMENTALS OF REINFORCEMENT LEARNING

RL is a reward-driven approach that aims at guiding a sequential decision-making 
process under uncertainty. In this section, we first review the basics of RL, includ-
ing the state and action value function, followed by an in-depth review of a typical 
environment setting for option hedging, including the choice of the state, action, and 
reward functions.
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RL Basics

RL with a Markov decision process is a sequential learning framework that aims 
at training an optimal policy to propose an action at ∈ A based on a set of observ-
able state variables in st ∈ S at time step t. Each action will incur a corresponding 
reward rt from the environment and transition into the next step st+1, which completes 
a tuple record of (st, at, rt, st+1) for either training or evaluation. The optimal policy p : 
A → S is the one that maximizes the cumulative long-term return Gt, a utility function 
defined as the sum of immediate reward rt and all future discounted rewards until 
terminal time step T:

0
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where g ∈ [0, 1] is a scalar value that trades off between short-term and long-term 
rewards and T denotes the terminal time step of the learning system, such as expi-
ration of an option. The decision theory on expected utility then defines an optimal 
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state value function Vp(st) and action value function Qp(st, at):
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Based on Bellman’s principle of optimality, an optimal action is determined based 
on the assumption that all future actions also are optimal, which leads to the fol-
lowing Bellman optimality equations for optimal state function V*(s) and action value 
function Q*(s, a):
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where s′ and a′ denote the next state and action, respectively. Here, an optimal 
policy p* has the maximum state and action function values for any s ∈ S and a ∈ A 
at any time step t:
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Because the environment dynamics are unknown, function approximation via 
neural networks is often adopted when training an optimal policy. In the next section, 
we will review the basic setup that allows us to adjust the RL framework to dynamic 
delta hedging. See Sutton and Barto (2018) for a comprehensive treatment of RL.

RL Environment for Delta Hedging

The success of an RL agent heavily relies on the proper setup of a learning envi-
ronment in the learning framework. In this case, a common setup is to simulate paths 
that represent stock price movements and use the discrete-time BSM model as a 
benchmark to measure the quality of an RL-based policy. Assume the agent sells one 
European option at t = 0 and wishes to hedge this position using two assets in the 
hedge portfolio, stock and cash, where the latter represents a riskless component 
that can be saved in a bank account to grow interest. The stock price St is assumed 
to be a log normally distributed random variable and follows a geometric Brownian 
motion:

δ = µ δ + σ δS S t S Wt t t t

where m and s are constants that denote the percentage drift and percentage vola-
tility, respectively, and Wt is a Wiener process. The transaction cost associated with 
change in stock position dNt = Nt+1 - Nt is denoted by f(St, dNt).

Under the self-financing constraint, all hedging operations on the stock position 
are supported by the cash account, and there is no external cash injected or with-
drawn from the hedge portfolio since initiation. This gives the following remaining 
cash balance Bt+1 after changing the stock position from Nt to Nt+1:
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where r denotes the fixed risk-free interest rate. The change in the hedge portfolio 
before and after changing the number of stocks on hand can be characterized as 
follows. Representing the cash amount, stock price, and number of stocks as a 
tuple, the state at the start of time step t can be expressed as st = (Bt, St, Nt), which 
becomes ( , , )= ρδs B e S Nt t

t
t t  at the end of time step t. When entering the next time 

step, the next state becomes st+1 = (Bt+1, St+1, Nt+1), with Bt+1 calculated based on the 
aforementioned closed-form expression.

Because the option price is available under the continuous-time BSM model, 
a common practice is to include the option price Ct, its delta Dt, or both as part of 
the state, as in the case of Halperin (2017) and Ritter and Kolm (2019). Specifically, 
the state variable is expressed as st = (t, Wt, Nt, Ct, Dt), where Wt is used to calcu-

late the underlying stock price 0
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discrete time step t available in closed-form via the BSM formula. The option delta 
is also the action from the optimal policy p*, giving ( )* *

1= π = ∆ +a st t t . A general policy 
π determines the number of shares of the stock Nt+1 based on the state st, which 
leads to at = p(st) = Nt+1.

Note that the cash account Bt is ignored in the state because it can be uniquely 
derived by the information contained within the state. We also note that the state 
variable includes the option price Ct and delta Dt, which constitute the right answers 
as part of the state for the next action. However, this self-fulfilling property may not 
always stand in practice, especially when the closed-form solutions are not available. 
Learning the optimal policy without these hints in the state is a more challenging 
problem and requires further research.
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When using a dynamic replicating portfolio for hedging, the portfolio value is 
expected to match exactly the option price at each time step. In other words, we can 
use the following net portfolio value to represent the mis-hedging risk:

Π = + −ρδN S B e Ct t t t
t

t

The maximum net portfolio value is thus zero, which indicates perfect hedge. 
When the agent makes an action to adjust the number of shares of the underlying 
stock, the immediate reward can be defined as the difference between the net port-
folio value Pt and Pt+1:
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where we plug in the definition of Bt+1 at the start of t + 1 and account for its future 
value based on the remaining maturity. Note that this also is referred to as the 
accounting profit and loss (P&L) of the hedging portfolio, where both the changes 
in the replicating portfolio and the option price are compared to provide immediate 
feedback on the quality of the hedge in the presence of the transaction cost. Setting 
up such immediate reward ensures faster convergence of an RL-based learning algo-
rithm, as used in both Cao et al. (2021) and Cao et al. (2023).

In addition, the variance of the hedging risks also is considered in Ritter and 
Kolm (2019), following the mean variance optimization framework. Specifically, we 
can express the variance of the hedging difference as follows:
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where we ignored the accrued interest because of single-stage variance and the 
transaction cost, which is mainly considered in the hedging difference. We also used 

first-order Taylor expansion for option price in the derivation, where 1 ≈ +
∂
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The mean and variance could then be combined as a weighted sum into a single 
objective function as the discounted immediate reward rt from the learning environ-
ment:
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where g is the discount factor for future reward and often is set to 0.99, and l is 
a hyper-parameter that balances off between tracking error and hedging variance.  
Note that when t = T, the terminal reward is given by
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where we assume an income of C0 from selling the option at the beginning and start 
with zero shares of stock on hand. Here, the hedge position is closed upon expiration 
by setting NT = 0, and the stocks bought/sold are converted to the cash account, 
making PT = BT.

Because hedging is a sequential decision-making process that requires an action 
from the agent at each discrete time step until option expiration, the overall quality 
of a given policy p can be measured as a weighted sum of individual rewards, that 
is, the long-term return at t = 0 can be calculated as

0
0

∑= γ
=

R rt
t

T

t

LITERATURE REVIEW

In this section, we highlight the main research streams in the literature.
Halperin (2017) first applied Q-learning to option hedging in the Black–Scholes 

world, referred to as QLBS, with finite state and action spaces. By minimizing the 
terminal variance of the hedge portfolio based on the Markowitz portfolio theory, 
the QLBS algorithm can obtain a separate semi-analytic solution for each derivative 
position based on a careful choice of basis functions used to approximate the value 
function. Note that both the state and action spaces are discrete and the market 
is assumed to be frictionless, that is, transaction cost is not considered. The state 
space on the stock price is further smoothed in Halperin (2019), in which the author 
compared QLBS with a model-based solution using dynamic programming (DP) and 
an analytic solution using the BSM model. The author also introduced an inverse RL 
setting for learning the reward function based on observed state and action variables.

Buehler et al. (2019) introduced a neural network as the function approximator 
under convex risk measures, which also include proportionate transaction cost, in 
their deep hedging approach for hedging over-the-counter derivatives. The optimal 
hedging strategy is then obtained by considering both portfolio cash flow and trans-
action cost.

Ritter and Kolm (2019) proposed an RL-based solution to learn automatically the 
optimal hedging strategy in a realistic setting, given that the pricing of the derivative 
is available in closed form or via Monte Carlo simulation. An autonomous agent was 
developed to adjust sequentially the stock position to minimize deviation from the 
optimal hedge while minimizing the transaction cost. Using experiments based on 
simulations of multiple paths of stock price, the authors show that the RL-based 
solution is comparable to the delta hedging strategy in terms of tracking variance but 
produces a much lower cost. Specifically, a continuous state space st = (t, St, Nt, Ct) 
is used in the experiment, where St is the stock price at t and the option delta Dt is 
ignored to increase the level of difficulty for the learning task. The action space is 
set to be discrete and bounded by the maximum number of shares of stock needed 
for option hedging, and the cost is proportionate to the change in stock position. 

The single-stage reward function 
2

Var[ ]= δΠ −
λ

γΠrt t t  is defined in a similar vein, 

where dPt = qt - ct is the hedge cost qt (treated as a random walk term) subtracted 
by the nonlinear transaction cost ct (including commissions, bid-offer spread cost, 
market impact cost, and other sources of slippage). The authors applied a Q-learning 
algorithm with an -greedy policy to train the RL agent, using SARSA as the training 
targets, and performed in a batch mode. Here, SARSA is an on-policy algorithm that 
learns the Q-value based on the current policy, as opposed to the Q-learning algorithm 
that learns the Q-value in a greedy and off-policy fashion. The authors also provide a 
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more comprehensive overview of portfolio risk management using modern RL-based 
methods in Kolm and Ritter (2019).

To further extend the power of state-of-the-art deep RL algorithms, Du et al. (2020) 
introduced a deep Q-learning network (DQN), DQN with Pop-Art, and proximal policy 
optimization (PPO) to approximate the action function or the policy directly. In their 
implementation, the state variable is configured as st = (t, St, Nt, K), where K denotes the 
strike price and the action space remains a discrete one. Incorporating the strike price 
allows the agent to learn and propose hedging strategies for options with different strike 
prices in one shot. In addition, the option price Ct and its delta Dt, which are removed 
from the state vector, are automatically learned by these function approximators, given 
enough training budget. Using the same mean–variance-based risk-adjusted reward 
function in the presence of nonlinear transaction costs, Ritter and Kolm (2019) show 
that PPO outperforms other algorithms and the baseline delta hedging strategy in terms 
of delta neutrality, training time, and the amount of training data required.

Treating the action space as discrete inevitably introduces approximation error 
in the Q-learning–based algorithms. Indeed, rounding off the hedge position fails to 
differentiate numerically close action values. To eliminate the discretization error and 
therefore adopt a continuous action space, Cao et al. (2021) introduced the deep 
deterministic policy gradient (DDPG) method, which allows both the state space and 
action space to be continuous and offer better numerical results compared with other 
RL architectures. The authors also introduced a new architecture that decouples the 
original composite reward into two dedicated Q value targets to encourage better 
differentiation: the expectation and standard deviation of the hedge cost, where the 
optimal combination is learned by RL. In this case, the reward function becomes 

( ) ( ) ( )2 2  = Π − λ Π − Πrt t t t , where the volatility of the hedge portfolio is used. 
When considering transaction cost, the authors showed superior performance of 
DDPG-based RL over using the practitioner delta (delta hedging with fixed volatility) 
and Bartlett delta (with stochastic volatility) when the stock price follows a geometric 
Brownian motion (Black and Scholes 1973) and stochastic volatility process (Hagan 
et al. 2002), respectively.

In addition, the authors also argued in favor of the accounting P&L over the cash 
flow approach, which aligns with our choice of reward function from the previous sec-
tion. Such choice is sensible in other RL settings as well. Compared with a delayed 
reward received upon completion of an episode using the cash flow approach, which 
gives rise to the temporal credit assignment problem, the P&L reward received at 
every step provides immediate feedback for the quality of the current action, thus 
facilitating faster learning. The experiments use st = (t, St, Nt) as the continuous state 
variable and at = p(st) as the action variable that is continuous in the policy-gradient 
algorithm and discrete in the Q-learning algorithm.

Building on formulating new and better objective functions, Gu (2022) introduced 
the function property term as a regularizer in the reward function, where the regular-
ization serves to induce specific bias in the model estimation process according to 
domain-specific knowledge. Specifically, the reward function becomes rt = dPt - l1 
Var[dPt] - l2fmr, where fmr is an indicator function that assumes the value of one when 
a prescribed function property (in this case, mean reversion) is violated, and l1 and 
l2 are hyperparameters to be manually fine-tuned. For example, when holding a long 
European call with a current stock price S, strike price K, and time to maturity T, the 
indicator function on option price C becomes 

{ 0} { }
= < ∪ < − −fmr C C S Ke rT . In the experiments, 

the state variable is defined as st = (t, St−1, St, Nt), where St−1 denotes the stock price 
at the previous time step and is included to facilitate learning of the underlying price 
dynamics. The action at is continuous when using an off-the-shelf PPO algorithm.

The list of hedging instruments can be expanded further to include derivatives 
such as forwards, swaps, futures, and options. For example, Buehler, Murray, and 
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Wood (2022) introduced a deep Bellman hedging framework that provides RL-based 
hedging in a realistic setting: continuous state and action spaces, risk-adjusted 
reward function, and market frictions such as transaction costs and liquidity con-
straints. The reward function is defined as a sum of change in book values (mark-to-
market price of the financial instrument to be hedged), cash flow generated because 
of change in the position of hedging derivatives, and the cost of hedging. The authors 
provided a theoretical justification of the existence of a unique finite solution for the 
Bellman equation of the value function based on this reward function and proposed 
an actor-critic architecture for further experiments.

Hedging can go beyond delta and cover more Greek letters such as gamma, 
the second-order derivative of option price to change the underlying stock price. For 
example, Cao et al. (2023) used a finite differencing approach to approximate the 
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The authors then added the square of this gamma-like term as part of the reward 
function to reduce the sensitivity of Nt+1 to changes in the asset price, in addition 
to maximizing the account profits of the hedge portfolio. We note that this has an 
effect similar to penalizing the variance of the hedge portfolio, covered in the previous 
section. Also, the authors propose a more comprehensive state space st = (t, St, Nt,  
Bt, Ct, K, Dt, gt, υt), where common Greek letters Dt, gt, and υt are also included. Using a 
continuous action space for Nt and considering a linear transaction cost, the authors 
used the state-of-the-art DDPG method to train RL agents and demonstrated superior 
performance on various option datasets.

To further expand the scope of RL-based hedging strategies, the same authors 
proposed to hedge the gamma (the second partial derivative of portfolio value with 
respect to the underlying asset price) and vega (the partial derivative of portfolio value 
with respect to the volatility of the underlying asset) using option as the hedging instru-
ment (Cao et al. 2023). Compared with delta hedging using stock, hedging the gamma 
and vega is often much more costly and requires the use of other derivatives such 
as option in the hedging portfolio. Such extension shifts from the mainstream focus 
on stock-based hedging strategy in the literature and highlights an avenue toward 
hedging the portfolio’s exposure to additional properties such as large movements 
in asset price (big gamma) and large changes in its volatility (large vega).

The authors also harnessed the latest development in the RL community and 
employed a distributional neural network architecture that extends the mean–
variance risk-aware reward function to a full distribution, allowing for the formulation 
of alternative risk measures such as value-at-risk and conditional value-at-risk. As 
shown in the numerical experiments, having access to the full distribution of Q 
values at different quantiles provides better hedging quality at different levels of 
transaction cost and maturity. In terms of the environment setting, the authors 
choose ( , , , , , )* *= γ υ γ υs t St t t t t t , where *γ t  and *υt  denote the gamma and vega of the 
at-the-money option used for hedging, respectively. The action is the proportion of 
maximum allowable hedging in the range of [0, 1], which is clipped to prevent an 
arbitrary position in the hedging option during training. The reward function measures 
the same accounting P&L as before, in which the change in portfolio includes both 
the option being hedged and options used for hedging.
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FUTURE RESEARCH DIRECTION

As shown in the previous section on literature review, the past few years have 
witnessed exciting developments in building autonomous strategies for derivative 
hedging, which is mostly sparked by the advances in the RL community. In this sec-
tion, we highlight a few research directions in derivative hedging using RL.

Adopting New Training Methodologies in Deep RL for Derivative Hedging 

The methodological innovation in the model architecture and optimization pro-
cedure, which is a research hot spot in the RL community, also could extend to the 
specialized domain of derivative hedging. Since the adoption of basis-function–based 
Q-learning (Halperin 2017) and DQN (Du et al. 2020), which are considered to be 
basic RL training procedures, more advanced model architectures, such as DDPG (Cao 
et al. 2021) and distributional RL architecture (Cao et al. 2023) have been proposed. 
In this respect, we foresee that more advanced, domain-specific but not necessarily 
complex RL model architectures deserve further research.

Exploring More Hedging Targets and Instruments 

The most widely used example for RL-based option hedging is to achieve delta 
neutrality by adjusting the stock position, such as (Kolm and Ritter 2019) and others. 
Other Greek letters also can be set as the hedging target, also using option as the 
hedging instrument as shown in Cao et al. (2023). Note that all existing work focus 
on hedging an European option, while the more complex case of hedging an American 
option has not been studied. Therefore, we believe a more exciting research direc-
tion is to expand the hedging space (both the target derivative to be hedged and the 
instruments used for hedging) and spread the use of RL-based autonomous hedging 
agent to more real-life trading scenarios.

Expanding the Type of Hedging Strategies 

Option hedging is a dynamic exercise and requires constant rebalancing; while 
forward hedging is a static one, the optimal action is to perform the hedge at day 
one. In other words, the sooner the RL agent realizes the superiority of static hedge 
over dynamic hedge, the better the hedging quality in the case of forward hedging. 
Recognizing different types of hedging strategies gives the RL agent a unique advan-
tage in tackling more complex challenges, such as hedging a binary option.

CONCLUSION

In this article, we provided a comprehensive review of the current state of building 
an autonomous derivative hedging agent using RL. We first illustrated the funda-
mental framework of option hedging using RL, including the setting of state, action, 
and reward functions, followed by a detailed review of major research papers in this 
emerging and exciting field. We then provided a few directions for future research, 
focusing on the RL methodology, hedging targets, instruments, and strategies. We 
hope this article provides a quick and essential overview on the current development 
of this field and sparks more interest in adopting RL in derivative hedging.
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