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Abstract: This study investigates the integration of quantum circuits with classical neural networks
for enhancing credit scoring for small- and medium-sized enterprises (SMEs). We introduce a
hybrid quantum–classical model, focusing on the synergy between quantum and classical rather than
comparing the performance of separate quantum and classical models. Our model incorporates a
quantum layer into a traditional neural network, achieving notable reductions in training time. We
apply this innovative framework to a binary classification task with a proprietary real-world classical
credit default dataset for SMEs in Singapore. The results indicate that our hybrid model achieves
efficient training, requiring significantly fewer epochs (350) compared to its classical counterpart (3500)
for a similar predictive accuracy. However, we observed a decrease in performance when expanding
the model beyond 12 qubits or when adding additional quantum classifier blocks. This paper also
considers practical challenges faced when deploying such models on quantum simulators and actual
quantum computers. Overall, our quantum–classical hybrid model for credit scoring reveals its
potential in industry, despite encountering certain scalability limitations and practical challenges.

Keywords: quantum machine learning; quantum classifiers; quantum credit scoring; quantum
algorithms

MSC: 68Q12; 81P68; 68Q09; 68T01; 91G40; 68T07

1. Introduction

The quantum revolution, powered by quantum computing, is poised to transform
various scientific and industrial fields, including finance [1–4]. In practice, many real-world
problems are impossible to solve on a classical computer because of their resource-intensive
nature. Quantum algorithms such as quantum search and quantum Fourier transforms
promise significant speed advantages over classical algorithms [5,6], sparking a decade-
long search for practical applications to harness this potential. Despite the challenge of
finding real-world problems where quantum computing offers a practical advantage [7],
the financial sector emerges as a promising arena. Currently, we navigate the noisy-
intermediate scale quantum (NISQ) era, grappling with the scalability of qubits to achieve
fault tolerance [8,9]. The exploration of quantum physics in finance, dubbed “quantum
finance”, reveals its applicability in areas such as option pricing, portfolio optimization,
and risk analysis [10–19]. Quantum finance leverages quantum computing and quantum
machine learning (QML) to address complex financial computations, from risk management
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to market trend analysis, highlighting the field’s potential to unlock the computational
power of quantum technologies for practical financial solutions.

In this study, we delve into the realm of credit scoring, a crucial financial task with
significant economic implications [20,21]. Credit scoring facilitates economic expansion by
enabling firms to access capital at favorable rates. However, obstacles such as information
asymmetries can hinder the flow of capital to deserving projects. While large entities benefit
from public credit ratings, smaller firms often lack such assessments, facing challenges in
securing credit. Financial institutions have evolved from relying on qualitative assessments
to employing sophisticated quantitative methods for managing credit risk, particularly for
products with inherent default risks.

Enhancing machine learning (ML) models [22,23] for credit scoring, particularly for
small and SMEs, is an active field of research. The current models, while advanced, exhibit
limitations in accurately predicting insolvency, rejecting a significant portion of solvent
companies due to error rates. Currently, the best credit scoring models reject 90% of
companies that do become insolvent but still reject 15% of companies that remain healthy
[Source: Tradeteq Ltd., London, UK]. Even modest improvements in these models could
substantially reduce erroneous rejections and mitigate risks for lenders. At the intersection
of ML and quantum computing, QML [24–26] applied to financial analysis has the potential
for significant advancements by leveraging quantum physics’ principles to accelerate data
analysis. This approach not only aims to refine predictive accuracy in financial contexts but
also explores the theoretical limits and practical applications of quantum-enhanced data
analysis, offering a new frontier in financial technology innovation.

To foster breakthroughs in QML for finance, it is essential to explore heuristic algo-
rithms that, despite currently lacking formal theoretical backing, excel in certain problem
areas through cross-disciplinary insights and domain expertise. This paper benchmarks
our heuristic approach, FULL HYBRID classical–quantum neural networks, against a pure
classical ML model in credit scoring, highlighting the potential of QML. Despite SMEs
often lacking formal credit ratings, our methodology, inspired by early quantitative models
and enhanced using ML and QML, aims to improve credit risk assessments. By integrating
advanced QML architectures and comparing them to various classical models [27], we
demonstrate a notable learning efficiency, especially in noisy datasets.

The first quantitative calculations of credit scores were performed by Altman in
the late 1960s; his Z-score model estimates a linear combination of financial ratios and
uses the statistical method of discriminant analysis to predict publicly traded company
defaults within two years in the manufacturing sector [20]. More recently, machine learning
approaches have allowed for automated credit scoring for a broader coverage of attributes
of small companies that combine company, accounting, and socio-economic information.
Improving machine learning algorithms is thus an important element to providing credit
risk transparency. Optimal feature selection for credit scoring datasets has been suggested
in ref. [28]. This approach is based on an unconstrained binary optimization (QUBO)
model. Comparisons with such well-established methods as recursive feature elimination
showed that QUBO feature selection resulted in a smaller feature subset with no loss of
accuracy. It is interesting to note that some researchers have considered quantum-inspired
algorithms, such as a the quantum-inspired neuro evolutionary algorithm [29] with binary-
real representation, that perform equally well compared to the other classical ML methods.
A further discussion of related work can be found in our previous paper [27].

In this paper, we apply our previously developed quantum–classical models [27]
to the benchmark problem of credit scoring. In our previous work [27], by combining
such approaches as data re-uploading [30,31], and hybrid neural networks, parametric
circuits [32,33], we created QML architectures and utilized them for the classification of
non-convex two- and three-dimensional figures. The extensive benchmarking of the new
FULL HYBRID classifiers against existing quantum and classical classifier models revealed
that our novel models exhibit better learning characteristics to asymmetrical Gaussian
noise in the dataset compared to known quantum classifiers and perform equally well for
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existing classical classifiers, with a slight improvement over classical results in the region
of the high noise. We now apply the best of those models to real-world datasets.

This paper is organized as follows. In Section 2, we explain the theory behind the
classical models used for credit scoring, describe the quantum models that have been
previously used and developed by the authors, and make some remarks on benchmarking.
Moreover in Section 2, we describe the dataset and the experimental setupwhere we give
more details regarding the structure of our quantum neural network (QNN), outlining the
hyperparameters, number of epochs, learning rate, and so on, which were executed using
the Pennylane emulator. We present the results in Section 3, where we also summarize the
benchmarking against the classical ML model and also share data on the running time for
our FULL HYBRID architecture. The final Section 4 is devoted to a summary, challenges
and future directions.

2. Materials and Methods

In this section, we review the current classical and quantum models used for credit
scoring and set the groundwork for our own novel hybrid classical/quantum model. Firstly,
to assess and benchmark the models in credit scoring, the crucial trade-off is between
correctly assessing credit defaults or not. This trade-off can be summarized by a ROC
(receiver operating characteristics) curve (Figure 1), where a false positive is rejecting a
company for a loan that it would pay back, and true positive is rejecting a loan where the
company would have defaulted. Ideally, a perfect model would not reject a good company
(0.0 on the x-axis on the graph in Figure 1) and would reject all companies that would
default (1.0 on the y-axis on the graph in Figure 1).
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Figure 1. The ROC curves of three models used for credit scoring.

The area under the ROC curve (AUC) is calculated by summing the area under each
ROC curve in Figure 1 and normalizing the areas to 1.0. The AUC varies between 0, a
classifier always giving the wrong answer, and 1, a perfect classifier performance, with
0.5 for a uninformative classifier. This is a useful criterion to compare models and is the
performance metric used throughout this paper.

2.1. Classical Models

Here, we briefly outline classical ML attempts towards credit scoring, where we
focus on the methods used and on the accuracy of prediction of a company defaulting
on a loan. As a machine learning problem, credit scoring is typically formulated as a
binary classification problem with highly imbalanced data (most companies do not default).
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The data used have a number of features for a set of companies observed at a specific
time, T0, and an outcome observed at a later time, T1. The outcome is usually treated
as binary highlighting, class “1” if a company had some kind of adverse event between
T0 and T1, such as companies in bankruptcy proceedings or in administration, and class
“0” otherwise. As most companies do not suffer adverse events in most periods, the data
are strongly imbalanced to class “0”. A review of all the studies on machine learning
for credit scoring is a subject large enough for a standalone paper. We refer the reader
to systematic academic reviews [34]. The first models used relatively small company
sets (hundreds of companies) and just a few manually constructed accounting features;
thus, linear techniques such as linear discriminant analysis and support vector machines
were used. Later, researchers obtained larger datasets with more companies and features
and applied linear regressions, decision trees, fuzzy logic, ensemble models, and neural
networks to the problem. With large enough datasets, modern ensemble techniques such
as boosted trees and neural networks perform broadly on par. However, boosted trees
are often preferred in practice due to their better explainability and stability. Choosing
a classification model for credit scoring is a challenging task, and conflicts often arise
when comparing performance. For example, linear discriminant models for predicting
bad loans are found to perform better than neural networks for some data and opposite
for others. These different outcomes are difficult to assess, but possible explanations
include differences in sample sizes, transformation functions applied to the data, model
parameters, or network topology. Also, the chosen performance metric matters; traditional
statistical methods seem to perform as well as neural networks if one considers the total
percentage of correct identification, but if identifying bad loans is the main goal, then
neural networks have been found to perform better [35]. In this paper, we only consider
a classical counterpart to the quantum model to ensure that a fair comparison is made to
identify the behavior and potential advantages that quantum computing can bring. The
performance metric throughout this paper is the AUC (see benchmarking section below),
and this classical counterpart benchmark model achieves a score of 0.73 (see Section 3).

2.2. Quantum Models

In the book chapter co-authored by M. Boguslavsky, P. Griffin et al. [36], the authors
introduce a new framework for addressing business problems with quantum computing,
assessing classes of problems that could benefit, and showing a use case for QML algorithms.
The authors outline two frameworks for quantum neural networks: (i) a 2-qubit perceptron
inspired by the Entropica Labs algorithm for the classification of cancerous cells, and (ii) a
hybrid neural networks where it is suggested to establish an interface between classical
and quantum neural networks using PYTORCH (v2.3.0) and Qiskit (v1.0.2) [37]. In finance,
there are extensive overviews/reviews for quantum computing and QML applied to
finance [1–4]. In all of these overviews, credit scoring is mentioned as a problem which the
current community is targeting to solve by making use of QML algorithms.

Our own novel architecture used for the experiments in this paper is a FULL HYBRID
(FH) quantum neural network model consisting of three different approaches based on
hybrid neural networks [37,38], variational circuits (VCs) [32,33], and data-reuploading
classifiers (DRCs) [30,31]. First, classical data are encoded into quantum states. Angle
embedding is used to load the data [x1, x2] into a qubit. Starting from an initial state vector,
typically |0〉, a unitary operation U(x1, x2, 0) is applied, and a new quantum state is formed
that can be described by a new point on a Bloch sphere. Padding with 0 is required when
dealing with two or more dimensional data; for example, loading higher-dimensional data
[x1, x2, x3, x4, x5, x6] can be broken down into sets of three parameters: U(x1, x2, x3), U(x4,
x5, x6). We use an Rx gate for angle embedding in our experiments. Hybrid neural network
classical–quantum classifiers are formed by connecting a number of classical and quantum
neural networks in series. This architecture takes advantage of the specific capabilities of
both types of neural networks and benefits from being able to have the number of features
in the initial classical layers exceed the number of qubits in the quantum layer instead
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of being limited to one qubit for each feature. To create our hybrid classical–quantum
neural network, a hidden layer is implemented utilizing a variational quantum circuit
(Figure 2). A VC is a quantum circuit (also called a “parameterized” circuit) consisting
of the data-embedding layer followed by parameterized gates such as rotation gates and
entangling layers (CNOT gates that entangle each qubit with its neighbor). The quantum
properties such as the rotation angles for the quantum gates are trainable parameters. DRC
is introduced by replicating the VC into more blocks. To combine a VC circuit with the DRC
technique, we define a block (B) as a sequence of data embedding and entangling layers (L).
By adding several blocks, we re-introduce the input data into the model in a way similar to
a classical neural network (NN) re-uploading classical data several times, once per hidden
neuron. Our novel approach is to use the DRC technique combined with a VC in a single
model in the quantum part of the hybrid classifier. This novel combination is expected to
provide greater robustness to our results after making observations on the classification of
2D and 3D synthetic non-convex datasets [27]. The advantage brought by the VC approach
for binary classification is in increased robustness against noise; however, it struggles to
capture complicated patterns in prediction grid diagrams. Conversely, the DRC approach
has good abilities to capture complex grid structures, but it is more sensitive to noise in the
data. Consequently, it is seen [27] that VC and DRC combined complement each other to
produce better results. The power of the FH model lies in capturing the complex patterns
in the data while exhibiting robustness to data noise. We previously demonstrated [27] that,
for synthetic datasets, FH architectures: (i) outperform several previously known quantum
classifiers, (ii) perform equally well compared to their classical counterparts, and (iii) have
an improvement over their classical counterparts in regions of high noise in the dataset.
For further theoretical details, please refer to our previous paper [27].
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after a classical neural network.

After computation on the quantum node is completed, a measurement is performed.
The measurement outcome is the expectation value of a Pauli observable for each qubit. The
measurements are passed to the classical decision layer, which makes the final prediction
label of the binary classifier. Another architecture explored for this problem area is to
append the master classical layer to the quantum layer instead of having it first (i.e., FH:VC-
DRC/NN). However, as the performance of the FH:NN/VC-DRC model was superior to
that of the FH:VC-DRC/NN model in ref. [27], we only focus on the FH:NN/VC-DRC
model. Going forward, we call this the FH model.

2.3. Data Description

In this paper, we compare the performance of the FH model with its classical coun-
terpart, applied to an actual credit default dataset for Singapore companies. The dataset
originates from various Singapore institutions—the Accounting & Corporate Regulatory
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Authority (ACRA), a statutory board under the Ministry of Finance of the Government of
Singapore; the Singapore Land Authority, a statutory board under the Ministry of Law of
the Government of Singapore; the Singapore Buildings database; Handshakes, a corporate
data provider; and Tradeteq, a provider of data, technology, and software to the trade
finance industry. The dataset covers nearly 2300 SME firms that were incorporated over
the 1940–2016 period and active and healthy in 2016, with 94% of the firms incorporated
since 1990 and distributed mainly across seven industry sectors. The biggest problem for
SME datasets is that firms are privately held and that there is limited information about the
financial situation of borrowers—only accounting data are available, and no information
from rating agencies nor financial markets prices is available. These data limitations restrict
the modelling choices of an SME portfolio to binary default or no-default models and
panel data analysis rather than time series analysis. For each small business, the panel of
24 primary features includes the year of incorporation, accounting and operating informa-
tion, geo-sociological data, and an indicator of whether the company defaulted or not. The
firm is statutorily deemed “Healthy” (class 0) on 1 October 2016, and its status, in the case
of default (e.g., compulsory winding down, receivership, or under judicial management),
is statutorily changed to “Unhealthy” (class 1) over the following two years, between
1 October 2016 and 1 October 2018. The dataset size is limited by the number of class 1
examples, i.e., the companies that defaulted. We sampled all 246 class 1 companies in the
period and added to them a random subsample of 2000 class 0 companies. Therefore, the
dataset is highly imbalanced. For the experiments, due to the limitations of the computing
hardware, the maximum number of features used is 21.

2.4. Experiments

In this section, we discuss the best-performing quantum and classical counterpart (CC)
models found in the previous study [27], the hardware and software used, the hyperpa-
rameter configurations, model executions, and the processing of the experiment outputs.
We used an FH:NN/VC-DRC model (Figure 2), where the first part is a classical neural
network, followed by the VC-DRC circuit and a final decision layer, a single neuron layer
with a sigmoid activation function. The first classical layer, «Master Classical layer» has
21 neurons, equal to the number of features used in our dataset. The last layer (Feeding
classical layer) has the same number of neurons as the number of qubits in our hybrid
model. Our 2D case, the classical NN, consists of a two-neuron layer with a rectified linear
activation function (ReLU) (Master classical layer), followed by a two-neuron layer with a
Leaky ReLU activation function (Feeding classical layer). Finally, a classical decision layer,
«Decision Classical layer» makes the prediction. All the layers have a ReLU activation
function except for the final decision layer, which has a sigmoid activation function. After
each classical layer, we added a dropout layer to both the quantum and CC models, with
10% dropout rate to avoid overfitting. Before the data are ingested into the model, they
are pre-processed using a standard pipeline along with some proprietary processing. Data
encoding into quantum states used angle embedding (see Section 2.2).

As simulators were used throughout, there was no quantum computer noise, and no
additional noise was introduced in these experiments. Later in this paper, we consider how
noise may affect the results on real quantum computers. Pennylane (v0.35), an open-source
software framework for differentiable programming of quantum computers, was used to
build the models. The computer used for these experiments was a PC with 64 GB of RAM
and an AMD Ryzen 7 processor. We tested the quantum model performance versus the
number of qubits and number of blocks and against the CC model. The training dataset
has 1798 rows of data split into a validation set of 179 rows (10%) and a test set of 269 rows
(15%). Throughout the simulations, the same training, validation, and testing dataset is
used. For every configuration, we used the average outcome of the ROC/AUC score of five
simulations. The hyperparameters used are based on heuristics and results from previous
experiments [27], are summarized in Table 1, and were kept consistent throughout the
study except where explicitly mentioned.
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Table 1. Hyperparameters used in this study.

Epochs 350 Number of complete passes through the training dataset

Dropout rate 0.1 Probability of training a given node in a layer, 1.0 = no dropout, 0.0 = no outputs from the layer

Learning rate 0.001 Step size at each iteration while moving toward a minimum of a loss function

Optimizer SGD Stochastic gradient descent

Batch size 16 Number of training samples to work through before the model’s internal parameters are updated

For a fair comparison, the number of epochs for quantum and classical models were
kept identical at 350. This number was chosen after observing that, on average, after
350 epochs, overfitting occurs. However, the classical model improved if training was
increased up to 5000 epochs. The number of DRC blocks was increased from 1 to 10,
and the number of qubits was increased from 6 to 18. The batch size was reduced to
16 training examples per iteration due to memory restrictions. The optimizer we used was
a stochastic gradient descent (SGD) optimizer. The loss function is binary cross-entropy,
and the optimizing parameter is ROC/AUC, as described in Section 2.1. Our simulations
were restricted to a maximum number of 18 qubits due to execution time constraints (see
scaling results in Section 3 and the discussion in Section 4).

3. Results

In this section, we present the experimental results comparing the overall ROC/AUC
of the FH model to the CC model, showing the behavior of the quantum model as we scale
up the number of qubits and the number of processing blocks.

The quantum model achieved an ROC/AUC of 0.75 (Figure 3 (black dots) and Figure 4
(right column)), whereas the CC model achieved an ROC/AUC of 0.73 (Figure 3 (orange
line)). However, letting the classical counterpart model train up to 5000 epochs can lead
to the highest score of 0.75 (Figure 3 (red line)). This indicates that the FH model has the
ability to achieve a higher score than its classical counterpart with fewer training epochs.
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results shown in Figure 3.

Furthermore, in Figure 3, we see how the ROC/AUC of the FH model’s performance
changes with the number of qubits and the number of blocks. For blocks = 1 (black dots),
we observe that the ROC/AUC increases up to 12 qubits and then decreases after 12 qubits.
The same behavior can also be observed when one increases the number of blocks, with the
highest results being achieved with no data-reupload. See the discussion section below for
possible explanations.

The training processes that produce the highest ROC/AUC scores on the testing
dataset are depicted in Figure 4 for both the CC model (left and middle columns) and the
FH model (right column). The top row depicts the final ROC/AUC, and the middle and
bottom rows show the loss and ROC/AUC training process for the training and validation
dataset, respectively. The FH model achieved the highest score, with fewer training epochs
for all simulations, shown in Figure 4.

Measuring execution times on the simulator allows us to estimate the resource require-
ments for actual quantum computers. We observed that the data embedding time doubles
with each additional qubit, and that the model execution time scales quadratically with the
number of qubits and linearly with the number of blocks (Figure 5). These observations
are of importance for the use of real quantum computers and are discussed in the section
below. Whilst only 18 qubits were used for the main results described above, 20 qubits
were used for these resource tests.
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4. Discussion

Firstly, we would like to highlight our novel approach in using a new architecture com-
bining quantum variational circuits with data re-uploading in a hybrid (classical–quantum)
neural network, FH [27] on actual credit data. We will now discuss the comparison of our
FH and CC models as well as the execution times and limitations of the experiments. We
found the accuracy of the FH model to be equal to the CC model. Also, the FH model
required significantly fewer epochs to train than the CC model by a factor of 2 or more
(Figure 5). Given that training time is a significant business driver, this result is very
interesting and is grounds for optimism for practical quantum advantages in the future.
Furthermore, it is also positive that the results are satisfactory, even when using a classical
feeding layer to reduce the number of features fed into the quantum layer (limited by
the number of qubits). Currently, the number of qubits is limited in the simulator by the
memory requirements growing exponentially with the number of qubits. For real quantum
computers, the physical number of qubits is limited by the available hardware and extra
qubits needed for error correction. Consequently, this is the most practical FH architecture
we can use for this specific dataset. In the future, increased computing power will enable
us to benchmark with more qubits and produce more results.

During simulations, we encounter two critical challenges that could affect accuracy:
the barren plateau phenomenon [39,40] and the overparameterization [41,42] problem
within quantum circuits. The barren plateau phenomenon refers to the issue of vanishing
gradients in the optimization landscape of quantum circuits, particularly prevalent in
quantum circuits with many qubits, blocks, and layers. This phenomenon impedes the
training process, as gradients become exponentially small, rendering standard optimization
techniques ineffective and leading to a slow convergence or even complete stagnation. On
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the other hand, the overparameterization problem arises when quantum circuits have more
parameters than necessary for a given task, leading to increased computational complexity,
resource requirements, and susceptibility to noise and decoherence. Addressing these
challenges is crucial for advancing quantum machine learning algorithms towards practical
applications, necessitating innovative approaches in circuit design, optimization strategies,
and noise mitigation techniques.

The unexpected finding that increasing the number of qubits beyond 12 reduced the
accuracy is likely to be related to barren plateau issues but needs further investigation in
future studies. The effect of adding more blocks, i.e., DRC, reducing the accuracy could be
due to the overparameterization problem or due to our dataset not having features that have
a trigonometric (i.e., sine) structure, thus re-entering the data to the model does not improve
its performance. It is not due to overfitting, as the training is stopped before overfitting
occurs. We note that finding the best learning gradients in a non-convex landscape (for the
problem structure) is an open question even in the classical machine learning community,
and no resolution has been discovered so far. To this end, one possible solution is to use
quantum convolutional neural networks. Moreover, the use of a data re-uploading circuit
could possibly overcome this problem based on the prima facie argument that since data
is introduced many times to the network, the solution is forced from any local minima.
Another promising method is to characterize the landscape by computing the Hessian of
the loss function, where since the eigenvalues of the Hessian loss function directly quantify
the local curvature of the loss function, we can adjust the learning rate of our model for
faster convergence during the training process.

For simulators, we observe the exponential time complexity of increasing the number
of qubits and blocks (Figure 5), both of which would not be a problem for a real quantum
computer as long as the circuit width (number of qubits) and circuit depth (number of
gates) are within the specifications of the quantum computer. However, another general
issue for QML is the need to make many executions of the quantum circuit, for 350 epochs
and a training set of 1798, this amounts to 629,300 circuit executions. This is not an issue
for simulations run on a standalone computer, but for quantum computers accessed on a
cloud platform, the overall time taken may not practical; for example, it may take 7 days in
total if each execution takes 1 s due to network overheads and queuing time on a shared
quantum computer. Quantum computer providers such as IBM allow for paid allotment of
compute times and have very recently introduced mechanisms such as Qiskit runtime that
enables the execution of the classical and quantum code to be run as one unit, reducing the
overall execution time by 120 times, potentially bringing 7 days down to 1.5 h.

The dataset size is limited by the number of class 1 examples available. This has an
impact on the most appropriate model but does not lead to overfitting. A much larger
dataset such as the UK’s, with 1000+ defaults each year and over 4 million companies,
would be interesting to use with more complex models and finer-grained risk periods.
We also note that the hyperparameters for the FH and CC models could potentially be
tuned further.

5. Conclusions

In conclusion, the use of hybrid quantum–classical models is promising given the
ease of obtaining comparable results to a purely classical counterpart and with much
fewer epochs for training. We have also investigated the practical issues of using the
models on simulators and on real quantum computers and expect that, with even modest
improvements in hardware expected of over 4000 qubits by 2025 [43], along with software
improvements such as runtime environments [44], real advantages, at least in model
training, will be achieved. It is also possible that improvements in accuracy may also be
observed due to the resilience of the FH model.

Furthermore, this study shows that anyone in the machine learning community can
relatively easily experiment with QML for their own problems. The next step of moving to
real quantum hardware may also prove interesting with the introduction of quantum noise,
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possibly removing the need for dropout layers. The future for QML is very exciting. The
codes used in this manuscript will be made available upon reasonable request.
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