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ABSTRACT
The ubiquity of implicit feedback makes them the default choice to
build modern recommender systems. Generally speaking, observed
interactions are considered as positive samples, while unobserved
interactions are considered as negative ones. However, implicit
feedback is inherently noisy because of the ubiquitous presence
of noisy-positive and noisy-negative interactions. Recently, some
studies have noticed the importance of denoising implicit feedback
for recommendations, and enhanced the robustness of recommen-
dation models to some extent. Nonetheless, they typically fail to (1)
capture the hard yet clean interactions for learning comprehensive
user preference, and (2) provide a universal denoising solution that
can be applied to various kinds of recommendation models.

In this paper, we thoroughly investigate the memorization effect
of recommendation models, and propose a new denoising para-
digm, i.e., Self-Guided Denoising Learning (SGDL), which is able
to collect memorized interactions at the early stage of the training
(i.e., “noise-resistant” period), and leverage those data as denoising
signals to guide the following training (i.e., “noise-sensitive” pe-
riod) of the model in a meta-learning manner. Besides, our method
can automatically switch its learning phase at the memorization
point from memorization to self-guided learning, and select clean
and informative memorized data via a novel adaptive denoising
scheduler to improve the robustness. We incorporate SGDL with
four representative recommendation models (i.e., NeuMF, CDAE,
NGCF and LightGCN) and different ranking loss functions. The
experimental results on three benchmark datasets demonstrate the
effectiveness of SGDL over the state-of-the-art denoising methods
like T-CE, IR, DeCA, and even state-of-the-art robust graph-based
methods like SGCN and SGL.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Learning from implicit feedback.
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Denoising Recommendation, Implicit Feedback, Robust Learning
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1 INTRODUCTION
Recommender systems have been widely deployed to perform
personalized information filtering, especially for various online
services such as E-commerce [26], social media [28], and news
portals [32]. Most of existing recommender systems use implicit
feedback (e.g., view and click) to develop machine learning models,
due to its large volume and availability [17, 29]. Specifically, the ob-
served interactions between users and items are viewed as positive
instances, while unobserved interactions are viewed as negative
instances. However, implicit feedback is inherently noisy because
of the ubiquitous presence of noisy-positive and noisy-negative inter-
actions [3, 20, 24, 36]. Take the E-commerce scenario as an example.
A large portion of click behaviors are triggered by the curiosity of
users, which cannot directly indicate the users’ positive views of
the products. On the other hand, unobserved interactions may at-
tribute to the unawareness of users because the items are simply not
exposed to them. Hence, blindly fitting the implicit feedback to rec-
ommender systems without considering the inherent noise would
fail to understand users’ true preferences, and eventually harm user
experiences and degrade recommendation performance [33, 40].

Considering the widespread use of implicit feedback and its
large impact on the recommendation model, some recent stud-
ies have noticed the importance of denoising implicit feedback
for recommendations. Existing efforts on tackling this problem
can be roughly divided into two categories: sample selection meth-
ods [12, 14, 36, 44] and sample re-weighting methods [19, 33, 35].
Sample selection methods focus on designing more effective sam-
plers to collect clean samples for learning users’ preferences, while
their performance suffers from high variance since they heavily de-
pend on the sampling distribution [45]. On the other hand, sample
re-weighting methods aim to distinguish noisy interactions from
clean data in terms of the loss values, and assign lower weights
to noisy interactions with high loss values during training. Their
key idea is consistent with memorization effect [2]: models tend to
initially learn easy and clean patterns (i.e., user preferences) in the
early stage of their learning, and eventually memorize all training
interactions. Benefiting from this principle, sample re-weighting
methods are able to successfully identify noisy interactions.

Although sample re-weighting methods can achieve promising
performance for denoising implicit feedback, we want to highlight
that they commonly suffer from following two problems:
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Figure 1: Key idea of SGDL: (a) and (c) show the memory rate when training NeuMF and LightGCN on the MovieLens dataset,
respetively; (b) and (d) show the memory rate when training the corresponding model with SGDL. The memory rate is the
proportion of memorized data (see Section 3.1.1 for details) in the clean and noisy interactions. NR denotes noise-resistant
period and NS represents noise-sensitive period, respectively.

• Abandon of Hard Clean Interactions. These methods heavily
rely on the loss values. They simply assume that interactions
with large loss values are noisy and penalize them with small
weights. However, it has been reported that some clean inter-
actions (aka. hard yet clean interactions) may also have high
loss values at the beginning of the training, and those interac-
tions play an important role in understanding users’ behaviors
and preferences [11, 19, 35]. Nonetheless, these interactions are
simply discarded by existing methods due to high loss values,
incurring insufficient understanding of users’ true preferences.
• Lack of Adaptivity and Universality. Existing sample re-
weighting methods are able to achieve good performance only
when the reweighting configurations (e.g., weights and thresh-
olds) are properly specified. However, obtaining proper configu-
rations normally requires time-consuming procedures (e.g., grid
search), and the optimal configurations for one dataset typically
are not applicable for other datasets because of the different data
distributions. Meanwhile, these methods are only applicable to
the recommender models with predefined pointwise loss func-
tion (e.g., cross-entropy loss in [33, 35]), which makes it hard
to incorporate other popular ranking loss functions (e.g., BPR
loss [29]) and limits their applications.

In this regard, we have thoroughly explored the memorization of
the representative recommendation models (e.g., NeuMF [16] and
LightGCN [15]) on implicit feedback, including the clean interac-
tions and the noisy interactions. By analyzing the learning processes
of different models, we have observed the existence of two learning
periods. As shown in Figure 1, a typical learning process consists
of the “noise-resistant” (NR) period and the “noise-sensitive” (NS)
period. The former is the duration when the memorization of noisy
interactions is insignificant because the models focus on memoriz-
ing easy and clean patterns at their early stage of training; while the
latter is the duration when the memorization of noisy interactions
rapidly increases since models eventually begin memorizing all the
implicit feedback at the late stage of training. The timestamp in
the training process that can best differentiate above two periods
is defined as memorization point of the model training, which are
represented by dotted lines in Figure 1.

These observations motivate us to design a new approach that
better leverages the memorization nature of recommendation mod-
els. Specifically, we propose a new denoising paradigm, namely,
Self-Guided Denoising Learning (SGDL), which is able to collect
memorized interactions at the early stage of training (i.e., “noise-
resistant” period), and leverage those data as denoising signals to

guide the subsequent training (i.e., “noise-sensitive” period) of the
model in a meta-learning manner. Besides, SGDL can automati-
cally transit from noise-resistant period to noise-sensitive period
in order to stop accumulating memorized interactions at the memo-
rization point, since the noisy interactions are gradually memorized
with the training process. In a nutshell, corresponding to the two
observed periods commonly existing in the training process of dif-
ferent models, SGDL contains two key phases, i.e., memorization
and self-guided learning:
• Memorization. Owing to the negligible memorization of noisy
interactions during “noise-resistant” period, the model is initially
trained with all the implicit feedback. To better reveal the un-
derlying memorization nature of the model during training, we
design new memorization-based metrics to define the memoriza-
tion states of data. As the memorized data are mostly easy and
clean interactions at the early stage of training, we collect them
as denoising signals to guide the following denoising training
process. Moreover, SGDL is able to automatically estimate the
best memorization point, from which the learning moves from
the “noise-resistant” period to “noise-sensitive” period, to stop
accumulating memorized data without any supervision.
• Self-Guided Learning. To avoid the memorization of noisy in-
teractions in the “noise-sensitive” period, we leverage the memo-
rized data collected from the “noise-resistant” period to represent
user preferences. Specifically, a denoising module is proposed to
learn a parameterized weighting function for the implicit feed-
back, which is guided by memorized data and updated with the
learning process of the model. Moreover, since some of the mem-
orized data can also be noisy, we further develop a novel adaptive
denoising scheduler to prevent the denoising module from be-
ing corrupted by noisy yet memorized samples. Technically, the
adaptive denoising scheduler characterizes the contribution of
each memorized data to the denoising performance, and decides
whether to use the sample by predicting its probability being
sampled. The scheduler is also simultaneously trained together
with the learning process to enhance the robustness of the model.
Through the above two phases, SGDL can denoise implicit feed-

back with the help of memorized data, which are naturally collected
by exploiting the noise-resistant period of training. Compared with
standard training, SGDL can dramatically reduce the memory ra-
tio of noisy samples in the noise-sensitive period, and enhance
the robustness of recommendation models, as shown in Figure 1.
Moreover, since the model is constantly trained with all implicit
feedback data, our method can help the model learn users’ true



preferences with hard yet clean samples, leading to better recom-
mendation performance. Last but not the least, our method does
not need any thresholds or predefined weighting functions, and is
easy to be applied to any learning-based recommendation models.
We conduct extensive experiments on three real-world datasets
with four representative recommendation models (i.e., NeuMF [16],
CDAE [39], NGCF [34], and LightGCN [15]). Experimental results
show that our SGDL significantly outperforms all state-of-the-art
denoising methods, and it achieves comparable (in many cases
even better) performance to the state-of-the-art robust graph-based
methods like SGCN [5] and SGL [37]. In summary, we make three
key contributions in this paper, as listed below.

• We develop a new denoising paradigm, i.e., self-guided denoising
learning (SGDL), which leverages the self-labeled memorized data
as guidance to offer denoising signals for robust recommenda-
tion without defining any weighting functions or requiring any
auxiliary information.
• We carefully exploit the memorization effect of recommendation
models, and design two training phases that can collect memo-
rized data and utilize them as guidance to denoise implicit feed-
back, respectively. Besides, a novel adaptive denoising scheduler
is introduced to further improve the robustness.
• We incorporate SGDL with four representative recommenda-
tion models, and conduct extensive experiments on three public
benchmark datasets with various state-of-the-art methods to
demonstrate the superiority and universality of SGDL.

2 PROBLEM FORMULATION
We first introduce the common paradigm of user preferences learn-
ing from implicit feedback, and then formulate our task.
Preference learning from implicit feedback. In this paper,
we focus on learning the user preferences from the implicit feed-
back [29]. Specifically, the behavior data (e.g., click and review)
D = {𝑢, 𝑖,𝑦𝑢𝑖 |𝑢 ∈ U, 𝑖 ∈ I} involves a set of users U = {𝑢} and
a set of items I = {𝑖}, as well as the interactions 𝑦𝑢𝑖 = {0, 1} that
indicate whether user 𝑢 has interacted with item 𝑖 . Most of the
state-of-the-art recommendation methods (e.g., NeuMF [16] and
LightGCN [15]) assume that the interactions 𝑦𝑢𝑖 could represent
the users’ true preferences, and directly learn the model 𝑓 with
parameters 𝜃 by minimizing a ranking loss function over D.
Denoising implicit feedback for recommendations. However,
due to the existence of inherent noise in implicit feedback, recom-
mendation models might fail to learn the users’ true preferences
with typical training process, resulting in suboptimal performance.
Thus, the task of the paper is, given the noisy implicit feedback D
that contains both noisy-positive and noisy-negative feedback, to
infer users’ true preferences with the optimal model parameters 𝜃∗.

3 METHODOLOGY
In this section, we detail SGDL that comprises the following two
phases: (i) memorization, which exploits the memorization effect
of models to collect memorized data during the noise-resistant
period and estimates the best memorization point to automatically
transit to phase II; and (ii) self-guided learning, which leverages the
memorized samples as denoise signals to guide the model learning
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Figure 2: The overall framework of SGDL (best view in color).

during the noise-sensitive period, and discards the potential noisy
interactions in memorized data with a novel adaptive denoising
scheduler for robustness. We detail the two phases as follows.

3.1 Phase I: Memorization
Initially, Phase I tries to train the recommendation model in a
conventional way during the noise-resistant period, where the
memorization of noisy interactions is assumed to be suppressed, as
we discover in Figure 1. Since most of the memorized interactions
until the memorization point are clean, we collect them to form
the memorized data, which can be used as the denoising signals to
guide the training in Phase II. Therefore, the major challenges in
Phase I include 1) how to define the memorization of interactions
and 2) how to estimate the memorization point.

3.1.1 Memorized Interactions. Previous studies [33, 35] mainly
use loss values of training data to demonstrate the memorization
effect of recommendation models. However, we argue that loss
values are insufficient to reflect the learning process, since they
are inconsistent with the optimization target of recommendation
models (i.e., personalized ranking), and unable to distinguish hard
interactions from noisy ones. Thus, it is necessary to design a new
memorization-based metric, which takes the learning process of
recommendation models into consideration.

Inspired by the widely used hit ratio metric [9, 29], we define
that an interaction (𝑢, 𝑖) is memorized at epoch 𝑡 by the model 𝜃
if item 𝑖 is in the ranking list of user 𝑢, denoted as 𝑚𝑡 (𝑢, 𝑖). To
ensure the reliability of ranking results, for each user 𝑢, we include
the top-𝑁 of the ranking items into its ranking list, where 𝑁 is
the length of observed interactions. However, simply calculating
the memorization of interactions of a single epoch could lead to
unstable results, since the model is not well trained during the
noise-resistant period. Hence, we trace the memorization states
of interactions for the most recent ℎ epochs, and define the final
memorization of interaction (𝑢, 𝑖) as follows:

𝑚ℎ
𝑡 (𝑢, 𝑖) =

1
|Pℎ𝑡 (𝑢, 𝑖) |

∑︁
𝑚𝑖 (𝑢,𝑖) ∈Pℎ

𝑡 (𝑢,𝑖)
𝑚𝑖 (𝑢, 𝑖) (1)

where Pℎ𝑡 (𝑢, 𝑖) = {𝑚𝑡−ℎ+1 (𝑢, 𝑖), · · · ,𝑚𝑡 (𝑢, 𝑖)} captures the most
recent ℎ memorization histories of interaction (𝑢, 𝑖). We define an
interaction (𝑢, 𝑖) memorized by a model 𝜃 if the majority of the
recent histories Pℎ𝑡 (𝑢, 𝑖) coincides with the memorization state (i.e.,
𝑚ℎ
𝑡 (𝑢, 𝑖) is larger than 0.5). It is worthmentioning that the definition

of memorized interactions dose not need any labels for supervision,
and is able to effectively indicate the underlying memorization
effect of recommendation models.



3.1.2 Memorization Point Estimation. As shown in Figure 1,
the model predominantly learns clean interactions until the noise-
sensitive period begins. In others words, during noise-resistant
period, the recommendation model (1) not only learns sufficient
information from the clean interactions, (2) but also accumulates
some noise from the noisy implicit feedback. Therefore, we aim
to design two metrics to reflect the above two memorization char-
acteristics of the model. Formally, we useM𝑡 to denote a set of
memorized interactions at epoch 𝑡 , and use 𝑦∗

𝑢𝑖
to represent the true

label of interaction (𝑢, 𝑖), which is not available because of the noise
in implicit feedback. Inspired by recent advances in robust learn-
ing [30, 31] and recommendation evaluation metrics, we propose
two memorization-based metrics, namely, memorization precision
(𝑀𝑃 ) and memorization recall (𝑀𝑅), to address the memorization
effect of recommendation models respectively:

𝑀𝑃𝑡 =
|R𝑡 |
|M𝑡 |

, 𝑀𝑅𝑡 =
|R𝑡 |
|G| (2)

where R𝑡 = {(𝑢, 𝑖) ∈ M𝑡 : 𝑦𝑢𝑖 = 𝑦∗
𝑢𝑖
} denotes the set of memo-

rized data whose true labels are consistent with predictions, and
G = {(𝑢, 𝑖) ∈ D : 𝑦𝑢𝑖 = 𝑦∗

𝑢𝑖
} is the set of true labeled data in

implicit feedback. According to the definition of𝑀𝑃 and𝑀𝑅, we
can conclude that: 𝑀𝑃 monotonically decreases since the model
tends to memorize clean data first and then gradually memorizes
all the noisy interactions as the training progresses; and𝑀𝑅 mono-
tonically increases because the model eventually memorizes all
clean interactions as the training progresses, as depicted in Figure 3
(please refer to Section 3.3 for the theoretical analysis of the mono-
tonicity of the two metrics). Thus, the best memorization point 𝑡𝑚
is naturally the best trade-off epoch when 𝑀𝑃 and 𝑀𝑅 share the
same value, i.e., 𝑀𝑃𝑡 = 𝑀𝑅𝑡 . By substituting it into Equation (2),
the best memorization point 𝑡𝑚 can be calculated as:

M𝑡𝑚 = |{(𝑢, 𝑖) ∈ D𝑡 : 𝑦𝑢𝑖 = 𝑦∗𝑢𝑖 }| = (1 − 𝜎) |D| (3)
where 𝜎 is the noise rate of the implicit feedback. Since 𝜎 is typically
unknown, we leverage the difference of loss distributions in clean
and noisy data to estimate 𝜎 , as shown in Figure 4. Technically, we
first normalize the loss values of all training interactions and then
fit them into two-component Gaussian Mixture Model (GMM) to
model the bi-modal distribution [1, 25], which can be easily trained
by using the Expectation-Maximization (EM) algorithm. Hence,
we could obtain the probability of an interaction (𝑢, 𝑖) being noisy
through the posterior probability of loss distributions. Accordingly,
the noise rate 𝜎 is estimated as:

�̂� = E(𝑢,𝑖) ∈D [𝑝 (𝜇 |𝐿(𝑢,𝑖) (𝜃 )] (4)
where 𝐿(𝑢,𝑖) (𝜃 ) is the loss of interaction (𝑢, 𝑖) of recommendation
model 𝜃 , and 𝜇 is the Gaussian component with a larger mean,
since noisy data have typically larger loss values. Note that there
are many approaches [8, 27] available to estimate the noise ratio, we
choose GMM because it is easy to apply and has stable performance
on different noisy datasets.

Therefore, SGDL transits to phase II when the number of memo-
rized interactions reaches the estimated clean data size (i.e., |M𝑡 | ≥
(1 − �̂�)D). Note that, SGDL is able to estimate the memorization
point 𝑡𝑚 , and collect memorized dataM𝑡𝑚 with nearly zero com-
putational overhead and no additional supervision.

 MR  MP

0  10  20  30  40  50
0.6

0.7

0.8

0.9

1.0

(b) LightGCN
 

M
P

 a
n
d

 M
R

Epochs
 

0  10  20  30  40  50
0.6

0.7

0.8

0.9

1.0

(a) NeuMF
 

M
P

 a
n
d

 M
R

Epochs
 

Figure 3: The monotonicity of MP and MR when training
NeuMF and LightGCN on the MovieLens dataset.
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3.2 Phase II: Self-Guided Learning
Phase II aims to robustly learn the recommendation model with the
denoising signals of memorized data, which are collected from the
training process of Phase I. Previous studies [33, 35] need to pre-
specify weighting functions (e.g., exponential function), and require
additional hyperparameters (e.g., threshold) to denoise implicit feed-
back during training. However, we argue that these methods are
fairly hard to be generally applied in real-world recommendation
systems due to two issues: (1) The proper weighting schemes heav-
ily rely on the training data, which limits their adaptivity. (2) These
methods simply abandon the hard yet clean interactions because the
fixed weighting functions fail to distinguish the interactions from
noisy data, incurring suboptimal recommendation performance.
Thus, we aim to propose a self-guided method that is capable of
learning an adaptive weighting function automatically from the
collected memorized data to tackle the above two issues.

The above denoising scheme assumes that the memorized data
is clean and useful to provide denoising signals for learning user
preferences. Nevertheless, as the memorized data is collected by
leveraging the memorization effect of recommendation models, it
inevitably contains some noise. To prevent the model from being
corrupted by such detrimental interactions, we further devise a
novel adaptive denoising scheduler to select and use proper memo-
rized data for self-guided learning.

3.2.1 Denoising Learning with Memorized Data. During the
noise-sensitive period, we aim to enhance the robustness of training
by imposing a weight on each sample loss. Here, we consider the
memorized data that is able to provide denoising signals to learn
the weight for each sample, since it is mostly clean thanks to the
memorization effect of the model. Specifically, let 𝐿𝑘 (𝜃 ) be the 𝑘-th
sample loss1 of model 𝜃 , and D𝑇 be the training data. The optimal
recommendation model parameter 𝜃 is calculated by minimizing

1The loss can be represented as the pointwise or pairwise loss, according to the
optimization target of models. We demonstrate the effectiveness of our method on
both kinds of loss functions in Section 4.2.



the following weighted loss:

𝜃∗ (𝜓 ) = argmax
𝜃

1
|D𝑇 |

∑︁ |D𝑇 |
𝑘

𝑔(𝐿𝑘 (𝜃 );𝜓 )𝐿𝑘 (𝜃 ) (5)

where 𝑔(𝐿𝑘 (𝜃 );𝜓 ) is the weight on the 𝑘-th sample loss, and 𝜓
represents the current parameters of weighting function 𝑔(·). Here,
we formulate 𝑔(·) as a simple Multi-Layer Perceptron (MLP) with
only one hidden layer, since it is known as a universal approximator
for almost any continuous function [10, 30]. To adaptively learn
the weight for each sample from memorized data, we optimize the
weighting parameters𝜓 given current optimal 𝜃∗ (𝜓 ):2

𝜓∗ = argmax
𝑤

1
|M𝑡𝑚 |

∑︁ |M𝑡𝑚 |
𝑚

𝐿𝑚 (𝜃∗ (𝜓 )) (6)

where 𝐿𝑚 (𝜃∗ (𝜓 )) is the𝑚-th memorized sample loss given optimal
model parameters 𝜃∗ (𝜓 ). Note that the searching for the optimal 𝜃∗
and optimal𝜓∗ requires two nested loops of optimization (i.e., bi-
level optimization) [6, 30], which is costly. Hence, we adopt the idea
of meta learning [13, 38], and update 𝜃 and𝜓 alternately in a single
loop to guarantee the efficiency of the algorithm. Specifically, as
illustrated in Figure 2, we perform the following training procedure
in each iteration:
• Assumed update of 𝜃 . As shown by the blue arrows in Figure 2,
we first make an assumed update of 𝜃 with current weight𝜓 :

𝜃 (𝜓 ) = 𝜃 − 𝜂1
1
|D𝑇 |

∑︁ |D𝑇 |
𝑘

𝑔(𝐿𝑘 (𝜃 );𝜓 )∇𝜃𝐿𝑘 (𝜃 ) (7)

where we update 𝜃 using gradient descent with learning rate 𝜂1.
• Update of𝜓 . As indicated by the brown arrow in Figure 2, the
updates of the weighting parameters𝜓 can be guided by gradient
of the memorized data on the updated model:

𝜓 ← 𝜓 − 𝜂2
1

|M𝑡𝑚 |
∑︁ |M𝑡𝑚 |

𝑚
∇𝜓𝐿𝑚 (𝜃 (𝜓 )) (8)

where 𝜂2 is the learning rate of weighting parameters𝜓 .
• Actual update of 𝜃 . After receiving the denoising signals (i.e.,
updated parameters 𝜓 ) from memorized data, we use them to
update the model:

𝜃 ← 𝜃 − 𝜂1
1
|D𝑇 |

∑︁ |D𝑇 |
𝑘

𝑔(𝐿𝑘 (𝜃 );𝜓 )∇𝜃𝐿𝑘 (𝜃 ) (9)

We use this alternative strategy to optimize the recommendation
model and weighting function during the noise-sensitive period, as
illustrated in Figure 2. Although this strategy does not guarantee to
find the global optimum, it empirically works well in many bi-level
optimization problems [6, 13, 30].

3.2.2 Adaptive Denoising Scheduler. Above denoising scheme
relies on the memorized data to provide denoising signals for train-
ing. However, as memorized data inevitably exhibit noise, integrat-
ing the noise of them would degrade the denoising performance.

Thus, we propose an adaptive denoising scheduler to select only
the clean and informative memorized data for denoising learning.
Specifically, we define the scheduler as 𝑠 with parameter 𝜙 , and
choose two representative factors to quantify the contribution of
each memorized data for denoising: (1) the loss 𝐿𝑚 (𝜃 ) of 𝑚-th
memorized sample, where 𝜃 is the actual updated parameters of

2Notice that, here𝜓 is a variable instead of a quantity, which makes 𝜃 ∗ (𝜓 ) a function
of𝜓 , and the gradient in Equation (6) can be computed.

the model; and (2) the gradient similarity of𝑚-th memorized sam-
ple on assumed updated model parameters 𝜃 and actual updated
model parameters 𝜃 , i.e., cos

(
∇
𝜃
𝐿𝑚 (𝜃 ),∇𝜃𝐿𝑚 (𝜃 )

)
. Here, we use

cosine function as the similarity measurement, and other metrics
like inner product can also be applied in practice. The two factors
are associated with the learning outcome and learning process of
the𝑚-th memorized sample, respectively. Specifically, the gradient
similarity characterizes the contribution of the memorized sample
in the model training. A large loss value may represent a crucial
memorized sample if the gradient similarity is also large (i.e., the
gradient direction of memorized sample is consistent with the opti-
mization of the model); and a large loss value with small gradient
similarity may indicate a noisy memorized sample. Considering the
two factors simultaneously, we formulate the sampling probability
of𝑚-th memorized data:

𝑜𝑚 = 𝑠
(
𝐿𝑚 (𝜃 ), cos(∇𝜃𝐿𝑚 (𝜃 ),∇𝜃𝐿𝑚 (𝜃 ));𝜙

)
(10)

𝜋𝑚 =
exp(𝑜𝑚 ;𝜙)∑

𝑖∈M𝑡𝑚
exp(𝑜𝑖 ;𝜙)

(11)

where𝑜𝑚 is the output of the scheduler, and 𝜋𝑚 is the predicted sam-
pling probability of𝑚-th sample. We choose LSTM network [18] as
the scheduler, and feed it with the training factors in each iteration.
The intuition behind is that the LSTM could leverage the histori-
cal information to capture the prediction variance [4, 42], which
shows stable performance in our experiments (different strategies
are compared in Section 4.3.3). However, it is intractable to directly
optimize the scheduler since the sampling process is not differen-
tiable. To make this procedure differentiable and to jointly optimize
the scheduler and the model, we apply the Gumbel-Softmax repa-
rameterization trick [22] to generate differentiable samples:

𝑦𝑚 =
exp(log(𝜋𝑚) + 𝜖𝑚)/𝜏∑

𝑖∈M𝑡𝑚
exp(log(𝜋𝑖 ) + 𝜖𝑖 )/𝜏

(12)

where 𝜖𝑚 is randomly drawn from uniform distribution between 0
and 1, and 𝜏 is the temperature that controls the interpolation be-
tween the discrete distribution and continuous categorical densities
(we set 𝜏 = 0.05 for all experiments). Thus, the scheduler is able to
decide which memorized data to use according to its contribution
to denoising implicit feedback, and adpatively adjust the sampling
probability for more informative guided learning.

3.3 Model Analysis
3.3.1 Analysis on the monotonicity of𝑀𝑃 and𝑀𝑅. We now
prove that𝑀𝑃 and𝑀𝑅 change monotonically over the training time
𝑡 . Let N𝑡 (=M𝑡 \ R𝑡 ) be the set of memorized data that are falsely
predicted by models. Then, |N𝑡+1 |/|N𝑡 | ≥ |R𝑡+1 |/|R𝑡 | typically
holds because the noisy samples are memorized faster than clean
samples after the model stabilizes, as depicted in Figure 3. Hence,
it is easy to conclude:

|N𝑡+1 |/|N𝑡 | ≥ |R𝑡+1 |/|R𝑡 | (13)
=⇒ |N𝑡+1 | |R𝑡 | + |R𝑡+1 | |R𝑡 | ≥ |R𝑡+1 | |N𝑡 | + |R𝑡+1 | |R𝑡 | (14)
=⇒ (|N𝑡+1 | + |R𝑡+1 |) |R𝑡 | ≥ (|N𝑡 | + |R𝑡 |) |R𝑡+1 | (15)

Then,𝑀𝑃𝑡+1 ≥ 𝑀𝑃𝑡 can be directly derived from Inequation (15).
Besides, considering that the model eventually would memorize all
training data [31], we assume that M would gradually include



more observed interactions, including true predicted ones, i.e.,
|R𝑡+1 | ≥ |R𝑡 |. Consequently, 𝑀𝑅 increases monotonically since
|R𝑡+1 |/|G| ≥ |R𝑡 |/|G|.

3.3.2 Analysis of the Self-Guide Learning Scheme. We then
focus on the guidance strategy to explain how memorized data
benefit the denoising training. Formally, we follow [30], and utilize
chain rule to derive the update function of𝜓 :

𝜓 ← 𝜓 + 𝜂1𝜂2|D𝑇 |

|D𝑇 |∑︁
𝑘

( 1
|M𝑡𝑚 |

|M𝑡𝑚 |∑︁
𝑚

𝐺𝑚𝑘

)
∇𝜓𝐿𝑘 (𝜃 (𝜓 )) (16)

where 𝐺𝑚𝑘 (= ∇𝜃𝐿𝑚 (𝜃 )𝑇∇𝜃𝐿𝑘 (𝜃 )) measures the gradient similar-
ity between𝑚-th memorized data and 𝑘-th training data. Thus, for
each𝑘-th training sample, if its gradient is similar to the average gra-
dient of memorized data, it would be considered as a beneficial one
for learning, and its weight tends to be increased. Conversely, the
weight of the sample inclines to be suppressed. Therefore, memo-
rized data is able to offer a proper weight for each training sample in
terms of gradient similarities under the self-guide learning scheme.

3.3.3 Model Size. The additional parameters of SGDL come from
two parts: (1) the parameters 2𝑑𝑤 ofweighting function, where𝑑𝑤 is
the number of the hidden neurons in one layerMLP; and (2) the 4𝑑2

𝑙
+

12𝑑𝑙 parameters of LSTM unit in the adaptive denoising scheduler,
where𝑑𝑙 is the dimension of hidden size. Overall, the additional cost
of SDGL is negligible, compared with the tremendous parameters
of modern recommendation models.

3.3.4 Time Complexity. Assume that the time complexity of
the base model is 𝑂 (𝑇 ), the additional complexity of SGDL mainly
comes from phase II, which consists of two denoising components:
(1) the cost of self-guided learning is also 𝑂 (𝑇 ), as the alternative
optimization scheme takes no more than three times compared
with the normal training; and (2) the computational complexity
of denoising adaptive scheduler is 𝑂 ( |D|𝑑𝑙 ). Therefore, the addi-
tional time complexity of SGDL is 𝑂 (𝑇 + |D|𝑑𝑙 ). Under the same
experimental settings (i.e., same base model), SGDL achieves better
trade-off between efficiency and effectiveness compared with vari-
ous state-of-the-art models: i) For sample re-weighting and sample
selection methods, although most of them are more time-saving
than SGDL, they suffer from difficult/expensive hyperparameters
tuning and unstable performance, as discussed in Section 4.2. ii) For
robust graph-based methods, SGDL has a complexity that is com-
parable with them, since graph-based methods typically leverage
on extra graph structure to enhance the robustness of the model.

4 EXPERIMENTS
We provide empirical results to demonstrate the effectiveness of
our proposed SGDL. The experiments are designed to answer the
following research questions:

• RQ1: How does SGDL perform, compared with the state-of-
the-art denoising methods as well as the state-of-the-art robust
recommender methods?
• RQ2: How does each component of SGDL (i.e., memorization
point estimation, denoising learning strategy, and adaptive de-
noising scheduler) affect SGDL?

Table 1: Statistics of the datasets used in our experiments.
Dataset #Users #Items #Interactions Sparsity
Adressa 212,231 6,596 419,491 99.97%

MovieLens 943 1,683 100,000 93.70%
Yelp 45,548 57,396 1,672,520 99.94%

• RQ3: Is SGDL able to distinguish hard yet clean interactions
from noisy interactions?

4.1 Experimental Settings
4.1.1 Dataset Description. We select three real world bench-
mark datasets to evaluate and compare the performance of SGDL
and its competitors. Table 1 lists their statistics.
• Adressa3 is a news reading dataset from Adressavisen, including
user click behaviors and the dwell time for each click. Following
previous work [33], clicks with dwell time less than 10 seconds
are viewed as noisy interactions.
• Yelp4 is an open recommendation dataset released by the Yelp
challenge. We use the 2018 version in our experiments. We fol-
low [33] to mark ratings below 3 as noisy interactions.
• MovieLens is a widely used dataset for recommendation, which
contains 100,000 movie ratings ranging from 1 to 5. Ratings below
3 are regarded as noisy interactions.

4.1.2 Evaluation Metrics. We adopt cross-validation to verify
the performance. Specifically, we follow [33, 35] to split the inter-
actions into the training set, validation set, and clean test set with
the ratio of 8:1:1. The performance is measured by two widely used
valuation protocols [15, 34]: Recall@𝐾 and NDCG@𝐾 , where 𝐾 is
set as 5 and 20 by default. We report the average metrics for all
users in the test set.

4.1.3 Baselines. We select four state-of-the-art recommendation
methods as the base model 𝑓 of SGDL:
• NeuMF [16] is a state-of-the-art model, which generalizes Fac-
torization Machines (FM) with a Multi-Layer Perceptron (MLP).
• CDAE [39] is denoising auto-encoder model, which corrupts the
interactions with random noises, and then employs a MLP model
to reconstruct the original input.
• NGCF [34] is a graph model, which applies graph convolution
network (GCN) to encode high-order collaborative signals in
user-item bipartite graph.
• LightGCN [15] is a state-of-the-art graph model, which sim-
plifies the design of GCN by discarding the nonlinear feature
transformations for recommendation.
We train the base models with different ranking loss functions to

demonstrate the universality of SGDL. Specifically, we train NeuMF
and CDAE with binary cross-entropy (BCE) loss, and train NGCF
and LightGCN with BPR loss [29]. Each model is trained with the
following denoising approaches:
• Normal is trained with the original architecture design, without
any denoising consideration.
• WBPR [14] is a sample selection method, which considers the
popular but uninteracted items are likely to be real negative ones.

3https://www.adressa.no/
4https://www.yelp.com/dataset/challenge

https://www.adressa.no/
https://www.yelp.com/dataset/challenge


Table 2: Overall performance comparison. The highest scores are in Bold. R and N refer to Recall and NDCG respectively.
Database Adressa MovieLens Yelp

Base Model Method R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20

NeuMF

Normal 0.1533 0.3208 0.1224 0.1808 0.1023 0.2687 0.2890 0.2765 0.0129 0.0393 0.0129 0.0215
WBPR 0.1538 0.3207 0.1225 0.1809 0.1025 0.2689 0.2891 0.2769 0.0128 0.0392 0.0127 0.0214
IR 0.1541 0.3212 0.1229 0.1830 0.1054 0.2704 0.2928 0.2758 0.0132 0.0407 0.0131 0.0229

T-CE 0.1537 0.3220 0.1267 0.1839 0.1025 0.2821 0.2923 0.2845 0.0119 0.0396 0.0119 0.0211
DeCA 0.1597 0.3205 0.1226 0.1799 0.1024 0.2723 0.2904 0.2801 0.0129 0.0394 0.0129 0.0216
SGDL 0.1598 0.3291 0.1272 0.1853 0.1135 0.2844 0.3279 0.3032 0.0155 0.0469 0.0158 0.0260

CDAE

Normal 0.1445 0.3159 0.0987 0.1886 0.0904 0.2185 0.2617 0.2356 0.0145 0.0436 0.0149 0.0277
WBPR 0.1443 0.3158 0.0987 0.1890 0.0908 0.2184 0.2619 0.2346 0.0148 0.0437 0.0151 0.0278
IR 0.1444 0.3152 0.0981 0.1893 0.0909 0.2186 0.2612 0.2358 0.0153 0.0438 0.0152 0.0278

T-CE 0.1415 0.3106 0.0991 0.1840 0.0912 0.2158 0.2642 0.2386 0.0147 0.0439 0.0151 0.0279
DeCA 0.1447 0.3159 0.0991 0.1888 0.0917 0.2189 0.2641 0.2378 0.0158 0.0438 0.0154 0.0292
SGDL 0.1450 0.3181 0.0993 0.1956 0.0921 0.2220 0.2643 0.2404 0.0162 0.0439 0.0172 0.0296

NGCF

Normal 0.0769 0.1322 0.0571 0.0769 0.1285 0.3103 0.3694 0.3392 0.0267 0.0736 0.0262 0.0417
WBPR 0.0770 0.1324 0.0572 0.0769 0.1287 0.3105 0.3692 0.3395 0.0265 0.0739 0.0265 0.0417
IR 0.0772 0.1337 0.0570 0.0768 0.1280 0.3104 0.3701 0.3395 0.0269 0.0737 0.0261 0.0412

DeCA 0.0760 0.1326 0.0571 0.0766 0.1304 0.3113 0.3729 0.3401 0.0277 0.0739 0.0262 0.0418
SGCN 0.0773 0.1336 0.0543 0.0770 0.1288 0.3112 0.3768 0.3401 0.0267 0.0734 0.0265 0.0443
SGL 0.0775 0.1345 0.0576 0.0768 0.1303 0.3141 0.3763 0.3360 0.0279 0.0750 0.0264 0.0409
SGDL 0.0788 0.1347 0.0579 0.0771 0.1309 0.3186 0.3745 0.3404 0.0273 0.0746 0.0267 0.0420

LightGCN

Normal 0.0951 0.1817 0.0713 0.0994 0.1258 0.3173 0.3678 0.3358 0.0334 0.0912 0.0332 0.0515
WBPR 0.0958 0.1845 0.0733 0.1006 0.1262 0.3189 0.3701 0.3510 0.0333 0.0911 0.0331 0.0512
IR 0.0953 0.1822 0.0726 0.1003 0.1285 0.3194 0.3681 0.3361 0.0305 0.0909 0.0326 0.0510

DeCA 0.0974 0.1855 0.0758 0.1162 0.1293 0.3076 0.3575 0.3270 0.0337 0.0911 0.0332 0.0524
SGCN 0.0941 0.1899 0.0765 0.1160 0.1282 0.3210 0.3602 0.3318 0.0335 0.0916 0.0346 0.0528
SGL 0.0980 0.1770 0.0741 0.0999 0.1299 0.3156 0.3638 0.3343 0.0341 0.0915 0.0344 0.0526
SGDL 0.1134 0.2105 0.0844 0.1178 0.1378 0.3335 0.3844 0.3513 0.0339 0.0918 0.0341 0.0525

• IR [36] is the state-of-the-art sample selection method, which
interactively relabels uncertain samples to mitigate the noise in
both observed and unobserved interactions.
• T-CE [33] is the state-of-the-art sample re-weighting method,
which uses the Truncated BCE to assign zero weights to large-
loss examples with a dynamic threshold. Note that, this denoising
approach can only be used for BCE loss, and thus, we implement
it with NeuMF and CDAE for comparison.
• DeCA [35] is a newly proposed sample re-weighting method,
which considers the disagreement predictions of noisy samples
across different models, and minimizes KL-divergence between
the two models’ predictions to enhance the robustness of models.

In addition, we also compare SGDL with the state-of-the-art
robust graph-based methods to further confirm the effectiveness
of our model. Note that the methods can only be applied to graph-
based recommenders (i.e.,NGCF and LightGCN in our experiments),
since they regard the noisy interactions as noisy edges, and devise
enhanced graph learning methods for robust recommendation.

• SGCN [5] is the state-of-the-art graph structure enhancedmethod,
which attaches the GCN layers with a trainable stochastic binary
mask to prune noisy edges in user-item bipartite graph.
• SGL [37] is the state-of-the-art self-supervised graph method,
which designs different graph views to mine hard negatives and
denoise noise in implicit feedback. We choose the Edge Dropout
(ED) view as auxiliary supervision signal as it performs the best
for most datasets.

4.1.4 Parameter Settings. We implement SGDL in Pytorch, and
will release our implementations (codes, parameter settings, and-
training logs) to facilitate reproducibility. We use recommended pa-
rameter settings for all models, and optimize them with Adam [23]
optimizer. We set the batch size as 128 for MovieLens, 1024 for
Adressa, and 2048 for Yelp due to the different sizes of each dataset.
The learning rate of CDAE, NeuMF, and LightGCN is tuned as 0.001;
and for NGCF, the learning rate is set as 0.0001. For NeuMF, the
embedding size is 32, and the number of layers is 3. For CDAE, the
hidden size is 100, and the dropout ratio is set to 0.5. For LightGCN,
we set the embedding size to 64, the number of layers to 3, and
train it without dropout. For NGCF, the embedding size and layers
are the same as LightGCN; and the node dropout rate is set to 0.1.
For SGDL, we set 𝜂1 = 𝜂2 for denoising learning, and use the same
learning rate with base models; the hidden size of MLP and LSTM
unit is 64; and the length of memorization history ℎ is tuned among
{2, 5, 10, 20}. Note that, the hyperparameters of base models keep
exactly the same across all training methods for a fair comparison.

4.2 Performance Comparison (RQ1)
We begin with the performance comparison w.r.t. recall@𝐾 and
NDCG@𝐾 , where we test two values (5 and 20) of 𝐾 . The experi-
mental results are reported in Table 2, and we find that:

• The proposed SGDL can effectively improve the performance of
all base models, and outperform all denoising methods over three
datasets. Besides, even if the base model is designed to be ro-
bust against noisy implicit feedback (i.e., CDAE), our method can
still boost its performance by a large margin. We attribute these
improvement to the memorization-based denoising schemes of



Table 3: Impact of denoising Learning and adaptive denoising scheduler.
Database Adressa MovieLens Yelp

Base Model Method R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20

NeuMF w/o DLS 0.1528 0.3107 0.1211 0.1794 0.1055 0.2690 0.2911 0.2774 0.0136 0.0397 0.0131 0.0218
w/o ADS 0.1576 0.3285 0.1255 0.1801 0.1097 0.2801 0.3210 0.3008 0.0146 0.0438 0.0146 0.0259

LightGCN w/o DLS 0.0964 0.1810 0.0702 0.0985 0.1244 0.3159 0.3688 0.3349 0.0330 0.0909 0.0331 0.0513
w/o ADS 0.1013 0.1995 0.0811 0.1007 0.1316 0.3328 0.3824 0.3502 0.0338 0.0914 0.0340 0.0521

SGDL: (1) By tracing the memorization states of data in the noise-
resistant period, SGDL is able to collect memorized interactions
during training process to provide valuable denoising signals
without any supervision. In contrast, none of the baselines con-
siders explicitly characterizing data from the memorization per-
spective. (2) Benefiting from our learning to weight strategy and
adaptive denoising scheduler, SGDL can adaptively select clean
and informative samples from memorized interactions, and use
them to guide the learning process of the model. However, other
re-weighting baselines (e.g., T-CE and DeCA) are insufficient to
provide proper weight for each interaction since they do not have
memorized data as guidance.
• Jointly analyzing the performance of SGDL across three datasets,
we find that the improvement on MovieLens dataset are less
significant than that on other datasets. One possible reason is
that the sparsity of MovieLens dataset is denser than the sparsity
of Yelp and Adressa. Accordingly, there are sufficient interactions
to identify user behavior patterns, which offsets the impact of
noisy implicit feedback.
• Jointly analyzing the performance of SGDL across the recom-
menders, we observe that the relative improvement (i.e., the per-
formance of SGDL over the strongest baselines) on NeuMF and
CDAE are more substantial than that on graph-based methods
(i.e., NGCF and LightGCN). This is because our method is model-
agnostic, which does not take the graph structure into considera-
tion. In comparison, both SGCN and SGL are designed for graph-
based recommendations, and thus, they can leverage the graph
structure information to yield better performance. Nonetheless,
our method still achieves the best results on most cases, which
demonstrate the superior robustness of SGDL.
• The performance of sample selection methods (i.e.,WBPR and IR)
is rather unstable across different recommenders, compared with
sample re-weighting methods. This is reasonable since sample
selection methods highly depend on the sampling distribution,
which makes their performance unstable. For instance, although
IR achieves some improvement on Yelp dataset, it performs worse
than the base model (i.e., CDAE) on Adressa dataset.
• Robust Graph-based methods (i.e., SGCN and SGL) achieve com-
petitive or even the best performance against other methods. We
attribute such improvement to their carefully designed graph
structures, which is able to prune noisy and insignificant edges
for clean information propagation. However, the methods can
only be applied to graph-based models, while SGDL is able to be
easily integrated with any learning-based recommender systems,
and achieves comparable or even better performance.

4.3 Study of SDGL (RQ2)
As the memorization and self-guided denoising learning are the
core of SGDL, we also conduct ablation studies to investigate their
effectiveness. Specifically, how the presence of denoising learning

Table 4: Impact of estimation ofmemorization point. R@20 is
used to evaluate the performance, and Est. denotes estimated
memorization point.

Memorization Point Early Est. Late
Base Model Database +10% +5% +0% -5% -10%

NeuMF
Adressa 0.3221 0.3275 0.3291 0.3256 0.3203

MovieLens 0.2810 0.2851 0.2844 0.2757 0.2704
Yelp 0.458 0.4420 0.0469 0.4430 0.4370

LightGCN
Adressa 0.2006 0.2114 0.2105 0.2017 0.1990

MovieLens 0.3321 0.3325 0.3335 0.3262 0.3198
Yelp 0.0895 0.0912 0.0918 0.0904 0.0887

Table 5: Impact of the design of adaptive denoising scheduler.
Database Yelp MovieLens Adressa

Base Model ADS R@20 N@20 R@20 N@20 R@20 N@20

NeuMF
top-𝐹 0.3106 0.1766 0.2590 0.2705 0.0386 0.0212
MLP 0.3257 0.1842 0.2749 0.2841 0.0392 0.0225
LSTM 0.3291 0.1853 0.2844 0.3032 0.0469 0.0260

LightGCN
top-𝐹 0.1810 0.0985 0.3159 0.3349 0.0909 0.0513
MLP 0.2066 0.0103 0.3284 0.3427 0.0912 0.0512
LSTM 0.2105 0.1178 0.3335 0.3513 0.0918 0.0525

and adaptive denoising scheduler, the estimation of memorization
point, and the design of scheduler affect our model.

4.3.1 Impact of Denoising Learning & Scheduler. We first
evaluate the effectiveness of the denoising learning scheme and
adaptive denoising scheduler. To this end, two variants of SGDL
are constructed by (1) discarding the denoising learning strategy
in noise-sensitive period, called SGDLw/o DLS; and (2) removing
the scheduler and directly using all memorized data for denoising
learning, named SGDLw/o ADS. We summarize the results of NeuMF
and LightGCN in Table 3, while skip the results of other models
(i.e., CDAE and NGCF) because they demonstrate similar trends,
and we have space limitation.

Obviously, compared with SGDL in Table 2, removing the denois-
ing learning scheme (i.e., SGDLw/o DLS) dramatically reduces the
predictive accuracy, indicating the necessity of self-guided learning.
To be more specific, SGDLw/o DLS only trains with memorized data
in the noise-sensitive period, and thus, it is insufficient to learn
user true preference with hard yet clean interactions. Besides, di-
rectly leveraging all memorized data as denoising signals would
inevitably introduce some noise, and hence, the SGDLw/o ADS also
underperforms the complete model.

4.3.2 Estimation of Memorization Point. We then verify the
estimation of memorization point, since it plays an important role in
our model to transit from noise-resistant period to noise-sensitive
period. Specifically, we explore the performance change of SGDL by
increasing or decreasing the estimated noisy ratio �̂� to force early
or late transition. The results of SGDL on NeuMF and LightGCN
are presented in Table 4. We observe that:
• Generally speaking, the best performance is achieved at the esti-
mated memorization point. When the memorization point more
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Figure 5: (1) Sampleweight distribution onMovieLens dataset.
(2) Learned Weighting function on MovieLens dataset.

deviates from the estimated one, the performance tends to be
worse. This means the existence of the best memorization point
and the effectiveness of our estimation.
• It is worth mentioning that, when the memorization point is
slightly earlier than the estimated value, it also shows good per-
formance.We attribute this to the cleanmemorized data: whenwe
transit the model to noise-sensitive period earlier, it is more likely
that most of the memorized interactions are clean, which ben-
efits the following self-guided learning. On the contrary, when
we delay the memorization point, the memorized data tends to
contain more noisy samples, incurring suboptimal performance.

4.3.3 The Design of Adaptive Denoising Scheduler. We also
investigate the design of adaptive denoising scheduler. Specifically,
we propose three different approaches to evaluate the denoising
contributions of each memorized data: i) Rank memorized data
according to their sums of two factors (i.e., normalized gradient
similarity and loss value), and simply pick top-𝐹 memorized data as
informative denoising signals. To keep the picked data clean, we set
𝐹 as the half size of memorized data. ii) Choose a one-layer MLP as
the scheduler, and train the scheduler with the strategy presented in
Section 3.2.2. iii) Select the LSTM as the scheduler, and leverage the
historical factors to predict the sampling probabilities. We report
the performance of three sampling approaches with Recall@20 and
NDCG@20 in Table 5, while Recall@5 and NDCG@5 are omitted
due to limited space. We have the following observations:
• By simply choosing top-𝐹 memorized data with the highest sums
as denoising signals, the performance drops and becomes even
worse than the normal training. We attribute such degradation
to the non-linear correlation of two factors: the large loss value
may not necessarily mean the memorized sample is beneficial
to denoising, as it can also be noisy if the gradient similarity is
small. Directly summing up the two factors is unable to properly
capture the characteristic of memorized data, and thus fails to
provide reliable denoising signals for self-guided learning.
• The scheduler with LSTM consistently achieves the best perfor-
mance cross the datasets. This is because LSTM can leverage
the historical factors information to predict more accurate and
stable sampling probability for memorized data. The results are
consistent with previous robust learning studies [4].

4.4 Learned Weights of SGDL (RQ3)
In this section, we visualize the learned weights of SGDL to offer
an intuitive impression of our denoising performance. Specifically,
we train NeuMF with SGDL on the MovieLens dataset, and plot the

learned weights distribution w.r.t. clean and noisy interactions as
well as their loss values in Figure 5. We find that:

• The left of Figure 5 indicates that almost all large weights belong
to clean interactions, and the noisy interactions’ weights are
much smaller, meaning that the SGDL can differentiate clean
implicit feedback from the noisy one.
• The learned weighting function in the right of Figure 5 shows
that when the loss has relatively small values, the weighting
function inclines to increase the weight together with loss, indi-
cating that it tends to emphasize more on clean data for learning
user preference; while as the loss gradually becomes larger, the
weighting function first remains unchanged and then begins to
dramatically decrease its weight, implying that it tends to high-
light the hard yet clean interactions with large weights first and
then suppress noise interactions. Thus, SGDL is able to locate
hard interactions for better learning user preferences.

5 RELATEDWORK
Existing recommender systems are typically trained with implicit
feedback. Recently, some studies [21, 24, 33, 36] have noticed that
implicit feedback could be easily corrupted by different factors (e.g.,
popularity bias [7] and unawareness of users’ behaviors [20]), and
the inevitable noise would dramatically degrade the recommenda-
tion performance [33, 35, 36]. As a result, some efforts have been
dedicated to solving the noisy implicit feedback problem, which
can be categorized into sample selection methods [12, 14, 36, 44]
and sample re-weighting methods [19, 33, 35].
Sample Selection. A simple idea to denoise implicit feedback is
to select clean and informative samples only, and train the recom-
mendation model with them. For example, WBPR [14] considers
that the missing interactions of popular items are highly likely
to be real negative examples, and hence assigns higher sampling
probabilities to them. IR [36] interactively generates pseudo-labels
for user preferences based on the difference between labels and
predictions, to discover the noisy-positive and noisy-negative ex-
amples. Nonetheless, their performance has high variance since
they heavily depend on the sampling distribution [45].
Sample Re-weighting. On the other hand, loss-based methods
focus on the learning process of models (e.g., loss values and predic-
tions) to distinguish noisy interactions from clean data. For instance,
T-CE [33] dynamically assigns lower weights to high-loss samples
since it has been shown that noisy examples would have larger loss
values. DeCA [35] develops an ensemble method to minimize the
KG-divergence between the two models’ predictions, under the as-
sumption that different models make relatively similar predictions
on clean examples. Although these methods achieve promising
results without additional data, they heavily rely on the predefined
loss function and hyperparameters, incurring poor generalization
for different recommendation models.
Other Directions. There are some recent studies that consider
using additional information [3, 40, 43] or designing model-specific
structures [5, 37, 41] to improve the robustness of recommender
systems. For instance, DFN [40] proposes a feedback interaction
component to extract clean and useful information from noisy
feedback with additional explicit feedback (e.g., like and dislike).



SGL [37] advances graph-based recommender systems with self-
supervised learning by employing graph structure augmentations.
However, these methods suffer from poor generalization, since
they either need additional information (e.g., explicit feedback) as
guidance to denoise implicit feedback [3, 40], or are only applicable
to specific data structures (e.g., user-item bipartite graph) [5, 37, 41].
Difference from Existing Work. Our work can be seen as a
variant of self-training [46], which leverages self-labeledmemorized
data to enhance the training process. The most relevant work with
ours is MORPH [31]. However, it tackles the classification problem
in computer vision, and only uses the memorized data for training,
which is not feasible in ranking-based recommendations since the
hard yet clean data may not be memorized without clear guidance.
Compared with previous methods, SGDL is a truly model-agnostic
framework, which can be easily applied to any learning-based
recommendation models with any ranking loss functions, and does
not need to define any weighting functions.
6 CONCLUSION AND FUTUREWORK
In this paper, we present a new denoising paradigm, called SGDL,
which leverages thememorization effect of recommendationmodels
and designs two training phases to exploit the self-labeled memo-
rization data as guidance for denoising learning. Extensive experi-
ments conducted on three real-world datasets with four represen-
tative recommendation models demonstrate the superiority and
universality of SGDL. In the future, we plan to jointly explore the
noise and bias existing in implicit feedback to develop a universal
denoising and debiasing solution.
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