
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2022 

HAKG: Hierarchy-Aware Knowledge Gated Network for HAKG: Hierarchy-Aware Knowledge Gated Network for 

Recommendation Recommendation 

Yuntao DU 

Xinjun ZHU 

Lu CHEN 

Baihua ZHENG 
Singapore Management University, bhzheng@smu.edu.sg 

Yunjun GAO 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
DU, Yuntao; ZHU, Xinjun; CHEN, Lu; ZHENG, Baihua; and GAO, Yunjun. HAKG: Hierarchy-Aware Knowledge 
Gated Network for Recommendation. (2022). SIGIR '22: Proceedings of the 45th International ACM SIGIR 
Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11-15. 1390-1400. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7181 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7181&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


HAKG: Hierarchy-Aware Knowledge Gated Network for
Recommendation

Yuntao Du†, Xinjun Zhu§, Lu Chen†, Baihua Zheng♯, and Yunjun Gao†
†College of Computer Science, Zhejiang University, Hangzhou, China

§School of Software, Zhejiang University, Ningbo, China
♯School of Computing and Information Systems, Singapore Management University, Singapore

{1ytdu, 2xjzhu, 3luchen, 5gaoyj}@zju.edu.cn 4bhzheng@smu.edu.sg

ABSTRACT
Knowledge graph (KG) plays an increasingly important role to
improve the recommendation performance and interpretability. A
recent technical trend is to design end-to-end models based on in-
formation propagation mechanism. However, existing propagation-
based methods fail to (1) model the underlying hierarchical struc-
tures and relations, and (2) capture the high-order collaborative
signals of items for learning high-quality user and item representa-
tions.

In this paper, we propose a new model, called Hierarchy-Aware
Knowledge Gated Network (HAKG), to tackle the aforementioned
problems. Technically, we model users and items (that are captured
by a user-item graph), as well as entities and relations (that are
captured in a KG) in hyperbolic space, and design a hyperbolic ag-
gregation scheme to gather relational contexts over KG. Meanwhile,
we introduce a novel angle constraint to preserve characteristics
of items in the embedding space. Furthermore, we propose a novel
dual item embeddings design to represent and propagate collabora-
tive signals and knowledge associations separately, and leverage
the gated aggregation to distill discriminative information for better
capturing user behavior patterns. Experimental results on three
benchmark datasets show that, HAKG achieves significant improve-
ment over the state-of-the-art methods like CKAN, Hyper-Know,
and KGIN. Further analyses on the learned hyperbolic embeddings
confirm that HAKG offers meaningful insights into the hierarchies
of data.
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• Information systems→ Recommender systems.
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Figure 1: (a) An example of knowledge-aware recommenda-
tion. The blue lines indicate the hierarchical relations, while
the black lines denote the non-hierarchical relations. (b) De-
gree distribution of Alibaba-iFashion dataset.
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1 INTRODUCTION
In the era of information explosion, recommender systems have
become an essential part of Internet applications to provide per-
sonalized information services. Traditional recommender systems
that are based on collaborative filtering [18, 24, 43] usually suffer
from data sparsity and cold-start problems. Recently, knowledge
graph (KG), which provides various real-world facts related to items
via relations, has demonstrated an impressive ability to alleviate
cold-start issue and improve the explainability of recommendations.

Learning user and item representations from auxiliary KG has
become the term of knowledge-aware recommendation. Early stud-
ies [1, 39, 49] directly integrate knowledge graph embeddings with
items to enhance their representations. Some subsequent stud-
ies [5, 17, 21, 45] enrich the interactions via meta-paths from users
to items for better identifying user-item connectivities. However,
in order to obtain informative paths, these methods suffer from
labor-intensive process [45], poor generalization [17, 52], and un-
stable performance [48]. Recently, the success of Graph Neural
Networks (GNNs) [14, 23, 35] has inspired the community to de-
velop end-to-end models based on the information aggregation
schemes [9, 34, 38, 40, 42, 44, 46]. The key idea is to iteratively
propagate high-order information over KG, which could effectively
integrate multi-hop neighbors into representations and hence im-
prove the recommendation performance.

Although existing propagation-basedmethods are able to achieve
good performance, we would like to highlight that they all fail to
model the following two important factors.
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• Hierarchical Structures and Relations. Existing methods
model both user-item interactions and KG in Euclidean space,
while both data structures exhibit a highly non-Euclidean latent
anatomy. Specifically, the user-item interactions typically follow
the power-law distribution (as shown in Figure 1(b)), indicating
the underlying hierarchical structures [9, 36, 50]. Meanwhile,
hierarchical information is ubiquitous in real-world KGs, since
human knowledge is organized hierarchically [2, 6]. Euclidean-
based methods are insufficient to capture the intrinsic hierarchi-
cal structures of the data, since they suffer from a high distortion
when embedding hierarchical data [7, 12, 32]. Moreover, none
of those methods considers KG relations at a finer-grained level
of hierarchies. They all conveniently ignore an important fact,
i.e., hierarchical relations (blue lines in Figure 1(a)) and non-
hierarchical relations (black lines in Figure 1(a)) are not of equal
importance for characterizing items. Taking the outfit recommen-
dation in Figure 1(a) as an example. Hierarchical relation 𝑟1 offers
complementary information to the cloth 𝑖1 in the aspect that 𝑖1 is
the jeans (𝑒1) while non-hierarchical relation 𝑟5 means that cloth
𝑖2 and cloth 𝑖3 can compose an outfit. Thus, hierarchical relations
can indicate the attributes of items while non-hierarchical rela-
tions only reveal the relatedness between entities. Ignoring the
hierarchical structures and relations limits model’s expressive
power.

• High-order Collaborative Signals of Items. In existing stud-
ies, the item aggregation schemes are mostly KG-oriented, that
is, recursively collecting the knowledge associations from KG
without considering the collaborative signals from users [44, 46],
or blindly mixing the heterogeneous information from neigh-
boring nodes (users or entities) in the Unified Knowledge Graph
(UKG) [34, 42]. They fail to preserve the crucial high-order collab-
orative signals of items (e.g., co-occurrence relationship), which
are latent in user-item interactions and play an important role in
learning user preference from behavior aspect. Take Figure 1(a)
as an example. The path 𝑖1 → 𝑢1 → 𝑖3 → 𝑢2 → 𝑖2 indicates the
long-range connectivity between item 𝑖1 and item 𝑖2: since users
𝑢1 and 𝑢2 share the same interest (i.e., they both like item 𝑖3), the
items 𝑖1 and 𝑖2 which are favored by user 𝑢1 and user 𝑢2 respec-
tively may be similar to some extent. Therefore, such KG-oriented
aggregation schemes are insufficient to capture the high-order
collaborative signals for comprehensive item representations.

To tackle the aforementioned challenges, a new latent space with
a smaller embedding distortion is required. Hyperbolic geometry
offers an ideal alternative, as it not only enables embeddings with
much smaller distortion [7, 12] but also naturally preserves the
data hierarchy [6, 50]. The key property of hyperbolic space is
that, unlike Euclidean space, it expands exponentially rather than
polynomially. This allows hyperbolic space to havemuch larger data
capacity than Euclidean space, and hence, it has “sufficient” room
to better preserve the distance between hierarchical data, as shown
in the left of Figure 2. Besides, hyperbolic space can be viewed
as a continuous version of trees, which makes it perfect to model
hierarchical tree-like data due to their analogous structure. Thus,
we propose Hierarchy-Aware Knowledge Gated Network (HAKG),
a new hyperbolic knowledge-aware recommendation model with
two key components, which can effectively capture and model the

Figure 2: (1) Hyperbolic space expands exponentially. (2) Il-
lustration of Hyperbolic cones.

aforementioned two important factors that are not modeled by any
existing methods.
• Hierarchy-Aware Modeling. To better capture the underlying
hierarchical structures, we map user and item embeddings as well
as entity and relation embeddings to hyperbolic space. We also
design a new hyperbolic relation-transitive aggregation mecha-
nism to capture the relation dependencies carried by neighbors
in hyperbolic space. Moreover, a novel angle constraint is intro-
duced for hierarchical relations, which is able to better preserve
items’ attributes information in the embedding space and thus
improve the representational capacity and expressiveness.

• Gated Aggregation with Dual Embeddings. Unlike previous
KG-oriented aggregation strategies, we view user-item interac-
tions and KG as two different information channels, and develop
different aggregation strategies for the two channels. Besides,
since items can serve as a natural bridge to connect the two
information channels, we use dual embedding instead of single
embedding for items to represent and propagate each channel’s
information separately, so as to better capture the holistic se-
mantics of items. Moreover, an information gated mechanism
is introduced to adaptively fuse the two types of semantics for
better identifying user behavior patterns.
To this end, the newly proposed HAKG framework is designed

to i) leverage the expressiveness of hyperbolic geometry for bet-
ter hierarchical modeling, and ii) effectively capture the holistic
semantics of items. We conduct extensive experiments on three real-
world datasets to evaluate the performance of HAKG and existing
methods. Experimental results show that our HAKG significantly
outperforms all the start-of-the-art methods such as CKAN [46],
Hyper-Know [29], and KGIN [44]. Furthermore, HAKG is able to
offer both behavior and attribute similarity scores of unseen user-
item interactions, and reveal the underlying hierarchical structures
and relations of data in the embedding space for better model ex-
pressiveness. In summary, our contributions are as follows:
• We present knowledge-aware recommendation from a new per-
spective by taking the hierarchy and high-order items’ collabora-
tive signals into consideration.

• We embed users and items, as well as entities and relations in
hyperbolic space, and design a new hyperbolic relation-transitive
aggregation in KG to preserve the relation dependencies among
neighbors. Besides, an angle constraint is introduced for hierar-
chical relations to profile items with the attributes information
in the embedding space.

• We incorporate the dual item embeddings design to i) better
represent and propagate collaborative signals and knowledge



associations simultaneously, and ii) more effectively leverage the
information gate mechanism to control discriminative signals
towards the users’ preference, so as to offer similarity scores of
each interaction from both behavior and attribute aspects.

• We conduct extensive experiments on three public benchmark
datasets to demonstrate the superiority of HAKG.

2 PROBLEM FORMULATION
We first introduce the data structures related to our studied problem,
and then formulate our task.
User-ItemBipartiteGraph. In this paper, we focus on learning the
user preference from implicit feedback [33]. To be more specific, the
behavior data (e.g., click and review) involves a set of usersU = {𝑢}
and a set of items I = {𝑖}. We model user-item interactions as a
bipartite graph G𝑏 = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I} where each (𝑢, 𝑖) pair
indicates that user 𝑢 has interacted with item 𝑖 .
Knowledge Graph (KG). KGs are collections of real-world facts,
such as item attributes, concepts, or external commonsense. Let T
be the triplet set, E be a set of entities, and R be the relation set,
which involves relations in both canonical and inverse directions
(e.g., compose and composed-of ). Let KG be a heterogeneous graph
G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R}, where each triplet (ℎ, 𝑟, 𝑡) ∈ T
means that there is a relation 𝑟 between head entity ℎ and tail
entity 𝑡 . For example, a triplet (jeans, brand, Levi’s) indicates that
the brand of the jeans is Levi’s. As we assume all the items appear
in KG as entities (i.e., I ⊂ E), a common assumption made by all
existing knowledge-aware recommendation systems [41, 42, 44],
we can link items in user-item graph with entities in KG to offer
auxiliary semantics to interactions.
Task Description. Given a user-item bipartite graph G𝑏 and a KG
G𝑘 , our task of knowledge-aware recommendation is to predict how
likely that a user would adopt an item that she has never engaged
with.

3 METHODOLOGY
In this section, we first introduce the basic concepts about hyper-
bolic space, and then detail two key components of HAKG, i.e.,
hierarchy-aware modeling and gated aggregation with dual embed-
dings. The former embeds users and items as well as entities and
relations in hyperbolic space. It adopts a novel hyperbolic relation-
aware aggregation scheme over KG, and also introduces an angle
constraint for learning attribute semantics of item in the embedding
space. The latter leverages dual item embeddings to separately en-
code the high-order collaborative signals from user-item graph and
the knowledge associations from KG, and distills useful semantics
via the information gate mechanism for learning high-quality user
representations.

3.1 Preliminaries
Hyperbolic geometry [3] is a non-Euclidean geometry with con-
stant negative curvature. Compared with the Euclidean spaces, the
amount of space covered by the hyperbolic geometry increases ex-
ponentially rather than polynomiallyw.r.t. the radius. This property
allows us to effectively capture underlying hierarchical structures
of user-item interactions and KG in hyperbolic space. In this work,

we use the Poincaré ball model with constant curvature −𝑐 = −1
for learning hyperbolic embeddings due to its feasibility for gradi-
ent optimization [32, 50]. In the following, we first introduce the
necessary mathematical basis for the Poincaré ball model.
Poincaré Ball & Tangent Space. The definition domain of the
Poincaré ball model is:

B = {(𝑥1, . . . , 𝑥𝑛) : 𝑥21 + · · · + 𝑥2𝑛 <
1
𝑐
} (1)

in R𝑛 . The tangent space TzB at point 𝑧 on B is a 𝑛-dimensional
Euclidean space that best approximates B around 𝑧, which is useful
to perform aggregation operations in hyperbolic space [7].
Exponential Map & Logarithmic Map. Hyperbolic space and
tangent space can be bridged by exponential and logarithmic map-
pings. Specifically, the exponential map can map the tangent space
TzB to the hyperbolic space B, and the logarithmic map maps B to
TzB conversely. In particular, the closed-form expressions for the
two maps at point 𝑧 are defined below.

expz (x) = z ⊕ tanh( ∥x∥
1 − ∥z∥2

) x
∥x∥ (2)

logz (y) = (1 − ∥z∥2) · tanh−1 (∥ − z ⊕ y∥) −z ⊕ y
∥ − z ⊕ y∥ (3)

where ⊕ represents Möbius addition [12]:

x ⊕ y =
(1 + 2⟨x, y⟩ + ∥y∥2)x + (1 − ∥x∥2)y

1 + 2⟨x, y⟩ + ∥x∥2∥y∥2
(4)

3.2 Hierarchy-Aware Modeling
Unlike the previous propagation-based studies [34, 40, 42, 44] that
simply embed user-item graph and KG in Euclidean space, we aim
to capture the non-Euclidean latent anatomy of data. Taking the
Alibaba-iFishion dataset shown in Figure 1(b) as an example, the
degree distribution of user-item interactions reveals an underly-
ing hierarchical tree-like structure with power-law distribution.
Meanwhile, KG also exhibits hierarchical patterns [2, 6]. However,
the hierarchical property of data cannot be properly captured in
Euclidean space because of the high-distortion [12, 32]. Thus, we
embed users and items as well as entities and relations in hyperbolic
space, where the hierarchical structures can be naturally preserved.
We also design a new aggregation scheme in KG since previous
Euclidean-based methods are not feasible in hyperbolic space.

Meanwhile, we argue that previousmethods are unable to charac-
terize items properly because they do not differentiate hierarchical
relations from the rest, and only model KG relations at a coarse
granularity. Specifically, hierarchical relations in KG often carry
entities’ attributes information (e.g., brand and fabric), while non-
hierarchical relations can only indicate the relatedness between
entities (e.g., match and similar to). This motivates us to introduce
an additional constraint for hierarchical triplets in the embedding
space to improve the representational capacity and expressiveness.

3.2.1 Hyperbolic Relation-Transitive Aggregation. We first
consider the aggregation scheme of KG in hyperbolic space. As an
item 𝑖 can be involved in multiple KG triplets, its neighborhood re-
flects the relational similarity between 𝑖 and its connected entities to
a certain degree. Formally, given a target item 𝑖 in KG, aggregating
local information from 𝑖’s neighbors in KG can reveal related knowl-
edge associations for 𝑖 . Thus, we use N𝑖 = {(𝑟, 𝑡) | (𝑖, 𝑟 , 𝑡) ∈ G𝑘 } to
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Figure 3: Illustration of the proposed HAKG framework.

represent the neighborhood entities and the first-order relations of
item 𝑖 in KG, and propose to integrate the relational context from
neighborhood entities to generate the knowledge representation of
item 𝑖:

e(1)
𝑖

= 𝑓B

(
{(e(0)

𝑖
, e𝑟 , e

(0)
𝑡 ) | (𝑟, 𝑡) ∈ N𝑖 }

)
(5)

where e(1)
𝑖

∈ B𝑑 is the hyperbolic knowledge representation that
collects the contextual information of item 𝑖 from the first-order
connectivity, and 𝑓B (·) is the hyperbolic aggregation function to
extract and integrate information related to item 𝑖 from each connec-
tion (𝑖, 𝑟 , 𝑒) in hyperbolic space. Previous studies [44] have shown
that node-based aggregation cannot differentiate relational paths,
which fails to preserve the relation dependencies carried by paths.
Consequently, it is necessary to integrate relational paths into repre-
sentations. Besides, Euclidean propagation-based methods mainly
use mean aggregation to average the neighbor information. An
analog of mean aggregation in hyperbolic space is the Fréchet
mean [11], which, however, has no closed form solution. Instead,
we model relational context in the mean aggregator as:

e(1)
𝑖

= exp0
( 1
|N𝑖 |

∑︁
(𝑟,𝑡 ) ∈N𝑖

loge(0)
𝑖

(e(0)𝑡 ⊕ e𝑟 )
)

(6)

where ⊕ is the Möbius addition operation, log(·) and exp(·) are the
aforementioned exponential map and logarithmic map respectively,
and e(0)𝑡 is the ID embedding of entity 𝑡 in hyperbolic space. For
each triplet (𝑖, 𝑟 , 𝑡) in KG, we devise a relational transition e(0)𝑡 ⊕ e𝑟
by modeling the relation 𝑟 as the vector translation of e(0)𝑡 . To
avoid the complex mean operation in hyperbolic space, we first
map each relational context to the tangent space, as this is where
the Euclidean approximation performs the best (cf. Figure 3); we
then leverage the exponential map to map it back to hyperbolic
space to obtain the representation e(1)

𝑖
. As a result, the aggregator

is able to integrate relational message into target representations
in hyperbolic space, and avoid intricate hyperbolic mean pooling
via map operations. Analogously, we can obtain the representation
e(1)𝑒 of each KG entity 𝑒 ∈ E.

We further stack more aggregation layers to explore the high-
order knowledge associations for items. Technically, we recursively
formulate the knowledge representations of item 𝑖 after 𝑙 layers as:

e(𝑙)
𝑖

= exp0
( 1
|N𝑖 |

∑︁
(𝑟,𝑡 ) ∈N𝑖

loge(𝑙−1)
𝑖

(e(𝑙−1)𝑡 ⊕ e𝑟 )
)

(7)

3.2.2 Angle Constraint of Hierarchical triplets. Next, we fo-
cus on modeling the attributes information of items with hierar-
chical relations in KG. To ease our discussion, we assume that all
the relations in KG are clustered into two types (i.e., hierarchical
and non-hierarchical), and the types of relations are given a pri-
ori. In fact, the types of relations are explicitly available in most
KGs such as the three datasets used in our experiments. When
such information is not available, there are two alternative options.
One is to infer the “hierarchicalness” of a relation by widely used
Krackhardt scores criteria [2, 25]; the other is to simply assume that
item-connected entities are acted as the attributes of items, and
thus, the relations are hierarchical. Our experiments to be reported
in Section 4.3.2 show that the difference between the two options
is negligible.

As mentioned earlier, hierarchical relations can reveal the at-
tributes of items. However, above aggregation scheme cannot pre-
serve this semantic in the embedding space since it simply aggre-
gates all neighboring information into representations. To explicitly
model items’ characteristic information, we consider the hyperbolic
entailment cone [13], which is a family of convex cones that can
model the hierarchies with nested angular cones. Technically, we
use Cx to denote the cone at apex x, and define the cone width
function (i.e., half aperture1 of cone Cx) as𝜓x = arcsin(𝐾 1−∥x∥2

∥x∥ ),
where 𝐾 ∈ R is a hyperparameter (we follow [2] and set 𝐾 = 0.1).
Also, for x, y ∈ B𝑑 , we define the angle of y at x to be the angle
between the half-lines −→ox and −→xy, and denote it as ∠xy:

∠xy = arccos( ⟨x, y⟩(1 + ∥x∥2) − ∥x∥2 (1 + ∥y∥2)
∥x∥∥x − y∥

√︁
1 + ∥x∥2∥y∥2 − 2⟨x, y⟩

) (8)

The transitivity property of angular cones [13] guarantees that if y
is in Cx, Cy is also in Cx. In other words, hyperbolic entailment cone
forms a nested structure in embedding space, and the width (aka.
angle) of the cone can naturally indicate the “attribute” semantics
of embeddings, as shown in the right of Figure 2. To leverage the
expressive power of hyperbolic entailment cone geometry, we first
use H = {(𝑖, 𝑡) | (𝑖, 𝑟 , 𝑡) ∈ G𝑘 ∧ 𝑟 is hierarchical} to represent the
set of hierarchical entities in terms of hierarchical relations 𝑟 in KG,
and use Eq. (9) to define the angle constraint in embedding space:

LH =
∑︁

(𝑖,𝑡 ) ∈H max(∠e𝑡 e𝑖 −𝜓e𝑡 , 0) (9)

where e𝑡 and e𝑖 are the final knowledge representations of entity
𝑖 and entity 𝑡 respectively, defined in Eq. (15). The hinge loss on
1https://en.wikipedia.org/wiki/Cone

https://en.wikipedia.org/wiki/Cone


angle constraint suggests the angle of ∠e𝑡 e𝑖 to be smaller than the
width of entailment cone Ct, meaning that the embedding of item
e𝑖 should be “contained” inside of the embedding of entity e𝑡 in the
entailment cone geometry.

While such a constraint can ensure the attributes semantic with
geometric angles, it also limits the representational capacity. For
example, let item 𝑖 be a jeans with multiple hierarchical relations
(e.g., brand and fabric). As each of 𝑖’s connected entity defines an
entailment cone in hyperbolic space, the embedding of 𝑖 can only be
in their intersection area. Since items often have dozens of relations
in KG, this intersection area could be extremely small, leading to
possible collapse in the embedding space. Thus, we relax it by
randomly assigning a corresponding subspace for the embedding
of item 𝑖 that satisfies the following constraint:

L′
H =

∑︁
(𝑖,𝑡 ) ∈H max(∠e′𝑡 e

′
𝑖 −𝜓e′𝑡 , 0) (10)

where e′
𝑖
and e′𝑡 are the subspace embeddings of e𝑖 and e𝑡 respec-

tively by randomly masking some dimensions. In our current im-
plementation, each dimension has a probability of 0.5 to be masked
off, while this probability can be easily adjusted to cater for the ap-
plication needs. By doing so, we only enforce the angle constraint
in a subset of 𝑑 hyperbolic planes, leaving room for expressing
relatedness and other knowledge semantics of items.

3.3 Gated Aggregation with Dual embeddings
The second key component of HAKG framework is designed mainly
to capture the high-order collaborative signals of items. Existing
methods utilize KG-oriented aggregation strategies to collect the
information related to an item from its neighboring nodes. Un-
fortunately, this approach either mixes the collaborative signals
with knowledge associations such that they become indistinguish-
able [9, 42], or completely neglects the collaborative signals of
items [44, 46] that results in suboptimal item representations. Thus,
we propose to separately aggregate the two types of information
with dual item embeddings to solve the limitation: (1) Knowledge
item embeddings, which are used to characterize items with knowl-
edge information from KG, as demonstrated in Section 3.2. (2) Col-
laborative item embeddings, which encode items’ high-order col-
laborative signals such as co-occurrence relationship in user-item
graph. Neighbored with the holistic representations of items, we
further develop an information gate mechanism to adaptively dis-
till useful information for users’ aggregation. We illustrate our
approach in Figure 3.

3.3.1 Collaborative Aggregation for Items. To explicitly en-
code the collaborative signals of items, we initialize new item rep-
resentations ẽ(0) in hyperbolic space to items’ collaborative infor-
mation, which are latent in user-item interactions. We also use
the neighborhood aggregation scheme to integrate an item’s multi-
hop neighbors into its representation for capturing the high-order
connectivities. Given an item 𝑖 in the user-item graph, we use
Ñ𝑖 = {𝑢 | (𝑢, 𝑖) ∈ G𝑏 } to represent all the users who have interacted
with the item. To generate the 𝑙-th layer representation of item 𝑖 ,
we recursively integrate the collaborative information from item

𝑖’s neighbor users:

ẽ(𝑙)
𝑖

= exp0
( 1
|Ñ𝑖 |

∑︁
(𝑢) ∈Ñ𝑖

log0 (e
(𝑙−1)
𝑢 )

)
(11)

where ẽ(𝑙)
𝑖

is the collaborative embedding of item 𝑖 after 𝑙 layers,
log(·) and exp(·) are the exponential map and logarithmic map that
are used to map between Euclidean space and hyperbolic space,
and e(𝑙−1)𝑢 is the hyperbolic embedding of user 𝑢 after 𝑙 − 1 layers
in hyperbolic space, which we will detail below.

3.3.2 Information Gated Aggregation for Users. To distill use-
ful information from neighbor items, we design a gated module
which is able to generate discriminative signals for users’ aggre-
gation. Specifically, inspired by the design of GRU [10] that learns
gating signals to control the update of hidden states, we propose
to learn a fusion gate to adaptively control the combination of
two different types of semantic item representations. For an item 𝑖 ,
given its knowledge representation e(𝑙)

𝑖
and collaborative represen-

tation ẽ(𝑙)
𝑖

in the 𝑙-th layer, we balance the contributions of the two
different types of information with a learnable gating fusion unit:

g(𝑙)
𝑖

= 𝜎 (𝑊1 log0 (e
(𝑙)
𝑖

) +𝑊2 log0 (ẽ
(𝑙)
𝑖

)) (12)

ê(𝑙)
𝑖

= exp0
(
g(𝑙)
𝑖

· e(𝑙)
𝑖

+ (1 − g(𝑙)
𝑖

) · ẽ(𝑙)
𝑖

)
(13)

where𝑊1,𝑊2 ∈ R𝑑×𝑑 are learnable transformation parameters,
and 𝜎 (·) is the Sigmoid function. Notation g(𝑙)

𝑖
∈ R𝑑 denotes the

learned gate signals to balance the contributions of collaborative
signals and knowledge association of item 𝑖 , as shown in Figure 3.
A high value of g(𝑙)

𝑖
indicates that the users interact with item 𝑖

mainly because of the attributes of item 𝑖 (e.g., 𝑖 is the jeans), rather
than the behavior similarities among items (e.g., the jeans 𝑖 liked
by user 𝑢 is collaboratively relevant to other bottoms that user 𝑢
likes). Let N𝑢 = {𝑖 | (𝑢, 𝑖) ∈ G𝑏 } denote the set of items that user 𝑢
has interacted with. Then, we can formulate the representation of
user 𝑢 with distilled information:

e(𝑙)𝑢 = exp0
( 1
|N𝑢 |

∑︁
(𝑖) ∈N𝑢

log0 (ê
(𝑙−1)
𝑖

)
)

(14)

3.4 Model Prediction
After 𝐿 layers, we obtain the representations of item 𝑖 and user 𝑢 at
different layers, and then sum them up as the final representation:

e𝑖 =
∑︁𝐿

𝑙=0 e
(𝑙)
𝑖
, ẽ𝑖 =

∑︁𝐿

𝑙=0 ẽ
(𝑙)
𝑖
, e𝑢 =

∑︁𝐿

𝑙=0 e
(𝑙)
𝑢 (15)

By doing so, the complementary information of collaboration and
knowledge is separately encoded in the final representations. Dif-
ferent from previous work, we employ the consine similarity to
separately predict how likely the user 𝑢𝑖 would adopt an item 𝑖

from item’ behavior and attributes aspects, and then adopt the sum
of the two predictions as the final prediction score 𝑦𝑢𝑖 :

𝑦𝑢𝑖 = cos(𝑒𝑢 , 𝑒𝑖 ) + cos(𝑒𝑢 , 𝑒𝑖 ) (16)

3.5 Model Optimization
We opt for the contrastive loss [31] to optimize HAKG. Compared
with widely used BPR loss [33], it alleviates the convergence prob-
lem by introducing more negative samples and penalizing unin-
formative ones. Specifically, for each interaction (𝑢, 𝑖) captured



by user-item graph (i.e., positive pair), we randomly sample |M𝑢 |
unobserved items to form the negative pairs together with user 𝑢,
denoted as M𝑢 , and maximize the similarity between the positive
pair and meanwhile minimize the similarity of negative pairs with
a margin𝑚:

L =
∑︁

(𝑢,𝑖) ∈D
[
2 − 𝑦𝑢𝑖 +

1
|M𝑢 |

∑︁
𝑗 ∈M𝑢

(𝑦𝑢 𝑗 −𝑚)+
]

(17)

where D is the interaction data, and (·)+ is the ramp function
max(0, ·). By combing the prediction loss and angle loss, we mini-
mize the following objective function to learn the model parameters:

L = L + 𝜆L′
H (18)

where 𝜆 is a hyperparameter to control the weight of angle loss
defined in Eq. (9).

3.6 Model Analysis
3.6.1 Model Size. Previous studies [44] have confirmed that dis-
carding the nonlinear feature transformations not only yields better
performance but also reduces redundant parameters. Hence, in the
aggregation schemes of HAKG, we discard the nonlinear activation
function and the learnable transformation metrics. The model pa-
rameters of HAKG consist of (1) ID embedding of users, items, KG
entities and relations {e(0)𝑢 , ẽ(0)

𝑖
, e(0)𝑒 , e𝑟 |𝑢 ∈ U, 𝑖 ∈ I, 𝑒 ∈ E, 𝑟 ∈

R}; and (2) transformation parameters𝑊1,𝑊2 for information gated
aggregation used in Eq. (12).

3.6.2 Time Complexity. The time cost of HAKG mainly comes
from the aggregation schemes. In the aggregations over KG, the
computational complexity of updating knowledge item embed-
dings in hyperbolic space is𝑂 ( |G𝑘 |𝑑𝐿), where |G𝑘 |, 𝑑 , and 𝐿 denote
the number of KG triplets, the embeddings size, and the number
of layers. In the aggregation over user-item graph, the compu-
tational complexity of collaborative item embeddings and user
embeddings is 𝑂 ( |G𝑏 |𝑑𝐿), where |G𝑏 | is the number of interac-
tions. For the hierarchy-aware modeling, the cost of angle con-
straint is 𝑂 ( |I|), where |I | is the number of items. Besides, the
cost of mappings between Euclidean space and hyperbolic space
is 𝑂 ( |G𝑏 | + |G𝑘 |). Thus, the time complexity of the whole training
epoch is𝑂 ( |G𝑘 |𝑑𝐿+ |G𝑏 |𝑑𝐿). Under the same experimental settings
(i.e., same embeddings size), HAKG has comparable complexity to
KGAT, CKAN, and KGIN, three representative propagation-based
methods.

4 EXPERIMENTS
We present empirical results to demonstrate the effectiveness of
our proposed HAKG framework. The experiments are designed to
answer the following three research questions:
• RQ1: How does HAKG perform, compared with the state-of-the-
art knowledge-aware recommendation models?

• RQ2: How do different components of HAKG (i.e., hierarchical
modeling, gated propagation, dual embeddings, and the depth of
propagation layers) affect the performance of HAKG?

• RQ3: Can HAKG provide meaningful insights on the hierarchical
modelling both from structures and relations?

Table 1: Statistics of the datasets used in our experiments.
Alibaba-iFashion Yelp2018 Last-FM

User-Item
Interaction

#Users 114,737 45,919 23,566
#Items 30,040 45,538 48,123
#Interactions 1,781,093 1,185,068 3,034,796

Knowledge
Graph

#Entities 59,156 90,961 58,266
#H-Relations 50 25 5
#NH-Relations 1 17 4
#Triplets 279,155 1,853,704 464,567

4.1 Experimental Settings
4.1.1 Dataset Description. We utilize three benchmark datasets
to evaluate the performance of HAKG: Alibaba-iFashion, Yelp2018,
and Last-FM. These three datasets are widely adopted in the state-
of-the-art methods [29, 42, 44], and vary in terms of domain, size,
and sparsity.
• Alibaba-iFashion [8]. This is a fashion outfit dataset collected
from Alibaba online shopping system, where the outfits (e.g.,
shoes, tops) are viewed as the items. We follow the work [44] to
extract the attributes as the KG data.

• Yelp20182. This is a local business rating dataset collected by
Yelp. We use the 2018 edition dataset of the Yelp challenge, where
local businesses like restaurants and bars are viewed as the items.

• Last-FM3. This is a music listening dataset collected from Last.fm
music website, where the tracks are viewed as the items. We take
the subset of the dataset where the timestamp is from Jan, 2015
to June, 2015.
In order to ensure the data quality, we adopt the 10-core set-

ting [42], i.e., retaining users and items with at least ten interac-
tions and filtering out KG entities involved in less than ten triplets.
We use the same data partition with previous studies [42, 44] for
comparison (i.e., the proportions of training, validation, and testing
set are 80%, 10%, and 10% for all datasets). Besides, we categorize
KG relations into hierarchical and non-hierarchical (denoted as
H-Relations and NH-Relations). Table 1 summarizes the overall
statistics of the three datasets used in our experiments.

4.1.2 Evaluation Metrics. We adopt the all-ranking strategy [26,
44] to evaluate the performance. Specifically, we treat all the items
that user has not adopted before as negative, and treat the relevant
items in the testing set as positive. To evaluate the effectiveness
of top-𝐾 recommendation, we adopt two widely-used evaluation
protocols [16, 26] recall@𝐾 and ndcg@𝐾 , where 𝐾 = 20 by default.
We report the average metrics for all the users in the testing set.

4.1.3 Baselines. In order to demonstrate the effectiveness of
HAKG, we compare it with the state-of-the-art methods, including
KG-free method (MF), embedding-based methods (CKE and UGRec),
propagation-based methods (KGNN-LS, KGAT, CKAN, and KGIN),
and hyperbolic-based methods (Hyper-Know and LKGR):
• MF [33] is a benchmark factorization model, which only consid-
ers the user-item interactions, leaving KG untouched. Here, we
use ID embeddings of users and items to perform the prediction.

• CKE [49] is a representative embedding method, which utilizes
TransR [27] to learn item structural representations from KG,
and feeds learned embeddings to MF in an integrated framework.

2https://www.yelp.com/dataset
3https://grouplens.org/datasets/hetrec-2011

https://www.yelp.com/dataset
https://grouplens.org/datasets/hetrec-2011


• UGRec [51] is a state-of-the-art embedding method that models
directed and undirected relations from KG and co-occurrence
behavior data. While such undirected relations are inaccessible
for other methods and unavailable for the three datasets, we add
the connectivities between items which are co-interacted by the
same user, and treat them as the co-occurrence relationships.

• KGNN-LS [40] is a propagation-based model, which transforms
KG into user-specific graphs, and then considers user preference
on KG relations and label smoothness in the information aggrega-
tion phase, so as to generate personalized item representations.

• KGAT [42] is a propagation-based recommender. It applies a
unified relation-aware attentive aggregation mechanism in UKG
to generate user and item representations.

• CKAN [46] is based on KGNN-LS, which utilizes different aggre-
gation schemes on the user-item graph and KG respectively, to
encode knowledge association and collaborative signals.

• KGIN [44] is a state-of-the-art propagation-based method, which
models user interaction behaviors with latent intents, and pro-
poses a relation-aware information aggregation scheme to cap-
ture long-range connectivity in KG.

• Hyper-Know [29] is a state-of-the-art hyperbolic method that
embeds KG in hyperbolic space. An adaptive regularization mech-
anism is also proposed to adaptively regularize items and their
neighboring representations.

• LKGR [9] is a state-of-the-art hyperbolic GNN method with
Lorentz model, which employs different information propaga-
tion strategies in the hyperbolic space to encode heterogeneous
information from historical interaction and KG.

4.1.4 Parameter Settings. We implement HAKG in Pytorch,
and will release our implementations (codes, parameter settings,
and training logs) to facilitate reproducibility. For a fair compar-
ison, we fix the size of ID embeddings as 64, the optimizer as
Adam [22], and the batch size as 4096 for all methods. We ap-
ply a grid search for hyperparameters: the learning rate is tuned
amongst {10−4, 10−3, 10−2}, the weight of angle loss 𝜆 is searched in
{10−5, 10−4, · · · , 10−2, 10−1}, and tune the GNN layers 𝐿 in {1, 2, 3}
for propagation-based methods. For the number of negative sam-
ples |M𝑢 | per user and the margin𝑚 of contrastive loss, we set
to {200, 400, 400} and {0.6, 0.8, 0.7} for Alibaba-iFashion, Yelp2018,
and Last-FM datasets, respectively. Besides, since optimization in
hyperbolic space is practically challenging, we instead define all
parameters in the tangent space at the origin, optimize embeddings
using standard Euclidean techniques, and use the exponential map
to recover the hyperbolic parameters [6]. The parameters for all
baseline methods are initialized as those in their original papers,
and are carefully tuned to achieve optimal performance. Specifically,
for KGAT, we set the depth to three with the hidden size {64, 32, 16},
and use the pre-trained ID embeddings of MF as initialization; for
UGRec, we set the margin value for hinge loss to 1.5; for CKAN,
KGNN-LS, and LKGR, we set the size of neighborhood to 16; for
KGIN, we fix the number of user intents to 4; and for Hyper-know,
we set the curvature to -1.

4.2 Performance Comparison (RQ1)
We begin with the performance comparison w.r.t. recall@20 and
ndcg@20. The experimental results are reported in Table 2, where

%Imp. denotes the relative improvement of the best performing
method (starred) over the strongest baselines (underlined). We have
the following observations:
• HAKG consistently yields the best performance on all the datasets.
In particular, it achieves significant improvement even over the
strongest baselines w.r.t. ndcg@20 by 15.43%, 8.21%, and 9.79%
in Alibaba-iFashion, Yelp2018, and Last-FM, respectively. We
attribute these improvement to the hierarchical modeling and
holistic information propagation of HAKG: (1) By embedding
user-item interactions and KG in hyperbolic space and introduc-
ing auxiliary angle constraint for hierarchical relations, HAKG
is able to capture the underlying hierarchical structure of data,
and better characterize items in the embedding space. In contrast,
all baselines ignore the importance of hierarchical relations, and
simply use KG-oriented aggregation schemes to capture KG in-
formation. (2) Benefited from our gated aggregation with dual
item embeddings, HAKG can explicitly preserve the holistic se-
mantics of items to better encode user behavior patterns, while
other propagation-based baselines (e.g., CKAN, KGIN, and LKGR)
fail to capture the high-order collaborative signals of items.

• Jointly analyzing the performance of HAKG across the three
datasets, we find that the improvement on Alibaba-iFashion
dataset is more significant than that on other datasets. One pos-
sible reason is that the size of KG on Alibaba-iFashion is much
smaller than that on Yelp2018 and Last-FM, and most of the re-
lations are hierarchical, thus it is more important to i) preserve
the valuable attribute information of items, and ii) capture the
crucial collaborative signals of items for learning user prefer-
ence. This confirms that HAKG can better leverage the user-item
interactions and KG for comprehensive item representations.

• The side information of KG is important for recommendations.
Compared with vanilla MF, CKE outperforms MF by simply in-
corporating KG embeddings into MF. The results are consistent
with prior studies [44].

• Propagation-based methods outperform embedding methods on
most datasets, indicating the importance of modeling long-range
connectivities. We attribute their success to the information ag-
gregation schemes. Specifically, recursively collecting informa-
tion from neighboring nodes is able to capture the high-order
latent semantics for high-quality representation.

• Hyperbolic-based methods (i.e., Hyper-know and LKGR) achieve
competitive performance compared with Euclidean methods.
However, they still slightly underperform state-of-the-art prop-
agation methods (i.e., KGIN). This is because they fail to fully
exploit the expressive power of hyperbolic space for compre-
hensive representations. Specifically, Hyper-know embeds KG in
hyperbolic space and directly optimizes the entities’ embeddings
with triplets, without taking the high-order knowledge associa-
tions into consideration. LKGR designs an Euclidean attention
mechanism for hyperbolic entities’ aggregation, which cannot
preserve the local similarities of embeddings in hyperbolic space.

4.3 Study of HAKG (RQ2)
As the hierarchicalmodeling is at the core of HAKG,we also conduct
ablation studies to investigate the effectiveness. Specifically, how
the presence of angle loss and gated aggregation, the hyperbolic



Table 2: Overall performance comparison.
Alibaba-iFashion Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

MF 0.1095 0.0670 0.0627 0.0413 0.0724 0.0617
CKE 0.1103 0.0676 0.0653 0.0423 0.0732 0.0630
UGRec 0.1006 0.0621 0.0651 0.0419 0.0730 0.0624

KGNN-LS 0.1039 0.0557 0.0671 0.0422 0.0880 0.0642
KGAT 0.1030 0.0627 0.0705 0.0463 0.0873 0.0744
CKAN 0.0970 0.0509 0.0646 0.0441 0.0812 0.0660
KGIN 0.1147 0.0716 0.0698 0.0451 0.0978 0.0848

Hyper-know 0.1057 0.0648 0.0685 0.0447 0.0948 0.0812
LKGR 0.1033 0.0612 0.0679 0.0438 0.0883 0.0675
HAKG 0.1319∗ 0.0848∗ 0.0778∗ 0.0501∗ 0.1008∗ 0.0931∗

%Imp. 14.99% 15.43% 10.35% 8.21% 3.07% 9.79%

Table 3: Impact of angle loss and gated aggregation.
Alibaba-iFashion Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

w/o A&G 0.1218 0.0799 0.0737 0.0458 0.0946 0.0872
w/o A 0.1272 0.0825 0.0763 0.0485 0.0963 0.0907
w/o G 0.1253 0.0817 0.0758 0.0471 0.0959 0.0894

Table 4: Impact of hierarchical modeling.
Alibaba-iFashion Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

Euclidean 0.1231 0.0798 0.0756 0.0484 0.0981 0.0916
PH-Relation 0.1317 0.0845 0.0772 0.0494 0.1001 0.0928
AH-Relation 0.1306 0.0837 0.0771 0.0492 0.0995 0.0924

embeddings and hierarchical relations, the dual item embeddings,
and the number of propagation layers affect our model.

4.3.1 Impact of Angle Loss & Gated Aggregation. We first
verify the effectiveness of the angle loss and gated aggregation. To
this end, three variants of HAKG are constructed by (1) discard-
ing the angle constraint and gated aggregation scheme, termed as
HAKGw/o A&G, (2) removing the angle loss for hierarhical triplets,
called HAKGw/o A, and (3) replacing the gated aggregation with
simple point-wise addition, named HAKGw/o G. We summarize the
results in Table 3.

Compared with the complete model of HAKG in Table 2, the
absence of the angle constraint and gated aggregation dramati-
cally degrades the performance, indicating the necessity of mod-
eling hierarchical relation and collaborative signals. Specifically,
HAKGw/o A&G directly fuses the dual item embeddings for user
aggregation, and ignores the hierarchical relations in KG, and thus,
it fails to profile item properly and propagate comprehensive in-
formation for learning use. Analogously, leaving the hierarchical
relations unexplored (i.e., HAKGw/o A) also downgrades the perfor-
mance. Although HAKGw/o G retains the modeling of hierarchical
relations for characterizing items, it is unable to provide discrim-
inative signals for identifying user behavior patterns, incurring
suboptimal user representations.

4.3.2 Impact of Hierarchical Modeling. We then evaluate the
influence of hierarchical modeling by considering both hierarchical
structure and relations. To be more specific, we propose three alter-
native models, which are modified by: i) replacing all hyperbolic
operations with Euclidean alternatives and retaining the computa-
tion logic of HAKG (called Euclidean), ii) predicting the hierarchical
types of relations bywidely used Krackhardt scores criteria [2, 25] in

Table 5: Impact of dual item embedding.
Alibaba-iFashion Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

Single 0.1186 0.0755 0.0769 0.0492 0.0989 0.0904
Dual 0.1319 0.0847 0.0778 0.0501 0.1008 0.0931

Table 6: Impact of the number of layers 𝐿.
Alibaba-iFashion Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

HAKG-1 0.1313 0.0845 0.0766 0.0489 0.0972 0.0897
HAKG-2 0.1306 0.0831 0.0778 0.0501 0.0988 0.0913
HAKG-3 0.1319 0.0848 0.0774 0.0498 0.1008 0.0931

order to compensate for the unavailability of relation types (named
PH-Relation), and iii) simply assuming that item connected rela-
tions are the hierarchical relations and use them to characterize
items (termed as AH-Relation). The results of three alternative
models are listed in Table 4. We observe that:
• The performance degrades for all three datasets when we remove
the hyperbolic geometry for HAKG, meaning that modeling user-
item interactions and KG in hyperbolic space could enhance the
model’s expressive power and yield better representations for
recommendation.

• When the hierarchical types of KG relations are not explicitly
available, the performance of alternative approaches (i.e., PH-
Relation and AH-Relation) approximates to that of original model
with ground-truth hierarchical relations, which empirically shows
that our model is robust for different datatsets even when the
KG’s hierarchical information is not available.

4.3.3 Impact of Dual Item Embeddings. To analyze the effec-
tiveness of the design of dual item embeddings, we compare it with
the conventional single item embeddings, which removes the ad-
ditional collaborative item embeddings and directly leverages the
knowledge embeddings of items in Eq. (7) for users’ aggregation.
We compare their performance on three datasets, and present the
results in Table 5. We have the following findings:
• Discarding the collaborative item embeddings would consistently
degrade the performance cross three datasets. This is because
if we model items with single representations, they inevitably
suffer from information loss when performing the neighbor ag-
gregation. In other words, since items are inherently exhibit two
kinds of semantics (collaboration and knowledge), it is unlikely
to simultaneously incorporate all the high-order information of
items with single embeddings.

• The performance of single item embeddings decrease more dra-
matically on Aliabab-iFashion dataset, compared with it on other
two datasets. One possible reason is that the amount of auxil-
iary information provided by KG is the smallest, which makes
it more important to capture the collaborative signals of items
with additional collaborative item embeddings.

4.3.4 Impact of Model Depth. We also explore the impact of the
number of aggregation layers. Stacking more layers is able to collect
the high-order collaborative signals and knowledge associations
for better capturing of the latent user behavior patterns but at a
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Figure 4: (1) Distance from node (user or item) embedding
to origin vs node popularity. (2) Hyperbolic embeddings of
entities in KG.

higher cost. Here, we search 𝐿 in the range of {1, 2, 3}, and report
the results in Table 6. We have the following observations:
• Generally speaking, increasing the aggregation layers can en-
hance the performance, especially for Last-FM datasets. We at-
tribute such improvement to two reasons: (1) Gathering more
relevant collaborative signals and knowledge association could
provide informative semantics for learning high-quality repre-
sentations, deepening the understanding of user interest. (2) The
dual item embeddings explicitly encode both items’ behavior and
attribute similarities, which profile item at a finer-grained way
than single item embeddings used in other methods.

• It is worth mentioning that our model is less sensitive to the
model depth, compared with other propagation-based meth-
ods [42, 44, 46]. Specifically, HAKG could achieve competitive
performance even when 𝐿 = 1. This is because our separate
aggregation schemes and gate mechanism can directly capture
useful patterns from both user-item interactions and KG, while
the KG-oriented aggregation schemes need more layers to encode
the latent semantics from the mixed and obscure information.

4.4 Hierarchies Visualization (RQ3)
In this section, we visualize the learned embeddings to give an
intuitive impression of our hierarchical modeling. Specifically, we
first train HAKG with two-dimensional embeddings on the Alibaba-
iFashion dataset, and separately analyze the hierarchies that ex-
hibit in G𝑏 and G𝑘 : (1) For the underlying hierarchical structure in
interactions, we plot the distance from the origin to hyperbolic em-
beddings (e.g., user embeddings or collaborative item embeddings)
versus its popularity. (2) For the hierarchical relations in KG, we
select representative entities and demonstrate their connectivities
with triplets. As shown in Figure 4, we find that:
• The left of Figure 4 indicates a clear exponential trend that dis-
tance to the origin increases exponentially for less popular items,
which is consistent with the degree distribution of interactions
in Figure 1(b). This confirms that our model takes advantage of
the exponentially growing volume in hyperbolic space, and uses
it to naturally represent the users and items.

• The connectivities in the right of Figure 4 show clear hierarchical
relations between entities. For instance, the entity bottoms is cat-
egorized into pants, jeans, and skirt, and the attribute information
of items (e.g., T-shirt is a type of tops) can be naturally preserved
with the hierarchical relations. Thus, HAKG is able to capture

the items’ attribute semantics in the embedding space, and yield
better item representations for learning user preferences.

5 RELATEDWORK
Existing recommendation systems incorporated with KG informa-
tion can be mainly categorized into three clusters, viz., embedding-
based methods, path-based methods, and propagation-based methods.
We briefly review them in the following.
• Embedding-based methods [1, 4, 19, 37, 39, 49, 51] directly em-
bed entities and relations in KG via knowledge graph embedding
(KGE)methods (e.g.,TransR [27] and TransD [20]) to serve as item
embedding in recommendation. For example, CKE [49] utilizes
TransR to learn item structural representations from knowledge
graph, and feeds the learned embeddings to matrix factorization
(MF) [33] in an integrated framework. Hyper-Know [29] embeds
knowledge graph in Poincaré Ball and then designs an adap-
tive regularization mechanism to regularize item representations.
Although these methods benefit from the simplicity and expres-
siveness of KGE, they fail to capture high-order dependence of
user-item relations for user preference learning.

• Path-based methods [5, 17, 21, 30, 45, 52] aim to find semantic
paths in KG, and then connect items and users to discover long-
range connectivity for recommendation. Those paths can be used
to predict user preference with recurrent neural networks [45, 52]
or attention mechanism [17]. For instance, KPRN [45] captures
the sequential dependence within a knowledge-aware path to
infer the underlying high-order relation of a user-item inter-
action. However, defining proper meta-path patterns requires
domain knowledge, which can be extremely time-consuming
for complicated KG with various types of entities and relations.
Moreover, domain-specific meta-paths inevitably lead to poor
generalization for different recommendation scenarios [21, 28].

• Propagation-basedmethods [34, 38, 40–42, 44, 46] are inspired
by the recent advances of graph neural networks (GNNs) [14, 15,
23, 35, 43, 47], which iteratively perform information aggregation
mechanism from neighborhood nodes. As such, these methods
are able to discover high-order relations in an end-to-end fashion.
For example, KGAT [42] creates unified knowledge graph (UKG)
to combine user-item interactions and KG, and then performs
knowledge-aware attention on it. CKAN [46] employs the het-
erogeneous propagation strategy to encode the user preference
with knowledge associations to further improve the performance.
Most recently, KGIN [44] considers a new aggregation mecha-
nism to integrate long-range relation paths, and disentangles
user preference with intents for better interpretability.
How to leverage hyperbolic geometry and hyperbolic embed-

dings in recommender systems has become a recent trend [9, 29,
36, 50]. For instance, HyperML [36] is the first work to leverage
hyperbolic geometry for recommendation through metric learning
approach; and LKGR [9] proposes a hyperbolic GNN method for
knowledge-aware recommendation. However, to the best of our
knowledge, none of existing methods considers modeling KG re-
lations at a finer-grained level of hierarchies. Moreover, they fail
to preserve the crucial high-order collaborative signals of items.
Our work differs from them in hierarchical modeling and aggre-
gation, i.e., we aim at addressing the importance of hierarchical



relations for profiling items, and explicitly propagate two kinds of
information with dual item embeddings for better identifying user
behaviors.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a new knowledge-aware recommendation
model, called HAKG, which is able to capture the underlying hierar-
chical structure of data in hyperbolic space, and characterize items
with hierarchical relations in KG. Besides, HAKG employs a dual
item embeddings design to separately encode items’ collaborative
signals and knowledge associations, and develops a gated mecha-
nism to control discriminative signals towards the users’ behavior
patterns. Extensive experiments conducted on three real-world
benchmark datasets demonstrate the superiority of HAKG. In the
near future, we plan to investigate the evolving process of user
interests with KG, to dynamically model the users’ activated core
interests with the long-term behavior sequences and meanwhile
examine all aggregation and propagation operations (e.g., addition
and multiplication) in hyperbolic space to fully exploit the power
of hyperbolic geometry.
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