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Abstract: Vehicle routing problem (VRP), a combinatorial problem, deals with 
the vehicle’s capacity visiting a particular set of nodes while its variants 
attempt to fit real-world scenarios. Our study aims to minimise total travelling 
time, total distance, and the number of vehicles under time-dependent and time 
windows constraints (TDVRPTW). The harmony search algorithm (HSA) 
focuses on the harmony memory and pitch adjustment mechanism for new 
solution construction. Several local search operators and a roulette wheel for 
the performance improvement were verified via 56 Solomon’s VRP instances 
by adding a speed matrix. The performance comparison with a genetic 
algorithm (GA) was completed with the same number of parameters and ran in 
the same computer specification to justify its performance. The results show 
that HSA can outperform the GA in some instances. The research outcomes 
suggest that HSA can solve TDVRPTW with comparable results to other 
commonly used metaheuristic approaches. 

Keywords: vehicle routing problem; VRP; time window; harmony search 
algorithm; HSA; genetic algorithm; metaheuristic. 
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1 Introduction 

Vehicle routing problem (VRP) extending the travelling salesman problem (TSP) is a 
combinatorial optimisation problem, also known as vehicle scheduling, truck dispatching, 
or delivery problem, where a route is defined from a subset of nodes (customers), and 
each node has a demand. Most research assumes that the travel cost and travel time 
between locations are time-independent. However, this assumption is often not practical 
in the real world since traffic conditions are dynamic, resulting in significant variations in 
speed and travel times for particular routes. Furthermore, the demand in a real-world case 
scenario represents each customer’s requested amount of the delivery product, which 
needs to be fulfilled. Every node or customer can only be visited at most once. The most 
challenging part of VRP is that the number of vehicles to use must be calculated, while 
vehicle capacity and total travelling time (TT) cannot exceed the limit. 

Time-dependent vehicle routing problem (TDVRP) is a variant of VRP which tries to 
define a sequence of nodes while considering time dependencies. Time dependency 
means that the TT from node i to node j depends on the starting time on  
node i. Like in a real-world scenario, a certain amount of time is required to travel from 
one node (place) to the next, and traffic congestion differs from one period to another. 
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For example, peak hours require longer TTs because the vehicle speed is slower due to 
heavy traffic. 

Time-dependent vehicle routing problem with time windows (TDVRPTW) is an 
extension of TDVRP in which time windows are considered. The time windows can be 
defined as the time duration between each node’s opening and closing times. It is also 
necessary to consider the service time of each node in the time window constraint. Since 
each customer (node) has different opening and closing times, assigning the route for 
each vehicle becomes a more challenging task. If a vehicle arrives at a node before the 
opening time, such vehicle must wait (this is defined as the waiting time) until the node 
opens, which translates into a lower chance to visit another node due to the time limit 
budget (the latest time the vehicle can return to the depot). Since TDVRPTW tries to 
simulate a real-world problem as closely as possible, this has been applied when solving 
routing and transportation problems such as e-commerce (Kumar and Pannerselvam, 
2015), pickup and delivery problems, and logistics and transportation problems. 

The remainder of the paper is organised as follows. Section 2 briefly reviews VRP, 
vehicle routing problem with time windows (VRPTW), TDVRP and TDVRPTW. In 
Section 3, the mathematical model of TDVRPTW is defined, and then the proposed 
harmony search algorithm (HSA) and genetic algorithm (GA) is introduced in detail. The 
test instances and the computational results are discussed in Section 4, and finally, the 
concluding remarks are summarised in Section 5. 

2 Literature review 

VRP was introduced by (Dantzig and Ramser, 1959) with the name truck dispatching 
problem (TDP). The idea from TDP is to determine the shortest route that visits each 
node once for delivering gasoline to a service station. VRP is an NP-hard problem which 
means that when one or more of the limitations increases (for example, the number of 
customers to be served increases), the problem cannot be solved in polynomial time 
(Lenstra and Kan, 1981). 

The classical VRP aims to minimise the total route; however, different objectives are 
on maximising customer satisfaction (Yang et al., 2015), the vehicle utilisation rate 
(Zhang and Pavone, 2016) and delivery rate (Szczepański et al., 2017). More recent 
surveys include Koç et al. (2016), Masutti and de Castro (2017), Adewumi and Adeleke 
(2018), Gansterer and Hartl (2018, 2020), Gunawan et al. (2021) and Wang and Wasil 
(2021). Some surveyed from the heuristic and metaheuristic methodologies, from the 
benchmark datasets, while others reviewed various constraints and objectives of the VRP. 

2.1 Vehicle routing problem with time windows 

When a time window is imposed on each customer, a variant called VRPTW can be 
obtained and often encountered when working with transportation problems. The main 
difference emphasised on the time windows constraint means that each node (each node 
represents a customer to be served) has a specific time interval (defined as the time 
difference between the opening and closing time) in which it has to be served. The time 
interval includes an opening, closing, and service time. Alvarenga et al. (2007) proposed 
a GA and a set of partitioning formulations to solve VRPTW with minimising total travel 



   

 

   

   
 

   

   

 

   

   4 Y-C. Liang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

distance as the primary objective, and the result showed that the algorithm outperforms 
all previously known methods. Qi et al. (2008) applied tabu search (TS) with three 
neighbourhood operators: all-exchange, all-two-opt, and all-cross exchange to minimise 
the number of routes and the total TT. The algorithm was tested on the 56 Solomon 
benchmark instances and performed well with an efficient computational time. 

More recent research was developed with two types of time windows. With a soft 
time-window (VRPSTW), Iqbal et al. (2015) presented a swarm-based artificial bee 
colony (ABC) algorithm to solve for the multi-objective with penalty cost. On the other 
hand, with a hard time window (VRPHTW), Zhang et al. (2017) dealt with delivering 
consumer goods and agricultural products in the logistics industry and applied a hybrid 
algorithm, using TS and the ABC algorithm. 

2.2 Time-dependent vehicle routing problem 

The generated route can be applied to a real-world problem by adding time dependencies. 
Time dependencies mean that the travel time from i to j depends on the departure time 
from i. Due to all these external reasons, time dependencies are applied in the real world, 
and the TT from node i to node j becomes stochastic. Alinaghian and Naderipour (2016) 
have comprehensively studied factors influential in fuel consumption in time-dependent 
vehicle routing. 

Malandraki and Daskin (1992) first formulated TDVRP to handle small problems 
(10–25 instances) in 2–3 different time zones with a GRASP metaheuristic where the TTs 
inside the network are given. Another important heuristic algorithm is ant colony 
optimisation (ACO), which Donati (2008) applied to solve a TDVRP with 100 customers 
and three time zones. In addition, local improvement operators such as two-opt and  
cross-exchange was applied to yield efficient computational results. Further research 
about TDVRP was done by Figliozzi (2008), who introduced the constructive method 
where a route is built by adding the new node that adds the least cost in each iteration. 
The result shows that the method built by this constructive method can handle both soft 
and hard time windows. 

Finally, Norouzi et al. (2015) proposed a simulated annealing (SA) algorithm for 
solving TDVRP. The result shows that this approach successfully improved the results by 
11% when tested using Solomon’s benchmark instances. Franceschetti et al. (2017) dealt 
with the vehicles facing traffic congestion which, at peak periods, significantly restricts 
vehicle speeds and leads to increased emissions, and proposed an adaptive large 
neighbourhood search for the time-dependent pollution-routing problem (TDPRP). 
Huang et al. (2017) explicitly considered path selection in the road network and 
formulated the TDVRP-PF models under deterministic and stochastic traffic conditions. 
Lera-Romero and Miranda-Bront (2018) studied the time-dependent elementary shortest 
path problem with resource constraints (TDESPPRC), solved by two exact methods. 

2.3 Time-dependent vehicle routing problem with time windows 

Ichoua et al. (2003) assumed that the violation of the time windows constraints is 
acceptable and applied a TS algorithm to minimise TT and penalties. The authors 
constructed three different speed scenarios that guaranteed FIFO property under each 
scenario, the travel speeds in the morning and evening rush hours were obtained by 
dividing the travel speeds in the middle of the day by a factor . Yildirim and Çatay 
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(2009) applied ACO and compared the performance of the methods for both the 
dependent and time-independent VRPTW. The objective of the time-independent case is 
to minimise the total distance, while the objective of the time-dependent case is to 
minimise the total travel time. 

Figliozzi (2008) proposed an iterated route construction and improvement (IRCI), 
consisting of two different stages, route construction, and route improvement, to solve 
both soft and hard time windows associated with an auxiliary route building iterated 
during the construction heuristic. This proposed method obtained a comparable solution 
and required fast CPU times in problems with soft and hard time windows. Figliozzi 
(2012) continued his previous work in TDVRPTW. In this research, four different speed 
scenarios with five-time periods were constructed to deal with 56 Solomon’s benchmark 
instances, in which each scenario had three different travelling speeds, which were 25%, 
50% and 75% faster, respectively, compared to Solomon’s original speeds. 

A recent study by Ichoua et al. (2003) considered both time-dependent and time 
windows in their research. A GA was proposed to solve the benchmark instances. The 
proposed method was compared with the previous research (Kumar and Pannerselvam, 
2015) that used the same speed matrix. The result shows better cumulative total distance 
travelled from 56 Solomon benchmark instances; however, the TT and NV show that the 
previous studies perform better. Liu et al. (2020) minimised the sum of the fixed costs of 
the vehicle used and the costs of drivers, fuel consumption, and carbon emission with an 
improved ant colony algorithm. 

3 Research methodology 

This section will first introduce the mathematical model of the TDVRPTW and then 
explain how HSA and GA solved the TDVRPTW in detail. 

3.1 TDVRPTW mathematical model 

The mathematical TDVRPTW model is adapted from previous research (Donati, 2008), 
and the notations used in the formulation are summarised as below: 

,
k
i jx  equal to 1 if travel occurs from node i to node j in vehicle k, otherwise , 0k

i jx  

K a set of available vehicles 

V a set of vertexes 

k
ijd  the travel distance from node i to j by vehicle k 

qmax the vehicle capacity 

qi demand in node i 

C a set of vertices that serves n customers 

Cd cost per unit distance travelled 

Ct cost per unit route duration 

[ei, li] service time window of node i 
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gi service time in node i 

ti,j TT from node i to node j 

yik service start time node i by vehicle k. 

TDVRPTW’s primary objective (1) is to minimise the number of vehicles, while the 
secondary objective is to minimise the total TT or distance, as shown in equation (2). 
From equation (3), vehicle capacity cannot be exceeded, while equation (4) indicates that 
all nodes must be assigned to one of the vehicles. When a vehicle arrives at a node, the 
same vehicle has to leave from such node as formulated in equation (5). The starting and 
ending points for all routes must be the depot, as shown in equation (6), and each vehicle 
must leave from the depot and return to the depot exactly once, as shown in equations (7) 
and (8). The vehicle that visits a node must satisfy the time window starting time as 
shown in equation (9) and closing time as shown in equation (10) by considering the 
service time to allow travel time between customers indicated in equation (11), where the 
decision variables are indicated by constraint (12) and constraint (13). 

 primary objective: 

0Minimise 
 
 k

j
k K i C

x  (1) 

 secondary objective: 

 1 0 0
( , )

Min 
   

   k k k k k
d tij ij n j

k K i j A k K j C

C d x C y y x  (2) 

subject to: 

max ,
 

    k
i ij

i C j V

q x q k K  (3) 

1,
 

   k
ij

k K j V

x i C  (4) 

0, ,
 

      k k
ijil

i V i V

x x l C k K  (5) 

0 1,0, 0, ,     k k
i n ix x i V k K  (6) 

0 1,


   k
j

j V

x k K  (7) 

, 1 1,


   k
j n

j V

x k K  (8) 

,


     k k
i ij i

j V

e x y i V k K  (9) 

, ( , ) ,


    k k
i ij jj V

l x y i j A K  (10) 

  ,, , ( , ) ,       k k k k
i i j ii j i i jx y g t y g y i j A k K  (11) 
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{0, 1}, ( , ) ,    k
ijx i j A k K  (12) 

, ( , ) , .    k
iy i j A k K  (13) 

3.2 Harmony search algorithm 

HSA is one of the common algorithms used to solve optimisation problems such as VRP, 
TSP and orienteering problem (OP). The idea behind HSA was inspired by natural 
phenomena, just like physical annealing in SA and human memory in TS. HSA was 
developed based on music observation where finding a perfect combination of harmonies 
adjusts the pitch of an instrument which in turn yields a better harmony. HSA belongs to 
the population-based algorithms family, where each individual is generated using the elite 
population archive or generated randomly. This is because the population of elite 
individuals has a higher tendency to yield a better solution by competing among 
themselves in each iteration. The comparison between harmony improvisation and 
optimisation can be observed in Table 1. 

Table 1 Comparison harmony improvement and optimisation 

Factors Harmony improvisation Optimisation 

Targets Aesthetic standard Objective function 

Best states Fantastic harmony Global optimum 

Components Pitches of instruments Values of variables 

Process units Each practice Each iteration 

HSA implementation consists of three steps: initialisation, solution improvisation and 
update mechanism. In the initialisation step, the main parameters of HSA are initialised, 
and random initial solutions are generated and stored as the initial harmony memory 
(HM). In the solution improvisation step, the new solution is constructed by considering 
HM or randomly generating using the harmony memory considering ratio (HMCR). If 
the solution is generated using the HM, another parameter, pitch adjustment ratio (PAR), 
is employed to determine whether local search operators (LSOs) can improve the newly 
generated solution. Finally, if the improved solution does not violate any constraints in 
the update process, it will replace the worst solution in HM. A flowchart of this process 
in more detail is illustrated in Figure 1, and more details of the HSA will be described in 
the following sections. 

3.2.1 Initial solution generation 

Harmony memory size (HMS) was set to 100; thus, 100 initial solutions were generated 
at this phase. These initial solutions are generated without violating the constraints such 
as time windows, TT and vehicle capacity. 

The initial solution generation procedure is as follows: the first node to be added in a 
route will be randomly selected, and the following nodes are chosen from the closest 
node from the previously added node. The node chosen has the least waiting time and is 
close to the distance to the previous node. If a node causes a route to violate a particular 
constraint, such node will not be added to that route (and it is returned to the unvisited 
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nodes list), and such route is closed. Then, a new route is generated, and this process is 
repeated until all nodes are assigned to vehicles. 

Figure 1 HSA flowchart 

  

3.2.2 Solution improvisation 

The solution improvisation is determined by two parameters: HM considering rate and 
pitch adjusting rate. HMCR (a random decimal between 0 and 1) is used as a decision 
criterion. A value of 0.95 for HMCR means that 5% of the time, the algorithm will 
generate a new random solution (that will substitute the worst possible solution only if it 
has a better fitness value in the update mechanism section). For the remaining 95% of the 
time, a route is randomly selected from HM as the input to pitch adjusting part. On the 
other hand, PAR determines the probability of modifying the selected solution through 
different LSOs. For example, if the value of PAR is equal to 0.3, i.e., 30% of the time, the 
algorithm will improve the selected HM solution by applying LSOs. For the remaining 
70% of the time, the solution will be compared against the worst solution in HM and 
updated (in the update mechanism) only if it has a better fitness value. 

There are five LSOs: swap, move, a group move, insert, and two-opt will be applied 
during the improvement stage to find the optimal solution. An unbiased selection of the 
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LSO operators is employed to choose which operator will be performed at each iteration. 
The selection probability of LSO operators is illustrated in Figure 2. 

Figure 2 Roulette wheel for LSOs selection (see online version for colours) 

 

3.2.3 Update mechanism 

As the primary objective in TDVRPTW is to minimise the number of vehicles, and the 
secondary objective is to minimise the travelling distance or total TT, three different 
mechanisms for updating the solutions are considered and introduced as follows. 

 Update mechanism 1: 

In the first update mechanism, TT as an update mechanism, a route is updated only if 
the number of vehicles (primary objective), as shown in equation (1), and the TT 
(secondary objective) shown in equation (14) is smaller than before (better fitness 
value). 

Secondary objective: 

 1 0 0Min 
 

 k k k
t n j

k K j C

C y y x  (14) 

 Update mechanism 2: 

While in the TD + TT as an update mechanism scenario, a route is updated only if 
the total number of vehicles (primary objective) and the secondary objective fitness 
value (TD + TT), as shown in equations (1) and (2), respectively, are smaller than 
before. 

 Update mechanism 3: 

Update mechanism 3 is an extension of update mechanism 2, where the second 
objective function is normalised as defined in equation (15). The normalisation 
function is applied due to the difference in range for the values of these  
two components. 
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Secondary objective: 

 1 0 0
( , )

Min 
   

  
 
 
  k k k k k

d tij ij n j
k K i j A k K j C

C d x C y y xnormalise  (15) 

Normalisation was achieved through the standardisation formula shown below: 

min

max min





current

new
F F

F
F F

 (16) 

From equation (16), Fcurrent represents the current objective value, Fmax denotes the 
maximum objective value in each iteration in the current HM, and Fmin expresses the 
minimum value in each iteration in the current HM. It is important to remember that the 
Fmax and Fmin values are adjusted dynamically for each iteration, and the maximum and 
minimum values for both TT and TD will be used to calculate the normalisation formula 
for this update mechanism scenario. This process will be repeated until the stopping 
criterion of a defined parameter is reached. 

3.2.4 Travelling distance and time calculation 

Euclidean distance formula was used to calculate the travelling distance between nodes. 
The latitude (x-coordinate) and longitude (y-coordinate) values of nodes calculate 
travelling distance. 

   2 2   ij i j i jd x x y y  (17) 

TT in a time-dependent problem is affected by the time horizon and departure time from 
the previous node. Time horizons represent traffic congestion during different periods of 
the day. 

TT calculation between two vertices (i and j) can be seen from the pseudo-code below 
where the departure time (t0) from node i and the distance between vertices i and j (dij) 
are needed. vcTk represents the velocity when period k starts, while tk and ( )kt  represent 

the moment when period k starts and ends respectively, t denotes the current time, and t′ 
represents the arrival time at node j. 

Set t to t0 

Set d to dij 

Set t′ to t + (dij / Vk) 

While ( ):  kt t  

( )  k kd d V t t  

 kt t  

t′ ← t + (dij / Vk) 

k ← k + 1 

end while 

return travel_time (t′ – t0) 
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3.3 Genetic algorithm 

GA proposed to solve TDVRPTW with parameters such as the number of iterations, 
crossover probability (was set same as HMCR), and mutation rate (was set the same as 
PAR) defined the same HSA to make a fair comparison when compared its solution to 
HSA best-known solution. However, the proposed GA in this study and GA proposed by 
Kumar and Pannerselvam (2015) differ in one place. The updating mechanism in GA 
proposed by Kumar and Pannerselvam (2015) considered weight for an unconnected path 
when evaluating the solution. This implied that whenever an adjacent road is not 
connected, additional weight will be added to the total fitness; otherwise, such weight 
will be deducted from total fitness since the objective in this problem is minimising, 
which implied the smaller the fitness value, the better the solution is obtained. On the 
other hand, the GA proposed in this study follows one of three update mechanisms 
applied in HSA introduced in Section 3.2.3. 

4 Computational experiment and analysis 

The results of the computational experiment of the proposed algorithms to solve 
TDVRPTW are discussed in this section. Both algorithms were coded in Python 3.6 and 
were implemented on a computer with 16 GB RAM and an i7-4790 CPU @ 3.60 GHz. 

4.1 Benchmark instances 

Solomon’s benchmark problems were used to test the performance of HSA and GA when 
solving the TDVRPTW. The 56 Solomon’s problems compose six different problem 
types with 100 customers each. The six problem classes are R1, R2, C1, C2, RC1 and 
RC2. In problems R1 and R2, customers are randomly generated, while C1 and C2 are 
clustered problems, and RC1 and RC2 are a combination of randomly generated and 
clustered customers. In 56 Solomon’s benchmark instances, each instance provides the 
customer’s coordinates, opening and closing times, demand, vehicles capacities and 
service times. As a result, R1, C1, and RC1 have shorter scheduling horizons, tighter time 
windows, and also smaller vehicle capacities when compared to R2, C2 and RC2. 

The speed matrix used for calculating TDVRPTW was adapted from previous 
research Figliozzi (2012). Such a speed matrix consists of three different speeds with a 
ratio of 2.5:1. In such a scenario, there are five different periods with equal time length, 
and all vehicles must depart in the early morning (period 1) where the traffic congestion 
is just starting. The speed matrix used to test HSA and GA performance when solving 
TDVRPTW in this research can be seen in Table 2. 

Table 2 Speed matrix 

Type of 
speed 

Time horizon 

I II III IV V 

TD1 1.00 1.60 1.05 1.60 1.00 

TD2 1.00 2.00 1.50 2.00 1.00 

TD3 1.00 2.50 1.75 2.50 1.00 
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4.2 Computational results 

The results of HSA are compared with the best-known solutions from the previous work 
(Figliozzi, 2012) that proposed the IRCI and Kumar and Pannerselvam (2015) that used 
GA to solve the same problem with the same benchmark instance. Table 3 shows the 
comparison between HSA performance in 56 benchmark instances and the two previous 
works of literature in speed matrix 1 (TD1) with update mechanism 1, while update 
mechanisms 2 and 3 are shown in Tables 4 and 5, respectively. 

Table 3 Result comparison in TD1 and update mechanism 1 

Instance 

Reference  Harmony search algorithm 

Figliozzi 
(2012) 

Kumar and 
Pannerselvam 

(2015) 

 
HSA 

Gap against 
Figliozzi 

(2012) (%) 

Gap against Kumar 
and Pannerselvam 

(%) 

R1 NV 11.67 13.58  12.00 2.82 –11.63 

TT 2,080.00 2,691.00  2,136.00 2.69 –20.62 

TD 1,295.00 1,624.00  1,388.00 7.35 9.81 

R2 NV 2.882 3.64  2.81 –0.06 –22.57 

TT 1,990.00 3,077.00  1,824.00 –8.34 –40.72 

TD 1,216.00 939.00  1,114.00 –8.38 18.63 

RC1 NV 11.38 13.63  12.00 5.44 –11.96 

TT 2,164.00 2,789.00  2,186.51 1.03 –21.60 

TD 1,405.00 1,431.00  1,474.37 4.93 3.03 

RC2 NV 3.25 4.25  3.25 0.00 –23.52 

TT 2,177.00 3,366.00  2,004.00 –7.92 –40.45 

TD 1,444.00 1,128.00  1,421.00 –1.53 266.05 

C1 NV 10.00 10.00  10.66 6.66 6.66 

TT 9,729.00 9,875.00  10,331.89 5.99 4.42 

TD 879.00 828.00  963.88 9.65 16.41 

C2 NV 3.00 3.00  3.37 12.50 12.50 

TT 9,563.00 9,628.00  9,870.75 3.21 2.52 

TD 657.00 592.00  730.25 11.14 23.35 

Table 4 Result comparison in TD1 and update mechanism 2 

Instance 

Reference  Harmony search algorithm 

Figliozzi 
(2012) 

Kumar and 
Pannerselvam 

(2015) 

 
HSA 

Gap against 
Figliozzi 

(2012) (%) 

Gap against Kumar 
and Pannerselvam 

(%) 

R1 NV 11.67 13.58  12.33 5.68 –9.18 
TT 2,080.00 2,691.00  2,219.91 6.72 –17.50 

TD 1,295.00 1,624.00  1,351.58 4.47 6.92 

R2 NV 2.882 3.64  2.81 –0.06 –22.57 

TT 1,990.00 3,077.00  1,988.27 –0.08 –35.28 

TD 1,216.00 939.00  1,083.00 –10.93 15.33 
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Table 4 Result comparison in TD1 and update mechanism 2 (continued) 

Instance 

Reference  Harmony search algorithm 

Figliozzi 
(2012) 

Kumar and 
Pannerselvam 

(2015) 

 
HSA 

Gap against 
Figliozzi 

(2012) (%) 

Gap against Kumar 
and Pannerselvam 

(%) 

RC1 NV 11.38 13.63  12.62 10.94 –7.41 
TT 2,164.00 2,789.00  2,397.62 10.79 –14.03 

TD 1,405.00 1,431.00  1,479.62 5.31 3.36 

RC2 NV 3.25 4.25  3.00 –7.69 –29.41 

TT 2,177.00 3,366.00  2,147.37 –1.36 –36.20 

TD 1,444.00 1,128.00  1,260.37 –12.71 11.73 

C1 NV 10.00 10.00  10.78 7.77 7.77 

TT 9,729.00 9,875.00  10,445.33 7.36 5.77 

TD 879.00 828.00  941.22 7.07 13.67 

C2 NV 3.00 3.00  3.37 12.50 12.50 

TT 9,563.00 9,628.00  9,864.37 3.15 2.45 

TD 657.00 592.00  679.00 3.44 14.80 

Table 5 Result comparison in TD1 and update mechanism 3 

Instance 

Reference  Harmony search algorithm 

Figliozzi 
(2012) 

Kumar and 
Pannerselvam 

(2015) 

 
HSA 

Gap against 
Figliozzi 

(2012) (%) 

Gap against Kumar 
and Pannerselvam 

(%) 

R1 NV 11.67 13.58  12.25 4.97 –9.79 

TT 2,080.00 2,691.00  2,213.41 6.41 –17.74 

TD 1,295.00 1,624.00  1,297.50 0.19 2.65 

R2 NV 2.882 3.64  2.90 3.15 –20.07 

TT 1,990.00 3,077.00  2,088.90 4.97 –32.11 

TD 1,216.00 939.00  1,058.54 –12.94 12.73 

RC1 NV 11.38 13.63  12.37 8.744 –9.20 

TT 2,164.00 2,789.00  2387.5 10.32 –14.39 

TD 1,405.00 1,431.00  1,438.37 2.37 0.51 

RC2 NV 3.25 4.25  3.00 –7.69 –29.41 

TT 2,177.00 3,366.00  2,173.87 –0.14 –35.41 

TD 1,444.00 1,128.00  1,256.75 –12.96 11.41 

C1 NV 10.00 10.00  10.66 6.66 6.66 

TT 9,729.00 9,875.00  10,503.67 7.96 6.36 

TD 879.00 828.00  884.44 0.61 6.81 

C2 NV 3.00 3.00  3.25 8.33 8.33 

TT 9,563.00 9,628.00  9,792.37 2.39 1.70 

TD 657.00 592.00  5,588.75 –10.38 –0.54 
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Table 6 Result comparison in TD2 with all three update mechanisms 
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Table 7 Result comparison in TD3 with all three update mechanisms 
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Table 8 Result comparison in TD1 and update mechanism 3 

 

R
ef

er
en

ce
 

 
G

en
et

ic
 a

lg
or

it
hm

 
 

H
ar

m
on

y 
se

ar
ch

 a
lg

or
it

hm
 

In
st

an
ce

 
F

ig
lio

zz
i 

(2
01

2)
 

K
um

ar
 a

nd
 

P
an

ne
rs

el
va

m
 

(2
01

5)
 

 
G

A
 

G
ap

 a
ga

in
st

 
F

ig
lio

zz
i 

(2
01

2)
 (

%
) 

G
ap

 a
ga

in
st

 
K

um
ar

 a
nd

 
P

an
ne

rs
el

va
m

 (
%

) 

 
H

SA
 

G
ap

 a
ga

in
st

 
F

ig
lio

zz
i 

(2
01

2)
 (

%
) 

G
ap

 a
ga

in
st

 K
um

ar
 

an
d 

P
an

ne
rs

el
va

m
 

(%
) 

G
ap

 
ag

ai
ns

t 
G

A
 

N
V

 
11

.6
7 

13
.5

8 
 

12
.6

7 
8.

57
 

–6
.7

0 
 

12
.5

2 
4.

97
 

–9
.7

9 
–3

.3
1 

T
D

 
1,

29
5.

00
 

1,
26

4.
00

 
 

1,
03

1.
17

 
–2

0.
37

 
–1

8.
42

 
 

1,
29

7.
50

 
0.

19
 

2.
65

 
25

.8
3 

R
1 

T
T

 
2,

08
0.

00
 

2,
69

1.
00

 
 

2,
11

3.
33

 
1.

60
 

–2
1.

47
 

 
2,

21
3.

41
 

6.
41

 
–1

7.
75

 
4.

74
 

N
V

 
2.

82
 

3.
64

 
 

4.
09

 
45

.0
4 

12
.3

6 
 

2.
90

 
2.

84
 

–2
0.

33
 

–2
9.

10
 

T
D

 
1,

21
6.

00
 

93
9.

00
 

 
1,

03
6.

73
 

–1
4.

74
 

10
.4

1 
 

1,
05

8.
54

 
–1

2.
95

 
12

.7
3 

2.
10

 

R
2 

T
T

 
1,

99
0.

00
 

3,
07

7.
00

 
 

2,
56

2.
55

 
28

.7
7 

–1
6.

72
 

 
2,

08
8.

90
 

4.
97

 
–3

2.
11

 
–1

8.
49

 

N
V

 
11

.3
8 

13
.6

3 
 

13
.1

2 
15

.2
9 

–3
.7

4 
 

12
.3

7 
8.

70
 

–9
.2

4 
–5

.7
2 

T
D

 
1,

40
5.

00
 

1,
43

1.
00

 
 

1,
18

4.
38

 
–1

5.
70

 
–1

7.
23

 
 

1,
43

8.
37

 
2.

38
 

0.
52

 
21

.4
4 

R
C

1 

T
T

 
2,

16
4.

00
 

2,
78

9.
00

 
 

2,
19

8.
50

 
1.

59
 

–2
1.

17
 

 
2,

38
7.

50
 

10
.3

3 
–1

4.
40

 
8.

60
 

N
V

 
3.

25
 

4.
25

 
 

4.
00

 
23

.0
8 

–5
.8

8 
 

3.
00

 
–7

.6
9 

–2
9.

41
 

–2
5.

00
 

T
D

 
1,

44
4.

00
 

1,
12

8.
00

 
 

1,
26

6.
00

 
–1

2.
32

 
12

.2
3 

 
1,

25
6.

75
 

–1
2.

97
 

11
.4

1 
–0

.7
3 

R
C

2 

T
T

 
2,

17
7.

00
 

3,
36

6.
00

 
 

2,
70

3.
13

 
24

.1
7 

–1
9.

69
 

 
2,

17
3.

87
 

–0
.1

4 
–3

5.
42

 
–1

9.
58

 

N
V

 
10

.0
0 

10
.0

0 
 

10
.8

8 
8.

80
 

8.
80

 
 

10
.6

6 
6.

60
 

6.
60

 
–2

.0
2 

T
D

 
87

9.
00

 
82

8.
00

 
 

90
3.

11
 

2.
74

 
9.

07
 

 
88

4.
44

 
0.

62
 

6.
82

 
–2

.0
7 

C
1 

T
T

 
9,

72
9.

00
 

9,
87

5.
00

 
 

9,
78

9.
11

 
0.

62
 

–0
.8

7 
 

10
,5

03
.6

7 
7.

96
 

6.
37

 
7.

30
 

N
V

 
3.

00
 

3.
00

 
 

3.
50

 
16

.6
7 

16
.6

7 
 

3.
25

 
8.

33
 

8.
33

 
–7

.1
4 

T
D

 
65

7.
00

 
59

2.
00

 
 

54
4.

87
 

–1
7.

07
 

–7
.9

6 
 

58
8.

75
 

–1
0.

39
 

–0
.5

5 
8.

05
 

C
2 

T
T

 
9,

56
3.

00
 

9,
62

8.
00

 
 

9,
79

1.
50

 
2.

39
 

1.
70

 
 

9,
79

2.
37

 
2.

40
 

1.
71

 
0.

01
 

 



   

 

   

   
 

   

   

 

   

    Metaheuristics for TDVRPTW 17    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 summarises the comparison between HSA performance in 56 benchmark 
instances and previous literature in speed matrix 2 (TD2) from three different  
update mechanisms. Table 7 illustrates the comparison between HSA performance in  
56 benchmark instances and previous literature in speed matrix 3 (TD3) in all different 
update mechanisms. Finally, Tables 8 to10 show the comparison between GA and HSA 
and GA, HSA to Figliozzi (2012) and Kumar and Pannerselvam (2015). It is important to 
mention that GA only tested on the update mechanism 3 since it performs the best when 
applied to HSA, as observed from Tables 3 to 7. 

Table 9 Result comparison in TD2 and update mechanism 3 

Instance 
Figliozzi 
(2012) 

Genetic algorithm  Harmony search algorithm 

GA 
Gap against 

Figliozzi 
(2012) (%) 

 
HSA 

Gap against 
Figliozzi 

(2012) (%) 

Gap 
against 

GA 

R1 NV 10.75 11.83 10.05  10.83 0.744 –8.45 

TD 1,258.00 1172.83 –6.77  1,188.41 –5.53 1.33 

TT 1,897.00 2,024.08 7.65  2,003.91 5.64 –1.87 

R2 NV 2.55 2.81 10.20  2.72 6.67 –3.20 

TD 1,244.00 1,219.45 –1.97  1,133.81 –8.91 –7.07 

TT 1,861.00 1,836.90 –1.30  1,965.36 5.61 6.99 

RC1 NV 10.50 12.00 14.29  11.25 7.14 –6.25 

TD 1,395.00 1,372.00 –1.65  1,327.00 –4.87 –3.28 

TT 1,989.00 2,112.669 6.22  2,138.87 7.53 1.24 

RC2 NV 2.88 3.25 12.85  3.12 8.33 –4.00 

TD 1,454.00 1,293.00 –11.07  1,361.5 –6.36 5.30 

TT 1,993.00 2,243.98 12.59  2,219.37 11.36 –1.10 

C1 NV 10.00 10.55 5.50  10.55 5.50 0.00 

TD 864.00 1,041.55 20.55  921.00 6.60 –11.57 

TT 9,644.00 9,872.88 2.37  10,383.89 7.67 5.18 

C2 NV 3.00 3.25 8.33  3.12 4.00 –4.00 

TD 654.00 668.75 2.26  596.37 –8.81 –10.82 

TT 9,495.00 9,735.75 2.54  9,702.25 2.18 –0.34 

From Tables 3 to 7, it can be observed that HSA can perform better in some of the 
benchmark instances. For example, when comparing against Figliozzi (2012), HSA 
yields near-optimal solutions in all NV, TD and TT. However, since the primary 
objective in this research is to minimise the NV and the secondary objective is to 
minimise the TT, the result from HSA is comparable with Figliozzi (2012) and performs 
better in NV and TT when compared to Kumar and Pannerselvam (2015). Furthermore, 
from Table 8, it can be observed that both HSA and GA were able to outperform Kumar 
and Pannerselvam (2015) in 9 out of 18 objectives and 11 out of 18 objectives, 
respectively, while compared to Figliozzi (2012), HSA outperformed 6 out of  
18 objectives and GA obtained better solution in 5 out of 18 objectives speed matrix 1. 
Similarly, Table 9 and Table 10 present the result comparison of both GA and HSA when 
compared Figliozzi (2012) and Kumar and Pannerselvam (2015) in speed matrix 2 and 
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speed matrix 3. Finally, it can be concluded that even though GA outperforms HSA in 
terms of the number of better solutions, it is important to point out that HSA still 
outperforms GA as it can be observed from the solution quality (average of all instances). 

Table 10 Result comparison in TD3 and update mechanism 3 

Instance 
Figliozzi 
(2012) 

Genetic algorithm  Harmony search algorithm 

GA 
Gap against 

Figliozzi 
(2012) (%) 

 
HSA 

Gap against 
Figliozzi 

(%) 

Gap 
against 

GA 

R1 NV 9.92 10.66 7.46  10.50 5.85 –1.50 

TD 1,237.00 1,231.41 –0.45  1,202.75 –2.77 –2.33 

TT 1,793.00 1,973.00 10.04  1,935.08 7.92 –1.92 

R2 NV 2.27 2.72 19.82  2.63 15.86 –3.31 

TD 1,269.00 1,232.00 –2.92  1,100.00 –13.31 –10.71 

TT 1,774.00 1,840.18 3.73  1,871.72 5.51 1.71 

RC1 NV 10.00 10.62 6.20  10.62 6.20 0.00 

TD 1,362.00 1,354.75 –0.53  1,351.00 –0.81 –0.28 

TT 1,860.00 1,991.37 7.06  2,021.62 8.69 1.52 

RC2 NV 2.75 3.00 9.09  3.12 13.45 4.00 

TD 1,434.00 1,672.62 16.64  1,280.00 –10.74 –23.47 

TT 1,867.00 2,045.25 9.55  2,065.50 10.63 0.99 

C1 NV 10.00 10.88 8.80  10.55 5.50 –3.03 

TD 880.00 875.77 –0.48  899.44 2.21 2.70 

TT 9,608.00 10,378.44 8.02  10,323.56 7.45 –0.53 

C2 NV 3.00 3.13 4.17  3.00 0.00 –4.00 

TD 697.00 689.87 –1.02  590.122 –15.33 –14.46 

TT 9,485.00 9,644.5 1.68  9,578.50 0.99 –0.68 

5 Conclusions 

This study has successfully proposed a HSA and a GA for the TDVRPTW. When 
comparing with two existing algorithms in recent literature, the proposed algorithm 
shows competitive performance. Besides, this study may be further improved and 
validated by using different speed matrices, considering different LSOs such as the 
insertion heuristic, or trying to apply other metaheuristic algorithms such as virus 
optimisation algorithm proposed by Liang and Cuevas (2016). 
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