
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

9-2023

Dynamic scheduling with uncertain job types Dynamic scheduling with uncertain job types

Zuo-Jun Max SHEN
University of California - Berkeley

Jingui XIE
Technische Universitat Munchen

Zhichao ZHENG
Singapore Management University, DANIELZHENG@smu.edu.sg

Han ZHOU
Technische Universitat Munchen

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, and the Operations and

Supply Chain Management Commons

Citation Citation
SHEN, Zuo-Jun Max; XIE, Jingui; ZHENG, Zhichao; and ZHOU, Han. Dynamic scheduling with uncertain job
types. (2023). European Journal of Operational Research. 309, (3), 1047-1060.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/7180

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Dynamic Scheduling with Uncertain Job Types

Zuo-Jun Max Shen
Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720-1777,

maxshen@berkeley.edu

Jingui Xie
School of Management, Technical University of Munich, 74072 Heilbronn, Germany, jingui.xie@tum.de

Zhichao Zheng
Lee Kong Chian School of Business, Singapore Management University, Singapore 178899, danielzheng@smu.edu.sg

Han Zhou*
School of Management, Technical University of Munich, 74072 Heilbronn, Germany, han.zhou@tum.de

Uncertain job types can arise as a result of predictive or diagnostic inaccuracy in healthcare or repair service

systems and unknown preferences in matching service systems. In this paper, we study systems with multiple

types of jobs, in which type information is imperfect and will be updated dynamically. Each job has a prior

probability of belonging to a certain type which may be predicted by data, models, or experts. A job can

only be processed by the right machine, and a job assigned to the wrong machine must be rescheduled. More

information is learned from the mismatch, and job type probabilities are updated. The question is how to

dynamically schedule all jobs so that they can be processed in a timely fashion. We use a novel coupling and

inductive method to conduct optimality analysis. We obtain the near-optimal policy regarding completion

time, named the less-uncertainty-first policy, when there are two types of jobs; the insights it yields are

used to develop heuristic algorithms for more general cases. We also consider other objectives, including the

number of mismatches and the total amount of time jobs spend in the system. In our numerical study, we

examine the performance of the proposed heuristics when there are more than two types of jobs under two

learning schemes: dedicated learning and exclusive learning. In the extension, we also analyze the problem

when jobs are assigned online and find similar insights. It is essential that managers dynamically schedule

services by leveraging predictive information and mismatches. Our proposed less-uncertainty-first policy can

be used to improve system efficiency in a variety of contexts, because the policy accounts for system dynamics

to avoid mismatches and resource idling.

Key words : Scheduling; Uncertain Job Types; Predictive Information; Learning; Mismatch and Rescheduling

*Corresponding author: H. Zhou, han.zhou@tum.de

Electronic copy available at: https://ssrn.com/abstract=4222017

1

1. Introduction

Service and manufacturing systems with multiple types of jobs under perfect information—i.e., the

job types are known exactly before making scheduling decisions—have been studied extensively

during the past 60 years (e.g., ???????). However, in many manufacturing or service systems, job

or customer types are uncertain due to imperfect predictive information, and scheduling decisions

must be made before knowing the exact types. For example, an emergency health care response to

a mass casualty incident, such as a hurricane, tsunami, terrorist attack, etc., may involve medical

personnel who have a range of capabilities and skills for treating patients with trauma, burns, crush,

respiratory impact, submersion injury or infected wounds, etc. Under such conditions, because

the numbers of providers and patients on the scene are relatively large, patient treatment can be

performed by separate medical teams with different skill sets in parallel (?). Patient assessment

and classification, however, may not be accurate due to limited information or time and resource

constraints (?). The question is then how to dynamically assign patients with uncertain conditions

to different health care providers and learn patients’ true conditions after wrong assignments so

that all patients can be treated promptly.

Uncertain job types can also be the result of diagnostic inaccuracy in many other healthcare

settings (?????). For example, ? reviewed diagnostic accuracy studies from 1946 to 2016 and

found that diagnostic accuracy ranged from 0.32 to 1. Out of the eleven studies reviewed, ? further

selected eight studies that were deemed to have a low risk of bias and conducted a meta-analysis

that showed a diagnostic accuracy of 0.74 (0.62 to 0.82). In repair service systems, it is usually

uncertain which component causes the product to be faulty (?), which leads to uncertain job types.

Faulty products must be dynamically assigned to service engineers with different expertise for

diagnosis and repair so that all jobs can be completed as soon as possible. Uncertain job types also

arise naturally in many matching service systems. On online dating websites such as eHarmony, the

service providers usually suggest matches from a pool of registered women and men when their

preferences are not exactly known (?). Any unsatisfied customers will return to the system after a

trial period. From these failures, service providers can learn and update their information and seek

to propose better matches in the future.

More specifically, as above, we can consider a case in the mass-casualty scenario. An emergency

healthcare response to such a mass-casualty incident may involve medical personnel with various

capabilities and skills for treating patients with different conditions. In such emergency healthcare

settings, we can assume that all patients and physicians are available initially. Patients’ condition

Electronic copy available at: https://ssrn.com/abstract=4222017

2

type probabilities are available after triage, and then they are assigned to a physician. If there is a

wrong assignment, the patient will be transferred to other physicians, and his or her condition type

probability will be updated. The main goal is to treat all patients in a timely fashion.

Motivated by these examples, in this paper we study a scheduling problem with multiple types of

jobs in which the information on the job types is imperfect. We explicitly consider the process of

dynamic learning and rescheduling after mismatches, unlike prior literature, in which jobs types

are associated with different cost implications (e.g., different waiting costs) and mismatches do not

require rescheduling (e.g., ???). To isolate the effect of type uncertainty, we consider a stylized

model in which there is no other source of uncertainties, and the decision maker knows beforehand

the probability that each job will belong to a certain type. Since job types are uncertain, mismatches

always occur. When a mismatch arises, we update the job type probabilities and consider when

and how to assign the job to another machine. We explicitly capture such dynamics in our model

and demonstrate that this significantly complicates the problem through a series of examples, even

without other sources of uncertainty. To the best of our knowledge, this paper is the first to consider

learning and rescheduling after mismatches in the scheduling problem with imperfect information on

job types. We characterize the optimal policy to minimize the expected number of mismatches and

propose a scheduling rule called the less-uncertainty-first (LUF) policy to minimize the expected

completion time of the last job and the expected total amount of time that all jobs will spend

in the system. We prove the near optimality of the LUF policy when there are two types of jobs

and exploit insights obtained from analyzing special cases to design appropriate algorithms for

more complicated problems. In addition, we analyze an online version of the problem in which job

information is revealed sequentially. We propose three policies and derive their competitive ratios

against the stochastic offline adversary model in which all jobs’ type probabilities and processing

times are given in advance. Our numerical result again shows the trade-off between idling and

mismatch when designing algorithms. Our analysis and counterexamples reveal important insights

regarding the challenges of the problem, which will shed some light on future research in this

direction.

The paper’s main contributions of this paper are as follows.

• First, we introduce imperfect information on job type in the scheduling problem and explicitly

capture the dynamic rescheduling process, motivated by the diagnostic and predictive inaccuracy

in service and manufacturing operations.

Electronic copy available at: https://ssrn.com/abstract=4222017

3

• Second, we characterize the optimal policy to minimize the expected number of mismatches

and prove the near optimality of the LUF policy to minimize both the expected completion

time of the last job and the expected total amount of time that all jobs spend in the system

when there are two types of jobs.

• We also demonstrate numerically that the insights from our analytical results for special cases

can be generalized to develop heuristic algorithms that perform well in a variety of settings

when the number of job types is more than two and when the jobs are assigned online.

The paper is organized as follows. In Section 2, we review the related literature. In Section 3 we

formulate the model and, in Section 4, characterize different scheduling policies. We present the

numerical analysis of the proposed heuristic algorithms for more general settings with multiple job

types in Section 5, discuss the online setting and analyze three policies in Section 6, and conclude

in Section 7. All the technical proofs are relegated to Appendix A.

2. Literature Review

Our problem is closely related to classical job shop scheduling problems, in which the literature is

generally divided into two streams: online and offline scheduling. In an offline scheduling problem, all

job information, especially job release times, is given at the beginning so that scheduling decisions

can be made by taking the job information into account. On the other hand, in an online scheduling

problem, job information is broken into pieces and gradually presented to the decision maker; this

can even include the existence of the job. Scheduling decisions must be made on the go whenever

new information is available. Some recent developments in stochastic online scheduling problems in

which each job’s completion time is uncertain include work by ?? and ?. In our problem, we first

assume that at the beginning, all jobs have given probabilities to be certain types. In this sense,

our problem can be viewed as an offline scheduling problem. However, our problem is inherently

different due to the rich dynamics involved: Not only are the scheduling decisions dynamic, but the

service sequence for each job is also uncertain and depends on the scheduling decisions. In other

words, the policy depends on the revealed scenario, which is completely adaptive to the process.

This makes our problem much harder than the flow shop problem in the conventional scheduling

literature, in which each job must be processed by a series of machines. In addition, we discuss the

stochastic online model, i.e., once a job is released, the scheduler knows the information about the

job. For a comprehensive overview of these scheduling problems, see ? and ?.

In a related vein, scheduling for queueing systems with multiple types of jobs has been studied

extensively during the past 60 years. Among those studies, the well-known cµ-rule has proved to be

Electronic copy available at: https://ssrn.com/abstract=4222017

4

optimal under a variety of conditions. That is, if type i jobs have service rate µi and waiting cost

ci per unit of time, the rule to minimize the expected total waiting cost is to process the type of

jobs with the highest ciµi first. This scheduling rule appears to have first been studied by ? under

a deterministic setting; ? extended it to multi-class M/G/1 queues. ? analyzed the discrete time

version of the cµ rule, and ? further extended it to generalized cµ-rule under convex cost functions.

Since ?, this body of work has included ??????, and ?, to name a few. Unlike these articles, we

introduce the imperfect information on job types into scheduling systems and explicitly model the

dynamics of mismatch and rescheduling.

In particular, our problem is closely related to healthcare stochastic scheduling. In the healthcare

scheduling literature, our problem is related to the well-known appointment sequencing problem

in which service times are uncertain and the smallest-variance-first (SVF) rule has been widely

conjectured to be optimal (cf. ?, ?, and ?). Under the SVF rule, the job with the smallest variance

in service duration is scheduled to be the first to arrive in the system, followed by the one with

the second smallest variance, and so on. Recently, ? have shown that the SVF rule is optimal in

the worst-case distribution when only the means and variances of the service durations are known

under some technical conditions. ? provided an analysis of cases in which the SVF rule may not be

optimal under some conditions and presented several counterexamples in more general settings. For

more comprehensive and updated reviews of this line of research, see ????????, and ?. While this

literature may not explicitly consider the existence of a correct job “type”, part of the uncertainty

in processing time is likely due to the need to perform numerous tests, essentially to determine

the correct job type. The primary goal of our work and the literature is similar: How to optimize

the allocation of resources given the incomplete information on jobs (either uncertainty regarding

service time or job type). Several recent studies also discuss the uncertainty entailed in diagnosing

repair needs in maintenance operations. ? provide an example at MTU AeroEngines, which is a

leading engine maintenance provider in Germany. Workers’ main jobs are to diagnose an engine’s

problem and decide whether to repair or replace expensive parts. A similar example in aircraft

maintenance, in which engine repair requires disassembling and reassembling engines, is discussed

in ?. Other examples can be found in remanufacturing processes in which returned parts are of

uncertain quality (Guide and Wassenhove 2001).

The problem with imperfect job type information has gained more interest recently due to its

applications in various domains, including healthcare and maintenance. ? study assignment priority

under imperfect information on job type identities. They considered a service system in which jobs

Electronic copy available at: https://ssrn.com/abstract=4222017

5

are one of two possible types, and customers’ type identities are not directly available to the service

provider. However, each job provides a signal, which equals the probability that the job belongs

to a particular type. The service provider uses these signals to determine priority levels for jobs

with the objective of minimizing the long-run average waiting cost. ? also consider the possibility

of misclassification in the context of patient prioritization in emergency departments. ? study a

congested system in which the service provider conducts a sequence of imperfect tests to determine

the job’s type. They analyze how to manage this accuracy/congestion trade-off dynamically and

find that the service provider should continue to perform the diagnosis as long as her current belief

falls into an interval that depends on the congestion level and the number of tests performed thus

far. ? study the priority scheduling of patients with unknown types and consider a service system

with finite patients, all available at time zero, who belong to one of two possible types. Each type

is characterized by its waiting cost and expected service time. Jobs’ type identities are initially

unknown, but the service provider has the option to spend some time investigating to determine a

job’s type, albeit with the possibility of making an incorrect determination. The objective is to

identify policies that balance the time spent on information extraction and the time spent on service.

? study a similar but more general scheduling problem, in which the service provider has to serve

a collection of jobs that have a priori uncertain attributes and must decide how to dynamically

allocate resources between testing (diagnosing) jobs, to learn more about their respective uncertain

attributes, and processing jobs.

Similar to these recent studies, we also consider imperfect job type information as an important

feature in operations. However, our work differs from these studies in the following respects.

Key trade-off. Both ? and ? consider the trade-off between exploration (testing or diagnosis)

and exploitation (service or treatment), which has also been studied in the context of revenue

management and supply chain management (see, e.g., ??). In contrast, we consider the trade-off

between load balance (among multiple servers) and service mismatch. ? study the exploration

aspect (diagnostic service) and dynamically manage the accuracy/congestion trade-off, whereas we

focus on the exploitation aspect and dynamically manage the utilization/mismatch trade-off.

Multiple types. Both ? and ? considered the single server model, in which the server has the skills

needed to both classify or test jobs and serve the jobs. The question is how to manage testing and

service dynamically. The single-server assumption is appropriate when the resource is scarce, e.g.,

when there is only a single physician on an isolated battlefield who must simultaneously classify

injuries and deliver proper treatment. However, as discussed by ?, a typical emergency response to

Electronic copy available at: https://ssrn.com/abstract=4222017

6

a mass casualty event may involve a number of medical personnel who have a range of capabilities.

Therefore, a multiserver model may be more appropriate in real settings, which ? also suggest

is an important future research direction. When there are multiple servers, a group of servers

(e.g., triage nurses) may conduct the classification separately and the other group of servers may

focus on delivering service. ? study diagnostic service and argue that there is a trade-off between

diagnostic accuracy and system congestion. In other words, it is suboptimal for the server to spend

sufficient time to generate accurate diagnoses. Given this observation, we study scheduling service

under inaccurate job type information. We study the model with multiple servers and explicitly

characterize the near-optimal policy for the two-server case.

Inaccurate information. Different from the problems studied previously, in our problem incomplete

job type information is given at the beginning. This means that an imperfect classification has been

carried out for all jobs separately. In ? and ?, complete information is disclosed after testing, while

in ? diagnosis is done separately and the diagnosis is inaccurate. Our problem is to dynamically

schedule the service under diagnostic inaccuracy, i.e., uncertain type probabilities.

Rescheduling. Another key difference between our problem and the papers discussed above, with

respect to job type uncertainty, is that we require that a mismatched job be rescheduled such that

it can leave the system only after it has been processed by the right type of machine. However, in

previous papers the consequence of incorrect determination of job type is handled by cost-based

approaches without introducing further dynamics into the system, i.e., a mismatched job carries

a penalty either in terms of either longer processing time or higher waiting/processing cost but

still leaves the system without returning to it. Our analysis shows that such dynamic movement in

jobs creates a significant challenge with respect to making sound scheduling decisions, even in the

simplest setting.

3. Model Formulation

In this section we first consider a simplified model with two types of jobs and later extend the

discussion to multiple types in Section 5. Let N = {1,2, . . . , n} denote the set of jobs and M= {1,2}

the set of machines. For each job i∈N , its type independently follows a Bernoulli distribution with

parameter pi, i.e., the job has a probability of pi being type 1, and (1− pi) being type 2. A type j

job can only be served by machine j. Suppose job i is type j. If the job is assigned to machine j,

the job will leave the system after being served. If instead the job is referred to machine j′ such

that j′ ̸= j, a mismatch occurs and the job will have to be rescheduled to machine j. Processing

Electronic copy available at: https://ssrn.com/abstract=4222017

7

times differ depending on whether the assignment is correct or incorrect. Without loss of generality,

we assume the processing time is one unit for the wrong assignment and the processing time for a

right assignment, i.e., service time, is τ ≥ 1 units, which indicates that it takes no less time to serve

a job than to detect a mismatch.

In this study, we introduce two objectives and find policies that optimize at least one of them.

The objective may be to minimize the completion time of the last job, or the manager may want to

minimize the number of mismatches. Instead of optimizing one of these objectives, we aim to find a

policy that can balance the performance measures.

3.1. Mismatch

If every job is assigned to the machine with a higher type probability, the expected total number of

mismatches given a set of jobs N = {1,2, . . . , n} is minimized. In contrast, when all jobs are assigned

to the machines with lower type probabilities, the expected number of mismatches is maximized.

Therefore, the expected number of mismatches has a lower bound,

n∑
i=1

(1− pi)1{pi≥0.5} + pi1{pi<0.5},

and an upper bound,
n∑

i=1

(1− pi)1{pi<0.5} + pi1{pi≥0.5}.

3.2. Makespan

The objective may be to minimize the completion time of the last job, which is called makespan.

Let Cπ be the makespan and Cj
π be the makespan on machine j ∈M. By definition, we have

Cπ =max{Cj
π}. According to Jensen’s inequality, we know that the expected makespan is longer

than the expected makespan of any machine, i.e.,

E[Cπ]≥max
j∈M

{E[Cj
π]}. (1)

Then inequality (1) provides a lower bound of the expected makespan, which is frequently used in

the following performance analysis.

The performance measure is directly or indirectly related to the system’s workload, which has

two parts: service-related workload and mismatch-related workload. For each machine, the expected

service workload is inherent. If one machine has more “right” jobs to serve than the other machine,

there exists an unbalanced workload in the system: One machine is busy, and the other may be

idle for some time. The service workload does not depend on the assignment and scheduling policy.

Electronic copy available at: https://ssrn.com/abstract=4222017

8

The expected number of type 1 jobs is n1 :=
∑n

i=1 pi, while the expected number of type 2 jobs is

n2 :=
∑n

i=1(1− pi). Hence, the expected service workload for machine 1 is n1τ , while the expected

service workload for machine 2 is n2τ . If all jobs could be processed correctly at the first time, we

have the expected makespan τ max{n1, n2} which is the lower bound of any policies.

4. Policy Analysis

Given the system workload analysis, we know that a good policy should be able to decrease the

number of mismatches and, at the same time, utilize idle machines to balance workload. In this

section, we first analyze two typical deterministic policies that might be used in practice and then

propose our dynamic policy. By deterministic policies, we mean the policies that fix job-to-machine

assignments at the beginning; a job will be rescheduled to another machine only if the initial

assignment is a mismatch. On the other hand, dynamic policies do not fix the assignments at the

beginning; instead, an assignment will be determined dynamically when a machine becomes idle.

4.1. Equal-distribution Policy

Given n jobs and two machines, a natural policy that considers load balance or fairness is to divide

all the jobs into two equal groups. Assume that p1 ≥ · · · ≥ pn and n is an even number for easier

expression. Thus, the first n/2 jobs are assigned to machine 1, and the rest are assigned to machine

2. If a job is found to be the wrong type, it will be transferred to the other machine and join the

queue in the last position. The policy is called the equal-distribution (ED) policy and is illustrated

in Figure 1 when n= 6 and p= (0.9,0.8,0.7,0.6,0.4,0.2).

Figure 1 Illustration of the equal-distribution policy

Under the ED policy, the expected number of mismatches for machine 1 is
∑n/2

i=1(1− pi), while

the expected number of mismatches for machine 2 is
∑n

i=n/2+1 pi. Hence, the total expected number

of mismatches E[MED] is given by

E[MED] =

n
2∑

i=1

(1− pi)+
n∑

i=n
2 +1

pi.

Electronic copy available at: https://ssrn.com/abstract=4222017

9

The expected makespan E[CED] is bounded by

E[CED]≥max{E[C1
ED],E[C2

ED]} ≥max{n1τ +

n
2∑

i=1

(1− pi), n2τ +
n∑

i=n
2 +1

pi}.

4.2. Likelihood-based Policy

An alternative method is to process each job in order from the most likely machine to the less likely

machine, i.e., divide jobs into two groups according to their type likelihood: Jobs with probabilities

larger than or equal to 0.5 will be assigned to machine 1, while jobs with probabilities less than 0.5

will be assigned to machine 2. We can refine the policy by assigning jobs with probabilities equal to

0.5 more carefully. But this is not the focus of this paper, and it only works when there are many

jobs with probabilities equal to 0.5.1 If a job is found to be the wrong type, it will be transferred to

the other machine and join the queue in the last position. This is the likelihood-based (LB) policy

and is illustrated in Figure 2 when n= 6 and p= (0.9,0.8,0.7,0.6,0.4,0.2). The main objective of

this policy is to minimize the expected number of mismatches. If job i is assigned to machine 1, the

expected number of mismatches is 1− pi. Similarly, if job i is assigned to machine 2, the expected

number of mismatches is pi. If we assign a job to the machine with a type probability larger than

0.5, the expected number of mismatches will be minimized for the job. Thus, the total expected

number of mismatches is minimized. A general formal statement is provided later in Theorem 4.

Figure 2 Illustration of the likelihood-based policy

Under the LB policy, the expected number of mismatches for machine 1 is
∑n

i=1(1− pi)1{pi≥0.5},

while the expected number of mismatches for machine 2 is
∑n

i=1 pi1{pi<0.5}. Hence, the total number

of mismatches E[MLB] is given by

E[MLB] =
n∑

i=1

(1− pi)1{pi≥0.5} + pi1{pi<0.5}.

1 For example, jobs with probabilities equal to 0.5 can be assigned based on the principle of keeping the initial queues
of both machines as balanced as possible. Specifically, for each job with a probability equal to 0.5, the job can be
assigned to the machine with fewer assigned jobs to process. If the numbers of jobs to be served from both machines
are the same, the job will be assigned randomly. It should be noted that the assignment of jobs with probabilities
equal to 0.5 is performed at the beginning of service.

Electronic copy available at: https://ssrn.com/abstract=4222017

10

The expected total number of mismatches is minimized under this policy. The expected makespan

E[CLB] is bounded by

E[CLB]≥max{E[C1
LB],E[C2

LB]} ≥max{n1τ +
n∑

i=1

(1− pi)1{pi≥0.5}, n2τ +
n∑

i=1

pi1{pi<0.5}}.

4.3. The Less-uncertainty-first Policy

Under the above policies, initial job assignments are determined before any job is processed. As

the uncertain unfolds as the jobs are processed, the queues for the two machines may become

imbalanced, resulting in a less ideal split of workload and even the idling of one machine. In this

section, we consider a group of dynamic policies that only determine a job allocation when a

machine becomes idle. Specifically, we propose priority list policies, which are easy to implement

and control. Under a priority list policy, jobs are sorted on a priority list. At the beginning, the

first job on the list is assigned to machine 1 and removed from the list; meanwhile, the last job on

the list is assigned to machine 2 and removed from the list. If the first job is revealed to be type 1,

it leaves the system after one period. Otherwise, we know its type, and the job is returned to the

last place on the list. In other words, it will gain the highest priority to be scheduled on machine 2.

The same procedure applies to the last job that is assigned to machine 2. The policy is non-idling

unless all remaining jobs in the system are of known types (i.e., with probability 1) for one machine.

In this case, it is possible that the other machine will be idle. Whenever machine 1 finishes a job,

it takes the first job from the list; similarly, whenever machine 2 finishes a job, it takes the last

job from the list. The process continues until all jobs are finished. When the initial priority list is

sorted according to the probability of being type 1, this is called the less-uncertainty-first (LUF)

policy and is illustrated in Figure 3. In case there is only one job left and both machines are idle, it

is assigned to the machine that is more likely to be the right type.

Figure 3 Illustration of the less-uncertainty-first (LUF) policy

Intuitively, we might think that a non-idling policy that processes the job with the least uncertainty

(or highest matching probability) at any time whenever a machine is idle (i.e., the LUF policy)

should be optimal in terms of makespan. However, the intuition fails to lead to the optimal policy.

To illustrate, we present two counterexamples in Appendix B when τ = 1. The insights gained from

the counterexamples are crucial for analyzing and bounding the LUF policy’s performance. These

Electronic copy available at: https://ssrn.com/abstract=4222017

11

examples demonstrate one of the key challenges of the problem, whereby the optimal policy needs to

consider many details and interactions among all the remaining jobs in the system. Furthermore, it

becomes impossible to prove that the LUF policy is optimal given the counterexamples. Therefore,

in what follows, we restrict our attention to the set of priority list policies, denoted ΠP , and analyze

the best priority list policy.

For analytical tractability, we consider a special case in which τ = 1; i.e., it takes one period to

process a job regardless of whether the assignment is correct or not. This case fits settings in which

the machine can not detect the job type before service completion. For example, in healthcare

settings, when a patient is admitted to a hospital, she is treated according to clinical guidelines and

pathways. It is unknown whether the patient could be cured until completion of the service. If the

patient does not recover, she may be transferred to another hospital (?). Based on insights from

analysis of special cases, we design a heuristics policy for more general problems, which performs

well in our numerical studies.

Note that the LUF rule is generally not optimal even among ΠP . In particular, the problems in

the above examples arise when only one job with an undetermined type is left in the system and

both machines are idle. Hence, proving the optimality of any priority list policy becomes nontrivial,

since the size of the sample space expands exponentially depending on the procedure of the last

operation. However, based on insights from the examples, we are able to show a near-optimality

result for the LUF policy.

Theorem 1. The gap between the expected makespan from the LUF policy and that from any

optimal priority list policy is at most 1.

To prove Theorem 1, we first prove that the LUF policy is optimal among all priority list policies

under Assumption 1 stated below, which “speeds up” the last step. This assumption is inspired by

the counterexamples presented in Appendix B. Then we know that the gap between the expected

makespan from the LUF policy and that from the optimal priority list policy is at most 1 by

relaxing the assumption.

Assumption 1. We assume that when only one job is left and both machines are idle, the two

machines can process the final job together and finish it within one period.

First, one can easily verify that under this assumption, the LUF rule will be optimal for the

counterexamples in Appendix B. Next, we introduce some more notation before proving the

optimality of the LUF rule under this assumption. Since there are only two machines, we can

Electronic copy available at: https://ssrn.com/abstract=4222017

12

simplify the job type probabilities to pi, which denotes the probability that job i is type 1 (i.e., pi1

in our previous notation). Then the probability that job i belongs to type 2 is (1− pi). With a little

abuse of notation, we use xi to represent the possible realization of job i’s type, i.e., xi ∈ {1,2}.

Without loss of generality, let the sequence of jobs in the priority list be (1,2, . . . , n), and recall

that the priority list policy will assign the first job in the priority list to machine 1 and the last

job to machine 2 in every period. Note that any priority list policy is completely characterized by

its priority list. We prove later that the optimal priority list policy under Assumption 1 should

have the property of p1 ≥ p2 ≥ · · · ≥ pn. Define X = x1x2 . . . xn as a realization of job types for the n

jobs on the list, which is a string of ordered n 1-2 characters; for example, X = 12 . . .1. We call

X a scenario of these n jobs in an ordered priority list. Since all of the job type uncertainties are

mutually independent of each other, the probability of a scenario X = x1x2 . . . xn is

pX :=
∏n

i=1

[
pi1{xi=1} +(1− pi)1{xi=2}

]
=

∏n

i=1 [pi(2−xi)+ (1− pi)(xi − 1)]

=
∏n

i=1 (3pi − 2xipi +xi − 1) .

(2)

For example, if X = 11 . . .1, then the probability of this scenario is
∏n

i=1 pi. If X = 22 . . .2, then

the probability of this scenario is
∏n

i=1(1− pi). Denote the cardinality of a scenario X as |X|;

then |X|= n for X = {x1, x2, . . . , xn}. For any given scenario X, let CX be the makespan of this

scenario under the priority list policy. Note that CX is not a random variable. Then the expected

makespan for n jobs is (p1, p2, . . . , pn) is
∑

X pXCX . To prove the optimality of the LUF policy, we

first establish the following two lemmas.

Lemma 1. Under Assumption 1, C12X ≤C21X for any scenario X.

Here, with a little abuse of notation, C12X represents the makespan of a scenario in which the

actual types of the first two jobs on the priority list are type 1 and type 2, respectively; X indicates

the scenario of the remaining n− 2 jobs. To better understand the above lemma and clarify the

notation, we illustrate the case in detail using two jobs. There are two jobs of unknown types in the

system, and they are ordered as job 1 and job 2 on the priority list. In the first scenario, the actual

type of job 1 is type 1 and the actual type of job 2 is type 2, which is represented by scenario 12 in

the notation C12. According to the priority list policy, job 1 will be assigned to machine 1, and

job 2 will be assigned to machine 2. Then both jobs will be successfully processed in one period

and leave the system, so C12 = 1. In the other scenario, the actual type of job 1 is type 2, and the

actual type of job 2 is type 1, which is represented by scenario 21 in the notation C21. However, the

Electronic copy available at: https://ssrn.com/abstract=4222017

13

decision maker does not know the exact types of the jobs and assigns job 1 to machine 1 and job 2

to machine 2 according to the priority list policy. After one period, the mismatches are realized and

both jobs are returned to the list with the sequence changed, which becomes C12. Next, both jobs

will be assigned to the right machines and successfully processed within one period, so we have

C21 = 2.

The case of the two jobs presented above is rather straightforward and does not require Assumption

1. However, to show that C12X ≤C21X for any X is not trivial. This requires careful analysis of all

possible cases, and Assumption 1 plays a critical role in establishing this result, which clears the

boundary case when there is only one job left in the system. It is not straightforward to think of

Assumption 1, which happens to address several obstacles when we try to prove this lemma and

several other results. Next, we show a similar result for the order of the last two jobs.

Lemma 2. Under Assumption 1, CX12 ≤CX21 for any scenario X.

Here, CX12 denotes the makespan of a scenario in which that actual type of the last job is type

2 and the actual type of the penultimate job is type 1. Note that Lemma 2 can be derived from

Lemma 1. We can reverse the priority lists 12X and 21X into X21 and X12, and assign the first

job on the list to machine 2 and the last job to machine 1. According to Lemma 1, CX21 ≤CX12.

Then by swapping the notations for machine 1 and machine 2, we get CX12 ≤CX21 when the first

job on the list is assigned to machine 1, and the last job on the list is assigned to machine 2.

Note that Lemmas 1 and 2 hold for any possible scenario X, i.e., any realization of job types. The

probabilities of the scenarios have not yet been taken into consideration in these lemmas. Therefore,

there is no additional condition related to probabilities for Lemmas 1 and 2. Next, based on these

two lemmas, we consider the probabilities of different possible scenarios (realizations of job types)

and prove Theorem 2, which says that the optimal priority list should sort pi’s in decreasing order.

In other words, the LUF policy is optimal among all priority list policies under Assumption 1,

which leads to our main result whereby the gap between the LUF policy and any optimal priority

list policy is at most one.

Theorem 2. Under Assumption 1, the LUF policy is optimal among all the priority list policies,

in terms of minimizing the expected makespan.

Note that Assumption 1 only “speeds up” the last job in some scenarios. Hence, the impact of

this assumption on the makespan is bounded above by 1. That is, the expected makespan of any

priority list policy will be increased by less than one period without this assumption. Hence, if

Electronic copy available at: https://ssrn.com/abstract=4222017

14

the LUF policy beats any other priority list policy under Assumption 1, its performance gap from

the optimal priority list policy without Assumption 1 is also bounded above by one. Therefore, we

prove our main result, Theorem 1.

Another typical objective in the scheduling literature is to minimize the expected total amount

of time jobs spend in the system, i.e., the expected total sojourn time, defined as

T π =
∑
t

Xπ(t), (3)

where Xπ(t) is the number of unprocessed jobs in the system at period t under a scheduling policy

π, which is the summation of the sojourn time for each job. The analysis of this objective is similar

to the case of minimizing the expected makespan. Therefore, we only state the main results below

for two machines (i.e., m= 2) but relegate the details to Appendix A.3.

Theorem 3. The gap between the expected total sojourn time from the LUF policy and that from

the optimal priority list policy is less than one period.

As shown above, the LUF policy works well under both objectives, minimizing the expected

makespan and the expected total sojourn time when there are two machines in the system. Such

superior performance of the LUF policy comes from its properties: 1) reducing mismatch—the LUF

policy assigns jobs to maximize the overall matching probability; 2) utilizing idle machines—when

a machine is idle, it will help process a job even if the job is more likely to be the other type. It is

worth mentioning that it is very challenging to extend the analytical results to more general cases,

due to mismatch and rescheduling and because the policy is dynamic. Nevertheless, this simplified

case’s insights guide us in developing easy-to-implement heuristic policies for general problems.

5. Multiple Types with Learning: A Numerical Study

In this section, we numerically discuss the model with multiple types of jobs. For two types, learning

job types is rather simple; i.e., type 1 or type 2. However, when there are more than two types, the

learning process is much more complicated and not unique. For example, for complicated diseases

with highly uncertain treatments, the information learned from a mismatch is limited for diagnosing

the true disease types. Thus, patients will likely visit two or more physicians until the correct

treatment is found. However, for mild diseases, the true type can be found after one mismatch

because the information gained from diagnostic tests ordered by any given physician may be enough

to confirm the disease type. Based on this idea, we discuss two learning processes as follows.

Electronic copy available at: https://ssrn.com/abstract=4222017

15

• Exclusive learning (or Bayesian learning): If there is a mismatch, the only thing we learn is to

exclude this type and update the remaining probabilities.

• Dedicated learning (or fast learning): If there is a mismatch, the machine will detect the true

type of the job.

We can see that the above learning schemes are at two extremes. Exclusive learning is a situation in

which after a mismatch, little information is learned except for the exclusion of a mismatched type.

For dedicated learning, in contrast, the actual job type can be learned after a mismatch. There

is no difference between exclusive and dedicated learning when there are only two job types. In

practice, other situations can exist between these two extremes; e.g., learning partial information

after mismatch, which will not be discussed in detail here. However, we believe that our results

could be applied to partial learning schemes if similar patterns are observed under both exclusive

and dedicated learning.

In the following, we first formally introduce the model and these two learning schemes. Then,

based on the previous analysis, we introduce the benchmark policy and propose our heuristic policy.

Finally, we study the performance of our proposed policy in settings of both homogeneous service

time and heterogeneous service time, which may cover various scenarios, including mass-casualty

incidents. The results show that our proposed policy performs better than the benchmark in

minimizing completion time, with a small sacrifice on the objective of minimizing mismatch. An

application in a mass-casualty scenario is described in Appendix C.

5.1. Model Formulation and Learning Schemes

We consider a system with n jobs and m machines. Let N = {1,2, . . . , n} denote the set of jobs

and M= {1,2, . . . ,m} the set of machines. For each job i ∈N , the job has an initial probability

pij of being type j, j ∈M. A type j job can only be served by machine j. We assume that the

time needed to detecting a mismatch is one period2. Each job spends a random amount of service

time before being successfully processed by the machine. We assume a discrete-time setting and the

service time of a type j job τj follows a geometric distribution with the parameter qj, i.e.,

P(τj = k) = (1− qj)
k−1qj, k≥ 1.

2 In our model, we normalize the mismatch times to one period under both learning schemes. We focus on comparing
different policies under each learning scheme, and we do not intend to compare the two learning schemes. Hence, the
actual time unit for one period could be different under different learning schemes. For example, one period for the
model under the exclusive learning scheme can be 30 minutes, while one period under the dedicated learning case can
be 1 hour. The service times can be scaled, too.

Electronic copy available at: https://ssrn.com/abstract=4222017

16

This assumption is fairly commonly used in the literature (e.g., ??); ? showed that the empirical

length-of-stay distribution for inpatients is close to a geometric distribution. The model under these

two learning schemes can be formulated as the following dynamic problem.

State: Let S be the state space. Define the state s := ((pij)n×m, (bj)1×m)∈ S, where pij represents

the probability that job i is type j, bj ∈ {0,1}, where bj = 0 denotes that machine j is idle and

bj = 1 denotes that machine j is busy.

Action: Let A be the action space and a= (aij)n×m ∈A denotes an action. If aij = 1, job i is

assigned to machine j. Otherwise, aij = 0. We assume that the assignment can only occur between

jobs on the list and idle machines. Let pi = (pi1, pi2, . . . , pim) represents the state of job i. We let

N ′ = {i ∈N : pi = 0} denote the set of jobs not on the list and M′ = {j ∈M : bj ̸= 0} the set of

busy machines. The state-dependent action space is therefore

A(s) =

(aij)n×m :

∑m

j=1 aij ≤ 1,∀i∈N ;
∑n

i=1 aij ≤ 1,∀j ∈M;∑m

j=1 aij = 0,∀i∈N ′;
∑n

i=1 aij = 0,∀j ∈M′.

 . (4)

State transition probabilities: We consider the state transition probabilities under different

learning schemes. Since the service process of each job is independent, we discuss the marginal

transition probability for simplicity. The state transition probability can easily be obtained by

multiplying these independent marginal transition probabilities. If machine j is busy serving a job,

then the machine has a probability of qj to complete the job in the current period and probability

(1− qj) to continue the service process in the next period. If there is an assignment aij =1, then

job i (pij ̸= 0) is assigned to machine j (bj = 0). If the job is the right type and is being served

by the machine (with probability pij), then the job has a probability of qj to be served in one

period and leave the system, and probability (1− qj) to continue the service in the next period. If

the job is found to be a wrong type (with probability 1− pij), then the machine will detect the

true type of the job as type k(̸= j) with probability pik under the dedicated learning. In contrast,

under exclusive learning, the machine can only exclude type j and the belief of job type is updated

accordingly.

Thus, under dedicated learning, the marginal transition probability is given as follows:

Pd(s
′ | s, a) =

pijqj, if pij ̸= 0, bj = 0, aij = 1, and p′
i = 0, b′j = 0;

pij(1− qj), if pij ̸= 0, bj = 0, aij = 1, and p′
i = 0, b′j = 1;

pik, if pij ̸= 0, bj = 0, aij = 1, and p′
i = ek, b

′
j = 0, k ̸= j;

qj, if bj = 1, and b′j = 0;

1− qj, if bj = 1, and b′j = 1,

(5)

Electronic copy available at: https://ssrn.com/abstract=4222017

17

where s′ = ((p′ij)n×m, (b
′
j)1×m) denotes the state in the next period.

For exclusive learning, the marginal transition probability is the same except

Pe(s
′ | s, a) = 1− pij, if pij ̸= 0, bj = 0, aij = 1, and p′

i = (pi − pijej)/(1− pij), b
′
j = 0. (6)

Objective function: The cost function c(s, a) equals 0 if the system is empty. Otherwise, it is

1. Our objective is to minimize the service completion time of all jobs (i.e., makespan) given the

initial state s1, i.e.,

min
at∈A(st)

E

[
∞∑
t=1

c(st, at) | s1

]
.

Under this model formulation, our problem can be considered a Markov decision problem (MDP)

with high dimensional state space. Note that the geometric service time distribution is crucial for

the model to be considered an MDP. Computationally, our problem suffers severely from the curse

of dimensionality. For the problem with n jobs and m machines, the number of states for this MDP

is (m+2)n2m under dedicated learning and even much larger under exclusive learning; for example,

when m= 2, n= 5, the number of states can be 4,096 under dedicated learning. In general, our

problem is technically and computationally challenging to solve, and we believe that it is useful to

develop heuristics based on our analysis of a simplified model.

5.2. Heuristic Policies

In this part, we first introduce a benchmark policy that always assigns a job to the machine with

the highest probability of serving the job. This policy will likely be implemented in practice, since

most physicians prefer to treat patients correctly right the first time. However, such a policy is

not optimal because system utilization is not taken into consideration. Based on our analysis of

the special case we develop our heuristic policy, which accounts for system dynamics to avoid

mismatches as well as resource idling. To see the performance of our proposed heuristic policy, we

conduct a series of numerical studies.

In systems in which mismatch incurs a considerable cost, the manager may want to minimize the

number of mismatches. We generalize the likelihood-based policy in Section 4 to the multiple-type

setting, and refer to it as the highest-probability-first (HPF) policy. Specifically, in each period, jobs

must be assigned to the machines with the highest probabilities. If more than one job is waiting for

the same machine, the machine will first serve the job with the highest probability of being its type.

3 We can easily show that this policy is optimal for minimizing the expected number of mismatches.

3 If equal probabilities exist, the assignment will be determined randomly. This case is rare if the probabilities are
continuously distributed.

Electronic copy available at: https://ssrn.com/abstract=4222017

18

Theorem 4. If jobs are always assigned according to the HPF policy, the expected total number

of mismatches is minimized under both learning schemes.

We set the HPF policy in our numerical analysis as a benchmark to see whether our proposed

heuristic policy can achieve a better trade-off between mismatch and makespan.

Based on our analysis of the LUF policy for the simplified model, we propose a generalization, in

which the assignment decisions are made by solving the following optimization problem in each

period when there are jobs on the list and idle machines:

max
a∈A(s)

∑
i∈N

∑
j∈M

pijaij,

where A(s) is defined in (4).

We refer to this policy as the generalized less-uncertainty-first (GLUF) policy. Note that it reduces

to the LUF policy when there are only two machines.

5.3. Numerical Experiments

To study the performance of our proposed GLUF policy, we perform a series of numerical experiments

when service time and detection time are either the same or different. We compare the performances

of the GLUF policy and the benchmark HPF policy to demonstrate how the GLUF policy can

benefit the scheduling problem with uncertain-type jobs under different learning schemes. To further

illustrate the applicability of the GLUF policy to general settings, we also compare the performances

of the GLUF policy and the optimal policy when the service time is stochastic. We examine three

performance measures as discussed above: expected makespan, expected total sojourn time, and

expected number of mismatches.

5.3.1. Equal Service and Detection Time To focus on the effect of system capacity and

workload, we first conduct numerical experiments in the setting of equal service and detection time,

which are both set to one unit without loss of generality. For any job i, pij is generated uniformly

between 0 and 1 (j = 1, . . . ,m) and then normalized. Assume that we have n= 20 jobs and m= 5

machines. We generate 100 instances of job type probabilities and 100 samples for each instance.

The result is presented in Table 1. Under exclusive learning, for the HPF policy, which is designed

to minimize the expected number of mismatches, the average makespan is 13.54; the average total

sojourn time is 123.57; the average number of mismatches is 25.70. If we apply the GLUF policy,

the average makespan decreases to 10.93, a 19.30% reduction compared with the benchmark policy.

There is an 11.78% reduction in the average total sojourn time but a 3.67% increase in the expected

Electronic copy available at: https://ssrn.com/abstract=4222017

19

number of mismatches. The performance comparison between the GLUF and HPF policies under

dedicated learning is similar but more significant. Compared with exclusive learning, there is a

higher reduction in makespan and total sojourn time under dedicated learning (22.50% and 11.79%,

respectively), while there is less increase in the number of mismatches (1.74%). We can see that

although HPF performs better with respect to mismatch, the advantage is small. In contrast, the

GLUF policy performs much better with respect to makespan and total sojourn time.

Table 1 System performance under different policies when m= 5 and n= 20.

Dedicated Learning Exclusive Learning
HPF GLUF (gap%) HPF GLUF (gap%)

Makespan 10.09 7.82 (↓22.50%) 13.54 10.93 (↓19.30%)
Total Sojourn Time 94.22 83.12 (↓11.79%) 123.37 108.84 (↓11.78%)
Mismatch 13.02 13.25 (↑1.74%) 25.70 26.64 (↑3.67%)

Effect of the Number of Jobs. To see the effect of system workload on performance comparison,

we change the number of jobs, n, from 10 to 40 while keeping the number of machines at m= 5. For

each n, we generate 100 instances of job type probabilities and 100 samples for each instance. We

plot the makespan comparison between the two polices in Figure 4; similar figures on total sojourn

time and number of mismatches are provided in Figures 9 and 10 in Appendix D, along with the

details reported in Table 5. As the number of jobs increases, performance improvement in terms of

makespan and total sojourn time under the GLUF policy relative to the HPF policy is significant:

more than 14% for makespan and 6% for total sojourn time. However, performance improvement

(proportionally) in terms of makespan decreases. One explanation is that one of the advantages of

the GLUF policy is its non-idling feature; i.e., it can better utilize idle machines. When the number

of jobs grows, the probability of machines being idle decreases. Therefore, the advantage of the

GLUF policy is diminished.

Regarding the number of mismatches, the GLUF policy always performs worse than the HPF

policy although the gap is small at less than 6% (see Table 5 in Appendix D). Considering the

similar results of two extreme learning schemes in terms of three measures, we believe that partial

learning schemes also yield similar results.

Effect of the Number of Job Types. It should be noted that the number of machines equals

the number of job types in our setting. To avoid ambiguity, we use the term “job type” in this

section. In our setting, on the one hand, as the number of job types increases and as system service

capacity increases, the number of jobs being processed simultaneously can be larger; this is beneficial

Electronic copy available at: https://ssrn.com/abstract=4222017

20

(a) Exclusive learning (b) Dedicated learning

Figure 4 Makespan comparison between GLUF and HPF policies under different numbers of jobs (m= 5).

for decreasing system completion time. On the other hand, as the number of job types increases,

uncertainty increases, which lead to a higher number of mismatches. There could be a trade-off

between type uncertainty and system service capacity. Therefore, it is meaningful to see the effect

of the number of job types on performance measure comparison.

We plot the makespan comparison between the two polices in Figure 5; similar figures for total

sojourn time and number of mismatches are provided in Figures 11 and 12 in Appendix D, along

with the details reported in Table 6. As observed in Figure 5, under exclusive learning, as the number

of job types increases, the average makespan drops at the beginning and then rises. One possible

explanation is that as the number of job types increases, although it will be faster for jobs to be

assigned, the probability of being mismatched can also rise. At first, the impact of service capacity

dominates the impact of job type uncertainty. Later, the latter gradually dominates the former.

In contrast, for dedicated learning the average makespan is decreasing continuously. Dedicated

learning takes at most two steps to serve a job successfully; i.e., there is at most one mismatch for

one job. Therefore, the impact of high job-type uncertainty on the number of mismatches as well as

makespan is limited, and the influence of service capacity on makespan is remarkable. Hence, there

is an overall decrease trend under dedicated learning.

Observation of the total sojourn time measure is similar to makespan. Regarding the measure

of mismatch, the performance of the GLUF policy is quite close to the performance of the HPF

policy, with a difference of less than 6% (see Table 6 in Appendix D). Since a larger number of job

types indicates higher type uncertainty, it is possible that the uncertainty of job types influences

performance. The GLUF policy seems to perform better for solving problems in which job types

Electronic copy available at: https://ssrn.com/abstract=4222017

21

(a) Exclusive learning (b) Dedicated learning

Figure 5 Makespan comparison between GLUF and HPF policies under different numbers of machines (n= 20).

are uncertain. This observation affirms our initial motivation for designing the GLUF policy, which

is to handle the scheduling problem with job type uncertainty.

5.3.2. Unequal Service and Detection Time In practice, treating a disease can take longer

than diagnosing or finding a mismatch. Hence, we now explore a more general case in which the

service time differs from the detection time. We first study the situation in which the service time

is deterministic and then examine the situation in which the service time is stochastic.

Deterministic Service Time. Assume that we have n= 20 jobs and m= 5 machines. In this

part, we perform a numerical experiment by changing the service time, i.e., the processing time

when the assignment is correct. Without loss of generality, we set the time spent on one mismatch

as one period and vary the service time from 1 to 10 periods. The complete results are provided in

Table 7 in Appendix D. The comparison of average makespan is depicted in Figure 6, and similar

comparisons of total sojourn time and number of mismatches are plotted in Figures 13 and 14 in

Appendix D. We observe that the average makespan and total sojourn time increase as the service

time increases. The number of mismatches under the HPF policy is not affected by the service

time, which has been proved in Theorem 4. The average number of mismatches under the GLUF

policy rises with the increase in service time. When the service time increases, more machines are

occupied in each period and unavailable, so the number of choices for jobs is smaller. Under this

situation, the GLUF policy will always greedily make assignments that may not be good enough

for jobs. Therefore, the number of mismatches can be large.

The performance improvement in terms of the average makespan under the GLUF policy is

significant. For example, when service time equals 10 units, i.e., ten times the detection time, the

Electronic copy available at: https://ssrn.com/abstract=4222017

22

(a) Exclusive learning (b) Dedicated learning

Figure 6 Makespan comparison between GLUF and HPF policies under different service times (m= 5, n= 20).

performance improvement can be 17.85% under exclusive learning and 9.31% under dedicated

learning. To understand this result, we can refer to Figure 14 in Appendix D. As the service time

increases, the performance of the GLUF policy in terms of mismatch compared with the HPF policy

worsens; perhaps the increasing number of mismatches can explain the reduction in makespan

performance improvement. However, the negative impact of a mismatch on system makespan drops

as the service time increases, because the relative time needed to identify a mismatch compared

with the correct service gets smaller. Therefore, there is still a significant improvement in makespan

under the GLUF policy despite its downward trend.

Stochastic Service Time. We numerically compare the GLUF policy with the optimal policy,

which minimizes the expected makespan, with the service time following a geometric distribution.

As demonstrated in our previous analysis, this problem suffers from the curse of dimensionality

when using recursive algorithms. Thus, we limit the experiments to small-size examples. We use

the backward recursion algorithm to obtain the optimal makespan, When m= 2, n= 5, we set the

initial job type probability distributions to (0.2 0.8), (0.3 0.7), (0.9 0.1), (0.6 0.4), and (0.05 0.95)

respectively. We vary n from 2 to 5 by choosing the first n jobs from the above example. Suppose

the detection time for a mismatch is one period. The expected service time for type 1 job µ1 is set

to two periods and the expected service time for type 2 job µ2 is varied from 4 to 6 and 8 periods.

We generate 100 samples in the simulation under the GLUF and the HPF policy. Comparison

of expected makespan under different policies is presented in Table 2, where “Opt” indicates the

optimal expected makespan. From Table 2, we can observe that the gap is relatively small, which

affirms the efficiency of the proposed GLUF policy. The computational time for n= 2,3,4,5 is

Electronic copy available at: https://ssrn.com/abstract=4222017

23

0.65s, 18.76s, 788.54s, and 25107.19s, respectively. A case with m= 3 is presented in Appendix E to

further verify the performance of the GLUF policy. All experiments are performed on a PC with

Intel Core i5 2.90 GHz CPU and 8 GB of RAM.

Table 2 Expected makespan under different policies with service time following geometric distributions (m= 2).

(µ1 = 2, µ2 = 4) (µ1 = 2, µ2 = 6) (µ1 = 2, µ2 = 8)
n Opt GLUF (gap%) HPF (gap%) Opt GLUF (gap%) HPF (gap%) Opt GLUF (gap%) HPF (gap%)

2 6.48 6.69 3.24% 7.22 11.42% 9.42 9.56 1.49% 9.92 5.31% 12.38 12.41 0.24% 12.88 4.04%
3 7.38 7.59 2.84% 8.05 9.08% 10.43 10.75 3.07% 10.81 3.64% 13.54 13.57 0.22% 14.27 5.39%
4 9.27 9.43 1.73% 10.28 10.89% 13.01 13.40 2.99% 13.55 4.15% 16.87 16.90 0.18% 18.07 7.11%
5 12.43 12.51 0.64% 13.27 6.76% 18.09 18.10 0.06% 19.01 5.09% 23.91 24.21 0.83% 24.66 3.14%

Next, we compare the expected number of mismatches from the GLUF and the HPF policies.

The settings are the same as in the above experiment for makespan comparison. Detailed results

are presented in Table 8 in Appendix D. We first observe that the mismatch performance of the

HPF policy does not depend on service time, which is confirmed in Theorem 4. Under the GLUF

policy, the expected number of mismatches increases with µ2. This is because the longer machine 2

is occupied, the more likely a type 2 job will be assigned to machine 1, which leads to a higher

chance of mismatch. We can see a gap in the number of mismatches between these two policies.

While the HPF policy minimizes the number of mismatches, the GLUF policy is better for reducing

makespan (see Table 2). These observations are consistent with cases in which service times are

homogeneous and deterministic. We also perform additional numerical experiments in which the

service time follows different distributions. We observe that the GLUF policy always outperforms

the HPF policy in terms of makespan. The results are shown in Tables 9–11 in Appendix D.

In summary, we demonstrate numerically that the insights from our analytical results for a

simplified model can be generalized to more practical settings. Our proposed GLUF policy performs

well with respect to both makespan and mismatch in a variety of settings.

6. Online Stochastic Scheduling: An Extension

In some systems, jobs’ information is revealed one by one in sequence. In this section, we consider

an extension to a type of online scheduling models, which arise in communication networks (?)

and many other applications (??). A sequence of independent jobs I = (J1, J2, . . .) that are ordered

on a list must be scheduled irrevocably on one of the machines M= {1,2} in the order of their

arrivals. We denote a job by Ji = (pi, τi, Ti), where pi is the probability of being type 1 and (1− pi)

is the probability of being type 2. τi is the service time if the job is scheduled to the right machine;

Electronic copy available at: https://ssrn.com/abstract=4222017

24

otherwise, it takes time Ti to detect the mismatch, and the job must be rescheduled to the right

machine. We assume τi >Ti, which means it takes no more time to detect a mismatch. For instance,

if job Ji is of type j and is assigned to machine j, the job will leave the system after service time τi.

If the job is referred to the other machine j′ (j′ ̸= j), a mismatch occurs and the job will have to be

rescheduled to machine j after mismatch time Ti. We perform the assignment of a job once any

machine is empty. After the assignment, the next job Ji = (pi, τi, Ti) can be seen. We continue the

assignment until both machines are busy. Next, the machines will process jobs until at least one is

empty, and then perform the assignment again. The whole process is complete when both machines

are empty and all jobs have been served. The objective is to minimize the expected completion time

of the last job, i.e., the makespan. In this section, to avoid confusion, we use “list” to denote the

sequence of jobs that have not been assigned, and “queue” refers to jobs that have been assigned

and are waiting to be processed by a specific machine.

Due to the handicap of not knowing the entire input, computing the optimal solutions is generally

intractable and we have to resort to approximations. The standard approach to evaluating algorithms

when working online is competitive analysis. In this study, we propose online policies and measure

their competitive ratios against a stochastic offline adversary model. The stochastic offline adversary

model can be defined similarly as in Section 3, in which the service time τi, time to detect the

mismatch Ti, and type probability pi for each job i are given in advance. Note that the realization

of a job’s type is still unknown, subject to the randomness following the independent Bernoulli

distribution specified by the job’s type probability. An online policy A is compared with an optimal

stochastic offline policy, denoted OPT . For any input Ik = (J1, J2, · · · , Jk), k ∈N+, let A(Ik) be the

makespan achieved by policy A on Ik and let OPT (Ik) be the makespan of the optimal solution for

Ik. Due to the uncertainty of job types, A(Ik) and OPT (Ik) are both random variables. An online

algorithm is called c-competitive if there exists a constant b such that for any problem input Ik, the

inequality E[A(Ik)]≤ c ·E[OPT (Ik)] + b holds. Note that the competitive ratio (c defined above) is

a worst-case performance measure.

6.1. Heuristic Policies and Their Competitive Ratios

Following the insight from the previous analysis, we introduce and analyze three related policies

accordingly in this section. First, we also consider the HPF policy as before, which assigns each job

to the more likely machine to minimize mismatch, i.e., jobs with probabilities no less than 0.5 will

be assigned to machine 1 and jobs with probabilities less than 0.5 will be assigned to machine 2.

The following proposition gives an upper bound on the competitive ratio of the HPF policy.

Electronic copy available at: https://ssrn.com/abstract=4222017

25

Proposition 1. The HPF policy achieves a competitive ratio no greater than 2.

Under the HFP policy, it is possible that a new job is assigned to the busy machine while

continuing to leave the empty machine be empty. This assignment may cause unwanted idleness

in the system. Hence, to avoid such a situation, we consider a policy that always assigns the new

job on the list to the empty machine. Specifically, once a machine becomes empty, we assign the

new job to this machine; if both machines become empty at the same time, we assign the job to

the machine with a higher matching probability. We refer to this policy as the avoid idling (AI)

policy. To analyze the performance of the AI policy, we specifically define the idle time of a machine

as the time intervals during which the machine is empty between its busy periods. Under this

definition, the final period in which one machine is empty and “waiting” for the other machine

to finish processing the remaining assigned jobs is not considered to be the machine’s idle time;

similarly, the makespan of a machine is the time interval between its first and last busy periods

(inclusive). Lemma 3 below gives an upper bound on the total idle time for any machine under the

AI policy.

Lemma 3. The total idle time for any machine under the AI policy is bounded above by

max{T1, T2, . . .}.

The makespan of each machine contains two parts: total processing time (including service time

and detection time for mismatches) and total idle time. Note that for any job, its service time and

detection time, if both occur, can only occur in two different machines. Hence, for any specific

machine, its total processing time is bounded above by
∑n

i=1 τi, because the detection time is smaller

than the service time for any job. Together with the bound on idle time given in Lemma 3, we can

derive an upper bound on the makespan of each machine, which is
∑n

i=1 τi +max{T1, T2, . . . , Tn}.

Since the makespan of the system is the maximum of the makespans of the two machines, the same

bound applies to the expected makespan under the AI policy. Therefore, the competitive ratio of

the AI policy can be bounded above by

2
∑n

i=1 τi +2max{T1, T2, . . . , Tn}∑n

i=1 τi +
∑n

i=1(1− pi)Ti1{pi>0.5} +
∑n

i=1 piTi1{pi≤0.5}
.

Finally, in attempting to balance the trade-off between mismatch and idling, we consider a policy

that achieves less expected makespan when assigning any new job. As before, once any of the

machines becomes empty, the system performs the assignment of the first job on the list if not

empty. Given the job assignment before the new job, we compute the expected makespan if the new

Electronic copy available at: https://ssrn.com/abstract=4222017

26

job is assigned to machine 1, which can be approximated by simulation. Specifically, past makespan

has been realized at the time of assigning this new job, so we only need to simulate the type of

the new job or jobs (if any) that have not been processed to estimate the expected remaining

makespan. In our numerical experiments, we generate 100 instances for the job types to compute

the approximated makespan. Similarly, we also compute the expected makespan if the new job is

allocated to machine 2. The new job will be assigned to the machine that achieves a lower expected

makespan for the system. This policy is called the less-expected-makespan first (LEMF) policy.

Note that this is a myopic greedy policy that optimizes makespan at each time of assigning a job.

Similar to the HPF policy, we can prove the same upper bound on the competitive ratio of the

LEME policy.

Proposition 2. The LEMF policy achieves a competitive ratio no greater than 2.

6.2. Numerical Study

In this section, we perform several numerical experiments to investigate the performance of our

proposed policies in various settings to demonstrate the trade-off between avoiding idling and

mismatch. We use the makespan as the main performance measure. In this numerical experiment,

job i’s type probability pi is generated from a uniform distribution, U(0,1), or beta distributions,

Beta(2,2), and Beta(0.5,0.5). The service time of job i, τi is generated from a uniform distribution

U [2,11], and its mismatch time Ti is generated from a uniform distribution U [1, τi] to ensure that

the mismatch time is always less than the service time for a given job. We consider m= 2 machines.

We obtain the expected makespan under different job type probability distributions and different

numbers of jobs n. For each case, we generate 100 numerical samples and run 50 replications for

each sample. The results are summarized in Table 3.

Table 3 Average makespan under different job type probability distributions with service
time following uniform distribution.

U(0,1) Beta(0.5,0.5) Beta(2,2)
n AI HPF LEMF AI HPF LEMF AI HPF LEMF

5 22.96 23.63 22.79 21.91 22.44 21.64 22.69 23.69 22.63
10 41.73 42.37 41.19 40.71 41.21 39.99 41.29 42.36 40.95
15 60.26 60.54 59.20 59.99 58.93 58.64 59.22 60.19 58.48
20 79.73 79.67 78.77 78.84 77.57 77.30 78.52 79.76 78.01
25 97.31 96.99 96.89 99.79 97.64 97.42 98.48 99.13 97.25
30 115.86 115.24 115.19 117.58 114.82 114.72 116.37 116.74 115.14

When pi is generated from Beta(2,2), the expected makespan under the AI policy is less than

that under the HPF policy and the gap decreases as n increases. When pi is close to 0.5, the benefit

Electronic copy available at: https://ssrn.com/abstract=4222017

27

of assigning a job to the highest probability machine can be small. That is why the AI policy always

outperforms the HPF policy. As n increases, both machines become less likely to be idle. Once a

machine is idle, a new job will be ready for assignment. Therefore, the benefit of the AI policy

could diminish, which explains why the gap decreases as n increases. However, the LEMF policy

always performs the best because the policy takes into account the trade-off between idling and

mismatch. When pi is generated from Beta(0.5,0.5), pi could be either very small or very large.

When n= 5 or 10, the AI policy performs better than the HPF policy. However, as n increases, the

HPF policy outperforms the AI policy. On the one hand, once the job is assigned to the “right”

machine, the possibility of being mismatched is small, which means that the benefit of avoiding

mismatch could be large. On the other hand, with an increase in n, the benefit of the AI policy is

decreasing. Therefore, the AI policy is better than the HPF policy when n is small and becomes

worse when n is large. Similarly, we can observe that the LEMF policy performs the best. Under the

uniform distribution U(0,1), the spread of pi is neither too extreme nor too centralized. The results

show that when n≤ 15, the AI policy performs better than the HPF policy. Then, as n increases,

the expected makespan under the HPF policy is smaller than that under the AI policy. We can

observe that the LEMF policy always performs the best in minimizing the expected makespan. Our

result highlights the importance of balancing the trade-off between mismatch and idling.

We further explore other distributions to generate the parameters. In particular, the service time

τi is generated from geometric distribution G(2/13) or Erlang distribution Erlang(2,2/13), while

the mismatch time Ti is generated from the uniform distribution U [1, τi]. The main insights are

consistent with what is presented above, and the detailed results are provided in Tables 12 and 13

in Appendix D.

7. Conclusion

In this paper, we study a new scheduling problem with uncertain types of jobs, i.e., the probability

that a job belongs to a certain type can be less than 1. We explicitly model the dynamics whereby

a mismatched job must be rescheduled so that a job can leave the system only after it has been

processed by the right machine, which is required in many service systems, including most healthcare

systems. The problem turns out to be much harder, since the service sequence for each job becomes

stochastic and depends on the dynamic scheduling decisions. We investigate the optimal policies

under different objectives: makespan, total sojourn time, and the number of mismatches. In the

numerical study, we find that the GLUF policy performs relatively well under all objectives. The

Electronic copy available at: https://ssrn.com/abstract=4222017

28

GLUF policy performs quite well in minimizing makespan by slightly sacrificing the number of

mismatches. With a larger number of job types or shorter service time, the GLUF policy performs

much better than the benchmark policies. This is because the GLUF policy accounts for system

dynamics to avoid both mismatches and resource idling. Our results imply that managers should

design policies not only from a clinical perspective to minimize mismatches but also from an

operational perspective to balance utilization.

Since this is a preliminary study of the scheduling problems with uncertain job types, there are

several limitations. Although we have demonstrated that the LUF policy is optimal when there are

two types of jobs under Assumption 1, it is still unclear what the optimal policies are in scheduling

systems with multiple job types. This is a challenging future research direction, and the methodology

used in this paper may no longer be applicable. Another future research direction would be to

analyze the performance of the LUF policy when pi’s have a certain pattern or follow a specific

distribution. Given such additional information, it may be possible to derive more analytic results.

It would also be interesting to apply the approximate dynamic programming or reinforcement

learning to solve the high-dimensional MDP problems (??). For example, the temporal-difference

learning or Q-learning methods may be feasible for our problem, which is worth exploring.

Electronic copy available at: https://ssrn.com/abstract=4222017

i

Online Appendices:

Appendix A: Technical Proofs

A.1. Proof of Lemma 1

We prove the lemma using induction. We start with boundary conditions.

First of all, under Assumption 1, it takes only one period to complete a single job, i.e., C1 =C2 = 1.

When |X|= 0, we have C12 = 1, and C21 = 1+C12 = 2>C12. When |X|= 1, we have C121 = 1+C12 = 2,

C211 = 1+C112 = 2+C1 = 3>C121, and C122 = 1+C2 = 2, C212 = 1+C12 = 2=C122.

When |X|= 2, we have the following four possible cases:

Case 1. C1211 = 1+C121 = 2+C12 = 3, C2111 = 1+C1112 = 2+C11 = 3+C1 = 4>C1211;

Case 2. C1212 = 1+C21 = 2+C12 = 3, C2112 = 1+C112 = 2+C1 = 3=C1212;

Case 3. C1221 = 1+C122 = 2+C2 = 3, C2121 = 1+C1122 = 2+C12 = 3=C1221;

Case 4. C1222 = 1+C22 = 2+C2 = 3, C2122 = 1+C122 = 2+C2 = 3=C1222.

Therefore, the lemma holds when |X|= 0,1,2.

Using induction, to prove Lemma 1, i.e., C12X ≤C21X for any scenario X, assume that the lemma holds for

all |X| ≤ k+1 (k≥ 1). We only need to prove that it still holds for |X|= k+2. We need to show the following

four cases: C12Y 11 ≤C21Y 11, C12Y 12 ≤C21Y 12, C12Y 21 ≤C21Y 21, and C12Y 22 ≤C21Y 22, where |Y |= k≥ 1.

Case 1. C12Y 11 ≤C21Y 11.

We decompose this case into two subcases: Y =W1 and Y =W2.

• Subcase 1.1. Y =W1.

C12W111 = 1+C12W11 = 2+C12W1 ≤ 2+C21W1 = 3+C11W2 = 4+C1W .

C21W111 = 1+C11W112 = 2+C1W11 = 3+C1W1 = 4+C1W ≥C12W111.

• Subcase 1.2. Y =W2.

C12W211 = 1+C12W21 = 2+C12W2 ≤ 2+C21W2 = 3+C1W2 = 4+CW .

C21W211 = 1+C11W212 = 2+C1W21 = 3+C1W2 = 4+CW ≥C12W211.

Case 2. C12Y 12 ≤C21Y 12.

We decompose this case into two subcases: Y = 1W and Y = 2W .

• Subcase 2.1. Y =W1.

C121W12 = 1+C21W1 = 2+C11W2 = 3+C1W .

C211W12 = 1+C11W12 = 2+C1W1 = 3+C1W .

When |W |= 0, C121W12 =C211W12 = 4. When |W | ≥ 1, C1W =C1W , so C121W12 =C211W12.

• Subcase 2.2. Y =W2.

C122W12 = 1+C22W1 = 2+C12W2 ≤ 2+C21W2 = 3+C1W2 = 4+CW .

C212W12 = 1+C12W12 = 2+C2W1 = 3+C1W2 = 4+CW ≥C122W12.

Case 3. C12Y 21 ≤C21Y 21.

C12Y 21 = 1+C12Y 2 ≤ 1+C21Y 2 = 2+C1Y 2 = 3+CY .

C21Y 21 = 1+C11Y 22 = 2+C1Y 2 = 3+CY ≥C12Y 21.

Electronic copy available at: https://ssrn.com/abstract=4222017

ii

Case 4. C12Y 22 ≤C21Y 22.

C12Y 22 = 1+C2Y 2 = 2+CY 2.

C21Y 22 = 1+C1Y 22 = 2+CY 2.

Since |Y | ≥ 1, CY 2 =CY 2. Thus, C21Y 22 =C12Y 22.

This completes the proof.

A.2. Proof of Theorem 2

Assume we have a job list with probabilities p1, p2, . . . , pn. If there exist two consecutive jobs (j− 1) and j

such that pj−1 < pj , we show that the expected makespan can be reduced if we switch these two jobs.

Note that before the machines process job (j− 1) or j, the makespan is the same for any coupled sample

paths. Thus, we only need to compare the makespan between (j − 1, j, . . .) and (j, j − 1, . . .), or between

(. . . , j− 1, j) and (. . . , j, j− 1). We show the former case here, and the latter one follows a similar argument.

Let X be a realization (scenario) of the job types of those unprocessed jobs after j− 1 and j on the list, with

probability pX . We have

E[C(pj ,pj−1,...)]−E[C(pj−1,pj ,...)]

=
∑
X

[pj(1− pj−1)pX(C12X −C21X)+ pj−1(1− pj)pX(C21X −C12X)]

= (pj − pj−1)
∑
X

pX(C12X −C21X)≤ 0.

The last inequality is due to Lemma 1 that C12X ≤C21X and the fact that pj > pj−1.

The above analysis shows that switching job (j − 1) with job j when pj−1 < pj decreases the expected

makespan.

Repeating such an operation, the job with the highest probability will be the first job on the list. All jobs

will be re-ordered according to their probabilities of being type-1 from high to low. The process works exactly

the same as the idea in the bubble sort. In this way, we show that the LUF policy is optimal among all the

priority list policies under Assumption 1, in the sense that it minimizes the expected makespan.

A.3. Proof of Theorem 3

We prove Theorem 3 following the same steps as Theorem 1. We first provide two lemmas. Lemma 4 below

says that if the first two jobs in the list happen to be type-2 and type-1, then by switching these two jobs,

the total sojourn time can be reduced. Lemma 5 says that if the last two jobs in the list are type-2 and

type-1, then by switching these two jobs, the total sojourn time can be reduced. Following the same notation

defined in the analysis of expected makespan, for any given scenario X, let TX be the total sojourn time of

this scenario. Then the expected total sojourn time under policy is
∑

X
pXTX .

Lemma 4. Under Assumption 1, T12X ≤ T21X for any scenario X.

Proof. We prove the lemma using induction. We start with boundary conditions.

First of all, under Assumption 1, the sojourn time of a single job satisfies T1 = T2 = 1.

When |X|= 0, we have T12 = 2, T21 = 2+T12 = 4>T12.

When |X| = 1, we have T121 = 3 + T12 = 5, T211 = 3 + T112 = 6 + T1 = 7 > T121, and T122 = 3 + T2 = 4,

T212 = 3+T12 = 5>T122.

When |X|= 2, we have the following four possible cases:

Electronic copy available at: https://ssrn.com/abstract=4222017

iii

Case 1. T1211 = 4+T121 = 7+T12 = 9, T2111 = 4+T1112 = 8+T11 = 10+T1 = 11>T1211;

Case 2. T1212 = 4+T21 = 6+T12 = 8, T2112 = 4+T112 = 7+T1 = 8= T1212;

Case 3. T1221 = 4+T122 = 7+T2 = 8, T2121 = 4+T1122 = 8+T12 = 10>T1221;

Case 4. T1222 = 4+T22 = 6+T2 = 7, T2122 = 4+T122 = 6+T2 = 7= T1222.

Therefore, the lemma holds when |X|= 0,1,2.

Assume that the lemma holds for all |X| ≤ k+1 (k≥ 1). We prove that it still holds for |X|= k+2. We

need to show the following four cases: T12Y 11 ≤ T21Y 11, T12Y 12 ≤ T21Y 12, T12Y 21 ≤ T21Y 21, and T12Y 22 ≤ T21Y 22,

where |Y |= k≥ 1.

Case 1. T12Y 11 ≤ T21Y 11.

We decompose this case into two subcases: Y =W1 and Y =W2.

• Subcase 1.1. Y =W1.

T12W111 = (k+4)+T1̇2W11 = (k+4)+ (k+3)+T12W1 ≤ (k+4)+ (k+3)+T21W1 = (2k+7)+

(k+2)+T11W 2̇ = (3k+9)+ (k+2)+T1W = (4k+11)+T1W .

T21W111 = (k + 4) + T11W112 = (k + 4) + (k + 4) + T1W11 = (2k + 8) + (k + 2) + T1W1 =

(3k+10)+ (k+1)+T1W = (4k+11)+T1W ≥ T12W111.

• Subcase 1.2. Y =W2.

T12W211 = (k+4)+T12W21 = (k+4)+ (k+3)+T22W2 ≤ (k+4)+ (k+3)+T21W2 = (2k+7)+

(k+2)+T1W2 = (3k+9)+ (k+2)+TW = (4k+11)+TW .

T21W211 = (k + 4) + T11W212 = (k + 4) + (k + 4) + T1W21 = (2k + 8) + (k + 2) + T1W2 =

(3k+10)+ (k+1)+TW = (4k+11)+TW ≥ T12W211.

Case 2. T12Y 12 ≤ T21Y 12.

We decompose this case into two subcases: Y = 1W and Y = 2W .

• Subcase 2.1. Y =W1.

T121W12 = (k+4)+T21W1 = (k+4)+(k+2)+T11W2 = (2k+6)+(k+2)+T1W = (3k+8)+T1W .

T211W12 = (k+4)+T11W12 = (k+4)+(k+3)+T1W1 = (2k+7)+(k+1)+T1W = (3k+8)+T1W .

When |W | = 0, T121W12 = T211W12 = (3k + 9). When |W | ≥ 1, T1W = T1W , so T121W12 =

T211W12.

• Subcase 2.2. Y =W2.

T122W12 = (k+4)+T22W1 = (k+4)+ (k+2)+T12W2 ≤ (k+4)+ (k+2)+T21W2 = (2k+6)+

(k+2)+T1W2 = (3k+8)+ (k+1)+TW = (4k+9)+TW .

T212W12 = (k+4)+T12W12 = (k+4)+ (k+3)+T2W1 = (2k+7)+ (k+1)+T1W2 = (3k+8)+

(k+1)+TW = (4k+9)+TW ≥ T122W12.

Case 3. T12Y 21 ≤ T21Y 21.

T12Y 21 = (k+4)+ T12Y 2 ≤ (k+4)+ T21Y 2 = (k+4)+ (k+3)+ T1Y 2 = (2k+7)+ (k+2)+ TY =

(3k+9)+TY .

T21Y 21 = (k+4)+T11Y 22 = (k+4)+ (k+4)+T1Y 2 = (2k+8)+ (k+2)+TY = (3k+10)+TY >

T12Y 21.

Electronic copy available at: https://ssrn.com/abstract=4222017

iv

Case 4. T12Y 22 ≤ T21Y 22.

T12Y 22 = (k+4)+T2Y 2 = (k+4)+ (k+2)+TY 2 = (2k+6)+TY 2.

T21Y 22 = (k+4)+T1Y 22 = (k+4)+ (k+3)+TY 2 = (2k+7)+TY 2.

Since |Y | ≥ 1, TY 2 = TY 2. Thus, T21Y 22 >T12Y 22.

This completes the proof.

Following the same argument of proving Lemma 2 using Lemma 1, we can prove the following lemma using

Lemma 4.

Lemma 5. Under Assumption 1, TX12 ≤ TX21 for any scenario X.

Now, we are ready to prove the results of Theorem 5, which immediately implies Theorem 3.

Theorem 5. Under Assumption 1, the LUF policy is optimal among all the priority list policies, in terms

of minimizing the expected total sojourn time.

Proof. Assume we have a job list with probabilities p1, p2, . . . , pn. If there exist two consecutive jobs (j− 1)

and j such that pj−1 < pj , we show that the expected total sojourn time can be reduced if we switch these

two jobs.

Note that before the machines process job j− 1 or j, the total sojourn time is the same for any coupled

sample paths. Thus, we only need to compare the total sojourn time between (j− 1, j, . . .) and (j, j− 1, . . .),

or between (. . . , j− 1, j) and (. . . , j, j− 1). We show the former case here, and the latter one follows a similar

argument. Let X be a realization (scenario) of the job types of those unprocessed jobs after j− 1 and j on

the list, with probability pX . We have

E[T(pj ,pj−1,...)]−E[T(pj−1,pj ,...)]

=
∑
X

pj(1− pj−1)pX(T12X −T21X)+ pj−1(1− pj)pX(T21X −T12X)

= (pj − pj−1)
∑
X

pX(T12X −T21X)≤ 0.

The last inequality is due to Lemma 4 and the fact that pj > pj−1.

The above analysis shows that switching job (j− 1) with job j when pj−1 < pj decreases the expected total

sojourn time. Repeating such an operation, the job with the highest probability will be the first job on the

list. All jobs will be re-ordered according to their probabilities of being type-1 from high to low. The process

works exactly the same as the idea in the bubble sort. In this way, we show that the LUF policy is optimal

among all the priority list policies under Assumption 1, in the sense that it minimizes the expected total

sojourn time.

Based on Theorem 5, we know that without Assumption 1, the gap between the expected total sojourn

time from the LUF policy and that from the optimal priority list policy is less than one period. Therefore, we

complete the proof of Theorem 3.

Electronic copy available at: https://ssrn.com/abstract=4222017

v

A.4. Proof of Theorem 4

We first prove the theorem under dedicated learning. For job i, suppose its service sequence is (m1,m2, . . . ,mm),

which denote an ordering of {1,2, . . . ,m}. Given this service sequence, we will first assign job i to machine

m1. Note that job i’s probabilities of being type m1,m2, . . . ,mm are pim1
, pim2

, . . . , pimm , respectively. Then

with probability pim1
, job i will be successfully served by machine m1, and the number of mismatches of job

i is 0. Otherwise, there is a mismatch, and machine m1 will detect the job’s true type and send job i to the

right machine so that the number of mismatches of job i is 1. Denote the number of mismatches of job i as

Mi, then the expected number of mismatches of job i under the service sequence(m1,m2, . . . ,mm) is

E [Mi| (m1, . . . ,mm)] = 1− pim1
.

Clearly, if we design the service sequence according to pij from highest to lowest for job i, then E[Mi]

is minimized. Under the HFP policy, the service sequences of the jobs are independent. Therefore, if the

expected number of mismatches is minimized for each job, the expected number of mismatches in the system

is minimized.

Then, we prove the theorem under exclusive learning. Similarly, for job i, suppose its service sequence is

(m1,m2, . . . ,mm), which denote an ordering of {1,2, . . . ,m}. Given this service sequence, if job i belongs to

type m1, there will be no mismatch; if job i belongs to type m2, the number of mismatches will be 1; and so

on. Thus, the expected number of mismatches of job i is

E [Mi| (m1, . . . ,mm)] =

m∑
k=2

(k− 1)pimk
.

Clearly, if we design the service sequence according to pij from highest to lowest for job i, then E[Mi]

is minimized. Under the HFP policy, the service sequences of the jobs are independent. Therefore, if the

expected number of mismatches is minimized for each job, the expected number of mismatches in the system

is minimized.

A.5. Proof of Proposition 1

Before proving the proposition, we present a lower bound on the expected optimal offline makespan. For an

input Ik = (J1, J2, . . . , Jk), the total expected processing time of all jobs includes the correct service time∑k

i=1 τi and mismatch time, which is at least
∑k

i=1(1− pi)Ti1{pi>0.5} +
∑k

i=1 piTi1{pi≤0.5}. A lower bound

on the expected optimal offline makespan can be the total processing service time divided by 2, i.e.,

E[OPT (Ik)]≥LIk ≜

∑k

i=1 τi +Ti

[∑k

i=1(1− pi)1{pi>0.5} +
∑k

i=1 pi1{pi≤0.5}

]
2

.

We prove the property using induction. First of all, we consider the assignment of one job, J1, i.e., I1 = (J1).

According to the HPF policy, the job will be assigned to the machine with a success matching probability

greater than 0.5. The expected makespan of this job satisfies E[HPF (I1)] = 2LI1 ≤ 2E[OPT (I1)].

By induction, we assume E[HPF (Ik)]≤ 2E[OPT (Ik)] for all job sequence Ik = (J1, J2, . . . , Jk). We need to

show the inequity holds for Ik = (J1, J2, . . . , Jk, Jk+1), i.e., E[HPF (Ik+1)]≤ 2E[OPT (Ik+1)]. We first prove

the following induction property for any scheduling policy.

Electronic copy available at: https://ssrn.com/abstract=4222017

vi

Lemma 6. For any policy A, if E[A(Ik)]/LIk ≤ 2, ∀k≤ n−1, and E[A(Ik+1)]−E[A(Ik)]≤ τk+1+Tk+1[(1−

pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}], then, E[A(Ik+1)]/LIk+1
≤ 2.

Proof. According to the definition of LIk , we have

LIk+1
−LIk =

τk+1 +Tk+1

[
(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}

]
2

.

Since E[A(Ik)]/LIk ≤ 2, it follows that

E[A(Ik)] + 2(LIk+1
−LIk)

LIk +(LIk+1
−LIk)

≤ 2.

Given the assumption in the lemma, E[A(Ik+1)]≤E[A(Ik)] + 2(LIk+1
−LIk), we have

E[A(Ik+1)]

LIk+1

≤ 2.

This completes the proof of the lemma. □

According to Lemma 6, it suffices to prove that E[HPF (Ik+1)] − E[HPF (Ik)] ≤ τk+1 + Tk+1[(1 −

pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}]. At the time to assign job Jk+1, which we denote as ak+1, we have the

following three possible cases. Denote the remaining makespan for the first k jobs at time ak+1 as rk, which

is equivalent to HPF (Ik)− ak+1.

Case 1. Two machines are both empty. Under the HPF policy, we choose machine j so that the probability

of job Jk+1 belonging to type j is larger than 0.5. In this case, the expected makespan will be

increased by τk+1 +Tk+1[(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Case 2. One machine is empty, and the other is busy; the type(s) of the job(s) being processed by or

waiting for the busy machine is (are) known, i.e., there will not be any mismatch in the busy

machine. Without loss of generality, suppose machine 1 is empty, and machine 2 is busy.

• Subcase 2.1. When pk+1 ≥ 0.5, job Jk+1 is assigned to the empty machine, i.e., machine 1.

—With probability (1−pk+1), Jk+1 is mismatched, and it will be rescheduled to machine 2

to process after a duration of Tk+1. If Tk+1 > rk, job Jk+1 will be immediately processed

by machine 2 for a duration of τk+1. If Tk+1 ≤ rk, machine 2 will be busy when job Jk+1

is rescheduled to machine 2. Job Jk+1 has to wait for a duration of rk − Tk+1, and it

will be processed for a duration of τk+1. The increased makespan can be written as

max{Tk+1, rk}+ τk+1 − rk.

—With probability pk+1, job Jk+1 is successfully processed for a duration of τk+1. The

increased makespan is max{τk+1 − rk,0}.

Therefore, in this subcase, the expected makespan will be increased by

(1− pk+1) (max{Tk+1, rk}+ τk+1 − rk)+ pk+1max{τk+1 − rk,0}

=τk+1 +(1− pk+1)max{Tk+1 − rk,0}+ pk+1max{τk+1 − rk,0}− pk+1τk+1

=τk+1 +(1− pk+1)max{Tk+1 − rk,0}+ pk+1max{−rk,−τk+1}

≤τk+1 +(1− pk+1)Tk+1,

where the last inequality follows since rk, Tk+1, τk+1 ≥ 0.

Electronic copy available at: https://ssrn.com/abstract=4222017

vii

• Subcase 2.2. When (1− pk+1)> 0.5, job Jk+1 is assigned to the busy machine, i.e., machine 2.

—With probability (1− pk+1), job Jk+1 is processed successfully for a duration of τk+1.

—With probability pk+1, job Jk+1 is mismatched, and it will be rescheduled to machine 1

to process after a duration of Tk+1. Since machine 1 is empty, job Jk+1 will be processed

immediately for a duration of τk+1.

Therefore, in this subcase, the expected makespan increases by (1− pk+1)τk+1 + pk+1(Tk+1 +

τk+1) = τk+1 + pk+1Tk+1.

Combing the two subcases, the increase in expected makespan is bounded by τk+1 + Tk+1[(1−
pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Case 3. One machine is empty, and the other is busy; the type(s) of (some) job(s) being processed by or

waiting for the busy machine is (are) uncertain, i.e., there will probably be (some) mismatch(es)

in the busy machine. Without loss of generality, suppose machine 1 is empty, and machine 2 is

busy. There are two possible scenarios in this case, depending on which machine processes the last

job in Ik or, in other words, works until time HPF (Ik) = ak+1 + rk.

• Subcase 3.1. Suppose it is the busy machine at time ak+1, i.e., machine 2, that works until

time HPF (Ik).

—Subsubcase 3.1.1. When pk+1 ≥ 0.5, job Jk+1 is assigned to the empty machine at time

ak+1, i.e., machine 1.

∗ With probability (1− pk+1), job Jk+1 is mismatched, and it will be rescheduled to

machine 2 to process after a duration of Tk+1. Note that the process of job Jk+1

may disrupt the process of some jobs in Ik if they are rescheduled to machine 1 after

time ak+1. However, since machine 2 is the one that works until time HPF (Ik),

machine 1’s working duration will be increased by at most Tk+1. For machine 2,

its working duration will be increased by max{Tk+1, rk}+ τk+1 − rk, which is the

same as Subcase 2.1 before. It is obvious that the increased working duration on

machine 2 is more than that on machine 1 as τk+1 > Tk+1. Thus, the system’s

makespan will be increased by max{rk, Tk+1}+ τk+1 − rk.

∗ With probability pk+1, job Jk+1 is successfully processed for a duration of τk+1.

The makespan will be increased by at most τk+1.

Therefore, in this subsubcase, the expected makespan will be increased by at most

(1− pk+1) (max{Tk+1, rk}+ τk+1 − rk)+ pk+1τk+1

=τk+1 +(1− pk+1)max{Tk+1 − rk,0}

≤τk+1 +(1− pk+1)Tk+1,

where the last inequality follows since rk, Tk+1 ≥ 0.

—Subsubcase 3.1.2. When (1− pk+1)> 0.5, job Jk+1 is assigned to the busy machine at

time ak+1, i.e., machine 2.

∗ With probability (1− pk+1), job Jk+1 is successfully processed. The makespan will

be increased by τk+1.

Electronic copy available at: https://ssrn.com/abstract=4222017

viii

∗ With probability pk+1, job Jk+1 is mismatched after a duration of Tk+1 and

rescheduled to machine 1. Since machine 1 will be empty at time HPF (Ik)+Tk+1,

it will immediately process job Jk+1 for a duration of τk+1. The makespan will be

increased by at most τk+1 +Tk+1.

Therefore, in this subsubcase, the expected makespan will be increased by at most

(1− pk+1)τk+1 + pk+1(τk+1 +Tk+1) = τk+1 + pk+1Tk+1.

Combing the two subsubcases, the increase in expected makespan is bounded by τk+1 +

Tk+1[(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

• Subcase 3.2. Suppose it is the empty machine at time ak+1, i.e., machine 1, that works until

time HPF (Ik), which means that one mismatched job at machine 2 is rescheduled to machine

1 and occupies it until time HPF (Ik).

—Subsubcase 3.2.1. When pk+1 ≥ 0.5, job Jk+1 is assigned to the empty machine at time

ak+1, i.e., machine 1.

∗ With probability (1− pk+1), job Jk+1 is mismatched, and it will be rescheduled to

machine 2 to process after a duration of Tk+1. Note that the process of job Jk+1

may disrupt the process of the job(s) in Ik that is (are) rescheduled to machine 1

after time ak+1. Machine 1’s working duration will be increased by at most Tk+1.

When job Jk+1 is rescheduled to machine 2, machine 2 may be busy or empty. If

machine 2 is busy, its working duration will be increased by τk+1. If machine 2

is empty, this implies that Tk+1 is longer than the remaining processing time at

machine 2 for Ik, which is at most rk; then machine 2’s working duration will be

increased by at most Tk+1+ τk+1. Overall, the system’s makespan will be increased

by at most Tk+1 + τk+1.

∗ With probability pk+1, job Jk+1 is successfully processed for a duration of τk+1.

The makespan will be increased by at most τk+1.

Therefore, in this subsubcase, the expected makespan will be increased by at most

(1− pk+1)(Tk+1 + τk+1)+ pk+1τk+1 = τk+1 +(1− pk+1)Tk+1.

—Subsubcase 3.2.2. When (1− pk+1)> 0.5, job Jk+1 is assigned to the busy machine at

time ak+1, i.e., machine 2. In this subcase, job Jk+1 has to wait until machine 2 is empty

before it can be processed, for a duration of at most rk.

∗ With probability (1− pk+1), job Jk+1 is successfully processed. The makespan will

be increased by at most τk+1.

∗ With probability pk+1, job Jk+1 is mismatched, and it will be rescheduled to

machine 1 to process after a duration of Tk+1. The makespan will be increased by

at most τk+1 +Tk+1.

Therefore, in this subsubcase, the expected makespan will be increased by at most

(1− pk+1)τk+1 + pk+1(τk+1 +Tk+1) = τk+1 + pk+1Tk+1.

Combing the two subsubcases, the increase in expected makespan is bounded by τk+1 +

Tk+1[(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Electronic copy available at: https://ssrn.com/abstract=4222017

ix

Overall, in this case, the expected makespan will be increased by at most τk+1 + Tk+1[(1 −
pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Therefore, under all cases, the expected makespan will be increased by at most τk+1 + Tk+1[(1 −
pk+1)1{pk+1>0.5} + pk+11{pk+1<0.5}], i.e., E[HPF (Ik+1)]−E[HPF (Ik)]≤ τk+1 +Tk+1[(1− pk+1)1{pk+1>0.5} +

pk+11{pk+1<0.5}]. This completes the proof.

A.6. Proof of Lemma 3

Under our settings of the online stochastic scheduling problem, after an assignment of a new job, the next

job in the list (if any) can be seen. After the assignment of any job, we have the following possible scenarios.

Case 1. The list is not empty and the next job can be seen. Once a machine becomes empty, this new job

will be assigned to it. In this case, no idleness will occur.

Case 2. The list is empty, i.e., there are no more jobs to be assigned. There are two possible scenarios

depending on whether the machines are busy or not.

• Subcase 2.1. Only one machine is busy; specifically, the machine is busy processing the

newly assigned job. If the job is successfully processed, there will be no idleness. if the job is

mismatched, it will be rescheduled to another machine, which results in the other machine

being idle for the duration of detecting the mismatch. This idle time is the detection time of

the newly assigned job, which is bounded by max{T1, T2, . . .}.
• Subcase 2.2. Both machines are busy; one is processing the newly assigned job, and the other

is processing a previously assigned job. Suppose job Jx and Jy (x≥ 1, y≥ 1) are processed on

machine 1 and machine 2, respectively. Without loss of generality, assume job Jx is the newly

assigned job. Note that under the AI policy, a new job will always be assigned to the empty

machine, which means that the job will be processed immediately. A job will be rescheduled

to another machine if the first assignment turns out to be a mismatch. Thus, under the AI

policy, any jobs that are queueing to be served must be rescheduled jobs with known types.

Therefore, in this case, there are at most two jobs with unknown types on the machines, one

on each, being processed. Furthermore, if there are any jobs queueing in the system, they

must belong to type 2 and are waiting for machine 2 to finish processing job Jy.

—Subcase 2.2.1. Both jobs Jx and Jy have not revealed their types.

∗ If both jobs are processed successfully, no idleness will occur.

∗ If job Jx is processed successfully but job Jy is mismatched. Job Jy will be

rescheduled to machine 1 after a duration no longer than Ty, since machine 2 may

have started processing job Jy before job Jx is assigned. Then an idle time may

occur for machine 1 if machine 1 finishes processing job Jx first, and the idle time

is at most Ty.

∗ If job Jx is mismatched but job Jy is processed successfully. Job Jx will be

rescheduled to machine 2 after a duration of Tx. Then an idle time may occur for

machine 2 if machine 2 finishes processing job Jy (and any other queueing jobs)

first, and the idle time is at most Tx.

Electronic copy available at: https://ssrn.com/abstract=4222017

x

∗ If both jobs are mismatched, there may be idleness on one of the machines depending

on which one finishes detection first. Following the same argument as before, the

total idle time is bounded above by either Tx or Ty.

—Subcase 2.2.2. Only one of the jobs has not revealed its type, and it must be the newly

assigned job, Jx.

∗ If job Jx is processed successfully, no idleness will occur.

∗ If job Jx is mismatched, it will be rescheduled to machine 2, waiting for machine 2

to finish processing job Jy and any other jobs queueing to be processed (if any). In

this scenario, again, no idleness will occur.

To summarize, in this subcase, the idle time for any machine is at most max{Tx, Ty}.
Therefore, the total idle time for any machine is bounded above by max{T1, T2, . . .}.

A.7. Proof of Proposition 2

We prove the property using induction. First of all, we consider the assignment of one job, J1, i.e., I1 = {J1}.
According to the LEMF policy, the job will be assigned to the machine with a success matching probability

greater than 0.5. The expected makespan of this job satisfies E[LEMF (I1)] = 2LI1 ≤ 2E[OPT (I1)].

By induction, we assume E[LEMF (Ik)] ≤ 2E[OPT (Ik)] for all job sequence Ik = (J1, J2, . . . , Jk). We

need to show the inequity holds for Ik = (J1, J2, . . . , Jk, Jk+1), i.e., E[LEMF (Ik+1)]≤ 2E[OPT (Ik+1)]. To

prove this inequality, according to Lemma 6, it suffices to prove that E[LEMF (Ik+1)]−E[LEMF (Ik)]≤
τk+1+Tk+1[(1−pk+1)1{pk+1>0.5}+pk+11{pk+1≤0.5}]. At the time to assign job Jk+1, which we denote as ak+1,

we have the following three possible cases. Denote the remaining makespan for the first k jobs at time ak+1

as rk, which is equivalent to LEMF (Ik)− ak+1.

Case 1. Two machines are both empty. Under the LEMF policy, we choose machine j so that the probability

of job Jk+1 belonging to type j is larger than 0.5. In this case, the expected makespan increases

by τk+1 +Tk+1[(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Case 2. One machine is empty, the other is busy; the type(s) of the job(s) being processed by or waiting

for the busy machine is (are) known, i.e., there will not be any mismatch in the busy machine.

Without loss of generality, suppose machine 1 is empty, and machine 2 is busy. The analysis

here will be almost the same as two subcases under Case 2 in the proof of Proposition 1. The

only difference is that instead of assigning the job according to the value of pk+1, the job will be

assigned to the machine with less increase in expected makespan.

• Subcase 2.1. If job Jk+1 is assigned to the empty machine, i.e., machine 1, following Subcase

2.1 in the proof of Proposition 1, the expected makespan will be increased by at most

τk+1 +(1− pk+1)Tk+1.

• Subcase 2.2. If job Jk+1 is assigned to the busy machine, i.e., machine 2, following Subcase 2.1

in the proof of Proposition 1, the expected makespan will be increased by τk+1 + pk+1Tk+1.

Under the LEMF policy, the job will be assigned to the machine with less increase in expected

makespan. Hence, the expected makespan, in this case, will be increased by at most

min{τk+1 +(1− pk+1)Tk+1, τk+1 + pk+1Tk+1}

=τk+1 +Tk+1

[
(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}

]
.

Electronic copy available at: https://ssrn.com/abstract=4222017

xi

Case 3. One machine is empty, and the other is busy; the type(s) of some job(s) being processed by or

waiting for the busy machine is (are) uncertain, i.e., there will probably be (some) mismatch(es)

in the busy machine. Without loss of generality, suppose machine 1 is empty, and machine 2 is

busy. There are two possible scenarios in this case, depending on which machine processes the last

job in Ik or, in other words, works until time LEMF (Ik) = ak+1 + rk.

• Subcase 3.1. Suppose it is the busy machine at time ak+1, i.e., machine 2, that works until

time LEMF (Ik).

—Subsubcase 3.1.1. If job Jk+1 is assigned to the empty machine, i.e., machine 1, following

Subsubcase 3.1.1 in the proof of Proposition 1, the expected makespan will be increased

by at most τk+1 +(1− pk+1)Tk+1.

—Subsubcase 3.1.2. If job Jk+1 is assigned to the busy machine, i.e., machine 2, following

Subsubcase 3.1.2 in the proof of Proposition 1, the expected makespan will be increased

by at most (1− pk+1)τk+1 + pk+1(τk+1 +Tk+1) = τk+1 + pk+1Tk+1.

Under the LEMF policy, the job will be assigned to the machine with less increase in expected

makespan. Hence, the expected makespan, in this subcase, will be increased by at most

min{τk+1 +(1− pk+1)Tk+1, τk+1 + pk+1Tk+1}

=τk+1 +Tk+1

[
(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}

]
.

• Subcase 3.2. Suppose it is the empty machine at time ak+1, i.e., machine 1, that works until

time LEMF (Ik), which means that one mismatched job at machine 2 is rescheduled to

machine 1 and occupies it until time LEMF (Ik).

—Subsubcase 3.2.1. If job Jk+1 is assigned to the empty machine, i.e., machine 1, following

Subsubcase 3.2.1 in the proof of Proposition 1, the expected makespan will be increased

by at most τk+1 +(1− pk+1)Tk+1.

—Subsubcase 3.2.2. If job Jk+1 is assigned to the busy machine, i.e., machine 2, following

Subsubcase 3.2.2 in the proof of Proposition 1, the expected makespan will be increased

by at most τk+1 + pk+1Tk+1.

Under the LEMF policy, the job will be assigned to the machine with less increase in expected

makespan. Hence, the expected makespan, in this subcase, will be increased by at most

min{τk+1 +(1− pk+1)Tk+1, τk+1 + pk+1Tk+1}

=τk+1 +Tk+1

[
(1− pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}

]
.

Overall, in this case, the expected makespan will be increased by at most τk+1 + Tk+1[(1 −

pk+1)1{pk+1>0.5} + pk+11{pk+1≤0.5}].

Therefore, under all cases, the expected makespan will be increased by at most τk+1 +

Tk+1[(1 − pk+1)1{pk+1>0.5} + pk+11{pk+1<0.5}], i.e., E[LEMF (Ik+1)] − E[LEMF (Ik)] ≤ τk+1 + Tk+1[(1 −

pk+1)1{pk+1>0.5} + pk+11{pk+1<0.5}]. This completes the proof.

Electronic copy available at: https://ssrn.com/abstract=4222017

xii

Appendix B: Counterexamples to the Optimality of the LUF Policy

Example 1. Suppose there are 3 jobs and 2 machines (τ = 1). The initial job-type probability matrix is

given by

P (1) =

 p11 p12
p21 p22
p31 p32

=

 0.2 0.8
0.3 0.7
1 0

 .

According to the LUF policy, the whole process can be presented by a decision tree, as shown in Figure 7.

The scheduling decisions in the first period are a1,2(1) = a3,1(1) = 1, i.e., job 1 is assigned to machine 2, and

job 3 is assigned to machine 1. After one period, job 3 leaves the system, and with probability 0.8 job 1

also leaves the system. However, there may be a mismatch for job 1 with probability 0.2, and job 1 will be

assigned to machine 1 in the second period. In either case, job 2 will be assigned to machine 2 in the second

period, and with probability 0.7, it will be served successfully and leave the system. In the other case, job 2

has to stay for one more period to be processed by machine 1. The expected makespan under the LUF policy

is 0.7× 2+0.3× 3 = 2.3. Consider an alternative policy that keeps job 3 unassigned in the first period. Its

Figure 7 Graphical representation of the LUF policy in Example 1

decision tree is presented in Figure 8. One can verify that after the first period, the types of all the remaining

jobs in the system are explicitly known, and the decisions become straightforward. The expected makespan

under this policy is 0.8× 2+0.2× 3 = 2.2< 2.3.

Example 1 has a job with a known type, so one may suspect the presence of certainty could affect the

execution of the LUF policy. However, we can modify Example 1 by changing the probabilities of job 3 to

obtain the case when all jobs have uncertain types but the LUF policy is still suboptimal. We present the

modified example next.

Example 2. Suppose there are 3 jobs and 2 machines (τ = 1). The initial job-type probability matrix is

given by

P (1) =

 0.2 0.8
0.3 0.7
1− ϵ ϵ

 ,

Electronic copy available at: https://ssrn.com/abstract=4222017

xiii

Figure 8 Graphical representation of the alternative policy in Example 1

where 0< ϵ<< 1 is a very small constant. One can easily compute the expected makespan under the LUF

policy, which equals 2.3+ 0.52ϵ. On the other hand, the alternative priority list policy that assigns job 1

to machine 2 and job 2 to machine 1 gives the expected makespan 2.2+0.88ϵ. Therefore, when ϵ is small

enough, the LUF policy is still worse than the alternative policy.

Electronic copy available at: https://ssrn.com/abstract=4222017

xiv

Appendix C: Description of a Mass-casualty Scenario

Let’s consider a mass-casualty scenario, for example, nuclear detonation, terrorist attack, hurricane, tsunami,

etc. The emergency health care response to such a mass-casualty incident may involve medical personnel

that have a wide range of capabilities and skills for treating patients with trauma, burns, respiratory impact,

submersion injury, infected wounds, etc. In such emergency healthcare settings, we can assume that all

patients are available at time zero and the types of care required are unknown initially.

Emergency care usually consists of two phases of service: diagnosis and treatment, which are typically carried

out by separate teams. A team of nurses quickly assesses patients’ symptoms and conditions. We assume that

initial probabilities are available at this time. We can also assume a predictive model, together with nurse

assessments, that can estimate the likelihood of a patient’s condition type. With the accumulation of medical

data and the development of technology, such a scenario may not be impossible. We believe that predictive

information, which indicates the probability distribution of patients’ conditions, can become increasingly

available in the era of big data. In an emergency healthcare setting, the type probability information could

be present at the beginning or sequentially assessed and learned.

Given the initial probability, we have different heuristic policies for assigning patients to physicians. The

service time is usually longer than the diagnosis time. In ?’s study, the diagnosis time was about 7 minutes,

and the service time was about 13 minutes. ? set the diagnosis time to 0.5 minute and the service time to at

least 4 minutes. We assume that if there is a wrong assignment, the physician will detect the right type of

condition for the patient.

Using the procedure described above, it is not difficult to apply our proposed model given these parameters

in a disaster scenario. The system manager can leverage the data and the predictive model to make efficient

scheduling based on our proposed policy. In the following, we present a tsunami example to illustrate how to

use our framework and compare our proposed policy with the benchmark policy.

Example 3. After a tsunami, there can be an outbreak of respiratory virus disease when the victims

aspirate seawater and are infected by contamination from mud and microorganisms (?). Patients with

infectious diseases (e.g., influenza) should be treated in the infectious disease department, while others can be

treated in general internal medicine. We can use a predictive model (e.g., classification and regression trees)

to predict the likelihood of infectious disease for each patient based on the data collected, such as symptoms

(?). Given the disease likelihood of each patient, they will accordingly be assigned to the infectious disease

department or general internal medicine accordingly.

We assume the proportion of infectious cases is about 32.7% and generate the initial probability accordingly

(?). We normalize the processing time for a wrong assignment to be one period. We assume that the service

time for a noninfectious disease takes one period, while the service time for an infectious disease is longer;

e.g., two periods. We randomly generate 30 examples and run 100 replications for each example. Using the

procedure described above, we apply our proposed policy to this example and compare it with the benchmark

policy. Table 4 shows the numerical results.

When the number of patients is 50, compared with the HPF policy, the GLUF policy can reduce 4.84

periods of expected makespan, with a sacrifice of 1.17 mismatch cases. When n= 100, there is a reduction of

Electronic copy available at: https://ssrn.com/abstract=4222017

xv

Table 4 System performance under different policies in the tsunami example.

(n= 50) (n= 100)
HPF GLUF (gap%) HPF GLUF (gap%)

Makespan 46.76 41.92 (↓10.35%) 90.14 83.23 (↓7.67%)
Total Sojourn Time 1084 1017 (↓6.18%) 4152 3988 (↓3.95%)
Mismatch 14.69 15.86 (↑7.96%) 28.63 30.75 (↑7.40%)

6.91 periods in the expected makespan and an increase of 2.12 in the number of mismatches. If the primary

objective of the disaster manager is to treat all patients as soon as possible, our results indicate that the

GLUF may be a better scheduling policy.

Electronic copy available at: https://ssrn.com/abstract=4222017

xvi

Appendix D: Additional Numerical Results

Table 5 System performance under different numbers of jobs (m= 5).

Makespan Total Sojourn Time Mismatch Workload
Exclusive Dedicated Exclusive Dedicated Exclusive Dedicated

n HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF

10 8.1 6.3 5.9 4.5 39.8 33.6 30.7 25.9 13.0 13.6 6.5 6.7
11 8.6 6.7 6.4 4.8 46.1 38.9 35.5 30.2 13.9 14.8 7.1 7.4
12 9.1 7.2 6.8 5.2 52.5 44.7 40.5 34.9 15.5 16.0 7.9 8.1
13 9.8 7.7 7.2 5.5 60.0 51.2 45.9 39.9 16.7 17.3 8.5 8.7
14 10.4 8.2 7.6 5.8 68.1 58.4 51.7 45.2 18.0 18.9 9.2 9.4
15 10.8 8.6 8.0 6.1 75.8 65.2 57.8 50.7 19.5 19.9 9.9 10.0
16 11.4 9.1 8.4 6.5 84.8 73.3 64.5 56.7 20.6 21.3 10.5 10.7
17 12.0 9.6 8.9 6.9 93.1 81.2 71.2 62.7 21.7 22.5 11.1 11.3
18 12.4 10.0 9.3 7.2 103.0 90.1 78.7 69.4 23.3 24.5 11.7 12.0
19 13.1 10.5 9.7 7.5 112.8 99.2 86.5 76.4 24.2 25.4 12.4 12.7
20 13.5 10.9 10.1 7.9 123.0 108.5 95.0 84.0 25.8 26.8 13.2 13.5
21 14.2 11.5 10.5 8.2 132.9 117.5 102.7 91.3 27.1 27.7 13.8 14.1
22 14.7 11.9 10.9 8.5 145.0 128.3 111.0 98.9 28.1 29.2 14.2 14.7
23 15.3 12.4 11.3 8.9 158.4 140.7 120.0 107.0 29.3 30.7 15.0 15.3
24 15.9 12.9 11.7 9.2 170.0 151.0 128.6 115.2 31.1 31.9 15.8 15.9
25 16.4 13.3 12.1 9.5 182.3 162.4 137.9 124.4 32.5 33.0 16.2 16.6
26 16.9 13.8 12.5 9.8 194.0 173.2 146.9 133.3 33.4 34.1 16.9 17.2
27 17.5 14.2 12.9 10.2 208.7 187.0 157.2 142.7 35.1 35.6 17.5 17.9
28 17.9 14.7 13.3 10.5 221.8 200.2 167.4 152.3 36.2 37.1 18.3 18.5
29 18.4 15.1 13.7 10.8 236.0 213.3 177.6 162.2 37.3 38.4 18.9 19.2
30 18.8 15.5 14.0 11.2 249.2 225.6 189.4 173.2 38.4 39.2 19.7 19.9
31 19.4 16.0 14.4 11.5 263.6 238.9 200.9 183.9 40.2 40.3 20.1 20.6
32 20.0 16.5 14.7 11.9 281.8 256.4 212.5 195.7 41.1 42.4 20.8 21.3
33 20.4 16.9 15.1 12.2 296.5 271.1 224.0 206.7 41.9 43.5 21.3 22.0
34 20.9 17.4 15.5 12.5 311.9 285.6 236.0 217.9 43.9 44.7 22.0 22.5
35 21.5 17.9 15.9 12.9 330.8 303.5 248.5 230.1 45.1 46.3 22.9 23.2
36 22.0 18.4 16.3 13.2 346.9 320.0 262.0 242.7 46.4 47.6 23.4 23.9
37 22.6 18.8 16.7 13.5 363.8 336.5 275.0 255.0 47.0 48.9 24.3 24.6
38 23.1 19.3 17.1 13.8 382.4 354.3 288.3 267.5 49.3 50.2 24.9 25.0
39 23.5 19.8 17.4 14.2 396.6 368.4 304.0 282.3 49.8 50.7 25.3 25.9
40 24.0 20.4 17.8 14.5 422.5 392.5 317.3 295.3 51.7 53.4 26.0 26.5

Electronic copy available at: https://ssrn.com/abstract=4222017

xvii

(a) Exclusive learning (b) Dedicated learning

Figure 9 Total sojourn time comparison between GLUF and HPF policies under different numbers of jobs (m= 5).

(a) Exclusive learning (b) Dedicated learning

Figure 10 Mismatch comparison between GLUF and HPF policies under different numbers of jobs (m= 5).

Table 6 System performance under different numbers of machines (n= 20).

Makespan Total Sojourn Time Mismatch Workload
Exclusive Dedicated Exclusive Dedicated Exclusive Dedicated

m HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF

2 15.0 13.7 15.1 13.6 143.0 137.8 143.6 137.7 6.3 6.5 6.1 6.5
3 13.9 11.9 12.8 10.8 128.4 119.3 119.6 110.9 12.7 13.1 9.6 9.9
4 13.4 11.2 11.0 9.0 121.9 112.2 103.2 95.1 19.0 20.0 11.6 12.1
5 13.5 11.0 10.1 7.9 122.1 108.4 94.1 83.6 25.6 26.6 13.0 13.3
6 13.9 11.0 9.3 7.1 125.7 107.7 86.5 75.4 32.7 33.5 14.1 14.3
7 14.3 11.1 8.5 6.4 128.9 108.2 79.4 69.6 38.9 40.6 14.8 15.0
8 14.6 11.4 8.1 6.1 133.2 109.1 76.5 65.2 46.7 46.9 15.5 15.6
9 15.1 11.6 7.7 5.7 134.8 110.1 73.1 61.7 52.5 54.0 15.9 16.1
10 15.7 12.0 7.3 5.3 140.0 111.4 69.9 58.7 59.0 60.5 16.3 16.4

Electronic copy available at: https://ssrn.com/abstract=4222017

xviii

(a) Exclusive learning (b) Dedicated learning

Figure 11 Total sojourn time comparison between GLUF and HPF policies under different numbers of machines

(n= 20).

(a) Exclusive learning (b) Dedicated learning

Figure 12 Mismatch comparison between GLUF and HPF policies under different numbers of machines (n= 20).

Table 7 System performance under different service times (m= 5, n= 20).

Makespan Total Sojourn Time Mismatch Workload
Exclusive Dedicated Exclusive Dedicated Exclusive Dedicated

t HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF HPF GLUF

1 13.6 10.8 10.0 7.9 123.4 108.8 94.2 83.1 25.7 26.6 13.0 13.2
2 20.6 16.4 17.0 13.8 190.3 164.5 158.6 140.0 25.9 28.2 13.0 13.6
3 27.8 22.1 24.2 20.4 261.5 220.9 225.1 197.8 25.7 28.6 13.0 13.9
4 35.9 28.5 31.2 26.7 328.7 280.1 292.2 255.9 26.0 29.8 13.0 14.3
5 43.1 34.4 38.7 34.0 405.4 337.1 363.4 311.7 25.7 30.6 13.0 15.1
6 51.2 41.0 45.2 40.0 477.8 396.6 426.7 366.1 25.7 31.6 12.9 15.5
7 58.4 47.0 52.8 46.8 547.2 452.4 492.3 420.9 25.8 32.1 12.9 16.2
8 65.7 53.2 59.6 53.0 614.7 508.3 564.4 478.8 25.8 32.6 13.0 17.7
9 73.4 60.1 67.3 60.0 680.4 566.9 626.2 538.7 26.0 33.1 13.0 18.4
10 81.0 66.6 74.6 66.5 762.3 625.8 698.2 592.3 25.7 34.2 13.0 19.8

Electronic copy available at: https://ssrn.com/abstract=4222017

xix

(a) Exclusive learning (b) Dedicated learning

Figure 13 Total sojourn time comparison between GLUF and HPF policies under different service times (m=

5, n= 20).

(a) Exclusive learning (b) Dedicated learning

Figure 14 Mismatch comparison between GLUF and HPF policies under different service times (m= 5, n= 20).

Table 8 Average mismatch under different policies with
service time following geometric distributions (m= n).

(µ1 = 2, µ2 = 4) (µ1 = 2, µ2 = 6) (µ1 = 2, µ2 = 8)
n HPF GLUF HPF GLUF HPF GLUF

2 0.474 0.897 0.485 0.909 0.469 0.919
3 0.616 0.787 0.586 0.841 0.629 0.873
4 0.998 1.152 0.979 1.188 1.021 1.260
5 1.085 1.642 1.015 1.762 1.069 1.835

Electronic copy available at: https://ssrn.com/abstract=4222017

xx

Table 9 Average makespan under different policies with service
time following geometric distributions (m= 3).

Dedicated Learning Exclusive Learning
n HPF GLUF (gap%) HPF GLUF (gap%)

3 9.83 8.46 (↓13.94%) 10.53 8.82 (↓16.23%)
6 17.21 14.88 (↓13.54%) 17.84 15.30 (↓13.68%)
9 23.67 20.70 (↓12.55%) 24.72 21.09 (↓14.68%)
12 30.42 26.58 (↓12.62%) 31.22 26.84 (↓14.02%)
15 32.91 32.22 (↓5.14%) 38.60 33.2 (↓13.98%)

Table 10 Expected makespan under different policies with service
time following lognormal distributions, Lognormal(1,0.52),

Lognormal(2,0.52), and Lognormal(1,0.52) (m= 3).

Dedicated Learning Exclusive Learning
n HPF GLUF (gap%) HPF GLUF (gap%)

3 11.04 10.03 (↓9.15%) 11.81 10.54 (↓10.75%)
6 20.09 17.89 (↓10.95%) 19.78 17.54 (↓11.32%)
9 28.85 25.55 (↓11.43%) 28.73 26.38 (↓8.18%)
12 37.52 33.43 (↓10.90%) 37.92 35.02 (↓7.65%)
15 44.24 40.10 (↓9.36%) 45.61 41.44 (↓9.14%)

Note. We have to discretize the service time in our setting and we

round it down.

Table 11 Expected makespan under different policies with service
time following discrete uniform distributions U[1,3], U[1,4], and U[1,5]

(m= 3).

Dedicated Learning Exclusive Learning
HPF GLUF (gap%) HPF GLUF (gap%)

3 5.55 4.75 (↓14.41%) 5.94 4.92 (↓17.17%)
6 9.74 8.08 (↓14.99%) 10.13 8.26 (↓18.46%)
9 13.32 11.40 (↓14.41%) 13.98 11.69 (↓16.38%)
12 16.87 14.56 (↓13.69%) 18.06 15.04 (↓16.72%)
15 20.36 17.58 (↓13.65%) 21.37 18.25 (↓14.60%)

Table 12 Expected makespan under different job type probability distributions with service
time following geometric distribution.

U(0,1) Beta(0.5,0.5) Beta(2,2)
n AI HPF LEMF AI HPF LEMF AI HPF LEMF

5 26.50 27.42 26.11 25.05 25.18 24.31 24.55 26.00 24.29
10 48.38 48.82 47.37 48.11 47.73 46.71 46.73 48.30 46.11
15 69.37 68.71 67.52 65.29 63.86 63.79 71.96 74.24 71.33
20 87.62 87.19 86.06 91.15 89.16 88.42 91.88 93.31 90.76
25 108.90 107.72 106.46 110.71 107.56 107.47 108.43 109.92 106.87
30 127.89 126.87 125.39 129.63 126.24 126.24 136.41 137.61 134.73

Appendix E: MDP Solution for Small-size Examples When m= 3

When m= 3, n= 4, we set the initial job type probability distribution to 0.2 0.5 0.3
0.3 0.6 0.1
0.8 0.1 0.1
0.6 0.1 0.3

 .

Electronic copy available at: https://ssrn.com/abstract=4222017

xxi

Table 13 Expected makespan under different job type probability distributions with service
time following Erlang distribution.

U(0,1) Beta(0.5,0.5) Beta(2,2)
n AI HPF LEMF AI HPF LEMF AI HPF LEMF

5 27.44 28.51 26.95 27.28 27.36 26.41 26.67 28.04 26.42
10 50.36 51.54 49.80 48.12 47.85 47.09 49.04 50.61 48.44
15 71.50 71.27 70.17 71.52 70.80 70.27 72.31 73.71 71.45
20 93.48 91.61 91.58 93.55 91.10 91.07 93.28 93.84 92.01
25 114.65 113.35 112.41 115.65 113.07 113.04 117.18 117.91 115.95
30 138.83 136.59 136.58 139.12 135.90 135.89 138.04 138.28 136.49

We vary n from 2 to 4 by choosing the first n jobs from the above example. Suppose the detection time for a

mismatch is one period, and the expected service time of type-1, type-2, and type-3 jobs µ1, µ2, µ3 are two

periods, four periods, and five periods, respectively. The comparison between the optimal expected makespan

and the expected makespan using the GLUF policy under dedicated learning can be seen in Table 14.

Table 14 Makespan comparison among different policies (m= 3).

(µ1 = 2, µ2 = 4, µ3 = 5)
n Opt GLUF (gap%) HPF (gap%) Computing time

2 6.43 6.86 6.69% 8.03 24.88% 10.61s
3 7.42 7.99 7.68% 8.51 14.69% 511.71s
4 8.98 9.40 4.68% 11.07 23.27% 34764.75s

Electronic copy available at: https://ssrn.com/abstract=4222017

	Dynamic scheduling with uncertain job types
	Citation

	tmp.1693993145.pdf.u_VzE

