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Abstract 

Assessment center (AC) exercises such as role-plays have established themselves as valuable 

approaches for obtaining insights into interpersonal behavior, but they are often considered the 

“Rolls Royce” of personnel assessment due to their high costs. The observation and rating 

process comprises a substantial part of these costs. In an exploratory case study, we capitalize on 

recent advances in natural language processing (NLP) by developing NLP-based machine 

learning (ML) models to investigate the possibility of automatically scoring AC exercises. First, 

we compared the convergent-related validity and contamination with word count of ML scores 

based on models that used different NLP methods to operationalize verbal behavior. Second, for 

the model that maximized convergence while minimizing contamination with word count (i.e., a 

model that used both n-grams and Universal Sentence Encoder embeddings as predictors), we 

investigated the criterion-related validity of its scores. Third, we examined how the interrater 

reliability of the AC role-play scores affects ML model convergence. To do so, we applied seven 

NLP methods to 96 assessees’ transcriptions and trained 10 sets of ML models across 18 speeded 

AC role-plays to automatically score assessee performance. Results suggest that ML scores 

recovered most of the original variance in the overall assessment ratings, and replacing one or 

more human assessors with ML scores maintained criterion-related validity. Additionally, ML 

models seemed to exhibit higher convergence when assessors consistently detected and utilized 

observable behaviors to make ratings (i.e., when interrater reliability was higher). Finally, we 

provide a step-by-step guide for practitioners seeking to implement ML scoring in ACs. 

Keywords: machine learning; artificial intelligence; validation; Assessment center exercises; 

Interpersonal; Natural language processing 
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Practitioner Points 

• Natural language processing and machine learning are being adopted for personnel 

assessment but not yet for assessment centers 

• Assessment center exercises are amenable to being automatically scored 

• Natural language processing and machine learning had sufficient validity to replace one 

or more human raters in the assessment center, suggesting it may be possible in practice 

to automatically score assessment centers to reduce assessor costs 

• Step-by-step guidance for developing and deploying automatic assessment center scoring 

is provide 
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Automatic Scoring of Speeded Interpersonal Assessment Center Exercises Via Machine 

Learning: Initial Psychometric Evidence and Practical Guidelines 

In assessment center (AC) exercises, assessees participate in a series of standardized, 

behavioral simulation exercises wherein their behaviors are observed, recorded, and evaluated by 

multiple trained assessors (International Taskforce on Assessment Center Guidelines, 2015). AC 

exercises are used for personnel selection and development, and AC scores exhibit incremental 

validity beyond cognitive ability and personality (Arthur et al., 2003; Hoffman et al., 2015; 

Sackett et al., 2017). However, AC exercises can cost hundreds of thousands of dollars to design 

and administer, making them prohibitively costly for many organizations (Thornton & Rupp, 

2006). Assessors represent a major cost because they must be extensively trained and then take 

substantial time to observe and rate assessee behavior (Guidry et al., 2013; Wirz et al., 2013). 

In recent years, machine learning (ML) applications in personnel assessment have 

emerged, including automatically scoring accomplishment records (Campion et al., 2016) and 

video interviews (Hickman, Bosch, et al., 2022; Nguyen et al., 2014). Such ML assessments can 

save organizations money by reducing the person-hours required for personnel assessment 

(Campion et al., 2016) and time to hire (Langer, König, et al., 2021). To automate assessment 

with ML, the assessment must be based on observable behaviors—which is a key aspect of AC 

exercise design. Indeed, AC exercises provide “a standardized evaluation of behavior based on 

multiple inputs” (International Taskforce, 2015, p. 1248), where the inputs include multiple 

behavioral exercises and ratings from multiple trained assessors. Considering all of this, it is 

relevant and important to examine whether AC exercises can be automatically scored. 

Apart from the practical relevance and importance of investigating automatically scoring 

AC exercises, there is also a pressing need to better understand when ML applications work 
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better (or worse). Although such applications are beginning to emerge in assessment, we know 

little about the conditions that affect ML model convergence. Reliability is considered key to ML 

(Jacobucci & Grimm, 2020), and higher interrater reliability should increase ML model 

convergence because if human assessors cannot reliably detect and utilize behavioral cues 

(Funder, 1995), then an ML model trained to replicate those ratings is similarly unlikely to detect 

and properly utilize relevant cues.  

The present study contributes to personnel assessment in several ways. First, we 

contribute to a growing stream of research applying ML to personnel assessment (e.g., Campion 

et al., 2016; Hickman, Bosch, et al., 2022; Sajjadiani et al., 2019; Speer, 2018). We develop and 

test ML AC models, finding that the ML models recover most of the original variance in the AC. 

Such approaches are being rapidly adopted in practice, yet research on them is still in its nascent 

stages (Rotolo et al., 2018). Second, we advance our understanding of ML model convergence 

by investigating the influence of interrater reliability. Although ML is often considered an 

atheoretical, data-driven process (Cheng et al., 2021), ML models can be considered a special 

kind of rater that uses observable “behaviors to replicate human ratings” (Hickman, Bosch, et al., 

2022; p. 1342). In this vein, we draw on the realistic accuracy model (RAM; Funder, 1995) to 

explain why interrater reliability affects ML model convergence. Third, we contribute to AC 

practice by providing step-by-step guidance for implementing ML AC scoring. To the extent that 

automated scoring can replace one or more human assessors, AC costs can be substantially 

reduced (cf. Campion et al., 2016). In turn, pairing automated scoring with other technologies for 

reducing AC costs (e.g., Tippins & Adler, 2011) then holds potential for democratizing ACs and 

enabling a broader swath of organizations to adopt them.  

Assessment Center Exercises: Evaluations of Interpersonal Behavior 
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 AC exercises are behavioral simulations (e.g., role-plays, group discussions, oral 

presentations) wherein multiple trained assessors use a standardized approach to observe and rate 

assessees’ behavior (International Taskforce, 2015; OSS Assessment Staff, 1948). The result is a 

series of scores for each assessee representing their behavior-based performance on dimensions 

and/or exercises. One of the main advantages of ACs is that they enable observing a wide variety 

of actual assessee behaviors. These behaviors relate to a variety of competencies like problem 

solving and decision-making but are especially relevant to the gamut of interpersonal skills 

(Dayan et al., 2002; Sackett et al., 2017). A focus on actual (interpersonal) behavior in diverse 

situations explains why AC exercise scores tend to exhibit incremental validity above and 

beyond general mental ability (GMA) and personality test scores (Arthur et al., 2003; Hoffman et 

al., 2015; Meriac et al., 2008). Further, when directly compared in the same samples, ACs 

exhibit superior criterion-related validity compared to GMA tests (Sackett et al., 2017).  

 However, AC exercises are costly to design and administer (Gaugler et al., 1987; Krause 

& Thornton, 2009; Thornton et al., 2000; Thornton & Rupp, 2006; Thornton & Potemra, 2010): 

Training multiple assessors and then having them observe AC exercise performance, classify 

assessee behaviors, and provide ratings requires a substantial investment of person-hours (Wirz 

et al., 2013). Therefore, researchers and practitioners have sought to streamline the design and 

administration of AC exercises using technology (International Taskforce, 2015; Tippins & 

Adler, 2011). Yet, to our knowledge, the potential of reducing costs by automating AC exercise 

scoring with NLP and ML is still an unexplored, albeit potentially fruitful, option. 

Automating Assessment: NLP and Machine Learning 

 Two relatively recent developments have enabled the automatic scoring of assessments 

such as AC exercises: NLP and ML. NLP (and text mining) involves a variety of methods for 
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converting unstructured, natural language text into structured, quantitative data (Kobayashi et al., 

2018), which can be applied to the speech of the assessees in AC exercises. By converting 

unstructured, natural language text into structured, quantitative data, we can then use it in ML 

(Kobayashi et al., 2018). In this case, supervised ML weights different aspects of assessee speech 

(operationalized via NLP) to predict AC exercise scores (e.g., Chapman et al., 2016; Yarkoni & 

Westfall, 2017). With ML, this can scale to rapidly score many assessees. 

Although ordinary least squares (OLS) regression can be used, supervised ML often uses 

modern prediction methods that balance model bias and variance to maximize out-of-sample 

accuracy (Putka et al., 2018). Bias refers to ML model predictions that are consistently wrong in 

one direction, and variance refers to the extent a ML model’s parameters capture the patterns in 

the training data rather than the population parameters (Yarkoni & Westfall, 2017). High bias 

occurs when a ML model underfits the data, such as when important predictors are omitted. High 

variance occurs when a ML model overfits the data, which is likely to occur, for example, with 

OLS regression when sample size (N) to predictor (p) ratios are low (i.e., N:p ratios; Chapman et 

al., 2016; Putka et al., 2018). This often occurs with natural language data given that, for 

example, there are many different ways of operationalizing natural language (p) that can 

simultaneously be included as predictors. When N < p, OLS regression does not have a unique 

result, but modern prediction methods generally do. For example, ridge regression (Hoerl & 

Kennard, 1970) regularizes regression coefficients (i.e., forces them toward zero) to reduce 

model complexity and overfitting, while still allowing many (e.g., N < p) predictors to prevent 

underfitting (e.g., Spisak et al., 2019).  

 Using NLP and ML together for personnel assessment holds significant potential benefits 

for organizations. Campion et al. (2016) found that their supervised ML models for 



8 
 

automatically scoring accomplishment records exhibited convergence comparable to a single 

human judge. Using these ML models to replace one of the three human judges that were 

historically used to score the accomplishment records would save the organization at least 

$163,000 per year (Campion et al., 2016).  

Automating Assessment Center Exercise Scoring 

 The first step of automatically scoring AC exercises involves designing and 

administering AC exercises. Then, a set of ACs must be conducted to provide data for training 

the ML models. To analyze the unstructured video data, assessee responses must next be 

transcribed. Then, NLP is used to extract textual features and convert the unstructured, natural 

language text into structured, quantitative data.  

Those quantitative textual features are then used as predictors of the assessor ratings 

during ML model training. The available data must be separated into two samples to avoid 

capitalization on chance: the training and test samples (e.g., Raudys & Jain, 1991). When the 

data has a natural split (e.g., Years 1 and 2; Campion et al., 2016; Speer, 2018), one set of data is 

used for training and the other for testing. However, ML research that relies on a single sample 

of data often uses nested k-fold cross-validation, wherein the data is split into k equally sized 

parts (known as folds; Hastie et al., 2009). Then, k – 1 parts are used for hyperparameter tuning 

and training, and the ML model trained on that data is used to predict the outcome variable in the 

test data (i.e., the remaining fold). The process is repeated k times, using each fold only once for 

testing.  

 As AC exercises are behavior-based assessments that emphasize what assessees say, they 

should be amenable to automatic scoring with NLP and ML. Our first research question 

addresses how highly the ML model out-of-sample predictions converge with observed AC 
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scores. 

Research Question 1: To what extent do the ML AC exercise scores converge with 

human scores?  

Importantly, although convergence is necessary, it is only one element of assessment 

validity in personnel selection (SIOP, 2018). Supervised ML that maximizes prediction of AC 

scores optimizes only one aspect of validity (i.e., convergence) and does not consider 

discriminant validity (Simms, 2008). ML scores may be contaminated with construct-irrelevant 

factors, such as word count. For example, human Test of English as a Foreign Language 

(TOEFL) essay scores are correlated with word count (i.e., response length), yet Educational 

Testing Service has routinely re-designed its models for automatically scoring the essays to 

reduce the influence of word count (Chodorow & Burstein, 2004; Lee et al., 2008). The concern 

is that the ML models will score participants not based on what they said but merely on how 

much they said. In the present case, the observed AC exercise scores do tend to correlate with 

word count. However, ML model scores should not exhibit an inflated relationship with word 

count compared to the observed scores, because this suggests that they are contaminated with 

irrelevant variance associated with response length instead of response quality.  

Research Question 2: How do the observed and ML AC exercise scores relate to word 

count?  

 A common question during ML research regards how high ML model convergence must 

be to be useful. The emerging benchmark is that they should converge at least as highly as a 

single human assessor. In prior research, this has been examined by comparing single rater 

intraclass correlations to the convergent correlations between ML scores and aggregated human 

scores (Campion et al., 2016; Hickman, Bosch, et al., 2022).  
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Research Question 3: Do the ML AC exercise scores converge as highly with the human 

assessors as a single rater does? 

However, even this does not address how ML model scores' criterion-related validity 

compares to single rater's scores' criterion-related validity. Therefore, we go beyond prior 

research by also comparing a single rater’s (in this case, the AC exercise role-playing assessor's) 

criterion-related validity to the ML model predictions’ criterion-related validity. 

Research Question 4: Is the criterion-related validity of the ML AC scores comparable to 

a single rater’s scores? 

 In practice, the goal of automating scoring via ML is to save money by replacing one or 

more human assessors (Campion et al., 2016). Although the information for Research Questions 

1, 3, and 4 provide some evidence regarding whether ML-based scores can replace a human 

assessor, they do not directly address whether validity is maintained by replacing some of the 

human raters. In the current study, the exercises were one-on-one role-plays where the role 

player also served as an assessor. Such a setup necessitates the use of a role player. However, the 

additional two to three assessors who reviewed the videotaped interactions and provided ratings 

represent a substantial, additional cost that could be avoided if the combined role player and ML 

scores exhibit validity comparable to the original, combined scores from all human assessors. 

Research Question 5: Is the criterion-related validity of the average role-playing assessor 

and the ML AC scores comparable to the average of all human assessor scores? 

Influences on ML Model Convergence 

 As ML models can be considered a special kind of rater that uses observable behaviors to 

attempt to replicate human ratings (Hickman, Bosch, et al., 2022), theories that explain the 

accuracy of interpersonal perception, such the RAM, may also help explain the validity of ML 
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models. Initially, the RAM was developed in the context of personality trait judgments (Funder, 

1995), but it has since been applied to personnel judgments in employment interviews 

(Christiansen et al., 2005), ACs (Haaland & Christiansen, 2002; Lievens et al., 2006; Lievens et 

al., 2015), and LinkedIn (Roulin & Levashina, 2019). The RAM posits that accurate 

interpersonal judgments can occur only when relevant behaviors are available for observation 

and when the judge detects these behaviors and correctly utilizes that information in making 

judgments (Funder, 1995; Funder, 2012). Interpersonal judgments, therefore, involve a four-

stage process wherein relevant behaviors occur; some are available for observation, and the 

judge detects some of these behaviors, and may or may not utilize them correctly for judgments.   

Given that ML models are trained to replicate human assessors, they tend to replicate the 

properties of those human assessors (Barocas & Selbst, 2016). Therefore, ML models can only 

consistently detect and utilize behaviors for scoring when human assessors also do so. The key 

indicator of assessors’ ability to reliably detect and utilize behaviors is interrater reliability. 

Interrater reliability is one indicator of interpersonal judgment accuracy (Funder, 1995) that is 

rooted in constructivism (Kruglanski, 1989). Constructivism suggests that reality is only 

knowable through human perceptions, so interpersonal judgmental accuracy is a function of 

whether judges collectively agree. When judges disagree, it suggests they did not consistently 

detect and utilize behaviors to rate performance. Inconsistent judgments occur for several 

reasons, including differences in the judges’ emotional states and agreeableness (Letzring, 2008; 

Wood et al., 2010), as well as differences in the availability of relevant behavioral cues across 

different AC exercises.  

Reliability is considered foundational to successful ML (Jacobucci & Grimm, 2020). If 

assessors do not consistently detect and utilize behaviors (causing low interrater reliability), then 
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an ML model trained on those humans is also unlikely to consistently detect and utilize 

behaviors. We expect that this affects the convergence of ML models trained on those ratings. 

Hypothesis 1: Interrater reliability relates positively to the magnitude of the ML models' 

convergence. 

Method 

We describe our sampling plan, all data exclusions, and all measures in the study. Data 

and research materials are not available because they were gathered in collaboration with a 

consultancy firm. All analysis code is available at 

https://osf.io/2kzqd/?view_only=1ae0b05e12f745048211859f1124a8f6. Data were analyzed 

using multiple packages in R and Python. The study design and analysis were not preregistered. 

 

Archival Dataset 

 To explore the viability of automatically scoring AC exercises, we used an archival 

dataset (video and audio recordings) of 18 “flash” (3-minute) AC exercises that sampled 

situations relevant to junior management. Table 1 describes the situation assessees encountered 

in each of the 18 role-plays. These multiple, speeded AC role-plays were developed and 

administered in collaboration with a European business school and a professional consultancy 

firm to assess the strengths and weaknesses of an entire MBA cohort of 96 participants (51% 

female, mean age = 23.63) from 19 different countries (67% Belgian, the rest 5% or fewer). All 

participants had at least one year of work experience and responded to the role-plays in English. 

 In each role-play, role players and remote assessors rated assesses’ exercise performance 

on a nine-point scale (1 = should clearly be improved: starters’ level to 9 = obviously strong: 

role model behavior). To ensure that these ratings were based on observable and relevant 

https://osf.io/2kzqd/?view_only=1ae0b05e12f745048211859f1124a8f6
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behaviors, short checklists were developed that listed behaviors indicative of (in)effective 

performance per exercise. To generate the Overall Assessment Rating (OAR), we averaged each 

assessee’s scores from the 18 exercises. More information about the development, 

administration, and rating procedure of the multiple, speeded role-plays can be found in Herde 

and Lievens (2022). As detailed by Herde and Lievens (2022), seven months after the speed AC 

role-plays, MBA instructors provided criterion ratings by assigning percentile scores to assessees 

on four criterion dimensions: task performance, contextual performance, teamwork, and 

communication (Goffin et al., 1996, 2009). On average, the four criterion dimensions correlated 

r = .65 (all ps < .001). Therefore, we averaged instructor ratings into an overall performance 

measure (α = .87; see Viswesvaran et al., 2005), which served as the criterion measure.  

Computer-extracted Verbal Behavior 

 We used a two-stage process to operationalize assessee verbal behavior. First, we paid a 

vendor to have humans manually transcribe the recordings of the role-plays1. Initially, we tested 

the feasibility of using computerized transcription using IBM Watson Speech-to-Text (IBM, 

2019), but considerable background noise in the recordings caused computerized transcriptions 

to be inaccurate2. The AC involved simultaneously administering 18 exercises in a single, large 

room, causing echoes and background noise, which made it challenging for computerized 

transcription to identify words, unlike humans. After manual transcription, we isolated the 

assessee’s speech (and discarded the role player’s speech) for use in our analyses.  

 Second, we applied seven NLP techniques—including descriptive measures, a closed 

vocabulary (i.e., dictionary) approach, traditional open vocabulary approaches (i.e., n-grams), 

 
1 Although the majority of recordings had video, nearly a third had only audio recordings. Therefore, we do not 
investigate the use of nonverbal behaviors as predictors in the ML models. 
2 Due to the lower quality of some of the recordings, we could not reliably investigate the use of paraverbal 
behaviors (i.e., how one’s voice sounds; e.g., Hickman, Bosch, et al., 2022) as predictors in the ML models.  
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and modern embedding methods (Eichstaedt et al., 2021)—to the transcripts to quantify assessee 

verbal behavior. Specifically, we: measured word count; used Linguistic Inquiry and Word 

Count (LIWC; Pennebaker et al., 2015); counted all n-grams where n = 1 & 2; calculated word 

embeddings with the Universal Sentence Encoder, RoBERTa (at both the document and 

aggregated sentence-level), and DistilBERT. We describe each in the Online Supplement. 

Analytic Strategy 

 It is important to ensure that the ML model generalizes (or cross-validates) beyond the 

sample, or effect size estimates may be upwardly biased (Putka et al., 2018). Typically, in 

psychological research, researchers split the collected data into a calibration/training and 

validation/test sample (e.g., 80/20 split) to determine generalizability. However, the cross-

validation results can be highly dependent on the sample split choice. Instead, in ML, the sample 

is split systematically into multiple k subsamples (i.e., k-folds) in order to train (or fit) the model 

on all but one fold and validate the model on the remaining fold. This is done multiple (i.e., k) 

times such that each fold serves once as a validation fold. Given that ML models also require 

hyperparameter tuning, which affects how predictor weights are assigned by the model, this 

tuning is done in a nested fashion (for example, nested l times in each of the k times). We used 

the caret R package (Kuhn, 2008) to conduct an extension of k-fold cross-validation: nested 

cross-validation. Due to the small N in the present study, each k-fold is a single participant (i.e., k 

= N), and this is known as leave-one-out-cross-validation (LOOCV). We used LOOCV to train 

and test a total of 10 ML models per exercise. The LOOCV process is illustrated in Figure 1. It 

involves conducting hyperparameter tuning on N – 1 participants (the "outer folds") using 3-fold 

cross-validation on the "inner folds" (i.e., folds created in the training data), then training a 

model on those participants using the optimal hyperparameter. The trained model then predicts 
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the AC exercise score for the holdout participant, and this process is repeated N times, holding 

out each participant only once.  

We trained and tested 10 ML models that used the following predictor sets: (1) word 

count and word count squared; (2) 77 LIWC variables that focus on the content of speech (e.g., 

Analytical thinking, Social Processes, Positive Emotions); (3) the count of n-grams where n = 1 

& 2; (4) 512 embeddings from USE, calculated on each sentence and then averaged across the 

participant’s sentences in an exercise; (5) 768 embeddings from RoBERTa, calculated on each 

sentence and then averaged across the participant’s sentences in an exercise; (6) 768 embeddings 

from DistilBERT, calculated on all available assessee speech in an exercise; (7) 768 embeddings 

from RoBERTa, calculated on all available assessee speech in an exercise; (8) a combination of 

the LIWC variables and n-grams; (9) a combination of LIWC variables, n-grams, and 

DistilBERT embeddings; and (10) a combination of n-grams and USE embeddings. As we 

trained and tested these models in each exercise, we trained and tested a total of 180 models. 

 For the first model that used word count as a predictor, we used ordinary least squares 

(OLS) regression in LOOCV. For the remaining nine models, we used ridge regression and 

conducted hyperparameter tuning (i.e., identifying the optimal value of λ) on N – 1 participants 

using 3-fold (the inner folds) cross-validation, then trained a model on those participants using 

the optimal hyperparameter. We tried 10 values of lambda generated by caret that ranged from 

.016 to .690. The model then predicted the AC exercise score for the holdout participant. 

Separately for each of the 18 exercises, this process was repeated N times, holding each 

participant out once for testing. Then, the N predictions in each exercise were combined and 

evaluated together to facilitate calculating convergent, discriminant, and criterion correlations.  

 To investigate how interrater reliability affects ML model convergence, we calculated the 



16 
 

correlation between 1) the correlation between predicted and observed AC exercise scores for the 

18 exercises and 2) interrater reliability (Hypothesis 1). Finally, we conducted a sensitivity 

power analysis with G*Power (Erdfelder et al., 1996). We found that we had 80% power to 

detect an effect size r = .50 at α = .05.  

Results 

To What Extent Do the ML Scores Converge with Human Ratings? 

Table 2 reports the convergent correlations within each exercise, on average, and with the 

OAR (i.e., the average of each assessee’s 18 exercise scores), for the 10 models trained and 

tested in our study to address Research Question 1. For example, the first column of Table 2, WC 

+ WC2, reports the convergence between the average human assessor scores and the ML scores 

for the models that used only word count and its quadratic as predictors. Only the models that 

used DistilBERT and the models that used a combination of n-grams and USE exhibited, on 

average, convergent correlations that exceeded the word count models. The average convergence 

of these models compares favorably to the average convergence across the Big Five for Park et 

al.’s self-report models (where 𝑟̅𝑟 = .38; 2015) and is similar to Hickman, Bosch, et al.’s 

interviewer-report models (where 𝑟̅𝑟min = .38 and 𝑟̅𝑟max = .42; 2022). The four models that included 

n-grams as predictors exhibited convergent correlations r > .70 for exercise 5.  

In terms of the OAR (i.e., the average of each participant’s 18 exercise scores), the 

human assessor OARs converged rs = .39 and .40 with the OAR from models that used 

RoBERTa embeddings calculated at the exercise level and LIWC variables as predictors, 

respectively. Meanwhile, the OAR from models that used word count, n-grams, and/or 

DistilBERT as predictors converged .76 ≤ rs ≤ .79, indicating very strong convergence at the 

overall level. Notably, across the 10 models, the correlation between the average convergence 
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(Average (𝑟̅𝑟)) and the OAR correlations r = .96, suggesting that higher convergence within the 18 

exercises relates directly to the extent to which ML models capture the substantive variance in 

the AC. 

Relationship with Word Count 

The bottom row of Table 2 reports the average correlation between ML scores and 

assessee word count across the 18 exercises (Research Question 2). On average, the observed AC 

scores correlated 𝑟̅𝑟 = .44 with word count. As can be seen, the strongest relationship between ML 

scores and word count is for the models that used word count and its quadratic term as predictors 

(𝑟̅𝑟 = .88). In other words, although this model exhibited convergence comparable to other 

models, as expected, the variance in scores is almost completely accounted for by variation in the 

word count. Notably, ML scores from models that used DistilBERT embeddings as predictors 

also correlated highly, on average, with the word count: when only DistilBERT embeddings 

were used, 𝑟̅𝑟 = .73, and when DistilBERT was used together with LIWC variables and n-grams, 

𝑟̅𝑟 = .69. These correlations with word count are 66% and 57% larger than the correlations 

between observed scores and word count, suggesting that DistilBERT embeddings are 

contaminated with word count. The ML scores from models that used n-grams and USE 

embeddings as predictors exhibited convergence that, on average, exceeded the word count 

models and a weaker relationship with word count (𝑟̅𝑟 = .38) compared to the observed scores. On 

the basis of these two pieces of evidence, our remaining analyses focus on the models that used 

n-grams and USE embeddings as predictors3. 

How Does ML Score Convergence Compare to a Single Human Rater? 

 
3 The online supplement reports the correlations among observed and ML AC scores for these models to provide 
information regarding discriminant-related validity. The evidence suggests that the ML models adequately 
distinguish among the different AC exercises. 
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Table 3 reports the single and average interrater reliabilities for each exercise, 

correlations with sex and age for both the observed and ML AC scores, and the convergent 

correlations (and 95% confidence intervals) between observed and ML scores (for the models 

that used n-grams and USE embeddings as predictors) for each of the 18 AC exercises and the 

OAR. Single rater reliability (i.e., the average convergence of single human assessors), G(q,1) 

(Putka et al., 2008), averaged .38—which is .03 lower than the average ML model convergence. 

In 16 AC role-plays, the 95% confidence interval (CI) for ML model convergence included the 

value of G(q,1), and in the two role-plays where it did not, ML model convergence exceeded 

single rater reliability. Answering Research Question 3, ML scores converged somewhat more 

highly than a single human assessor4. 

How Does the Criterion-Related Validity of ML Scores Compare to Single Humans? 

 Table 4 reports the correlation between exercise scores, OARs, and the criteria for all 

human raters, the role player, and the ML scores for the 18 exercises. On average, the role player 

criterion correlations 𝑟̅𝑟 = .25 and the ML model criterion correlations 𝑟̅𝑟 = .19. In 14 AC role-

plays, the ML models' criterion correlations' 95% CIs included the value for the role player—in 

one role-play, the 95% CI values exceeded the role player's criterion correlation, and in three 

role-plays, the role player's criterion correlation exceeded the 95% CI values. The role player 

OAR scores correlated r = .53 with the criterion, and the ML OAR scores correlated r = .47, 

95% CI [.30, .61], with the criterion. Overall, to answer Research Question 4, the ML scores 

exhibited criterion-related validity comparable to, but of a somewhat lesser magnitude than, a 

single human assessor. 

 
4 One concern is that our results may be upwardly biased due to the use of LOOCV. As we report in Online 
Supplement Table S3, the results were largely consistent when we used 10-fold cross-validation, 5-fold cross-
validation, or 3-fold cross-validation. For LOOCV, convergence averaged .41, whereas for 10-fold, 5-fold, and 3-
fold cross-validation, convergence averaged .40. 



19 
 

Do ML Scores Maintain Criterion-Related Validity When Replacing Human Assessors? 

 The first column of Table 4 reports the criterion correlations for the average of all human 

assessors’ ratings, and the final column of Table 4 reports the same information for the average 

of the role player and ML scores. On average, across the 18 exercises, the combined human 

assessors correlate with the criterion 𝑟̅𝑟 = .32, and the averaged role player and ML scores 

correlate with the criterion 𝑟̅𝑟 = .28. Additionally, the combined human assessor OAR scores 

correlated r = .57 with the criterion, and the role player plus ML OAR scores correlated r = .55, 

95% CI [.39, .68], with the criterion5. Answering Research Question 5, the average of the role 

player and ML scores exhibited criterion-related validity comparable to the averaged human 

assessors. 

Influence of Interrater Reliability on ML Model Convergence 

 As seen in Table 2, there was considerable variation in convergence for each model 

across the 18 AC role-plays. For example, for the models that used n-grams and USE 

embeddings as predictors, average convergence 𝑟̅𝑟 = .41, rsd = .16, rmin = .06 (exercise 8), and rmax 

= .73 (exercise 5). Hypotheses 1 posited that ML models for AC role-plays with higher interrater 

reliability would exhibit higher convergence. For the two NLP methods that exhibited average 

convergence 𝑟̅𝑟 < .24 (i.e., those with poor validity), the relationship between convergence and 

interrater reliability 𝑟̅𝑟 = .18. For the word count ML models, the relationship between 

convergence and interrater reliability r = .67. And for the remaining ML models, the relationship 

between convergence and interrater reliability 𝑟̅𝑟 = .61. The correlation is significant at p < .01 

when r > .60, and thus, Hypothesis 1 is supported. 

 
5 To check if the results would hold with non-role player assessors, we averaged the ML scores together with the 
scores from one of the raters who later observed and rated assessee performance. The assessor plus ML OAR scores 
correlated r = .55 with the criterion—identical to the role player plus ML OAR scores' criterion correlation. 
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Discussion 

Main Conclusions 

 First, AC exercises are amenable to being automatically scored using NLP and ML. AC 

exercises are behavior-based assessment methods, and the present study used speeded AC role-

plays where the assessees’ verbal responses were the key inputs for human assessor scores. As a 

result, several NLP methods resulted in ML models that converged comparably to single human 

assessors. Importantly, however, the models that used DistilBERT embeddings as predictors 

were contaminated with variance associated with word count, whereas the models that used n-

grams and USE embeddings as predictors were less contaminated with word count than the 

human ratings themselves. Further, several ML model scores recovered the majority of 

substantive variance in the AC, as evidenced by multiple OAR correlations exceeding .70. 

Additionally, the ML OAR scores (from the models that used n-gram and USE 

embeddings as predictors) exhibited criterion-related validity (r = .47) comparable to a single 

human assessor (r = .53; in this case, the role-playing assessor), albeit of a somewhat lesser 

magnitude than the role player’s OAR scores. Further, when the ML and role player scores were 

averaged together, their criterion-related validity was very similar to the average of all human 

assessors for the OAR scores (rrole player+ML = .55, rhumans = .57).  

Therefore, ML scores could be used to supplement role player ratings by replacing the 

additional 2-3 assessors who later observed and rated performance without sacrificing validity. 

In our experience, the cost of freelance assessors is often around $75 per hour. In this study, 96 

assessees completed 18 AC role-plays, for a total of 1,728 videos that last about 3 minutes each. 

Assuming assessors review and rate 2 videos in 10 minutes, the cost of a single human assessor 

would be approximately $10,800. Therefore, the savings could be around $21,600 for replacing 
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two human raters, or $32,400 for replacing three human raters. These savings would multiply as 

the number of assessees grows, and pairing these savings with other cost-savings measures, such 

as remote administration, could enable more organizations to adopt ACs for assessment.  

 Second, these ML scores were valid despite the small sample size in the present study (N 

= 96) and the relatively brief sample of behavior. Regarding sample size, Sajjadiani et al. (2019) 

trained their turnover attributions classifier on 1,000 observations; Campion et al. (2016) trained 

their accomplishment record scorers on 41,429 observations; and Park et al. (2015) trained their 

system for scoring the Big Five from Facebook posts on 66,732 observations. Further, the 

exercises lasted only about three minutes. During that time, assessees spoke an average of 260 

words per exercise, whereas Park et al. (2015) discarded all participants who had fewer than 

1,000 words in their Facebook posts. Generally, NLP and supervised ML are thought to be useful 

only when applied to “big” data—which could include many observations or a lot of data per 

observation. Our results demonstrate that ML can be applied to relatively small samples (both 

number of participants and amount of behavior) when the assessment is rooted in observable 

behavior. However, we do not suggest deploying ML models trained on such small samples. We 

observed considerable variability in the validity of our models depending on the predictor set 

used, even though we would a priori expect many of these methods to perform comparably.  

Third, scant knowledge and empirical evidence are currently available to explain when 

and under what conditions ML models are likely to be exhibit high convergence. This is an 

important consideration because, much like AC exercises, collecting data for and developing ML 

models is an expensive and arduous endeavor. Such data generally involves collecting 

observations and having multiple trained assessors rate each observation (e.g., Campion et al., 

2016; Hickman, Bosch, et al., 2022). We hypothesized and found that ML models exhibit higher 
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convergence in exercises where assessors consistently detected and properly utilized behaviors 

because this increases interrater reliability. Interrater reliability is key for supporting the validity 

of any inferences made using human ratings, so research design should account for this. For 

example, evaluative situations should ensure numerous relevant behaviors are available for 

thoroughly trained assessors to detect and utilize, and ratings should be facilitated via behavioral 

observation aids, such as checklists of effective behaviors, behavioral observation scales, or 

behaviorally anchored rating scales. Behavioral observation aids help to increase interrater 

reliability by providing a common frame of reference for judging performance that alleviates 

response biases and rater idiosyncrasies (Jacobs et al., 1980; Barnardin & Smith, 1981; Roch et 

al., 2012).   

New Frontiers: Investigating Specific Behaviors in ACs with ML 

 Although not a core focus of the present manuscript, NLP and ML can be used to identify 

the behaviors that lead to high AC exercise scores. Researchers are interested in investigating 

behavior in ACs (Breil et al., 2022), and many popular press books give advice on how to behave 

in AC exercises. NLP and ML can provide empirical evidence on how specific behaviors 

translate into scores—Figures 2 through 4 illustrate the stemmed n-grams and LIWC categories 

most strongly associated with the ML AC scores in the three role-plays with the highest 

convergent correlations: 3, 5, and 146. For example, assessees should avoid responding with 

short phrases that contain assent words (e.g., yeah, okay, agree), particularly when presented 

with exaggerated criticisms or inappropriate suggestions for last-minute changes (like 

boycotting, rescheduling, or changing key elements of the event, as in these role-plays). Not only 

were assent words associated with poor performance in role-plays 5 and 14, but assent words 

 
6 We do not report correlations with USE embeddings because they are not interpretable. 
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were also negative predictors of conscientiousness in Hickman, Bosch, et al.’s (2022) automated 

video interview personality assessments. Similarly, when encountering hostility (as in role-play 

3), it is important to maintain a positive emotional tone (LIWC categories tone and posemo) and 

avoid reflecting the role player's negativity back to them (LIWC categories negemo and anx). 

Further, the (in)effective behaviors also speak to situations beyond AC exercises. For example, 

in role-play 14, trying to absolve oneself of responsibility by placing the blame and 

responsibility on the volunteer coordinator (who was female; LIWC categories female and shehe) 

was associated with lower scores. Likely, trying to blame others is detrimental in most situations 

when a problem needs to be solved. Such findings may enhance our understanding of effective 

interpersonal behavior both within AC role-plays and elsewhere. Importantly, using computers to 

measure behavior requires much less time and labor compared to traditional, human-coding 

approaches to measuring behavior. As a result, NLP and ML more broadly may open up 

additional opportunities to investigate behavior in ACs and beyond at a scale that was previously 

unfeasible due to the human labor bottleneck. 

Guidelines for Developing and Deploying ML AC Scoring 

Table 5 reports our guidelines for developing and deploying ML AC scoring, and we 

describe the major steps here. The first step involves designing the AC and its exercises, and 

extensive guidance has been provided elsewhere on designing ACs (e.g., International Taskforce, 

2015; Thornton & Rupp, 2006). To facilitate automatic scoring, the AC should be designed and 

administered such that video and audio of performance can be clearly recorded. A complication 

here is that many ACs involve exercises wherein multiple assessees interact (e.g., leaderless 

group discussion)—such exercises may be less amenable to automatic scoring due to difficulties 

in automatically transcribing and distinguishing different assessees' speech. As a result, ACs 
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focused on one-on-one roleplays and exercises that involve a single assessee completing tasks 

(e.g., in-basket exercise) may be best suited for automatic scoring. 

The second step involves administering the AC. The site should be prepared in advance 

to ensure that the audio-visual recording equipment functions properly, including checking that 

the audio from one exercise is cleanly captured even when other exercises are ongoing. Prior to 

AC administration, follow best practices for structuring rating scales and training roleplayers and 

assessors. Readers interested in these more general points should refer to existing resources (e.g., 

International Taskforce, 2015; Thornton & Rupp, 2006). 

The third step involves transcribing the recorded assessee performance. Several 

commercial software packages are available for automatically transcribing speech. Comparing 

these tools can be important, as some may be systematically less accurate for racial and ethnic 

minorities (e.g., Koenecke et al., 2020). If multiple speakers are involved, diarization is the 

process of identifying multiple speakers and tracking them throughout the interactions, and it is 

an option that must enabled (i.e., is not a default) on many computerized transcription systems. 

The fourth step involves applying NLP to the transcriptions. Although, as we showed, a 

variety of methods are available, word embedding methods—especially those based on 

transformers—have become the most popular choice for many NLP applications. Such 

embedding methods tend to achieve high convergence, yet they are often less interpretable than 

older methods, such as n-grams. Numerous resources are available online for working with 

embedding methods, and Table 5 cites some common NLP R packages and Python libraries. 

After converting the unstructured text data into quantitative data, the fifth step involves 

training ML models to use assessee behavior to predict AC exercise scores and testing them. To 

use all available data and provide the most accurate estimates of out-of-sample performance, we 
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suggest conducting repeated k-fold cross-validation (Krstajic et al., 2014). This involves 

conducting nested k-fold cross-validation multiple times, with each repeat randomly shuffling the 

composition of the k-folds. k-fold cross-validation provides a nearly unbiased estimate of the true 

convergence (Varma & Simon, 2006), and repeating the process ensures that any chance 

variation is accounted for (Krstajic et al., 2014). At this stage, multiple models (either due to 

different NLP methods or algorithms) can be trained and tested. 

The sixth step involves comparing the psychometric properties of these models. As we 

demonstrated, investigating psychometric properties beyond convergence is important to ensure 

that the resulting ML model scores are capturing as much intended variance as possible (i.e., 

minimizing construct deficiency) without including additional, irrelevant variance (i.e., construct 

contamination). Landers and Behrend (2022) provide additional guidance on considerations at 

this stage beyond the quantitative psychometric properties of the ML model scores. 

 The seventh step involves training the final models. Because k-fold cross-validation 

involves training and testing k models, none of those models should be the final ones deployed 

for assessment. Instead, all available data should be used to train the final models that will be 

deployed for personnel assessment. Although the psychometric properties of these models will 

not be known, the results from k-fold cross-validation are nearly unbiased (Varma & Simon, 

2006), and additional training data is generally beneficial for ML models. For algorithms that 

include hyperparameters, the hyperparameters can be tuned using all available data in non-nested 

k-fold cross-validation (e.g., Hickman, Bosch, et al., 2022 used 10-fold cross-validation to 

identify optimal hyperparameters for models trained on entire samples). 

The eighth step involves developing and evaluating ML model explanations for relevant 

stakeholders. Explaining the model design process, reliability, and validity to stakeholders can 
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improve reactions to the ML system, including fairness perceptions (Langer, Oster, et al., 2021). 

For example, hiring managers and applicants could be informed about how the models were 

developed and their psychometric properties, and hiring managers could be trained on effectively 

using the ML scores in decision-making. However, explanations may actually worsen reactions 

from stakeholders affected by ML decisions (Newman et al., 2020). 

The ninth step involves deploying the final models to assess new AC participants. 

Ideally, these models would not be used initially to make selection decisions but would instead 

be piloted by comparing their scores to the scores assigned by human assessors. This would 

further increase confidence that the ML models provide valid scores, but if the ML models 

exhibit poor validity, then it suggests they should not be used moving forward. If they are 

deployed immediately for assessment, we suggest following the example set by essay scoring in 

standardized testing—if the ML model score and a single human disagree, then another human 

should provide a performance rating to resolve the difference.  

The tenth step occurs after the ML models have been deployed for assessment—

continuous monitoring and validation of the ML scores. This is a best practice for any selection 

system, because to the extent that the job or more global conditions change, predictor-criterion 

relations may also change. Continuously monitoring for both validity and bias are important to 

maximize utility and reduce the likelihood of litigation. 

Limitations 

 Although we illustrated that NLP and supervised ML could be used on small sample 

sizes, this was also a limitation of the present study. We showed that validity could be 

maintained using nested LOOCV, but we also observed that several models that we expected to 

perform well exhibited worse validity relative to other methods. One reason is that the small 
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sample size prevented us from using some NLP methods to their full potential, such as fine-

tuning end-to-end deep learning embedding methods. Additionally, the small sample size meant 

we could not retain a true holdout sample, and therefore, our study does not address the question 

of whether models trained on such a small sample would generalize to new, future groups of 

assessees. The small sample size may have also resulted in a more homogeneous sample than is 

encountered in practice, which could have inflated effect sizes. To obtain more accurate effect 

size estimates, future work should aim to use larger samples and test the generalizability of ML 

scores’ validity in new, temporally lagged samples.  

Conclusion 

 AC exercises are costly to design and administer, and recent years have witnessed the 

emergence of NLP and ML for reducing assessment costs. This study investigated the potential 

of replacing one or more human assessors with ML scores. The results suggest it may be possible 

to replace one or more human assessors with NLP and ML in speeded interpersonal AC 

exercises to save money and achieve criterion validities similar to those obtained from human 

assessors. Interrater reliability had a large influence on ML model convergence.  
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Tables 

Table 1 

Description of the 18 assessment center exercises 

Role-play Description 
1 Role player wants to find extra volunteers but does not want to run into a conflict with other event services.  
2 Role player is dissatisfied with many aspects of last year’s event and threatens to take action to forbid the event.  
3 Role player is hostile and wants to boycott the event because several activities threaten the attendees’ safety.  
4 Role player feels inexperienced and insecure because her efforts to increase sales do not pay off.  
5 Role player mentions a popular sport event is scheduled on the same day and that this should be solved.  
6 Role player promised a band to play at the event but the committee had already decided hosting a different band. 
7 Role player wants to brainstorm about solving the problem of shortage of volunteers.  
8 Role player criticizes assessee, asking to make quick decisions regarding specific entertainment issues. 
9 Role player (finance coordinator) asks to make a choice among various options, while staying within the budget.  
10 Role player is inexperienced, feels close to burnout, and considers resigning from her job. 
11 Role player (a police inspector) is angry because the current event proposal does not meet safety regulations. 
12 Role player is angry about another employee who does not meet his task expectations.  
13 Role player feels disengaged and is unmotivated to switch to another catering option.  
14 Role player suggests to completely change the event activities, although many preps have already been done.  
15 Role player lost the registration list and has problems to acknowledge it because of potential face loss. 
16 Role player (beverage supplier) mentions that a final order for beverages was never placed and his schedule is full.  
17 Role player (from ICT) is furious and questions the need to take up extra IT tasks. 
18 Role player mentions a double booking was made regarding the order of plates and cutlery. 
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Table 2 

Comparison of ML model convergence, word count saturation, and relationship with interrater reliability 
    Sentence-level Document-level    

Exercise 
WC + 

WC2 LIWC n-grams USE RoBERTa DistilBERT RoBERTa 
LIWC + n-

grams 
LIWC + n-grams 

+ DistilBERT 
n-grams 

+ USE 
1 .10 -.03 .32 .38 .17 .22 .06 .31 .32 .44 
2 .27 .07 .20 .39 .33 .33 .31 .19 .35 .37 
3 .61 .33 .48 .30 .35 .55 .18 .60 .63 .52 
4 .42 .16 .40 .39 .44 .47 .29 .37 .41 .44 
5 .46 .54 .76 .61 .58 .56 .53 .76 .72 .73 
6 .41 .19 .35 .35 .37 .42 .26 .35 .43 .45 
7 .52 .17 .48 .28 .28 .52 .33 .44 .49 .46 
8 .25 .11 .16 -.05 -.18 .20 .04 .17 .21 .06 
9 .11 .23 .23 .42 .23 .08 .32 .25 .22 .37 

10 .38 -.03 .32 .23 .21 .37 .01 .32 .40 .30 
11 .55 .01 .47 .41 .48 .57 .29 .42 .49 .52 
12 .18 .04 -.07 .21 .13 .23 .19 -.06 .06 .10 
13 .47 .28 .53 .36 .18 .60 .25 .53 .61 .49 
14 .55 .55 .52 .51 .59 .64 .56 .61 .66 .56 
15 .58 -.24 .37 .26 .33 .61 .05 .36 .61 .40 
16 .33 .26 .34 .34 .19 .46 .35 .38 .47 .44 
17 .58 .16 .49 .12 .25 .45 .05 .48 .45 .37 
18 .09 .27 .24 .20 .28 .31 .11 .30 .34 .27 

Average (𝑟̅𝑟) .38 .17 .37 .32 .29 .42 .23 .38 .44 .41 
OAR .77 .40 .76 .60 .62 .78 .39 .78 .79 .77  

Word Count (𝑟̅𝑟) .88 .08 .45 .18 .18 .73 .08 .47 .69 .38 
Note: WC = Word Count. LIWC = Linguistic Inquiry and Word Count. USE = Universal Sentence Encoder. OAR = Overall Assessment Rating. 
All models used ridge regression except WC + WC2, which used OLS regression. Sentence-level means embeddings were calculated on each 
sentence then averaged within participants, and document-level means embeddings were calculated on all text at once. In each exercise, the N 
predictions from LOOCV were combined to calculate correlations with other variables. 
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Table 3 

Correlations with observed (i.e., human rated) and machine learning (n-grams and USE predictors) AC exercise scores  
  Observed Scores Machine Learning Scores  

Exercise G(q, 1) G(q, k) Sex Age Nationality 
Word 
Count Observed [95% CI] Sex Age Nationality 

1 .22 .63 .05 -.16 .21 .22 .44 [.26, .59] .05 -.04 .06 
2 .30 .63 -.21 -.29 .12 .37 .37 [.18, .53] -.02 -.13 .11 
3 .37 .73 .04 -.22 .20 .65 .52 [.36, .65] .15 -.21 .20 
4 .48 .75 .04 -.29 .27 .46 .44 [.26, .59] .04 -.29 .29 
5 .64 .85 -.11 -.36 .22 .50 .73 [.62, .81] -.13 -.27 .31 
6 .43 .71 -.08 -.28 .25 .47 .45 [.27, .60] .05 -.21 .22 
7 .30 .61 .13 -.22 .10 .54 .46 [.29, .60] .03 -.34 .22 
8 .26 .57 .00 -.20 .26 .30 .06 [-.14, .26] -.01 -.13 .09 
9 .23 .50 -.11 -.11 .18 .22 .37 [.18, .53] -.13 -.17 .27 

10 .45 .74 .11 -.14 .33 .43 .30 [.11, .47] -.03 -.05 .14 
11 .48 .77 .00 -.25 .26 .57 .52 [.36, .65] -.13 -.13 .09 
12 .29 .62 .00 -.17 .03 .26 .10 [-.10, .29] .23 .00 -.09 
13 .47 .77 .03 -.30 .20 .50 .49 [.32, .63] .01 -.20 .16 
14 .53 .83 .14 -.29 .31 .55 .56 [.40, .68] .14 -.13 .26 
15 .42 .79 .06 -.19 .28 .61 .40 [.22, .56] .14 -.28 .28 
16 .18 .46 -.05 -.24 .16 .35 .44 [.26, .59] .08 -.25 .02 
17 .41 .70 .07 -.28 .32 .58 .37 [.18, .53] .06 -.22 .11 
18 .34 .61 .05 -.22 .25 .26 .27 [.07, .45] -.02 -.04 .19 

OAR -- -- .02 -.42 .40 -- .77 [.67, .84] .06 -.42 .42 
Note: N = 96. P < .05 when r > .20; p < .01 when r > .26. G(q,1) = single rater reliability. Observed AC exercise scores are formed 
from the average of all available human raters (i.e., role-players and remote assessors). OAR is the average of the 18 exercise scores. 
We also calculated convergence with observed scores using Spearman’s rank-order correlation ρ following Stachl et al.’s (2020) 
recommendation and found that, on average across the 18 exercises, 𝜌̅𝜌 = .39. These results are consistent regardless of whether 
predictors are standardized (i.e., mean = 0 and SD = 1).   
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Table 4 
 
Comparison of human assessor and predicted AC exercise scores’ criterion-related validities 

Exercise 
 All 

Assessors 
Role 

Player ML Scores [95% CI] 
Role Player and ML 

Mean [95% CI] 
1  .27 .20 .01 [-.19, .21] .22 [.02, .40] 
2  .36 .24 .22 [.02, .40] .26 [.06, .44] 
3  .41 .13 .24 [.04, .42] .19 [-.01, .38] 
4  .27 .26 .17 [-.03, .36] .27 [.07, .45] 
5  .40 .43 .29 [.10, .46] .43 [.25, .58] 
6  .32 .32 .31 [.12, .48] .38 [.19, .54] 
7  .22 .03 .35 [.16, .51] .13 [-.07, .32] 
8  .47 .37 .10 [-.10, .29] .40 [.22, .56] 
9  .15 .14 .12 [-.08, .31] .14 [-.06, .33] 

10  .28 .21 .28 [.08, .45] .18 [-.02, .37] 
11  .31 .30 .12 [-.08, .31] .31 [.12, .48] 
12  .31 .30 -.05 [-.25, .15] .31 [.12, .48] 
13  .27 .21 .34 [.15, .51] .29 [.10, .46] 
14  .44 .30 .23 [.03, .41] .32 [.13, .49] 
15  .43 .34 .22 [.02, .40] .37 [.18, .53] 
16  .18 .13 .16 [-.04, .35] .20 [-.00, .39] 
17  .41 .35 .13 [-.07, .32] .38 [.19, .54] 
18  .25 .28 .19 [-.01, .38] .30 [.11, .47] 

Average  .32 .25 .19 [-.01, .38] .28 [.08, .45] 
OAR  .57 .53 .47 [.30, .61] .55 [.39, .68] 

Note: Criterion correlations are Pearson’s correlations between the criterion measure and a) the 
average of all human assessor ratings of exercise performance (All Assessors), b) the role 
players’ ratings of exercise performance (Role Player), c) the ML predicted scores (ML scores), 
and d) the average of the role player and ML predicted scores in each exercise (Role Player and 
ML Mean). The average criterion correlation is the average convergence with the criterion across 
the 18 exercises. OAR is the correlation between the average of the 18 exercise scores and the 
criterion. 
 



41 
 

Table 5 
 
Guidelines for developing and deploying ML AC scoring 
Step Helpful Resources 
1. Design the AC 
 

International Taskforce on Assessment Center 
Guidelines (2015); Thornton & Rupp (2006) 

2. Administer the AC International Taskforce on Assessment Center 
Guidelines (2015); Thornton & Rupp (2006) 

3. Transcribe responses via software Rev; Amazon Transcribe; IBM Watson Speech-to-Text 
4. Operationalize verbal behavior Transformers & sentence_transformers (Python 

libraries); text2vec & tm (R packages) 
5. Train and test ML models using 

nested k-fold cross-validation 
Hickman, Bosch, et al. (2022; Figure 2); Krstajic et al. 
(2014); Lever et al. (2016); Varma & Simon (2006); 
caret (R package); scikit-learn (Python library) 

6. Select the model with the best 
psychometric properties 

SIOP Principles; Landers & Behrend (2022) 

7. Train final models on all available 
data 

Hickman, Bosch, et al. (2022; p. 1332) 

8. Develop and pilot explanations 
for relevant stakeholders 

Landers & Behrend (2022); Langer, Oster, et al. (2021) 

9. Deploy models for scoring Rupp et al. (2020) provide guidance for piloting 
Pareto-optimal selection weights, which is a data-
driven process like ML. 

10. Ongoing monitoring of ML score 
validity and bias 

SIOP Principles; Landers & Behrend (2022); Tay et al. 
(2022) 
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Figures 
 

Figure 1 

Leave-one-out cross-validation strategy 
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Figure 2 
 
Exercise 3: n-grams and LIWC categories most strongly correlated with ML scores 

 
Note: Red indicates the n-gram or LIWC category correlated negatively with ML scores, and 
blue indicates a positive correlation. LIWC categories are in ALL CAPS. Word/phrase/LIWC 
category size is proportional to correlation magnitude, and the negative and positive correlations 
are on the same scale. 
 
Figure 3 
 
Exercise 5: n-grams and LIWC categories most strongly correlated with ML scores 
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Figure 4 
 
Exercise 14: n-grams and LIWC categories most strongly correlated with ML scores 
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