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Problem definition: A significant percentage of online consumers place consecutive orders within a

short duration. To reduce the total order arrangement cost, an online retailer may consolidate consecutive

orders from the same consumer. We investigate how long the retailer should hold the consumer’s orders

before sending them to a third-party logistics provider (3PL) for processing. In this order-holding problem,

we optimize the holding time to balance the total order arrangement cost and the potential delay in delivery.

Methodology/results: We model the order-holding problem as a Markov Decision Process. We show

that the optimal order-holding decisions follow a threshold-type policy that is straightforward to implement:

Hold any pending orders if the holding time is within a threshold, or send them to the 3PL otherwise.

Whenever the consumer places a new order, the holding time is reset and the threshold is updated based on a

cumulative set of her past consecutive orders in her shopping journey. Using a consumer’s sequential decision

model, we personalize the threshold by finding its closed-form expression in the consumer’s order features.

We determine the model’s coefficients and evaluate the threshold-type policy using the data of the 2020

MSOM Data Driven Research Challenge. Extensive numerical experiments suggest that the personalized

threshold-type policy outperforms two commonly-used benchmarks by having fewer order arrangements or

shorter holding times. Furthermore, personalizing the order-holding decisions is significantly more valuable

for “enterprise” customers.

Managerial implications: Our research suggests a higher threshold for consumers who are more likely to

place consecutive orders within a short duration. The consumers’ demographic information has a significant

effect on the threshold. Specifically, the threshold is higher for “plus” consumers, female consumers, and

consumers in the age group of 16-25. The threshold for tier-1 cities is lower than that for tier-2 to tier-4

cities but higher than that for tier-5 cities.

Key words : Online retailing, order holding, personalized threshold-type policy, sequential decision model
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1. Introduction

As technology continues to draw consumers from brick-and-mortar stores to online shops, e-

commerce becomes an increasingly common way of shopping. In 2020, global retail e-commerce

sales reached $4.28 trillion, representing 18% of the total retail sales worldwide (eMarketer 2021).

The revenues of e-retailing are projected to grow to $6.39 trillion, making up 21.8% of the total

retail sales worldwide in 2024. In contrast to brick-and-mortar retailing, products sold online are

handled in single-item or small-quantity orders before they reach individual consumers. After an

order is placed online, it will be assigned to a warehouse where a fulfillment process begins. The

impact of order-fulfillment efficiency on an online retailer’s profit margin is significant. For exam-

ple, in 2018 Amazon spent approximately 30 billion dollars on shipping costs (Richter 2019), while

its net income was approximately 10 billion dollars (Macrotrends.net 2019). Achieving high order-

fulfillment efficiency is therefore crucial for online retailing.

However, it is challenging to efficiently fulfill customer orders in e-commerce. After an order is

placed online, it will go through several stages including order-warehouse assignment, order-picking,

packing, and delivery before it reaches the consumer. Each stage affects the overall order-fulfillment

efficiency. Different stages have been studied in the literature. Xu et al. (2009), Jasin and Sinha

(2015), Andrews et al. (2019), and Lim et al. (2021) optimize order-warehouse assignments to mini-

mize fulfillment costs or maximize rewards. Other papers focus on improving warehouse operations

including order-picking and packing (Rouwenhorst et al. 2000, De Koster et al. 2007, Gzara et al.

2020). Some researchers study how to consolidate multiple orders from different consumers into a

single shipment or split an order into multiple shipments to reduce the total shipping fee, while

meeting delivery deadlines (Acimovic and Graves 2015, Wei et al. 2017).

In contrast to the existing literature, we tackle the order-fulfillment challenge from a different per-

spective: We investigate how long should an online retailer hold a consumer’s consecutive

orders before sending them to a third-party logistics provider (3PL) (or an in-house

logistics department) for processing. Typically, the online retailer pays a fixed transaction

fee to transmit a batch of orders to the 3PL in each order arrangement. This transaction fee does

not include the actual order-picking cost in the warehouse and is generally independent of the

number of items in the orders. Thus, consolidating consecutive orders from the same consumer can

potentially reduce the total order arrangement cost substantially.
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Figure 1 The distribution of the time interval between two subsequent orders

Our study is motivated by Figure 1 based on JD.com’s data in 2020 MSOM Data Driven Research

Challenge (Shen et al. 2019). Among orders received by JD.com with a subsequent order placed

by the same consumer within one month, Figure 1 shows that around 30% of them have their

subsequent order placed within 30 minutes. This is because as product recommendations become

increasingly common, consumers with a high search cost are easily tempted to purchase more items

after completing an order. Furthermore, memberships such as JD plus and Amazon prime offer free

shipping service regardless of the order size. Consumers are free to place multiple orders (instead

of one large order) without an extra fee. The tendency of placing consecutive orders motivates us

to consolidate orders from the same consumer to reduce the total order arrangement cost. Our

research is significant because the JD.com data shows that 1.72% of orders are placed within

30 minutes from the previous order by the same consumer. In 2016, JD.com received 1.6 billion

orders (Business Statistics 2021). By consolidating the orders placed within 30 minutes by the same

consumer, we can reduce 27.52 (1,600 × 1.72%) million order arrangements annually, representing

a cost reduction of 27.52 million times of the fixed fee per order arrangement.

Another common concern of online retailers is the risk of order-delivery delay. The longer the

orders are held, the later they will be delivered, affecting the customer satisfaction level – a key

performance indicator. About 43% of consumers choose next-day delivery, and 17% of consumers

abandon a brand if they wait for too long for their order deliveries (Ed Smith 2020). Online retailers

are looking for solutions that not only reduce their total order arrangement cost, but also ensure

a high customer satisfaction level. We capture customer satisfaction in our model using disutility

in delivery time. Since consumers can view their order status on retailers’ website, a delay in

sending an order to the 3PL will affect customer satisfaction and contribute to the disutility that

discourages order-holding. Although consolidating a consumer’s consecutive orders can reduce the

total order arrangement cost, a long holding time increases the disutility. It is crucial to optimize

the holding time to balance the total order arrangement cost and the disutility in delivery time.
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In this paper, we study the order-holding problem: How long should an online retailer hold a

consumer’s orders before sending them to a 3PL for processing? Our goal is to balance the total

order arrangement cost and the disutility in delivery time. We define the system state in three

dimensions: (i) The first represents the features of the consumer’s past consecutive orders in her

shopping journey (including the consumer’s demographic information and the product attributes).

(ii) The second is a duration in which no new orders are placed by the consumer since her latest

order. (iii) The last indicates whether the consumer holds any pending orders that have not been

sent to the 3PL. We model the order-holding problem as a Markov Decision Process (MDP) where

the retailer decides in each period whether to continue holding the pending orders (if any) placed

by the consumer. Our model incorporates the features of the consumer’s past consecutive orders

in her shopping journey. Depending on the products ordered by the consumer, the probability of

placing another order shortly by the consumer could vary, causing her order-holding decision to

change dynamically. For example, a customer who first orders a tape may have some probability

to order moving boxes shortly. The retailer may hold the tape order for a longer time to combine

it with a potential order of boxes later. However, once the customer also orders the boxes, her

probability of placing another order shortly may drop and it may be better for the retailer to send

the pending orders to the 3PL immediately.

We summarize the main contributions of our paper as follows:

1. Due to the curse of dimensionality, we do not solve the MDP directly to find the retailer’s

optimal policy. Instead, we first construct a set of single-dimensional MDPs and show that the

optimal policy of the original MDP can be obtained by solving these single-dimensional MDPs.

Each single-dimensional MDP is independent of the number of products, which is often huge for

online retailing. Therefore, it is more tractable and significantly reduces the computation burden.

2. We show that the retailer’s optimal decisions follow a threshold-type policy: Hold the pending

orders if the holding time is within a threshold, or send them to the 3PL otherwise. If the con-

sumer places a new order, then the holding time is reset and the threshold is updated based on the

consumer’s cumulative set of past consecutive orders in her shopping journey. We show that the

holding threshold depends on the transition probabilities of an associated single-dimensional MDP.

We derive a closed-form relation between the transition probabilities and the features of the con-

sumer’s past consecutive orders, allowing us to personalize each holding threshold. We also show

that the optimal personalized threshold is positively correlated with the consumer’s probability

of placing consecutive orders within a short duration. We derive this probability in terms of the
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consumer’s order features in her shopping journey. This helps the retailer predict the consumer’s

probability of placing another order shortly after her latest order.

3. Using the JD.com data, we apply a maximum likelihood estimation (MLE) method to find the

coefficients of our model. We find that the MLE method accurately predicts the probabilities of

our model. We propose a piecewise-linear function that well approximates the optimal threshold.

Using the estimated coefficients of this piecewise-linear function, we can quantify the dependence

of the threshold on the order features such as the consumer’s gender, age group, and location,

allowing us to identify some important features. We find that the personalized threshold-type policy

outperforms two widely-used benchmarks by having fewer order arrangements or shorter holding

times, and optimizing order holding is significantly more valuable for “enterprise” customers.

Section 2 reviews the related literature. Section 3 formulates the order-holding problem. Section

4 applies a consumer’s sequential decision model to express the transition probabilities in the order

features, and derives the personalized threshold and its piecewise-linear approximation. Section

5 estimates the coefficients of the consumer’s sequential decision model. Section 6 processes the

JD.com data. Section 7 conducts numerical experiments and discusses insights. Section 8 concludes

the paper. All proofs can be found in the online appendix.

2. Literature Review

This paper is related to three streams of literature: (i) order-fulfillment problems, (ii) consumer

choice models, and (iii) estimating transition probabilities of Markov chains.

2.1. Order-Fulfillment Problems

Order-fulfillment problems are widely studied in the literature. Xu et al. (2009) consider an order-

warehouse assignment problem. By re-evaluating the available inventory at the warehouses and the

estimated-to-ship dates, they update the real-time decisions on when and from which warehouse to

ship to minimize the number of shipments. Jasin and Sinha (2015) consider a related problem but

they optimize decisions in a forward-looking rather than a myopic fashion. Andrews et al. (2019)

propose a primal-dual approach to solve an assignment problem between orders and warehouses

to maximize the reward. Lim et al. (2021) integrate the replenishment, allocation, and fulfillment

decisions for an online retailer in one model. They solve the model using robust optimization

approaches. Lei et al. (2018) further incorporate pricing decisions that affect the supply-demand

relation when making the order-fulfillment plan.

There is a rich stream of literature on order fulfillment within warehouses. See De Koster et al.

(2007) for a comprehensive review. Many strategies have been proposed to improve order-picking,



6

which has the highest operating cost in a warehouse. For example, Gzara et al. (2020) optimize

order consolidation in a major e-commerce warehouse based on a comprehensive data analysis.

They develop optimal and heuristic approaches to find an effective order-consolidation policy.

Other papers consider shipping assignment. Acimovic and Graves (2015) propose a dynamic

program to solve a shipping assignment problem to determine from where to ship items and how

multi-item orders can be split into multiple shipments to minimize the average total shipping cost.

Wei et al. (2017) study a shipment consolidation problem by addressing a trade-off between the

cost reduction from consolidating multiple orders and a potential fee increase due to expedited

shipping. In contrast to the above papers, we study how long should an online retailer hold a single

consumer’s orders before sending them for processing by a 3PL.

Some papers consider consolidating orders from multiple consumers in the fulfillment process

(Stenius et al. 2016, Çeven and Gue 2017, Wei et al. 2017, Gzara et al. 2020). These papers assume

a stationary order arrival process. In contrast, we consider consolidating orders from the same

consumer and predict the probability of a coming order by analyzing the consumer’s sequential

decision process. Comparing with the existing literature on order consolidation, our paper is unique

because we incorporate order features to capture different purchase behaviors of different con-

sumers. This leads to a challenging problem on how to model consumer heterogeneity and how to

design a personalized consolidation policy. We solve this by applying a consumer sequential choice

model to characterize the transition probabilities in a feature-dependent MDP. Different consumers

are associated with different sequential choice models and hence different ordering decisions, which

leads to a personalized consolidation policy.

2.2. Consumer Choice Model

This paper applies a consumer’s sequential decision (choice) model to characterize the transi-

tion probabilities of a set of single-dimensional MDPs. Various choice models exist in the lit-

erature, including the multinomial logit model (MNL) (Luce 1959), nested multinomial logit

model (Williams 1977), Markov chain choice model (Blanchet et al. 2016), exponomial model

(Alptekinoğlu and Semple 2016), and representative consumer choice model (Yan et al. 2022).

Researchers have extended static choice models to multi-stage choice models (Flores et al. 2019,

Gallego et al. 2020, Liu et al. 2020), where a consumer proceeds in multiple stages and the condi-

tional probability at each stage follows an MNL choice probability.

A well-established model for a multi-stage decision process is a Markovian logit choice model

(Bell 1995, Akamatsu 1996, 1997), which assumes that the random error terms of the utility model

follow independent and identical Gumbel distributions. Ahipaşaoğlu et al. (2019) generalize the
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model to a distributionally-robust setting assuming only the marginal distributions of the random

utility terms are given. Yan (2020) follows this idea to generalize the sequential choice model to

characterize multi-item choice behavior. We build our sequential choice model based on Yan (2020)

and characterize the relation between a consumer’s utility model and the transition probabilities

of a set of single-dimensional MDPs for the order-holding problem.

2.3. Estimating Transition Probabilities of Markov Chains

Several methods exist in the literature to predict the transition probabilities of Markov chains. For

Markov chains with finite discrete states, the MLE method (Anderson and Goodman 1957, Collins

1974) is often used to estimate the transition probabilities from samples. Specifically, the transition

probability from state i to state j is estimated as p̂ij = Nij/
∑n

k=1Nik, where Nik represents the

number of transitions from state i to state k in the training samples. However, this method fails to

output the transition probabilities of newly observed states that are not in the training samples.

A targeting technology by Roussas (1969) and Yakowitz (1985) is developed to fix this prob-

lem. This technology shares the same idea as the kernel conditional density estimation method

(Rosenblatt 1969, Bashtannyk and Hyndman 2001, Hall et al. 2004, Li and Racine 2007). A criti-

cal and often difficult step in the estimation is to choose unknown parameters called bandwidths.

Li and Racine (2007) introduce two data-driven methods to choose bandwidths: a least-square

cross-validation method and a maximum likelihood cross-validation method, which require solv-

ing non-convex programs and are computationally expensive. In contrast, our proposed estimation

model is convex and much more tractable.

3. The Order-Holding Problem

We formulate the order-holding problem as an MDP in Section 3.1. Due to the curse of dimensional-

ity, we do not solve this MDP directly. Instead, we first construct a set of single-dimensional MDPs

in Section 3.2. In Section 3.3, we show that the optimal policy of the original MDP can be char-

acterized by personalized thresholds that can be obtained by solving the set of single-dimensional

MDPs, which are much more tractable.

3.1. MDP Formulation

We formulate an online retailer’s order-holding problem for a single consumer as an MDP. We

divide the time horizon into discrete periods. At the end of each period, the consumer decides

whether to place an order. Define dwell time as the number of periods without new orders since the

last order placed by the consumer. We assume that the consumer will leave the system immediately

if she does not place any new order for T periods. That is, T is the maximum dwell time. We
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say two orders placed by the consumer are consecutive if the inter-arrival time between these two

orders is no more than T periods.

A consumer’s shopping journey begins with her first order, and ends when she leaves the system.

The consumer immediately leaves the system if (i) she does not place any new order for T periods

or (ii) she has placed L consecutive orders. During the consumer’s shopping journey, the retailer

can first hold several orders together as a pending combined order and then send the pending

combined order to the 3PL at an appropriate time. Depending on the length of the consumer’s

shopping journey, the retailer may send multiple pending combined orders at the start of different

periods during the shopping journey. Figure 2 shows an example of a shopping journey in which

the retailer sends a combined order (containing the first and second orders) at the start of period

6 and another (containing only the third order) at the start of period 12. The consumer leaves the

system at the end of period 14 and her shopping journey ends.

︸ ︷︷ ︸
Hold

?

1st Order

?

2nd Order

6
Send the pending
combined order to 3PL

?

3rd Order

︸ ︷︷ ︸
Hold 6

Send the pending
combined order to 3PL

?

Consumer leaves the system

Figure 2 Example of a consumer’s shopping journey

At the start of each period t, let l denote the number of past consecutive orders made by the

consumer so far in her shopping journey. Let xl denote the order features of the l past consecutive

orders. These features include the consumer’s demographic information and the product attributes.

Specifically, the order features can be expressed as a column vector xl = (xl,0,xl,1, . . . ,xl,l)
T, where

xl,k, k = 1, . . . , l, represents the product attributes of the kth order among the past consecutive

orders and xl,0 denotes other features including the consumer’s demographic information. Let d0

be the dimension of xl,0 and d1 be the dimension of xl,k, k= 1, . . . , l.

Define the state of the MDP model at the start of period t as (xl,w, v). The second state variable

w represents the dwell time since the latest order. The last state variable v equals 1 if there is a

pending combined order or 0 otherwise. For example, in Figure 2 the state at the start of period 7

is (x2,3,0). If the consumer places an order at the end of period t, then we set w= 0 and v= 1 at

the start of period t+1. Since the consumer makes at most L consecutive orders, the state space is

S = {(xl,w, v)|xl ∈Xl,1≤ l≤L;w ∈ {0,1, . . . ,∞};v ∈ {0,1}} , where Xl represents a complete set

of order features of the l past consecutive orders. At the start of each period t, the retailer first

observes the system state and then decides whether to hold a pending combined order, if any, to
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period t+ 1. The combined order may include a single order or multiple consecutive orders made

by the consumer earlier. The retailer’s decision incurs a (holding or order arrangement) cost in

period t. After that, the consumer may place a new order at the end of period t. Figure 3 shows

the sequence of events in each period t.

period t− 1 period t period t+ 1

? ? ?

Observe
(xl,w, v)

Make
decision z

A new order

may arrive

and update
(x′,w′, v′)

Figure 3 The sequence of events in each period t

If v= 1 (there is a pending combined order) at the start of period t, the retailer has two possible

actions: (i) Send the pending combined order to the 3PL immediately, denoted as z = 0. (ii) Hold

the pending combined order to the next period, denoted as z = 1. The action z = 0 incurs an order

arrangement cost c, whereas the action z = 1 incurs a holding cost per period h that represents

the disutility in delivery time. Note that the order arrangement cost c represents a fixed cost to

transmit a pending combined order to the 3PL. (In practice, the 3PL charges a fixed transaction

fee for handling each combined order. This fixed fee does not include the actual order-picking cost

in the warehouse, which is a variable cost that does not affect the order-holding decisions.) We

assume that c and h are independent of the number of items in the combined order. As shown in

Lemma 2 in Appendix A, it is suboptimal to hold some orders, while sending other received orders

to the 3PL. That is, the pending combined order should be sent as a whole if the retailer decides

to send it. If v= 0 at the start of period t, the retailer does nothing, denoted as z = 2, and no cost

is incurred in the period.

For convenience, we use the term “state” to refer to (xl,w, v) or each of the variables xl, w, v, and

their combinations. Given the state (xl,w) at the start of period t, we now describe its evolution.

If no new order arrives at the end of period t, the order features xl do not change and the next

state to visit is (xl,w+ 1). Otherwise, if a new order with product attributes x̂ arrives at the end

of period t, the next state to visit is (xl+1,0), where xl+1 = (xl
T, x̂)

T
. Thus, the set of next states

to visit can be determined as σ((xl,w)) = {(xl,w+ 1)} ∪ {(xl+1,0)|xl+1 ∈Xl+1}. The state (xl, T )

means that no new order arrives for T periods (the maximum dwell time) after the arrival of the

lth order. In this case, the consumer will leave the system immediately and the next state to visit is

(xl, T +1). That is, σ((xl, T )) = {(xl, T +1)}. Define p((xl,w), (x′,w′)) as the transition probability

from the state (xl,w) to the next state (x′,w′) ∈ σ((xl,w)). We have p((xl,w), (xl,w+ 1)) = 1 for
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w≥ T . Similarly, we have p((xL,w), (xL,w+1)) = 1 for w≥ 0 because the consumer makes at most

L consecutive orders, after which she will leave the system immediately.

Recall the sequence of events in Figure 3. Given the retailer’s action z in period t, let

P ((xl,w, v), (x′,w′, v′);z) denote the transition probability from state (xl,w, v) to state (x′,w′, v′).

Define I(·) as an indicator function such that I(·) equals 1 if · is true, and 0 otherwise. Thus,

I((x′,w′) 6= (xl,w+ 1)) indicates whether there is a new order arriving at the end of period t. If

v= 1 at the start of period t, for any (x′,w′)∈ σ((xl,w)), we have the state dynamics:

P ((xl,w, v= 1), (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1)));z = 0) = p((xl,w), (x′,w′)),
P
(
(xl,w, v= 1), (x′,w′, v′ = 1);z = 1

)
= p((xl,w), (x′,w′)).

(1)

The first equation of (1) means that if the retailer sends the pending combined order to the 3PL

(z = 0) in period t, then we set v′ depending on whether there is a pending combined order emerging.

That is, v′ = 1 if a new order arrives at the end of period t or v′ = 0 otherwise. The second equation

of (1) means that if the retailer continues to hold the pending combined order (z = 1) in period

t, then we set v′ = 1. In contrast, if v = 0 at the start of period t, then the retailer does nothing

(z = 2) in period t, and we have the state dynamics:

P ((xl,w, v= 0), (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1)));z = 2) = p((xl,w), (x′,w′)). (2)

That is, we set v′ depending on whether there is a pending combined order emerging. Note that

in (1) and (2), the retailer’s action z can only affect v′ but not (x′,w′).

Given state (xl,w, v) at the start of period t, define V (xl,w, v) as the optimal total expected

cost from period t until the consumer leaves the system. The Bellman equations are

V (xl,w,1) = min
z∈{0,1}

z

h+
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′,1)


+ (1− z)

c+
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1)))

 , (3)

V (xl,w,0) =
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1))) . (4)

V (xl,w, v) includes the costs incurred in period t and the expected cost to go. Unfortunately, the

above MDP has an infinite number of states because the variable w can be any nonnegative integer.

Note that there are two types of states that imply the consumer leaves the system immediately.

The first is (xl, T, v) meaning that no new order arrives during the previous T periods. The second

is (xL,0,1) meaning that the consumer has placed the maximum number of consecutive orders.

We find the retailer’s optimal actions for these states in Lemma 1.
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Lemma 1 (Terminal Conditions). For state (xl, T, v) or (xL,0,1) at the start of period t,

the consumer will leave the system and it is optimal to send the pending combined order, if any,

to the 3PL immediately. In addition, we have V (xl, T,0) = 0, V (xl, T,1) = c, for l ≤ L− 1; and

V (xL,0,1) = c.

Lemma 1 reduces the MDP (3-4) to a finite number of states as follows. For notational conve-

nience, let 〈n〉 = {0,1, . . . , n} denote a set of integers for any n. For l ≤ L− 1 and w ∈ 〈T − 1〉,

V (xl,w,1) = min
z∈{0,1}

z

h+
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′,1)


+ (1− z)

c+
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1)))

 , (5)

V (xl,w,0) =
∑

(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′)) ·V (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1))) , (6)

V (xl, T,0) = 0, (7)

V (xl, T,1) = c, (8)

V (xL,0,1) = c. (9)

The number of states in (5-9) is linked to the retailer’s number of stock-keeping units (SKUs),

which can be huge in practice, making the MDP still intractable. Next, we will construct a set of

single-dimensional MDPs and show that we can obtain the optimal policy of the original MDP by

solving the single-dimensional MDPs. In this way, we can overcome the curse of dimensionality.

3.2. Overcoming The Curse of Dimensionality

We first construct a set of single-dimensional MDPs and then show that their optimal decisions

coincide with that of the original MDP (5-9). We group the states (xl,w) into clusters, with each

cluster identified by xl. Specifically, we define a cluster Exl = {(xl,w)|0≤ w ≤ T} for xl ∈Xl and

l≤L− 1. Given xl at the start of period t, define a single-dimensional MDP as follows:

∆xl(w) = min
z∈{0,1}

z
[
h+ p((xl,w), (xl,w+ 1)) ·∆xl(w+ 1)

]
+ (1− z)c, 0≤w≤ T − 1; (10)

∆xl(T ) = c;

where ∆xl(w) denotes the optimal total expected cost from state w to state T . We associate ∆xl(·)

with xl to emphasize the dependence of the single-dimensional MDP (10) on the order features.

When the consumer places a new order with product attributes x̂, the system transits from a

single-dimensional MDP associated with xl to another single-dimensional MDP associated with
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xl+1 = (xl
T, x̂)

T
. We will model this transition using a consumer’s sequential decision process in

Section 4.

We next show that the single-dimensional MDP defined for the cluster Exl shares the same

optimal decisions for the states related to xl in the original MDP (5-9).

Proposition 1. For each cluster Exl, given state (xl,w,1) with (xl,w) ∈ Exl, there exists an

optimal decision z∗(xl,w,1) for state (xl,w,1) in the original MDP (5-9) that is equivalent to an

optimal decision z∗xl(w) for state w in the single-dimensional MDP (10) associated with xl.

Proposition 1 implies that instead of solving the original MDP (5-9), we can solve a set of single-

dimensional MDPs (10) with the same solution structure. The state space of each single-dimensional

MDP only depends on the maximum dwell time T rather than the number of SKUs, which is often

huge for online retailing. This significantly reduces the computation burden. This approach not only

overcomes the curse of dimensionality, but also admits a personalized order-holding policy because

each single-dimensional MDP is specified by order features xl. We first show how to characterize

the optimal policy for MDP (5-9) based on the single-dimensional MDPs (10).

3.3. Structure of The Optimal Policy

Theorem 1 characterizes the optimal order-holding policy for MDP (5-9).

Theorem 1 (Optimal Order-Holding Policy).

1. For past consecutive orders featured by xl, there exists a threshold S(xl) such that the optimal

order-holding policy for MDP (5-9) is as follows: If no new order arrives for S(xl) periods since

the latest order, send the pending combined order to the 3PL; otherwise add the newly received

order with product attributes x̂ to the pending combined order and update the threshold as S(xl+1),

where xl+1 = (xl
T, x̂)

T
.

2. The optimal threshold S(xl) can be obtained from the single-dimensional MDP (10) as

S(xl) = min
{{
w ∈ 〈T − 1〉|h+ p((xl,w), (xl,w+ 1)) ·∆xl(w+ 1)≥ c

}
∪{T}

}
. (11)

It is straightforward to implement the threshold-type policy in Theorem 1 as follows. For each

newly received order, the online retailer can determine the optimal threshold by the order features

from (11). The retailer should hold the pending combined order if w<S(xl), but send it to the 3PL

if w≥ S(xl). When a new order with product attributes x̂ arrives, an order evolution occurs: We

update the features of the past consecutive orders as xl+1 = (xl
T, x̂)

T
and the threshold as S(xl+1),

which can be calculated from (11). (Note that under the framework of the single-dimensional MDPs

(10), the order evolution corresponds to a transition from a single-dimensional MDP associated



13

with xl to another single-dimensional MDP associated with xl+1.) This procedure repeats until no

new order arrives for T periods (the maximum dwell time) or the consumer places her Lth order,

upon which she will leave the system immediately.

4. Consumer’s Sequential Decision Model

To model the transitions among the single-dimensional MDPs, we introduce a choice model to

characterize a consumer’s sequential decision process after placing an order. We will use the choice

model to predict the consumer’s probability of placing consecutive orders and the transition prob-

abilities in each single-dimensional MDP (10) as well as among the different single-dimensional

MDPs. This parametric model has several advantages. First, it is easy to interpret as it charac-

terizes how a consumer chooses among three alternatives: search and see, leave the system, or

place another order. Second, it mitigates the overfitting issue as it has much fewer parameters to

estimate compared to non-parametric models. Finally, it is computationally efficient. Based on this

choice model, we express in closed form the transition probabilities in order features, allowing us

to analytically characterize how the order features affect the optimal threshold.

4.1. Consumer’s Sequential Decision Process

To determine the optimal threshold in Theorem 1, we need to predict the transition probabilities in

each single-dimensional MDP (10). We adopt a sequential choice model for the consumer’s decision

process after she places an order. We then relate the choice probabilities of this model to the

transition probabilities in each of and among the single-dimensional MDPs. Based on the 2020

MSOM Data Driven Research Challenge data, only 8.85% of the orders request multiple items.

Thus, we assume at most one item purchased per order and the order features x involve only

single-item orders. We can split a multi-item order into consecutive orders to fit this assumption.

After placing an order, the consumer has the following three options: (i) dwell on the platform to

search further, (ii) leave the system immediately, or (iii) place another order. We define a directed

network Nxl = (Vxl ∪{4,M},Axl) to model this sequential decision process, where Vxl represents

a set of nodes, 4 represents the option of leaving the system immediately, M represents the option

of placing another order, and Axl represents a set of arcs. Each network is associated with the

order features xl of the past consecutive orders placed by the consumer in her shopping journey.

Figure 4 illustrates the consumer’s sequential decision process. Each node in Vxl corresponds to a

state (xl,w) defined in Section 3.1. From each node (xl,w), there are arcs in Axl linking the node

to three possible successors corresponding to the above three options.
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Figure 4 A choice network with order features xl and maximum dwell time T = 3

To determine the choice probabilities, we model the utility function of each option (dwell on

the platform, leave the system immediately, or place another order). Following Train (2009) on

discrete choice models, we assume an additive structure in the utility function. Specifically, from

the current node (xl,w), the utility of choosing node k consists of a deterministic term u(xl,w),k and

a random error term ε̃(xl,w),k. We model the utility function in a Markovian manner as follows:

E
[
Ũ(xl,w)

]
=E

[
max

k:((xl,w),k)∈Axl

{
u(xl,w),k + ε̃(xl,w),k +E

[
Ũk

]}]
, for (xl,w)∈ Vxl

; (12)

E
[
Ũk

]
= 0, for k ∈ {4,M};

where E
[
Ũk

]
is the expected maximum utility of node k. The consumer’s utility of choosing an

option in (12) is the sum of its immediate utility and the expected utility of the subsequent options.

We model the deterministic utility term as a linear function of features. Specifically, we assume

u(xl,w),(xl,w+1) = a (≤ 0), for w ∈ 〈T − 2〉, to represent the consumer’s searching cost if she decides

to dwell and search for another period. We model the consumer’s deterministic utility when she

chooses to leave the system as u(xl,w),4 = βw, where βw ∈ R for w ∈ 〈T − 1〉. Without loss of

generality, we normalize β0 to zero. The third option for each node is to place another order (by

choosing node M), which triggers an order evolution. When the consumer places another order

with product attributes x̂, the system transits from a single-dimensional MDP associated with

xl to another single-dimensional MDP associated with xl+1 = (xl
T, x̂)

T
. Note that xl includes the

consumer’s demographic information and her past consecutive orders’ product attributes. Recall
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that d0 represents the dimension of xl,0 and d1 represents the dimension of xl,k, k = 1, . . . , l. To

construct this option’s utility, define u(xl,w),M = η0xl,0 +
∑l

k=1 η1xl,k + b, where η0 ∈Rd0 , η1 ∈Rd1 ,

and b ∈ R, as the deterministic utility of placing another order. In this function, the marginal

effect of each attribute on the utility of purchasing another item is the same across all the past

consecutive orders. The incentive to place another order depends on the overall product bundle of

the past consecutive orders, but not the sequence of these orders. For notational convenience, we

define η = (η0,η1, . . . ,η1) and write u(xl,w),M = ηxl + b. This utility model captures consumer and

purchased-product heterogeneity through xl, which vary across consumers and their sets of past

consecutive orders.

For convenience, we drop the subscript xl for the rest of this section, and simply denote

the set of nodes, the set of arcs, and the network as V = {0, . . . ,w − 1} ∪ {4,M}, A =

{(w,w+ 1)|w ∈ 〈T − 2〉} ∪ {(w,4)|w ∈ 〈T − 1〉} ∪ {(w,M)|w ∈ 〈T − 1〉}, and N = (V,A) respec-

tively. Denote a collection of coefficients a, b,η, and β= (β0, . . . , βT−1) as Θ = (a, b,η,β). We assume

the random error terms ε̃(xl,w),k in (12) follow i.i.d. Gumbel distributions. We characterize the

choice probability using a Markovian logit model (MLM) (Bell 1995). Under MLM, the conditional

choice probability p̄w,k(xl;Θ,N) of option k from node w can be written as follows:

p̄w,w+1(xl; Θ,N) =
exp(a+ gw+1(xl; Θ,N))

exp(gw(xl; Θ,N))
, for w ∈ 〈T − 2〉;

p̄w,4(xl; Θ,N) =
exp(βw)

exp(gw(xl; Θ,N))
, for w ∈ 〈T − 1〉; (13)

p̄w,M(xl; Θ,N) =
exp (ηxl + b)

exp(gw(xl; Θ,N))
, for w ∈ 〈T − 1〉; where

gw(xl; Θ,N) = ln [exp(a+ gw+1(xl; Θ,N)) + exp(βw) + exp (ηxl + b)] , for w ∈ 〈T − 2〉;

gT−1(xl; Θ,N) = ln [exp(βT−1) + exp (ηxl + b)] .

4.2. Determining the Consumer’s Probability of Placing Consecutive Orders and
the Transition Probabilities in the Single-Dimensional MDP

At the end of each period t, the consumer has three options: dwelling, leaving, and placing another

order on the choice network N = (V,A). After she places her latest order, a consecutive order

occurs if it is placed within T periods. Given the features xl of her past consecutive orders, the

consumer’s probability of placing consecutive orders is equal to the sum of the probabilities for her

to place another order within T periods:
T−1∑
w=0

q̄w,M(xl;Θ,N), where q̄w,M(xl;Θ,N) represents the
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unconditional probability of arc (w,M)∈A, which depends on the choice network N , coefficients

Θ, and order features xl. The unconditional choice probability of any arc (w,k)∈A is

q̄w,k(xl; Θ,N) =
∏

(n1,n2)∈route(0,w,k)

p̄n1,n2
(xl; Θ,N), (14)

where route(0,w, k) represents a unique route from node 0, through node w, to node k in the net-

work N = (V,A), and (n1, n2) represents an arc on the route. Note that we find the unconditional

probability q̄w,k using a series of conditional probabilities p̄n1,n2
in (14).

Proposition 2 (Probability of Placing Consecutive Orders). Under MLM (13) with

network N , coefficients Θ, and order features xl, the probability of placing consecutive orders is

1−eaT
1−ea q̄0,M(xl;Θ,N).

Proposition 2 provides an analytical expression that helps the online retailer predict the probability

for the consumer to place a consecutive order after her latest order. Note that if the consumer

places a consecutive order, the system transits from the single-dimensional MDP associated with

xl to another single-dimensional MDP. Thus, the probability of placing consecutive orders also

characterizes the transition probability among the single-dimensional MDPs (10).

After receiving the latest order, the retailer will not observe any new orders in w periods if the

consumer leaves the system within or dwells for at least w periods. The probability of having no

new orders within w periods is

P(w;xl,Θ,N) =


1, for w= 0,

q̄w−1,w(xl; Θ,N) +
∑w−1

τ=0 q̄τ,4(xl; Θ,N), for 1≤w≤ T − 1,∑T−1
τ=0 q̄τ,4(xl; Θ,N), for w= T.

(15)

We find the transition probability p((xl,w), (xl,w+1)) through the conditional probability formula:

p((xl,w), (xl,w+ 1)) = P (w+ 1;xl,Θ,N) /P (w;xl,Θ,N) , for w ∈ 〈T − 1〉. (16)

Together with (13-15), (16) establishes a closed-form relation between the order features xl and

the transition probabilities in each single-dimensional MDP (10).

4.3. Determining The Optimal Personalized Threshold

Theorem 1 shows that the optimal holding threshold can be obtained from the single-dimensional

MDP (10), which is determined by the transition probabilities in (16). Based on this closed-form

relation between the transition probabilities and the order features, we further express the optimal

threshold in order features analytically. Given q̄0,M(xl;Θ,N), define a nonlinear function

fnl(q̄0,M) = 1
a

{
ln(h)− ln

(
c− h

1−ea

)}
− 1

a
ln(q̄0,M) + 1

a
ln
(

1− 1
1−ea q̄0,M

)
. (17)
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Define A= T if Wt− c < 0 for all t∈ 〈T − 1〉, and A= 0 otherwise; where

Wt = h+

(
1− eatq̄0,M(xl; Θ,N)

1− 1−eat

1−ea q̄0,M(xl; Θ,N)

)
·Wt+1, for t∈ 〈T − 1〉,

WT = c.

The following theorem determines the personalized threshold based on the closed-form relation (16)

between the transition probabilities of the single-dimensional MDP (10) and the order features.

Theorem 2 (The Optimal Personalized Threshold). Under MLM (13) with network N ,

coefficients Θ, and order features xl, the optimal personalized threshold is determined as follows:

If h< c · (1− ea),

S(xl; Θ,N) =


(dfnl(q̄0,M(xl; Θ,N))e ∧T )∨ 0, if q̄0,M(xl; Θ,N)< 1− ea; (18a)

T, otherwise. (18b)

Otherwise,

S(xl; Θ,N) =


0, if q̄0,M(xl; Θ,N)≤ 1− ea; (19a)

A, if 1− ea < q̄0,M(xl; Θ,N)≤ h/c; (19b)

T, if q̄0,M(xl; Θ,N)>h/c. (19c)

The closed-form expression of the personalized threshold in Theorem 2 characterizes its depen-

dence on the order features. Specifically, the order features xl leading to a higher probability

of placing consecutive orders ( 1−eaT
1−ea q̄0,M(xl;Θ,N)) correspond to a higher threshold. Based on

this observation, we further explore a monotonic relationship between the order features and the

threshold. For notational convenience, let [n] = {1, . . . , n} denote a set of integers for any n.

Corollary 1 (Monotonicity). Under MLM (13), the following properties hold:

1. The optimal threshold is increasing in the probability of placing consecutive orders.

2. For a numerical feature x and its corresponding coefficient η, both the probability of placing

consecutive orders and the optimal threshold are increasing (decreasing) in x if η > 0 (η < 0).

The proof of Corollary 1 is straightforward based on the analytical expressions in (14) and

Theorem 2 and is omitted. Part 1 of Corollary 1 shows that the optimal threshold is positively

correlated with the consumer’s probability of placing consecutive orders. Part 2 characterizes the

effect of the order features xl on the threshold S(xl;Θ,N). For a numerical feature x, if the

coefficient η is positive, the probability 1−eaT
1−ea q̄0,M(xl;Θ,N) of placing a consecutive order and the

optimal threshold increase with x. Corollary 1 provides managers a guideline to select products

with desired attributes (when recommending products) in order to control the probability of placing

consecutive orders. We will discuss the effect of categorical features on the threshold in Section 7.2.
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It is hard to analyze the marginal effect of the features xl on the threshold S(xl;Θ,N) in Theorem

2 as it involves a nonlinear function fnl(q̄0,M). To better visualize the relation between the order

features and the threshold, we provide a piecewise-linear approximation of the threshold together

with its performance guarantee below. Define a linear function fl(xl;Θ) and a scalar εU as

fl(xl; Θ) = −1

a
(ηxl + b) +C0, (20)

εU =
1−eaT

1−ea exp(−a(T − 1−C0))∑
τ∈〈T−1〉 exp(βτ + τa) + 1−eaT

1−ea exp(−a(T − 1−C0))
, (21)

where C0 = 1
a

[
ln(h)− ln

(
c− h

1−ea

)
+ ln

(∑
τ∈〈T−1〉 exp(βτ + τa)

)]
.

Theorem 3 (The Uniform Bound of Piecewise-Linear Approximation). Under MLM

(13) with network N , coefficients Θ, and order features xl, if h < c(1− ea)/(1 + ea), then for any

xl ∈Xl, S(xl;Θ,N) can be uniformly bounded by a piecewise-linear function as follows:

0≤ S(xl; Θ,N)− (dfl(xl; Θ)e ∧T )∨ 0≤
⌊

1 +
1

a
ln

(
1 +

εU
1− εU

)
+

1

a
ln

(
1− εU

1− eaT

)⌋
. (22)

Theorem 3 identifies a piecewise-linear approximation fpl(xl;Θ) := (dfl(xl;Θ)e ∧T ) ∨ 0 to the

personalized threshold S(xl;Θ,N). The approximation gap is upper bounded by B(εU , a) :=⌊
1 + 1

a
ln
(

1 + εU
1−εU

)
+ 1

a
ln
(

1− εU
1−eaT

)⌋
, which is shown to be in O(1) by the numerical studies in

Section 7.2. The piecewise-linear function with an approximation guarantee in Theorem 3 allows us

to see the marginal effect of each feature on the threshold and hence identify the important features.

We will discuss this in detail in Section 7.2. Note that the cost condition h < c(1− ea)/(1 + ea)

for Theorem 3 is stricter than that for Theorem 2. In Proposition 4 in Appendix A, we relax this

cost condition by adding a condition on the probability of placing consecutive orders, and derive a

similar piecewise-linear approximation.

5. Estimating coefficients

We apply the maximum likelihood estimation (MLE) method to obtain the coefficients Θ =

(a, b,η,β) of MLM (13) using the data of 2020 MSOM Data Driven Research Challenge. The data

set contains transaction records of the orders of each consumer and her click information.

Each transaction path begins from the first order placed by a consumer and terminates with an

order after which she leaves the system. After an order is placed, we can observe from the data

whether the consumer places another order within T periods (the maximum dwell time). If so, the

dwell time is obtained as the time difference between the two consecutive orders, and we add the

new order to the transaction path with l incremented by one. If not, we use the time point of the

last click within the T periods to approximate the consumer’s departure time from the system.
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In this case, the dwell time is obtained as the time difference between the latest order and the

consumer’s departure. (For consumers without any click information in the data, we assume they

leave the system at the end of the first period after they place an order. That is, the dwell time

equals 1.) Let Lk denote the number of orders in transaction path k. Let pathk = {(xkl ,DT kl )}l∈[Lk]

denote transaction path k, where xkl represents the features of the first l past consecutive orders

in path k and DT kl is the dwell time since the lth order in path k.

We are now ready to construct the likelihood function of MLE. The likelihood of observing

the lth entry (xkl ,DT
k
l ) of pathk can be calculated as Pr (xkl ,DT

k
l ;Θ) =

∏DTkl −2

w=0 p̄w,w+1 (xkl ;Θ,N) ·

p̄DTk
l
−1,∆ (xkl ;Θ,N)

ykl · p̄DTk
l
−1,M (xkl ;Θ,N)

1−ykl , where ykl is an indicator variable that equals 1

if the consumer leaves the system after the lth order or 0 otherwise. For convenience, define∏−1

w=0 p̄w,w+1 (xkl ;Θ,N) = 1. Let K denote the number of paths in the data set. By applying (13),

we can formulate the MLE model (Train 2009) as follows:

Θ̂ = arg max
Θ=(a,b,η,β)

K∑
k=1

Lk∑
l=1

ln
(
Pr
(
xkl ,DT

k
l ; Θ

))
(23)

s.t. a≤ 0.

Proposition 3 (Convexity of The MLE Model). The MLE model (23) is a convex pro-

gram with respect to Θ = (a, b,η,β).

Proposition 3 implies that the MLE model (23) can be efficiently solved. Lemma 7 in Appendix A

shows that the MLE method applied to MLM above is equivalent to the logistic regression model

(Ng 2004). This implies that the estimation model (23) provides a probabilistic classifier and shares

the advantages of the logistic regression model. For example, it predicts a well-calibrated probability

distribution over a set of classes (Niculescu-Mizil and Caruana 2005), rather than outputs only the

most-likely class that the observation should belong to.

6. Data Processing

We present a procedure to extract each transaction path defined in Section 5 from the data of 2020

MSOM Data Driven Research Challenge (Shen et al. 2019), which contains transaction-level data

from JD.com over one month. Table 9 in Appendix G shows the feature information of 31,868 SKUs

such as type (indicating whether the SKU is sold by JD), brand ID, attribute1, and attribute2. Table

10 provides the demographic information of 457,298 consumers such as gender, age, marital status,

education, user level (indicating their historical purchase value) and plus (indicating whether the

consumer is a JD plus member). Table 11 shows detailed transaction data of 486,928 orders such
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as order time, original unit price, final price, and other discount details. Table 12 lists 17,906,095

click actions from 2,557,836 consumers showing who clicks which item at what time. Note that

31.13% of the orders are placed by users (consumers) with missing demographic information. The

proportion is even up to 99.66% for the orders made by enterprise users. Due to this reason, we

keep all the enterprise users regardless of their demographic information. For other user levels, we

drop their orders if their demographic information has missing values, which make up 30.06% of

all the orders.

To apply the threshold-type policy, we need to estimate the coefficients Θ = (a, b,η,β) as

described in Section 5, which requires extracting the transaction paths {pathk}k∈[K] from the data.

Recall that the lth entry of pathk = {(xkl ,DT kl )}l∈[Lk] is specified by the order features and the

dwell time since the lth order. We set each period as one minute, and so the maximum dwell time

is T minutes. We use the order and click information from Tables 11-12 in Appendix G to obtain

the dwell times according to the procedure described in Section 5.

Next, we discuss how to extract the order features of a transaction path from the data. There

are three different types of order features. The first corresponds to the consumer’s demographic

information specified in Table 10. The second corresponds to the two attributes in Table 9 of

the SKUs in the consumer’s past consecutive orders. The third is the position of an order in the

transaction path. To remove the effect of the extreme value of the position on the estimation

problem (such as to avoid biased estimation or over-fitting), we adopt a clamp transformation

method from the machine learning literature (Kelleher et al. 2015) to cap the position such that if

an order has a position > 4, we reset its position to 4.

Note that except attribute1 and attribute2 in Table 9, all the order features above are categorical

variables. Different from numerical variables, the value of each categorical variable provides a

convenient label for the category and cannot be directly used in a regression model. We transform

each categorical variable to a numeric counterpart as follows. Based on the literature (Singh et al.

2009, Tang et al. 2014), we use dummy coding to transform each categorical variable to a series

of variables that equal 0 or 1. For example, there are four categories for the feature education:

1 for less than high school, 2 for high school diploma or equivalent, 3 for Bachelor’s degree, and

4 for post-graduate degree. The dummy coding introduces three dummy variables denoted as

I(education = i), i = 2,3,4, where I(education = i) equals 1 if the education level is i, and 0

otherwise. Each category corresponds to a unique vector of dichotomous variables (I(education=

2),I(education= 3),I(education= 4)) shown in Table 1, where “less than high school” coded as

(0,0,0) is a reference category. The regression coefficient of each dummy variable represents the
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difference between the mean of the dependent variable for the corresponding category and that for

the reference category.

Table 1 Dummy coding for the categorical variable “education”

Education (I(education = 2),I(education = 3),I(education = 4))

less than high school (0, 0, 0)
high school diploma or equivalent (1, 0, 0)

Bachelor’s degree (0, 1, 0)
post-graduate degree (0, 0, 1)

We use the numerical variables attribute1 and attribute2 as the product attributes of each order.

Thus, the dimension of each xl,k, k= 1, . . . , l, is d1 = 2, and their coefficients η1 = (η1,1, η1,2). How-

ever, there are 27.10% of the orders requesting SKUs with missing values for the two attributes.

Shen et al. (2019) summarize the reasons as follows: “(a) The third-party merchants did not provide

the attribute value, especially for certain slow-moving items, or (b) a certain attribute was not appli-

cable to certain SKUs.” Therefore, we add two attributes attribute1 missing and attribute2 missing

as categorical variables to indicate whether the values of attribute1 and attribute2, respectively,

are missing. See the first column of Table 4 in Section 7.2 for the extracted features.

With the extracted transaction paths {pathk}k∈K , we estimate the coefficients Θ = (a, b,η,β)

of the choice network N by solving the MLE model (23) and predict the choice probabilities.

This connects the extracted order features with the transition probabilities of the set of single-

dimensional MDPs (10). Based on the estimated coefficients and probabilities, we can compute the

personalized threshold and its piecewise-linear approximation in Theorems 2 and 3 respectively.

7. Numerical Experiments

We conduct numerical experiments based on the data processed in Section 6. Section 7.1 compares

MLE with two widely-used methods in the statistics and machine learning literature. Section 7.2

computes the personalized threshold and draws some insights. Finally, Section 7.3 benchmarks the

personalized threshold-type policy against two heuristics commonly used in the literature.

7.1. Assessing MLE’s Accuracy

We solve the MLE model (23) to estimate Θ = (a, b,η,β) and predict (i) the transition probabilities

of the single-dimensional MDPs (10) and (ii) the consumer’s probability of placing consecutive

orders. We compare MLE’s accuracy with two estimation methods in the statistics and machine

learning literature: kernel conditional density estimate (KCDE) and random forest (RF).
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7.1.1. Comparing with KCDE KCDE is a widely used non-parametric method for esti-

mating probability density functions. Appendix B.1 estimates the transition probabilities of the

single-dimensional MDPs (10) and the probability of placing consecutive orders using KCDE in

class “npcdensbw” of R package “np”. Since KCDE is computationally intensive (it runs for one

week without any results for 300,000 orders), we randomly sample 500 transaction paths for each

experiment to reduce the computation time. We compare MLE and KCDE (with 5-fold cross-

validation) for each experiment. We introduce an additional regularization term −γ‖η‖, γ ∈ {0.1×

w|w ∈ 〈9〉} ∪ [10], in the MLE model (23) to mitigate the over-fitting effect.

We compare MLE and KCDE over 20 experiments based on three performance metrics: likeli-

hood, Brier score, and area under the curve (AUC) (see Appendix C for their definitions). Brier

score is a widely-used metric in evaluating probabilistic classifiers with a smaller score implying

a better prediction accuracy (Pedregosa et al. 2011). AUC is a popular classification performance

metric to assess binary classifiers (denoted as AUC-binary) or multi-class classifiers (denoted as

AUC-Hand-Till) (Hand and Till 2001). The larger the AUC, the better the prediction accuracy.

(a) (b) (c)

Figure 5 Comparing MLE’s and KCDE’s prediction accuracy based on different performance metrics

Figure 5a shows the gap between MLE’s likelihood and KCDE’s likelihood (MLE’s likelihood

minus KCDE’s likelihood) for predicting the transition probabilities (solid line) and the probability

of placing consecutive orders (dashed line). Figure 5b shows the gap between MLE’s Brier score

and KCDE’s Brier score for predicting the transition probabilities (solid line) and the probability of

placing consecutive orders (dashed line). Figure 5c shows the gap between MLE’s AUC-Hand-Till

and KCDE’s AUC-Hand-Till for predicting the transition probabilities (solid line) as well as the

gap between MLE’s AUC-binary and KCDE’s AUC-binary for predicting the probability of placing

consecutive orders (dashed line). These figures suggest that MLE consistently outperforms KCDE

for predicting the transition probabilities and the probability of placing consecutive orders based
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on all the three performance metrics. In addition, MLE requires much less computation time (total

40 seconds for 20 experiments) than KCDE (total 55.04 hours for 20 experiments).

7.1.2. Comparing with RF We further compare MLE with RF, one of the most powerful

probabilistic classifiers in the machine learning literature (Niculescu-Mizil and Caruana 2005). See

Appendix B.2 for the details of predicting the probabilities using RF. Note that a direct output

of MLE and RF is the prediction of the choice probability of each alternative. We first compare

their prediction accuracy for the choice probabilities in the consumer’s sequential decision process.

Table 2 shows that their performance is very similar in terms of Brier score and AUC-Hand-

Till. MLE achieves a slightly better performance in AUC-Hand-Till, but is slightly worse in Brier

score. Figure 6 further compares the predicted transition probabilities by the two methods. Define

GAP k
l (w) = pMLE((xkl ,w), (xkl ,w + 1)) − pRF ((xkl ,w), (xkl ,w + 1)), where pMLE(·, ·) and pRF (·, ·)

represent the transition probabilities predicted by MLE and RF respectively. The gap for each

dwell time w is close to 0, indicating that the predictions by the two methods are very close.

Table 2 Comparing MLE and RF in predicting choice probabilities

Metrics RF MLE

Brier score 0.029434159 0.030050049
AUC-Hand-Till 0.599577933 0.604655914

Figure 6 Comparing MLE and RF in predicting transition probabilities

Table 3 compares the accuracy of the two methods in predicting the probability of placing con-

secutive orders in terms of Brier score and AUC-binary. Both methods give very similar prediction

accuracies. Figure 7a shows the distribution of the gaps between the predicted probabilities by

the two methods. The figure shows that most gaps are zero, suggesting that their predictions are

extremely close. Following the machine learning literature on comparing binary probabilistic clas-

sifiers (Niculescu-Mizil and Caruana 2005), we also investigate the calibration curves under the

two methods. See Appendix C for the procedure of constructing a calibration curve. The nearer
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the calibration curve is to the diagonal line, the better the prediction is. Figure 7b shows that the

calibration curve of MLE is nearer to the diagonal line compared to that of RF, suggesting that

MLE slightly outperforms RF in predicting the probability of placing consecutive orders.

Table 3 Brier score and AUC-binary of MLE and RF for predicting the probability of placing consecutive orders

Metrics RF MLE

Brier score 0.013107706 0.013282569
AUC-binary 0.762402023 0.752302149

(a) (b)

Figure 7 Comparing MLE and RF in predicting the probability of placing consecutive orders

In summary, the predictions of MLE and RF are very close to each other. MLE performs slightly

better in terms of AUC-Hand-Till and the calibration plot, but slightly worse in Brier score and

AUC-binary than RF. We choose MLE in this paper because of its advantages below.

(a) Interpretability: The proposed MLM (13) is based on the random utility maximization frame-

work (12). It models how the consumer chooses among the three alternatives: search and see, leave

the system, or place another order. It provides intuitions of the cause of predictions and consis-

tently predicts model results. In contrast, the nonparametric RF method is more like a black box

for predictions and its prediction performance heavily depends on the quantity and quality of data.

(b) Analytical results: MLM (13) estimated by MLE leads to several nice theoretical results.

First, the closed-form expression of the personalized threshold in Theorem 2 can better illustrate

its dependence on order features. Second, Corollary 1 provides managers a guideline to select prod-

ucts with desired attributes (when recommending products) in order to control the probability of

placing consecutive orders. Finally, the piecewise-linear function with an approximation guarantee

in Theorem 3 allows us to visualize the marginal effect of each feature on the threshold and hence

identify the important features. In contrast, these results are not available for RF because of its

complicated model structure.
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(c) Computational efficiency: MLE shows a significant advantage over RF in computational

efficiency as RF takes 3.87 hours for the hyper-parameter selection, while MLE takes only 0.24

hours in our numerical experiments.

We also compare MLE against KCDE and RF based on their out-of-sample costs in Appendix

D. Again, the performance of MLE is better than that of KCDE, but is similar to that of RF.

7.2. Understanding The Personalized Threshold

In this section, we first compute the optimal personalized threshold using the data described in

Section 6. Since a large proportion of consumers places a consecutive order within 30 minutes in

Figure 1, we set T = 30. We normalize the order arrangement cost c to 1. Note that if h is too large,

then the retailer will send the pending combined order to the 3PL soon, leading to a large total

order arrangement cost. However, if h is too small, then the retailer will hold the pending combined

order for a long time, increasing the total holding cost. Thus, the holding cost per period h should

be chosen such that the retailer sends the pending combined order to the 3PL as soon as possible,

while guaranteeing a pre-specified target total order arrangement cost. For the following numerical

experiments, we consider h= 0.262× 10−3,0.861× 10−3,1.775× 10−3, and 2.788× 10−3 based on

different target total order arrangement costs. See Appendix F for a procedure of choosing these

values of h. Figure 8 presents the distribution of the optimal thresholds based on Theorem 2 for

all the orders in the data set. Most of the thresholds computed are no more than 10 periods.

Figure 8 Distribution of the personalized thresholds

Next, we apply the piecewise-linear approximation in Theorem 3 to investigate the marginal

effect of each order feature on the personalized threshold. We obtain relevant managerial insights

by studying these marginal effects based on the data described in Section 6.

7.2.1. The Accuracy of The Piecewise-Linear Approximation The last three rows of

Table 4 present three metrics to assess the piecewise-linear approximation’s accuracy. The first is

the analytical bound in Theorem 3 of the gap between the optimal threshold and its approximation.
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The bound equals 1 for all the different h values, suggesting that the error is at most one period.

The second is an empirical gap between the optimal threshold in Theorem 2 and its piecewise-

linear approximation in Theorem 3 for each order. The empirical gap is either 0 or 1, which is

consistent with the analytical bound derived earlier. The first and second entries in each bracket

represent the numbers of orders with an empirical gap equals 0 and 1 respectively. The results

show that 99.91% to 99.98% of the orders have an empirical gap equal to 0. The last metric is

a cost gap GAP0 = (Cpl − Cp)/Cp, where Cp and Cpl are the average total costs incurred under

the optimal threshold and its approximation respectively. Table 4 shows that the resulting cost

gap GAP0 based on the data is negligible. In summary, the piecewise-linear function in Theorem

3 approximates the optimal threshold extremely well.

Table 4 The effects of order features on the threshold and the piecewise-linear approximation’s accuracy

h 0.262×10−3 0.861×10−3 1.775×10−3 2.788×10−3

I(plus= 1) 1.07 1.07 1.07 1.07
I(gender =Male) -0.77 -0.77 -0.77 -0.77
I(age≤ 15) -5.67 -5.67 -5.67 -5.67
I(age= 26− 35) -1.96 -1.96 -1.96 -1.96
I(age= 36− 45) -2.26 -2.26 -2.26 -2.26
I(age= 46− 55) -0.73 -0.73 -0.73 -0.73
I(age≥ 56) -1.07 -1.07 -1.07 -1.07
I(marital status= Single) -0.66 -0.66 -0.66 -0.66
I(education= high school) -0.15 -0.15 -0.15 -0.15
I(education=Bachelor′s degree) 0.91 0.91 0.91 0.91
I(education= post-graduate degree) 0.59 0.59 0.59 0.59
I(purchase power = 2) 1.18 1.18 1.18 1.18
I(purchase power = 3) 1.70 1.70 1.70 1.70
I(purchase power = 4) -0.38 -0.38 -0.38 -0.38
I(city level= 2) 0.26 0.26 0.26 0.26
I(city level= 3) 0.50 0.50 0.50 0.50
I(city level= 4) 0.53 0.53 0.53 0.53
I(city level= 5) -1.82 -1.82 -1.82 -1.82
I(user level= 0) -0.80 -0.80 -0.80 -0.80
I(user level= 2) 1.56 1.56 1.56 1.56
I(user level= 3) 2.55 2.55 2.55 2.55
I(user level= 4) 6.36 6.36 6.36 6.36
I(enterprise= 1) 18.35 18.35 18.35 18.35
I(position= 2) 12.54 12.54 12.54 12.54
I(position= 3) 22.91 22.91 22.91 22.91
I(position= 4) 29.78 29.78 29.78 29.78
attribute1 15.65 15.65 15.65 15.65
I(attribute1 missing = 1) -17.37 -17.37 -17.37 -17.37
attribute2 16.05 16.05 16.05 16.05
I(attribute2 missing = 1) 34.03 34.03 34.03 34.03
intercept 7.80 0.03 -4.73 -7.72

bound 1 1 1 1
empirical gaps (301,542; 269) (301,709; 102) (301,589; 222) (301,754; 57)

cost gap GAP0 −2.34× 10−7 −2.76× 10−7 −1.24× 10−6 −3.07× 10−7

Table 4 also shows the coefficients of the piecewise-linear function in Theorem 3. Based on

Corollary 1, if an order feature is a numerical variable, its coefficient represents its marginal effect

on the threshold. In contrast, if a feature is a categorical variable, the coefficient of each dummy

variable represents the difference between the mean threshold for the corresponding category and

that for the reference category (omitted in Table 4). It is worth noting that according to (20), the

cost parameter h only affects the intercept of fl(x;Θ). The marginal effect of each order feature

is not affected by varying h. Thus, for each feature we observe the same coefficient for different
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values of h in Table 4. We describe some useful managerial insights from Table 4 regarding how

the order features affect the threshold as follows.

7.2.2. Managerial Insights from The Piecewise-Linear Approximation

(i) The personalized threshold-type policy suggests a significantly higher threshold for enterprise

users and for orders with a higher position. The coefficient of I(enterprise = 1) is 18.35,

implying that the threshold for an enterprise user is at least 18 minutes longer than that for

an individual user (reference category) who shares all other order features with the enterprise

user. Furthermore, the second last column of Table 13 in Appendix G shows that an enterprise

user is much more likely to make consecutive orders than an individual user. This suggests

a positive correlation between the probability of placing consecutive orders and the holding

threshold, which is consistent with Corollary 1. We have similar observations on the feature

position. Table 4 shows that a significantly higher threshold should be used for position =

2,3, or 4 compared to position = 1 (reference category). Table 14 in Appendix G shows

that position = 2,3, or 4 has a significantly higher empirical percentage of orders having a

consecutive order compared to position= 1.

(ii) The personalized threshold-type policy suggests a higher threshold for plus users. The coefficient

of I(plus= 1) in Table 4 is positive, suggesting a higher threshold for a plus user compared

to a non-plus user (reference category) who shares all other order features with the plus user.

The plus users pay a smaller fee for placing a new order, incentivizing them to place small

orders frequently instead of a single large order. Our policy sets a higher threshold for them.

(iii) The threshold for female users (reference category) is higher than that for male users who

shares all other order features with the female users. This observation aligns with our intuition

that the female users generally tend to spend a longer time in online shopping and are more

likely to be persuaded by online recommendations.

(iv) Users in the age group of 16-25 (reference category) should be assigned a higher threshold

than any other age groups that share all other order features with the reference category. This

reflects the age range of the main consumer group shopping online.

(v) The threshold for tier-1 cities (reference category) is lower than that for tier-2, 3, and 4 cities

but higher than that for tier-5 cities that share all other order features with the reference

category. Since online shopping requires a certain buying power and consumes time, the above

observation suggests two other factors that may affect online shopping behavior: income level

and consumers’ pace of life. Consumers in tier-1 cities have a high income level but a fast pace

of life. They tend to spend a shorter time searching while shopping online.
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7.3. The Value of Personalizing Order-holding Decisions

Here, we assess the value of using the personalized threshold-type policy by comparing it with two

widely-used benchmarks in the literature. The first benchmark is a myopic policy in the order-

fulfillment literature (Xu et al. 2009, Acimovic and Graves 2015, Jasin and Sinha 2015, Wei et al.

2017), which was reported to be implemented in Amazon.com (Ng 2012). Under the myopic policy,

any received orders will be sent to the 3PL immediately. In other words, the holding threshold is

zero for all the orders. The second benchmark is a static policy, which adopts a constant threshold

for all the orders regardless of their features. Under the static policy, any pending combined order is

held if the dwell time is less than the static threshold, but sent to the 3PL otherwise. See Appendix

E for finding an optimal constant threshold for the static policy.

Let Cm, Cs, and Cp denote the total costs under the myopic, static, and personalized threshold-

type policies respectively. Following the machine learning literature, we use 10-fold cross-validation

to compare the personalized threshold-type policy with the two benchmarks. Specifically, we divide

the transaction paths {pathk}k∈[K] into 10 even groups. We use one group for testing and the

remaining groups for training. We repeat this process 10 times, each with a different testing group.

We sum up the 10 testing costs in the cross-validation to obtain the total cost under each policy.

The second column of Table 5 shows (Cm;Cs;Cp). Define the cost gap between a benchmark and

the personalized threshold-type policy as CGAPi = (Ci−Cp)/Cp×100%, where i∈ {m,s}. Let Am,

As, and Ap denote the total order arrangement costs under the myopic, static, and personalized

threshold-type policies respectively. Define the gap between the total order arrangement costs of

a benchmark and the personalized threshold-type policy as AGAPi = (Ai−Ap)/Ap× 100%, where

i∈ {m,s}. The third and fourth columns of Table 5 show (CGAPm,CGAPs) and (AGAPm,AGAPs)

respectively. The first, second, and third entries of the last column represent the average holding

times under the myopic, static, and personalized threshold-type policies respectively.

Table 5 Performance of the personalized threshold-type policy and benchmarks

h(×10−3) Total costs (CGAPm,CGAPs)(%) (AGAPm,AGAPs) (%) Holding times

0.262 (301,811; 298,538; 298,152) (1.227, 0.129) (1.545, 0.073) (0.0, 14.35, 12.66)
0.861 (301,811; 299,907; 299,288) (0.843, 0.207) (1.21, 0.095) (0.0, 5.56, 4.91)
1.775 (301,811; 300,853; 299,786) (0.675, 0.356) (0.86, 0.076) (0.0, 2.62, 1.68)
2.788 (301,811; 301,487; 300,085) (0.575, 0.467) (0.675, 0.091) (0.0, 1.72, 0.97)

Table 6 shows the reductions in the total cost and in the total order arrangement cost by the

personalized threshold-type policy for different user levels. The first and second entries of each

tuple represent the reductions compared to the myopic and static policies respectively. The table
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Table 6 Reductions in the total cost, total order arrangement cost, and holding time for each user level

h(×10−3) user level=1 user level=2 user level=3 user level=4 enterprise

Total cost (%)

0.262 (0.28, 0.05) (0.42, 0.05) (0.61, 0.03) (1.95, 0.02) (36.41, 7.91)
0.861 (0.03, 0.09) (0.12, 0.06) (0.29, 0.08) (1.46, -0.01) (31.49, 13.12)
1.775 (0.01, 0.23) (0.03, 0.15) (0.1, 0.09) (1.25, 0.16) (27.71, 17.2)
2.788 (0.01, 0.34) (0.03, 0.26) (0.09, 0.24) (0.97, 0.19) (24.76, 17.72)

Total order
0.262 (0.52, -0.08) (0.7, -0.04) (0.91, -0.03) (2.37, 0.06) (37.5, 8.33)

arrangement
0.861 (0.16, -0.25) (0.35, -0.18) (0.61, -0.08) (2.14, 0.18) (34.08, 14.77)

cost (%)
. 1.775 (0.02, -0.22) (0.05, -0.29) (0.13, -0.33) (1.78, 0.21) (31.8, 20.38)

2.788 (0.02, -0.12) (0.05, -0.19) (0.11, -0.21) (1.11, -0.15) (29.95, 22.02)

Holding time (%)

0.262 52.8 32.78 21.57 -10.49 -54.16
0.861 263.22 95.48 44.36 -31.85 -86.59
1.775 3323.89 1938.68 930.87 -22.52 -93.93
2.788 3112.07 1924.4 1162.44 94.61 -95.85

also shows the reduction in the average holding time by the personalized threshold-type policy

compared to the static policy. We have the following observations from these results.

1. Compared to the myopic policy, the personalized threshold-type policy reduces the total cost

by having fewer order arrangements. Table 5 shows that the personalized threshold-type policy

reduces the total cost by 0.575% to 1.227% compared to the myopic policy (see CGAPm). The cost

reduction is due to fewer order arrangements (see AGAPm). For example, for h= 0.262× 10−3 the

personalized threshold-type policy reduces the total order arrangement cost by 1.545% compared

to the myopic policy. This cost reduction by consolidating the orders has a significant impact in

practice because of the large number of consumer orders in online retailing.

2. Compared to the static policy, personalizing the threshold reduces the total cost by having fewer

order arrangements and shorter holding times. According to CGAPs in Table 5, the personalized

threshold-type policy reduces the total cost by 0.129% to 0.467% compared to the static policy.

This demonstrates the value of personalizing the threshold by considering the features of the orders

placed by a consumer, which leads to fewer order arrangements and shorter holding times (see

columns 4 and 5 of Table 5).

3. Optimizing order-holding decisions is significantly more valuable for enterprise users. Table

6 shows that the personalized threshold-type policy reduces the total cost more significantly for

the enterprise users. Among the enterprise users, it reduces the total cost of the myopic policy by

24.76% to 36.41% and the total cost of the static policy by 7.91% to 17.72%. Interestingly, the cost

reduction is caused by having fewer order arrangements and longer holding times. The significantly

larger percent reduction in the total cost compared to other user levels is partly due to the high

percentage of consecutive orders made by the enterprise users. Thus, optimizing the order-holding

decisions is significantly more valuable for the enterprise users, suggesting that personalizing the

threshold becomes even more crucial as the proportion of the enterprise users increases. This insight
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is quite implementable in practice because it is straightforward to identify the enterprise users

when they are labeled during registration.

8. Conclusion

A significant percentage of consumers place consecutive, separate orders within a short duration

when shopping online (see Figure 1, which is based on JD.com’s data). An online retailer can hold

any order(s) of each consumer for a limited time interval to reduce the total order arrangement

cost. This approach is also known as order consolidation for a single consumer. However, we do

not want to hold the pending order(s) for too long so that we can maintain a responsive fulfillment

process for the consumer. We analyze a relevant trade-off in consolidating consecutive, separate

orders placed by the same consumer in online retailing that has not been studied in the literature.

We model the online retailer’s order-holding problem for a single consumer as an MDP. Due to the

curse of dimensionality, we do not solve this MDP directly. Instead, we first construct a set of single-

dimensional MDPs. We show that the optimal policy of the original MDP can be characterized by

personalized thresholds that can be obtained by solving the set of single-dimensional MDPs (see

Theorem 1), which are much more tractable. The holding threshold for each pending set of orders

depends on the transition probabilities of an associated single-dimensional MDP.

To estimate the transition probabilities, we apply a consumer’s sequential decision model to

characterize the consumer choice behavior after placing an order. This allows us to construct a

closed-form relation (16) between the transition probabilities and the order features. Based on (16),

we personalize the optimal threshold by analytically expressing it in terms of the order features

(see Theorem 2). To better understand the relation between the optimal personalized threshold

and the order features, we propose a piecewise-linear approximation to the threshold with an upper

bound on the approximation gap (see Theorem 3). We also show that the optimal personalized

threshold is positively correlated with the consumer’s probability of placing consecutive orders. We

analytically express this probability in order features (see Proposition 2), which helps the retailer

predict the consumer’s probability of placing a consecutive order after receiving an order.

We apply the MLE method to estimate the coefficients of the consumer’s sequential decision

model using the data of 2020 MSOM Data Driven Research Challenge. Our extensive numerical

tests suggest that the MLE method accurately predicts the transition probabilities of each single-

dimensional MDP and the probability of placing consecutive orders by a consumer compared to

the KCDE and RF methods that are widely used in the literature.

Our numerical studies suggest that the piecewise-linear function in Theorem 3 serves as a good

approximation to the optimal threshold in Theorem 2. By using the piecewise-linear approximation,
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we can assess the marginal effect of each order feature on the personalized threshold. Based on

the data of 2020 MSOM Data Driven Research Challenge, we obtain the following interesting

and relevant managerial insights from the coefficients of the piecewise-linear function in Table

4: (i) A significantly higher threshold should be used for enterprise users and for orders with a

higher position. Furthermore, both enterprise users and orders with a higher position have a higher

probability of placing consecutive orders, implying a positive correlation between this probability

and the holding threshold, which is consistent with Corollary 1. (ii) A higher threshold should be

used for plus users. (iii) The threshold for female users is higher than that for male users. (iv)

Users in the age group of 16-25 have a higher threshold than other age groups. (v) The threshold

for tier-1 cities is lower than that for tier-2, 3, and 4 cities but higher than that for tier-5 cities.

Comparing the personalized threshold-type policy with the myopic and the static policies, we

observe the following: (a) Compared to the myopic policy, personalizing the threshold reduces the

total cost by having fewer order arrangements. (b) Compared to the static policy, personalizing

the threshold reduces the total cost by having fewer order arrangements and shorter holding times.

(c) Optimizing order-holding decisions is significantly more valuable for enterprise users. Finally,

although our work applies to consumer-facing consolidation operations in e-commerce, the proposed

feature-based data analytics approach can be generalized to other personalized policies.
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Online Appendix to

“Managing The Personalized Order-Holding Problem in Online Retailing”

Appendix

A. Proofs

Lemma 2 (Partially-holding is suboptimal). It is always suboptimal to hold only part of
consecutive orders in the current pending orders and send others to the 3PL.

Proof of Lemma 2. Denote π∗ as the optimal order-holding policy, then the optimal total
expected cost after taking the partially-holding policy in the current period, denoted as V1, can
be obtained by applying the optimal policy π∗ in subsequent periods. To show it is suboptimal, it
suffices to construct another policy whose total expected cost, denoted as V2, is less than V1 which
is the least cost that the partially-holding policy can achieve.

Denote the set of orders held and sent according to the partially-holding policy in the current
period as B and A respectively. The constructed policy is to hold the whole pending orders in
the current period, which only triggers cost at h in the current period compared to c+ h for the
partially-holding counterpart. The subsequent actions for the constructed policy will hold all orders
in A and B until the beginning of period t when some orders, denoted as B′, in B will be sent to the
3PL according to the optimal policy π∗. Then, the constructed policy at the beginning of period
t is to send all orders in A and B′ to the 3PL and hold the rest of orders if there remains some.
After period t, the subsequent decisions for the constructed policy follow the optimal counterpart
π∗. Due to the cost structure, the subsequent actions constructed above after the current period
will lead to the same cost in subsequent periods as the optimal policy π∗, so the elaborated policy,
which leads to less cost in the current period, has less cost than partially-holding counterpart which
completes this proof. �

Proof of Lemma 1. Firstly, we show that the optimal order-holding decision at states
(xl, T, v = 1) and (xL,0, v = 1) must be to send the current pending orders to the 3PL immedi-
ately. We only provide proof for the states (xl, T, v = 1), and the proof for the state (xL,0, v = 1)
is similar, so ignored. To show this phenomenon is true, recall that the only subsequent state of
(xl,w) is (xl,w + 1) for w ≥ T , so p((xl,w), (xl,w + 1)) = 1 (the consumer has left the market).
Then, problem (3) for w≥ T will turns to

V (xl,w, v= 1) = min
z∈{0,1}

z{h+ p((xl,w), (xl,w+ 1)) ·V (xl,w+ 1, v= 1)} (24)

+ (1− z){c+ p((xl,w), (xl,w+ 1)) ·V (xl,w+ 1, v= 0)}
= min
z∈{0,1}

z{h+V (xl,w+ 1, v= 1)}+ (1− z) · c (25)

where the second equality comes from the fact that p((xl,w), (xl,w+ 1)) = 1 and V (xl,w+ 1, v =
0) = 0 (since (xl,w+ 1, v= 0) indicates that the current pending orders have been sent to the 3PL
and no new order will come). Prove by contradiction. If the optimal decision at state (xl, T, v= 1) is
z∗ = 1, then we have V (xl, T, v= 1) = h+V (xl, T +1, v= 1)< c which implies that V (xl, T +1, v=
1) < c − h. By (25), the optimal decision at state (xl, T + 1, v = 1) must be z∗ = 1 otherwise
V (xl, T + 1, v = 1) = c which contradicts V (xl, T + 1, v = 1) < c − h. So the optimal decision at
state (xl, T + 1, v = 1) must be z∗ = 1 which implies that V (xl, T + 1, v = 1) = h+ V (x, T + 2, v =
1)< c− h. So we have V (x, T + 2, v = 1)< c− 2h. Follow the same procedures, we will show that
V (xl,w, v = 1) < c− (w − T ) · h for w ≥ T . Here comes the contradiction because V (xl,w, v = 1)
is negative for large enough w. So, the optimal decision at state (xl, T, v = 1) is z∗ = 0, that is
V (xl, T, v = 1) = c which is exactly (8). So we have proved that the optimal policy at these states
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must be to send the current to 3PL immediately, now we turn to characterize their optimal total
expected cost.

By the optimal policy at states (xl, T, v = 1) and (xL,0, v = 1), it is easy to check their corre-
sponding optimal total expected cost. Firstly, at state (xl, T, v = 0), the current pending orders
have been sent to the 3PL and no new order will come, so V (xl, T, v= 0) = 0. At states (xl, T, v= 1)
and (xL,0, v = 1), since the optimal decision is to send the current pending orders to the 3PL
immediately, by (25), their corresponding optimal cost must equal to c. So we complete the proof
of Lemma 1. �

Proof of Proposition 1. Recall the large scale MDP problem (5) with holding state v= 1,
subtract V (xl,w, v= 0) from both side of the first equation in (5), we have

V (xl,w, v= 1)−V (xl,w, v= 0)

= min
z∈{0,1}

z

{
h +

∑
(x′,w′)∈σ((xl,w))

p((xl,w), (x′,w′))

(
V (x′,w′, v′ = 1)
−V (x′,w′, v′ = I((x′,w′) 6= (xl,w+ 1)))

)
+ (1− z){c} ,∀w ∈ 〈T − 1〉.
= min
z∈{0,1}

z {h+ p((xt,w), (xl,w+ 1)) (V (xl,w+ 1, v= 1)−V (xl,w+ 1, v= 0))}

+ (1− z) · c. (26)

Since subtracting V (xl,w, v= 0) has no effect on the optimal decision of the original optimization
problem in (5), problem (26) must share the same optimal decision as the original problem (5) at
state (xl,w, v = 1). Define ∆xl(w) = V (xl,w, v = 1)− V (xl,w, v = 0) ( hence ∆xl(T ) = V (x, T, v =
1)− V (xl, T, v = 0) = c by (7) and (8) ), then (26) turns to the following single-dimensional MDP
problem (27):

∆xl
(w) = min

z∈{0,1}
z {h+ p((xt,w), (xl,w+ 1)) ·∆xl

(w+ 1)}+ (1− z)c,∀0≤w≤ T − 1 (27)

∆xl
(T ) = c, for w= T

whose optimal decision at state w, z∗xl(w), coincides with the optimal order-holding decision of the
original problem (5) at state (xl,w, v= 1), z∗(xl,w, v= 1). This completes the proof of Proposition
1. �
Proof of Theorem 1. By Proposition 1, for each cluster Exl = {(xl,w) : 0≤w≤ T}, we know

that the optimal order-holding policy at state (xl,w, v = 1) with (xl,w) ∈ Exl made by the online
retailer can be characterized by the single-dimensional MDP problem as follows:

∆xl
(w) = min

z∈{0,1}
z {h+ p((xl,w), (xl,w+ 1)) ·∆xl

(w+ 1)}+ (1− z)c,∀0≤w≤ T − 1 (28)

∆xl
(T ) = c, for w= T.

Firstly, we characterize the optimal decision of the above single-dimensional MDP problem, and
then using their connections stated in Proposition 1 to characterize the optimal policy for the
original MDP problem (5). Denote S(xl) as the first w ∈ 〈T −1〉 such that h+p((xl,w), (xl,w+1)) ·
∆xl(w+ 1)≥ c, that is S(xl) = min{w ∈ 〈T −1〉|h+p((xl,w), (xl,w+ 1)) ·∆xl(w+ 1)≥ c} (set to T
if the set is empty). Then, for any w<S(xl), we must have h+p((xl,w), (xl,w+1)) ·∆xl(w+1)< c
which implies that the optimal decision is z∗ = 1. While for w = S(xl), the optimal decision is
z∗ = 0.

With the S(xl) defined above characterizing the optimal decision of problem (28), we are ready
to characterize the structure of optimal policy for the original MDP problem (5). We prove the
structure of the optimal policy by considering the following two cases stated in Theorem 1.

Case 1. If no new order is received for S(xl) period. When receiving the order, the current
pending orders are being held, so the initial state is (xl,0, v = 1). By Proposition 1, the optimal
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order-holding decision at state (xl,0, v= 1) is the same as the counterpart of problem (28) at state
0. So, the optimal order-holding decision at state (x,0, v= 1) is to hold the current pending orders
since 0 < S(xl). Since no new order is received for S(xl) period, the state in the next period is
(xl,1, v= 1). By the same statement, the pending orders will be held until the beginning of period
S(xl) in which the state is (xl, S(xl), v = 1). The optimal decision of problem (28) at state S(xl)
is z∗ = 0, so does the optimal decision for the original MDP problem (5) at state (xl, S(xl), v = 1)
by Proposition 1. That is to say the pending orders will be sent to the 3PL after holding S(xl)
period.

Case 2. A new order comes in the first S(xl) period. Similar to the statement in Case 1, the
current pending orders will be held until the period receiving the new order. After receiving the new
consecutive order, the system will enter another cluster with different order features xl+1 whose
optimal threshold S(xl+1) can be characterized and begin a new cycle. So we have completed the
proof of Theorem 1. �

Proof of Proposition 2. By the reformulation of q̄w,M(xl;Θ,N) in (44), we have

q̄w,M(xl; Θ,N) = eawq̄0,M(xl; Θ,N),∀w ∈ 〈T − 1〉. (29)

According to the Markovian logit model, the probability of making consecutive orders is

q̄0,M(xl; Θ,N) + q̄1,M(xl; Θ,N) + · · ·+ q̄T−1,M(xl; Θ,N)

= q̄0,M(xl; Θ,N) + eaq̄0,M(xl; Θ,N) + · · ·+ e(T−1)aq̄0,M(xl; Θ,N)

=
1− eaT

1− ea
q̄0,M(xl; Θ,N)

where the first equality follows (29) and the second equality is by simple calculation. This completes
the proof of Proposition 2. �

Proof of Theorem 2. Before starting the proof, let’s first reformulate the transi-
tion probabilities p((xl,w), (xl,w + 1)) using the choice probabilities of making another
order {q̄τ,M(xl;Θ,N)}τ∈〈T−1〉. Recall the original formulation of p((xl,w), (xl,w + 1)) =
P (w+ 1;xl,Θ,N) /P (w;xl,Θ,N) in (16) where P (w;xl,Θ,N) defined in (15) denotes the proba-
bility of the event that no new order by time w. Due to the structure of the choice network N , it
can be reformulated as P (w;xl,Θ,N) = 1−

∑w−1

τ=0 q̄τ,M(xl;Θ,N), which leads to the reformulation
of transition probabilities as

p((xl,w), (xl,w+ 1)) =
1−

∑w

τ=0 q̄τ,M(xl;Θ,N)

1−
∑w−1

τ=0 q̄τ,M(xl;Θ,N)
= 1− q̄w,M(xl;Θ,N)

1−
∑w−1

τ=0 q̄τ,M(xl;Θ,N)
. (30)

After the reformulation of transition probabilities, let’s define an important function which will
play a central role to characterize the close form of personalized thresholds, that is δ(w) := h+
p((xl,w), (xl,w+ 1)) · c− c. When substituting (30), it becomes

δ(w) = h− q̄w,M(xl; Θ,N)

1−
∑w−1

τ=0 q̄τ,M(xl; Θ,N)
c. (31)

By the reformulation of q̄w,M(xl;Θ,N) in (29) and (44), we have

q̄w,M(xl; Θ,N) = eawq̄0,M(xl; Θ,N),∀w ∈ 〈T − 1〉

q̄0,M(xl; Θ,N) =
exp(ηxl + b)∑

τ∈〈T−1〉 exp(βτ + aτ) +
∑

τ∈〈T−1〉 e
aτ · exp(ηxl + b)

=
exp(ηxl + b)∑

τ∈〈T−1〉 exp(βτ + aτ) + 1−eaT

1−ea · exp(ηxl + b)
. (32)
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With the reformulation (29) of q̄w,M(xl;Θ,N) above, we can finally reformulate the function δ(w)
as

δ(w) = h− eawq̄0,M(xl; Θ,N)

1− 1−eaw

1−ea q̄0,M(xl; Θ,N)
c= h− 1

1− 1
1−ea

·q̄0,M (xl;Θ,N)

eaw·q̄0,M (xl;Θ,N)
+ 1

1−ea

c. (33)

With the reformulation of δ(w), we are ready to characterize close form of the personalized
threshold S(xl;Θ,N) case by case (Case (18a), (18b), (19a), (19b) and (19c) in Theorem 2) as
follows.
Case (18a) is with conditions that h< c · (1− ea) and q̄0,M(xl;Θ,N)< 1− ea.

For this case we will verify that S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 with the nonlinear
function fnl(·) of the close form defined in (17). It is easy to check that δ(w) is increasing in w for w ∈
R by (33) when noting that q̄0,M(xl;Θ,N)< 1−ea under Case (18a). Define fnl(q̄0,M(xl;Θ,N)) :=
min{w ∈R : δ(w)≥ 0} as the break point of the sign of δ(w), we will first verify that S(xl;Θ,N) =
(dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0 (in Step 1) and then characterize the close form of the nonlinear
function fnl(·) (in Step 2).
Step 1. We verify that S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨0 by considering cases as follows
depending on S(xl;Θ,N) = T (Case A), S(xl;Θ,N) = 0 (Case B) or 1≤ S(xl;Θ,N)≤ T −1 (Case
C ).

Case A that S(xl;Θ,N) = T which implies that δ(T − 1) = h + p((xl, T − 1), (xl, T )) · c − c =
h+p((xl, T −1), (xl, T )) ·∆xl(T )− c < 0 by the characterization of personalized thresholds in (11).
By definition, fnl(q̄0,M(xl;Θ,N)) > T − 1 which results in (dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0 = T =
S(xl;Θ,N). So we have verified that S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 under Case A.

Case B that S(xl;Θ,N) = 0 which implies that h + p((xl,0), (xl,1)) · ∆xl(1) − c ≥ 0 by the
characterization of personalized thresholds in (11). The recursive definition of ∆xl(w) in (10) implies
that

∆xl
(w)≤ c,∀w ∈ 〈T 〉 (34)

which results in δ(0) = h+p((xl,0), (xl,1)) ·c−c≥ h+p((xl,0), (xl,1)) ·∆xl(1)−c≥ 0. By definition
again, fnl(q̄0,M(xl;Θ,N))≤ 0 which results in (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 = 0 = S(xl;Θ,N). So
we have verified that S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 under Case B.

Case C that 1≤ S(xl;Θ,N)≤ T −1 which implies that the following two conditions hold by the
characterization of personalized thresholds in (11):

h+ p((xl, S(xl; Θ,N)), (xl, S(xl; Θ,N) + 1)) ·∆xl
(S(xl; Θ,N) + 1)− c≥ 0, (35)

h+ p((xl, S(xl; Θ,N)− 1), (xl, S(xl; Θ,N))) · c− c < 0, (36)

where the second inequality originates from the fact that ∆xl(S(xl;Θ,N)) = c by the single dimen-
sional MDP (10) and (35).

To show S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0 under Case C, it suffices to show that
S(xl;Θ,N)≤ (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 and S(xl;Θ,N)≥ (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 hold
simultaneously as follows.

First, we will show that S(xl;Θ,N) ≤ (dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0 which is equivalent to
S(xl;Θ,N)≤ dfnl(q̄0,M(xl;Θ,N))e∨0 since S(xl;Θ,N)≤ T . Prove by contradiction. Assuming that
S(xl;Θ,N) > dfnl(q̄0,M(xl;Θ,N))e ∨ 0 which is equivalent to S(xl;Θ,N) > dfnl(q̄0,M(xl;Θ,N))e
due to S(xl;Θ,N)> 0 under Case C. Since S(xl;Θ,N) is an integer, we must have S(xl;Θ,N)−
1 ≥ dfnl(q̄0,M(xl;Θ,N))e ≥ fnl(q̄0,M(xl;Θ,N)). By the definition of fnl(·) and monotonicity
of δ(w) (increasing in w under Case (18a)), δ(S(xl;Θ,N) − 1) = h + p((xl, S(xl;Θ,N) −
1), (xl, S(xl;Θ,N))) · c− c≥ 0 which is contradict with (36). So, we have shown that S(xl;Θ,N)≤
(dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0.

Second, we will show that S(xl;Θ,N) ≥ (dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0 which is equivalent
to S(xl;Θ,N) ≥ dfnl(q̄0,M(xl;Θ,N))e ∧ T since S(xl;Θ,N) ≥ 0. Prove by contradiction again.
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Assuming that S(xl;Θ,N) < dfnl(q̄0,M(xl;Θ,N))e ∧ T which is equivalent to S(xl;Θ,N) <
dfnl(q̄0,M(xl;Θ,N))e since S(xl;Θ,N)<T under Case C. Since S(xl;Θ,N) is an integer, we must
have S(xl;Θ,N)< fnl(q̄0,M(xl;Θ,N)). By the definition of fnl(·) and monotonicity of δ(w) (increas-
ing in w under Case (18a)) again, 0> δ(S(xl;Θ,N)) = h+ p((xl, S(xl;Θ,N)), (xl, S(xl;Θ,N) +
1)) · c− c≥ h+ p((xl, S(xl;Θ,N)), (xl, S(xl;Θ,N) + 1)) ·∆xl(S(xl;Θ,N) + 1)− c which is contra-
dict with (35), where the last inequality comes from (34). So, we have shown that S(xl;Θ,N)≥
(dfnl(q̄0,M(xl;Θ,N))e ∧T ) ∨ 0. Combine the two steps above together, we have shown that
S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 under Case C.

Combine Case A, B and C together, we have shown that S(xl;Θ,N) =
(dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0.
Step 2. To characterize the close form of the personalized threshold S(xl;Θ,N) =
(dfnl(q̄0,M(xl;Θ,N))e ∧T )∨ 0 under Case (18a), it remains to characterize the close form of the
nonlinear function fnl(·).

Recall the reformulation of δ(w) in (33), we have

δ(w)≥ 0⇔ h

(
1− 1

1− ea
q̄0,M(xl; Θ,N) +

1

1− ea
· eawq̄0,M(xl; Θ,N)

)
− c · eawq̄0,M(xl; Θ,N)≥ 0

⇔ h

(
1− 1

1− ea
q̄0,M(xl; Θ,N)

)
+

(
h

1− ea
− c
)
· eawq̄0,M(xl; Θ,N)≥ 0

⇔w≥ 1

a

{
ln(h)− ln

(
c− h

1− ea

)}
− 1

a
ln(q̄0,M(xl; Θ,N)) +

1

a
ln

(
1− 1

1− ea
q̄0,M(xl; Θ,N)

)
fnl(q̄0,M(xl; Θ,N) =

1

a

{
ln(h)− ln

(
c− h

1− ea

)}
− 1

a
ln(q̄0,M(xl; Θ,N)) +

1

a
ln

(
1− 1

1− ea
q̄0,M(xl; Θ,N)

)
where the last equivalence comes from the fact that h

1−ea − c < 0 under Case (18a) and the
last equality comes from the definition of fnl(q̄0,M(xl;Θ,N)) := min{w ∈ R : δ(w) ≥ 0}. So, we
have characterize the close of the nonlinear function fnl(q̄0,M(xl;Θ,N), so does the personalized
threshold S(xl;Θ,N) under Case (18a).

Next, we turn to Case (18b).
Case (18b) is with conditions that h< c · (1− ea) and q̄0,M(xl;Θ,N)≥ 1− ea.

In this case we wish to verify that S(xl;Θ,N) = T . Actually, δ(0) = h − q̄0,M(xl;Θ,N) · c ≤
h− (1− ea) · c < 0 where the two inequalities originate from conditions in Case (18b). It is easy
to check that δ(w) is decreasing in w for w ∈ [0, T − 1] by the reformulation of δ(w) in (33) when
noting that q̄0,M(xl;Θ,N)≥ 1− ea under Case (18b). So, δ(w)≤ δ(0)< 0 for w ∈ 〈T − 1〉, which
results in

h+ p((xl,w), (xl,w+ 1)) ·∆xl
(w+ 1)− c≤ h+ p((xl,w), (xl,w+ 1)) · c− c= δ(w)< 0,∀w ∈ 〈T − 1〉,

where the first inequality comes from the fact that ∆xl(w)≤ c for w ∈ 〈T 〉 in (34). The conditions
above actually imply that S(xl;Θ,N) = T by its characterization in (11). So, we have shown that
S(xl;Θ,N) = T under Case (18b).

Now we begin to consider the remaining cases when h≥ c · (1− ea).
Case (19a) is with conditions that h≥ c · (1− ea) and q̄0,M(xl;Θ,N)≤ 1− ea.

We wish to verify that S(xl;Θ,N) = 0 in this case. By the reformulation (33) and the fact that
q̄0,M(xl;Θ,N)≤ 1− ea, δ(w) is increasing in w for w ∈ [0, T −1] which implies that δ(w)≥ δ(0)≥ 0
for w ∈ [0, T−1], where the last inequality comes from the fact that δ(0) = h− q̄0,M(xl;Θ,N) ·c≥ h−
(1−ea) · c≥ 0 under Case (19a). Prove by contradiction to show that S(xl;Θ,N) = 0 in this case.
If S(xl;Θ,N)> 0, we must have δ(S(xl;Θ,N)− 1) = h+ p((xl, S(xl;Θ,N)− 1), (xl, S(xl;Θ,N))) ·
c−c < 0 by (36). Here comes the contradiction since we have shown that δ(w)≥ 0 for w ∈ [0, T −1].
So, we have verified that S(xl;Θ,N) = 0 under Case (19a).
Case (19b) is with conditions that h≥ c · (1− ea) and 1− ea < q̄0,M(xl;Θ,N)≤ h/c.
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First, we will verify that the personalized threshold S(xl;Θ,N) is either 0 or T in this case, and
then characterize the conditions under which it will be one of them. Prove by contradiction to show
that S(xl;Θ,N) is either 0 or T . Assuming that 1≤ S(xl;Θ,N)≤ T −1 under Case (19b). By the
reformulation (33) and the fact that q̄0,M(xl;Θ,N)> 1−ea, δ(w) is decreasing in w for w ∈ [0, T −1]
under Case (19b). To derive the contradiction, define w1 := dmax{w ∈ 〈T − 1〉 : δ(w)≥ 0}e (w1 ≥ 0
since δ(0) = h− q̄0,M(xl;Θ,N) · c≥ 0 under Case (19b)). We will derive the contradiction of 1≤
S(xl;Θ,N)≤ T −1 by considering different cases depending on w1 = T −1 (Case A) or w1 <T −1
(Case B) as follows.

Case A that w1 = T − 1 which implies that δ(w)≥ 0 for w ∈ 〈T − 2〉 by the definition of w1 and
decreasing of δ(w). It follows that δ(S(xl;Θ,N)−1) = h+p((xl, S(xl;Θ,N)−1), (xl, S(xl;Θ,N))) ·
c − c ≥ 0 since S(xl;Θ,N) − 1 ∈ 〈T − 2〉 (since 1 ≤ S(xl;Θ,N) ≤ T − 1 by assumption), which
contradicts (36).

Case B that w1 < T − 1. We consider two additional cases as follows to derive contradiction of
1≤ S(xl;Θ,N)≤ T −1 depending on S(xl;Θ,N)>w1 (Case B.1 ) or S(xl;Θ,N)≤w1 (Case B.2 ).

Case B.1 that S(xl;Θ,N) > w1. By definition of w1, we must have 0 > δ(S(xl;Θ,N)) ≥ h +
p((xl, S(xl;Θ,N)), (xl, S(xl;Θ,N)+1)) ·∆xl(S(xl;Θ,N)+1)− c which contradicts (35), where the
last inequality comes from (34).

Case B.2 that S(xl;Θ,N)≤w1. By the definition of w1, we must have 0≤ δ(S(xl;Θ,N)− 1) =
h+ p((xl, S(xl;Θ,N)− 1), (xl, S(xl;Θ,N))) · c− c which contradicts (36).

So, we have verified that the personalized threshold S(xl;Θ,N) is either 0 or T under Case
(19b). It remains to characterize the necessary and sufficient conditions under which S(xl;Θ,N) =
T which are exactly the conditions stated in (19b) by the characterization of personalized thresholds
in (11).
Case (19c) is with conditions that h≥ c · (1− ea) and q̄0,M(xl;Θ,N)>h/c.

We wish to verify S(xl;Θ,N) = T in this case. By the reformulation (33) and the fact that
q̄0,M(xl;Θ,N)> 1−ea, δ(w) is decreasing in w for w ∈ [0, T −1] which implies that δ(w)≤ δ(0)< 0
for w ∈ [0, T −1], where the last inequality comes from the fact that δ(0) = h− q̄0,M(xl;Θ,N) · c < 0
under Case (19c). It follows that for any w ∈ 〈T − 1〉

h+ p((xl,w), (xl,w+ 1)) ·∆xl
(w+ 1)− c≤ h+ p((xl,w), (xl,w+ 1)) · c− c= δ(w)< 0,

which implies that S(xl;Θ,N) = T by its characterization in (11), where the first inequality is due
to ∆xl(w)≤ c for w ∈ 〈T 〉 by (34). So, we have verified that S(xl;Θ,N) = T under Case (19c).

That completes the proof of Theorem 2. �
In the remaining part, we will first present Proposition 4 and its proof, based on which Theorem

3 can be proved.

Proposition 4 (Piecewise Linear Approximation of Personalized Thresholds).
Under the Markovian logit model shown in (13) with network N and parameters Θ = (η,β, a, b),
denote X(ε) as the region of features xl such that their corresponding probability of making
another consecutive orders is bounded by ε, that is X(ε) = {xl ∈X|

∑
τ∈〈T−1〉 q̄τ,M(xl;Θ,N) ≤ ε}.

If in addition h < c · (1− ea) and ε < 1− eaT , then for any xl ∈ X(ε) the personalized threshold
S(xl;Θ,N) can be bounded by a piecewise-linear function as:

0≤ S(xl; Θ,N)− (dfl(xl; Θ)e ∧T )∨ 0≤
⌊

1 +
1

a
ln

(
1 +

ε∧ εU
1− ε∧ εU

)
+

1

a
ln

(
1− ε∧ εU

1− eaT

)⌋
, (37)

where the linear function fl(·) and scalar εU are defined in (20) and (21).

Proof of Proposition 4. Firstly, we will verify that the personalized threshold S(xl;Θ,N)
shares the close form in (18a) with conditions of Proposition 4. For any xl ∈ X(ε), we have∑

τ∈〈T−1〉 q̄τ,M(xl;Θ,N) = 1−eaT
1−ea q̄0,M(xl;Θ,N) ≤ ε < 1 − eaT which implies that q̄0,M(xl;Θ,N) <

1−ea, where the equality is obtained by substituting (29). Together with the assumption that h< c ·
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(1−ea), the personalized threshold share the close form S(xl;Θ,N) = (dfnl(q̄0,M(xl;Θ,N))e ∧T )∨0
for any xl ∈X(ε) by Theorem 2. So, to approximate the personalized threshold S(xl;Θ,N), it suf-
fices to approximate the nonlinear function fnl(q̄0,M(xl;Θ,N)). We will firstly bound the nonlinear
function fnl(q̄0,M(xl;Θ,N)) with a linear counterpart fl(xl;Θ) (in Step 1) and then show that this
will result in the piecewise-linear approximation (37) of the personalized threshold (in Step 2).
Step 1. Bound fnl(q̄0,M(xl;Θ,N)) with fl(xl;Θ).

Recall the reformulation of q̄0,M(xl;Θ,N) in (32) and the definition of fnl(q̄0,M(xl;Θ,N)) in (17),
we can reformulate the nonlinear function as

fnl(q̄0,M(xl; Θ,N)) =
1

a

{
ln(h)− ln

(
c− h

1− ea

)}
+

1

a
· ln
(

1− 1

1− ea
q̄0,M(xl; Θ,N)

)
− 1

a
·

{
ηxl + b− ln

(
T−1∑
τ=0

exp(βτ + aτ) +
1− eaT

1− ea
· exp(η′xl + b)

)}

=
1

a

{
ln(h)− ln

(
c− h

1− ea

)}
+

1

a
· ln
(

1− 1

1− ea
q̄0,M(xl; Θ,N)

)
− 1

a
·

{
ηxl + b− ln

(
T−1∑
τ=0

exp(βτ + aτ)

)
− ln

(
1 +

1−eaT

1−ea · exp(ηxl + b)∑T−1
τ=0 exp(βτ + aτ)

)}

=fl(xl; Θ) +
1

a
ln

(
1 +

1−eaT

1−ea · exp(ηxl + b)∑T−1
τ=0 exp(βτ + aτ)

)
+

1

a
· ln
(

1− 1

1− ea
q̄0,M(xl; Θ,N)

)
=fl(xl; Θ) +

1

a
ln

(
1 +

ε′(xl; Θ)

1− ε′(xl; Θ)

)
+

1

a
ln

(
1− 1

1− eaT
ε′(xl; Θ)

)
where the first equality is obtained by substituting the reformulation of q̄0,M(xl;Θ,N) in (32) into
the definition of fnl(q̄0,M(xl;Θ,N)) in (17), the second and third equality are by simple calculation,

and the finally equality originates from the the definition of ε′(xl;Θ) := 1−eaT
1−ea · q̄0,M(xl;Θ,N)≤ ε.

Define the function g(ε′) := 1
a

ln
(

1 + ε′

1−ε′

)
+ 1

a
ln
(

1− 1
1−eaT ε

′
)

for ε′ ∈ [0, ε], then

fnl(q̄0,M(xl;Θ,N)) = fl(xl;Θ) +g(ε′(xl;Θ)) by the reformulation above. The function can be refor-

mulated as g(ε′) = 1
a

ln
(

1
1−eaT ·

(
1− eaT

1−ε′

))
which implies that it is increasing in ε′. This will result

in the bound 0 = g(0) ≤ g(ε′(xl;Θ)) ≤ g(ε) which implies the bound for the nonlinear function
fnl(q̄0,M(xl;Θ,N)) for any xl ∈X(ε):

0≤ fnl(q̄0,M(xl; Θ,N))− fl(xl; Θ)≤ g(ε) =
1

a
ln

(
1 +

ε

1− ε

)
+

1

a
ln

(
1− 1

1− eaT
ε

)
. (38)

With the bound in (38) between fnl(·) and fl(·), we are ready to characterize the piecewise-linear
approximation (37) of the personalized threshold in Step 2.
Step 2. Piecewise linear approximation for the personalized threshold S(xl;Θ,N).

Divide the set X(ε) into two disjoint subsets: X(ε) =X1(ε)∪X2(ε), where

X1(ε) :=

{
x∈X(ε)

∣∣∣∣∣
T−1∑
τ=0

q̄τ,M(xl; Θ,N)> εU

}
,

X2(ε) :=

{
x∈X(ε)

∣∣∣∣∣
T−1∑
τ=0

q̄τ,M(xl; Θ,N)≤ εU

}
.

To show the bound (37) holds for any xl ∈ X(ε), it suffices to show the bound holds for any
xl ∈X1(ε) and xl ∈X2(ε) respectively.

For any xl ∈X2(ε), we must have

0≤S(xl; Θ,N)− (dfl(xl; Θ)e ∧T )∨ 0

= (dfnl(q̄0,M(xl; Θ,N))e ∧T )∨ 0− (dfl(xl; Θ)e ∧T )∨ 0
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≤b1 + fnl(q̄0,M(xl; Θ,N))− fl(xl; Θ)c

≤
⌊

1 +
1

a
ln

(
1 +

ε∧ εU
1− ε∧ εU

)
+

1

a
ln

(
1− ε∧ εU

1− eaT

)⌋
which is exactly the bound (37), where the second inequality comes from Lemma 3 and the last
inequality originates form the bound (38) when noting that X2(ε)⊆X(ε∧ εU).

It remains to verify the bound for any xl ∈X1(ε). Denote the deterministic utility of purchasing
another order as u(xl) = η′xl+b, then both q̄0,M(xl;Θ,N) and fl(xl;Θ) can be written as functions
of u(xl) by their definitions in (32) and (20) as follows:

q̄′0,M(u(xl); Θ,N) =
exp(u(xl))∑T−1

τ=0 exp (βτ + aτ) + 1−eaT

1−ea exp(u(xl))
, (39)

f ′l (u(xl); Θ) :=−1

a
u(xl) +C0, (40)

both of which are strictly increasing in u(xl). Then, for any xl ∈ X1(ε), we must have 1−eaT
1−ea ·

q̄′0,M(u(xl);Θ,N) > εU = 1−eaT
1−ea · q̄

′
0,M(−a(T − 1− C0);Θ,N) (the “=” here is by definition of εU)

which implies that u(xl)>−a(T −1−C0) by the increasing of q̄′0,M(u;Θ,N) in u. This will lead to
f ′l (u(xl);Θ)> f ′l (−a(T −1−C0);Θ) = T −1 since f ′l (u;Θ) is also strictly increasing in u. It follows
that 0≤ S(xl;Θ,N)− (dfl(xl;Θ)e ∧T )∨0 = S(xl;Θ,N)− (df ′l (u(xl);Θ)e ∧T )∨0 = S(xl;Θ,N)−T
(the “≤” comes from (38)), which implies that S(xl;Θ,N) = T and S(xl;Θ,N)−(dfl(xl;Θ)e ∧T )∨
0 = 0. So we have verified that the bound (37) also holds for any xl ∈X1(ε), which completes the
proof of Proposition 4. �

Proof of Theorem 3. By Proposition 4, the bound in Theorem 3 holds for any features xl ∈
X(ε) with any ε < 1− eaT . It remains to show it still holds for any xl ∈Xc, where the set Xc is
defined as

Xc =

xl ∈X

∣∣∣∣∣∣
∑

τ∈〈T−1〉

q̄τ,M(xl; Θ,N)≥ 1− eaT


=

{
xl ∈X

∣∣∣∣1− eaT1− ea
q̄0,M(xl; Θ,N)≥ 1− eaT

}
where the second equality is obtained by substituting (29). Then, we have q̄0,M(xl;Θ,N)≥ 1− ea
for any xl ∈Xc by definition and h < c · (1− ea) by the assumption that h < c · (1− ea)/(1 + ea),
which implies that S(xl;Θ,N) = T by (18b) in Theorem 2. To verify the bound in Theorem 3, it
suffices to show that the piecewise-linear function fpl(xl) = (dfl(xl;Θ)e ∧T ) ∨ 0 equals T for any
xl ∈Xc as follows.

Recall that both q̄0,M(xl;Θ,N) and fl(xl;Θ) can be equivalently written as q̄′0,M(xl;Θ,N) (in
(39)) and f ′l (xl;Θ) (in (40)) respectively, which are strictly increasing functions of u(xl) = η′x+ b.

By definition of the set xl ∈Xc, it holds that 1−eaT
1−ea q̄

′
0,M(u(xl);Θ,N)≥ 1− eaT . By simple calcula-

tion, it is easy to verify that 1−eaT > εU under the imposed assumption that h< c ·(1−ea)/(1+ea),

which implies that 1−eaT
1−ea q̄

′
0,M(u(xl);Θ,N)> εU = 1−eaT

1−ea · q̄
′
0,M(−a(T − 1−C0);Θ,N) (the “=” here

is by definition of εU). This will result in u(xl) > −a(T − 1− C0) by increasing of the function
q̄′0,M(u;Θ,N) in u. It follows that f ′l (u(xl);Θ)> f ′l (−a(T −1−C0);Θ) = T −1 by increasing of the
function f ′l (u;Θ) in u, which implies that fpl(xl) = (dfl(xl;Θ)e ∧T )∨0 = (df ′l (u(xl);Θ)e ∧T )∨0 =
T = S(xl;Θ,N). So we have completed the proof of Theorem 3. �

Lemma 3. For any scalars A and B with A≥B, it holds that 0≤ (dAe∧T )∨0− (dBe∧T )∨0≤
bA−B+ 1c.

Proof of Lemma 3. To prove Lemma 3, it suffices to prove the bound that (dAe ∧ T )∨ 0−
(dBe∧T )∨ 0≤A−B+ 1 when noting that both (dAe∧T )∨ 0 and (dBe∧T )∨ 0 are integers. The
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bound will be verified by considering different cases depending on A≤ 0 (Case 1), A≥ T (Case
B), or 0<A<T (Case C).

Case A that A≤ 0 which implies that B ≤A≤ 0. This will lead to (dAe∧T )∨0−(dBe∧T )∨0 =
0− 0≤A−B+ 1.

Case B that A≥ T which implies that

(dAe ∧T )∨ 0− (dBe ∧T )∨ 0 = T − (dBe ∧T )∨ 0 =

{
0≤A−B+ 1, if B >T − 1,
T −dBe ∨ 0≤A−B+ 1, if B ≤ T − 1.

(41)

Case C that 0<A<T which implies that B ≤A<T . This will lead to

(dAe ∧T )∨ 0− (dBe ∧T )∨ 0 = dAe− dBe ∨ 0 =

{
dAe− dBe ≤A−B+ 1, if B > 0,
dAe ≤A+ 1≤A−B+ 1, if B ≤ 0.

(42)

This completes the proof of Lemma 3. �
Proof of Proposition 3. To prove Proposition 3, it suffices to show that each term

ln(Pr(xkl ,DT
k
l ;Θ)) in (23) is concave in parameters Θ = (η,β, a, b) for any k ∈ [K] and l ∈ [Lk]. By

(13), we have

Pr(xkl ,DT
k
l ; Θ) =

DTk
l −2∏

w=0

p̄w,w+1(xkl ; Θ,N) · p̄DTk
l
−1,yk

l
(xkl ; Θ,N)

=

DTk
l −2∏

w=0

exp (a+ gw+1(xkl ; Θ,N))

exp(gw(xk; Θ,N))
·
I(ykl =4) · exp(βDTk

l
−1) + I(ykl =M) · exp(η′xkl + b)

exp(gDTk
l
−1(xkl ; Θ,N))

=
I(ykl =4) · exp(βDTk

l
−1 + a(DT kl − 1)) + I(ykl =M) · exp(η′xkl + b+ a(DT kl − 1))

exp(g0(xkl ; Θ,N))
. (43)

It follows that ln(Pr(xkl ,DT
k
l ;Θ)) = I(ykl = 4) · (βDTk

l
−1 + a(DT kl − 1)) + I(ykl = M) · (η′xkl +

b + a(DT kl − 1)) − g0(xkl ;Θ,N), where the first term is linear in Θ. Hence, it suffices to show
that g0(xkl ;Θ,N) is convex in Θ. By Lemma 5, g0(xkl ;Θ,N) can be reformulated as g0(x;Θ,N) =

ln
(∑T−1

τ=0 exp (βτ + aτ) + exp(ηx + b+ aτ)
)

, whose convexity in Θ is confirmed by the following

Lemma 4. This completes the proof. �

Lemma 4 (Convexity of log exponential functions). The function g(x) =
ln(
∑n

i=1 pi exp(b′ix + ci)) with pi ≥ 0 for i= 1,2, . . . , n is a convex function in x.

Proof of Lemma 4. The convexity of function g(x) in x is equivalent to the fact that
the epigraph, epig(x) = {(x, y)|g(x) ≤ y}, is a convex set. Noting that epig(x) can be equivalent
reformulated as epig(x) = {(x, y)|

∑n

i=1 pi exp(b′ix+ci−y)≤ 0} which is a convex set since f(x, y) =∑n

i=1 pi exp(b′ix + ci− y) is jointly convex in (x, y). This completes the proof of Lemma 4. �

Lemma 5 (Reformulate g0(x;Θ) ). The function gw(x;Θ,N) defined in (13) can be reformu-
lated as

gw(x; Θ,N) = ln

(
T−1∑
τ=w

exp (βτ + a(τ −w)) + exp (ηx + b+ a(τ −w))

)
,∀w ∈ 〈T − 1〉.

Proof of Lemma 5. Prove by induction on w ∈ 〈T − 1〉. By (13), we have gT−1(xl;Θ,N) =
ln(exp(βT−1) + exp(ηxl + b)) which is exactly the form of gT−1(xl;Θ,N) we want to prove.
Now assume that gw+1(xl;Θ,N) shares the form in Lemma 5, it remains to show that so does
gw(xl;Θ,N). By (13) again, we have

gw(xl; Θ,N) = ln (exp(βw) + exp(ηxl + b) + exp (a+ gw+1(xl; Θ,N)))

= ln

(
exp(βw) + exp(ηxl + b) + exp(a) ·

(
T−1∑

τ=w+1

exp (βτ + a(τ −w− 1)) + exp(ηxl + b+ a(τ −w− 1))

))
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= ln

(
T−1∑
τ=w

exp (βτ + a(τ −w)) + exp(ηxl + b+ a(τ −w))

)
,

where the second equality is obtained by substituting the induction assumption of gw+1(xl;Θ,N)
into the first equality. So we have completed the induction proof of Lemma 5. �

Lemma 6 (Equivalence of MLE and The MNL Choice Model). There exists an MNL
model with choice alternatives in the set L and the deterministic utility terms being linear in the
order features x, where L= {(0,4), (0,M), (1,4), (1,M), · · · , (T − 1,4), (T − 1,M)} is defined as
a set that includes all the arcs to the terminal node ∆ or M in network N . Under this MNL model,
the choice probability of each alternative is the same as that of the corresponding arc in network
N under MLM.

Proof of Lemma 6. Recall that the MLM model with network N and parameters Θ =
(η,β, a, b) assumes that the deterministic utility term is a linear function of features xl, and random
error terms follow i.i.d. Gumbel distributions. Now we are going to construct a MNL model with
alternatives in L such that it shares the same unconditional choice probability of each arc in L as
the MLM model.

We construct the MNL model by further reformulating the unconditional choice probability
q̄w,y(xl;Θ,N) of arc (w,y) ∈ L in the MLM model as follows. Firstly, by the close from of choice
probabilities for the MLM model in (13), we have

q̄w,y(xl; Θ,N) =

w−1∏
τ=0

p̄τ,τ+1(xl; Θ,N) · p̄w,y(xl; Θ,N)

=

w−1∏
τ=0

exp (a+ gτ+1(xl; Θ,N))

exp(gτ (xl; Θ,N))
· I(y=4) · exp(βw) + I(y=M) · exp(ηxl + b)

exp(gw(xl; Θ,N))

=
I(y=4) · exp(βw + aw) + I(y=M) · exp(ηxl + b+ aw)

exp(g0(xl; Θ,N))
.

By substituting the reformulation of exp(g0(xl;Θ,N)) in Lemma 5, above expression of
q̄w,y(xl;Θ,N) turns to

q̄w,y(xl; Θ,N) =
I(y=4) · exp(βw + aw) + I(y=M) · exp(ηxl + b+ aw)∑T−1

τ=0 exp (βτ + aτ) + exp(ηxl + b+ aτ)
, (44)

which is exactly the expression of choice probabilities for the MNL model that we are familiar
with. The MNL model we are trying to construct is clear by setting the deterministic utility
term of the alternative (w,y) in labels set L as the linear function I(y =4) · (βw + aw) + I(y =
M) · (ηxl+b+aw). The construction here confirms that the MLM and MNL model share the same
choice probabilities of arcs in the label set L, which completes the proof of Lemma 6. �

Lemma 7. There exists a logistic regression model that is equivalent to the MLE method of MLM.

Proof of Lemma 7. Note that the logistic regression model is an MLE method of a multi-
nomial logit (MNL) choice model. Hence, it is sufficient to show the equivalence between MLM
and the MNL choice model. Hence Lemma 7 is a straightforward result from Lemma 6. �
Proof of Proposition 5. Denote the denominator of (45) as P̂(x,w), the estimator in (45)

can be rewritten as

P̂(τ |w;x) =
∑

x′,w′,τ ′:(w′,τ ′)∈Tx′ ,x′∈X

K1(w,w′; ζ1) ·
∏

i=3,...,dx+2

Ki(xi, x′i; ζi)

P̂(x,w)
· K2(τ, τ ′; ζ2),

where the kernel function for the categorical variable is defined as

K2(τ, τ ′; ζ2) =

{
1− ζ2, if τ = τ ′,
ζ2/T, if τ 6= τ ′.
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With the above reformulation of the estimator P̂(τ |w;x), we have

T∑
τ=0

P̂(τ |w;x) =
∑

x′,w′,τ ′:(w′,τ ′)∈Tx′ ,x′∈X

K1(w,w′; ζ1) ·
∏

i=3,...,dx+2

Ki(xi, x′i; ζi)

P̂(x,w)
·

{
T∑
τ=0

K2(τ, τ ′; ζ2)

}
.

=
∑

x′,w′,τ ′:(w′,τ ′)∈Tx′ ,x′∈X

K1(w,w′; ζ1) ·
∏

i=3,...,dx+2

Ki(xi, x′i; ζi)

P̂(x,w)
·
{

1− ζ2 +
ζ2
T
·T
}
.

= 1,

where the second equality follows the definition of the kernel functionK2(·, ·; ζ2) and the last equality
is by the definition of P̂(x,w). The non-negativity of P̂(τ |w;x) follows from the non-negativity of
kernel functions which completes the proof of Proposition 5. �

B. The KCDE and RF Methods

B.1. Using KCDE to Estimate The Transition Probabilities and The Probability of Placing
Consecutive Orders

According to Section 6, we obtain a set of transaction paths from the data. However, to train the
KCDE method we need a sequence of observed transitions. This requires us to first translate the
transaction paths to the transitions among states with no new orders. Note that each entry in
pathk = {(xkl ,DT kl )}l∈[Lk] corresponds to a sequence of transitions in a set of single-dimensional
MDP problems. Specifically, each entry (xkl ,DT

k
l ), l ∈ [Lk−1], means that upon receiving an order

featured by xkl , a new order arrives after DT kl periods. This corresponds to a set of transitions:
{((xkl ,w), (xkl ,w+ 1))}w∈〈DTk

l
−2〉 ∪ {((xkl ,DT kl − 1), (xkl+1,0))}. For l= Lk, the consumer has made

the maximum number of consecutive orders and she will not place any order within T periods.
This corresponds to the transitions: {((xkl ,w), (xkl ,w+ 1))}w∈〈T−1〉. Let Tx denote a set of observed
transitions in the single-dimensional MDP problem defined in the cluster identified by x. Let X
denote a set of observed order features. The sets Tx, x∈X , serve as standard training data for the
KCDE method.

Our goal is to estimate the transition probabilities of the MDP problem defined by (5) to (9).
According to Theorem 1, it suffices to estimate p((xl,w), (xl,w+ 1)), w ∈ 〈T − 1〉, for each single-
dimensional MDP. By definition, the conditional probability p((xl,w), (xl,w+ 1)) is equal to the
probability that no new order arrives for w + 1 periods divided by the probability that no new
order arrives for w periods after receiving an order featured by xl.

We represent the probability of each event using kernel functions. Note that for each order fea-
tured by xl, the number of periods without new order arrivals is a categorical variable. According to
the KCDE method (Hall et al. 2004), for any two values w and τ , the probability that the categori-
cal variable equals w and τ before and after a transition, respectively, in a single-dimensional MDP
featured by xl is 1

|Txl |

∑
w′,τ ′:(w′,τ ′)∈Txl

K1(w,w′; ζ1)K2(τ, τ ′; ζ2), where ζi represents the bandwidth for

i= 1,2. Here |Txl | denotes the cardinality of Txl , which equals the number of joint observations of
(w′, τ ′) before and after a transition in a single-dimensional MDP featured by xl.

The kernel function for categorical variables with a total of T + 1 categories is defined as
Ki(w,w′; ζi) = (ζi/T )I(w′ 6=w)(1− ζi)1−I(w′ 6=w), i= 1,2 (see Equation (4) in Hall et al. (2004)). Bow-
man (1980) shows that this kernel type of probability density function with bandwidths estimated
from an MLE method converges (in probability) to the true density function. By definition, the
conditional probability for a single-dimensional MDP to transit from w to τ can be calculated as∑
w′,τ ′:(w′,τ ′)∈Txl

K1(w,w′; ζ1) · K2(τ, τ ′; ζ2) /
∑

w′:(w′,τ ′)∈Txl

K1(w,w′; ζ1).
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The data includes various single-dimensional MDPs. Thus, the observed (w′, τ ′) may be asso-
ciated with different single-dimensional MDPs. We weight each observation by the kernel density
function of its associated single-dimensional MDP featured by x. In particular, we define the con-
ditional probability of a single-dimensional MDP featured by x to transit from w to τ as follows:

P̂(τ |w;x) =

∑
x′,w′,τ ′:(w′,τ ′)∈Tx′ ,x′∈X

K1(w,w′; ζ1) · K2(τ, τ ′; ζ2) ·
∏

i=3,...,dx+2

Ki(xi, x′i; ζi)∑
x′,w′:(w′,τ ′)∈Tx′ ,x′∈X

K1(w,w′; ζ1) ·
∏

i=3,...,dx+2

Ki(xi, x′i; ζi)
. (45)

Note that the weight defined by the product of kernel functions
∏
i=3,...,dx+2Ki(xi, x′i; ζi) represents

the similarity of the two single-dimensional MDPs featured by x and x′. We assume that the
more similar the two order features, the more similar the evolutions of the corresponding single-
dimensional MDPs.

We follow the convention to define a kernel function Ki(xi, x′i; ζi) for numerical variables as
Ki(xi, x′i; ζi) = K((xi−x′i)/ζi), where K(·) : R→R+ satisfies

∫
K(s)ds <∞. The following proposi-

tion ensures that the proposed conditional probability in (45) is well defined.

Proposition 5. The conditional probability defined in (45) satisfies
∑

τ=0,...,T

P̂(τ |w;x) = 1 and

P̂(τ |w;x)≥ 0 for τ = 0, . . . , T .

We apply the likelihood cross-validation method (Li and Racine 2007) to select bandwidths for
mixed data types (containing both categorical and numerical features). Specifically, the bandwidths

are selected to maximize the log-likelihood function
∑

x,w,τ :(w,τ)∈Tx,x∈X
zx,w,τ log

(
P̂−1(τ |w;x)

)
, where

zx,w,τ is an indicator variable that equals 1 if we observe a transition from w to τ with the order
features x in the data, and 0 otherwise. Here, instead of using P̂(τ |w;x), we adapt the leave-one-out
estimation method by Li and Racine (2007) (see page 161 in Li and Racine (2007)) to define the
likelihood function. Specifically, we apply P̂−1(τ |w;x) in the likelihood function, which is in the
same form as (45) but with Tx replaced by Tx \ {(w,τ)}. That is, the kernel probability density
function for a sample labeled by w,τ , and x should exclude the sample itself in the summation.
This method is available in the class “npcdensbw” of the R package “np”. By carefully setting the
input parameters in “npcdensbw”, we obtain the bandwidths for mixed data types and obtain the
estimated transition probabilities under KCDE.

With the estimated P̂(τ |w;x), we can calculate the probability that a new order arrives in

period w since receiving the latest order as
w−1∏
τ=0

P̂(τ + 1|τ ;x) · P̂(0|w;x). The probability of making

consecutive orders can be calculated as
T−1∑
w=0

w−1∏
τ=0

P̂(τ + 1|τ ;x) · P̂(0|w;x).

B.2. Using RF To Estimate The Transition Probabilities and The Probability of Placing
Consecutive Orders

RF is an ensemble learning method that builds a set of decision trees guiding classification results,
which is available in many machine learning packages. We apply the class “RandomForestClassifier”
in the python package “Scikit-learn” by Pedregosa et al. (2011) to predict probabilities. Recall that
L= {(0,4), (0,M), (1,4), (1,M), · · · , (T − 1,4), (T − 1,M)} is a set that includes all the arcs to
the terminal node ∆ or M in network N . Let q̄RFt,j (xkl ), j ∈ {4,M}, denote the predicted probability
of the arc (t, j)∈L. Given an order xkl , the predicted probability q̄RFt,j (xkl ) of each class t∈<T −1>
and j ∈ {∆,M} is the average of each single tree’s probability of the class in the forest. A single
tree’s probability of a class is the fraction of training samples of the class over all the samples in
the leaf where xkl locates (cf. Pedregosa et al. (2011)).
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C. Introduction to AUC, Brier Score, and Calibration Curve

AUC is a popular performance metric to assess classifiers. The standard AUC is designed only
for binary classification problems. Specifically, for a given feature-response samples {(xk, yk)}k∈[K]

where yk ∈ {−1,1} is either -1 or 1, the AUC of a binary predictor p :X→ [0,1] is defined as (Hand
and Till 2001)

AUC(p(·)) =

∑
(x,y)∈D−1

∑
(x′,y′)∈D1 I[p(x′)> p(x)]

|D−1| · |D1|
, (46)

where p(x) represents the probability that the response is 1 conditioned on the feature is x, Di =

{(xk, yk)|yk = i, k ∈ [K]} denotes the subsets of samples with their response as i for i ∈ {−1,1}.
From the definition, we can interpret AUC as the probability that a randomly selected positive

sample shares higher predicted probability than a randomly selected negative sample. We call AUC

for binary classification as AUC-binary.
Since predicting the choice probabilities in the consumer’s sequential decision process is a multi-

class classification problem, we need to discuss how to design AUC for a classification problem
over multiple classes. We follow Hand and Till (2001) to generalize the AUC for the binary
classification to the AUC for the multi-class classification. Specifically, for a I-class predictor p(x) =
(p1(x), p2(x), · · · , pI(x)) : X → {(p1, p2, · · · , pI)|

∑
i∈[I] pi = 1} where pi(x) denotes the probability

that the response is of i-th class conditioned on the feature is x for any i ∈ [I], its AUC, denoted
as AUC(p(·)), is defined as

AUC(p(·)) =
1

I(I − 1)

I∑
i=1

I∑
j=1,j 6=i

AUC(i, j), (47)

AUC(i, j) =

∑
(x,y)∈Dj

∑
(x′,y′)∈Di I[p(x′)> p(x)]

|Dj | · |Di|
, (48)

where Di = {(xk, yk)|yk = i, k ∈ [K]} denotes the subset of samples with their response as i for

i∈ [I]. We call this version of AUC for multi-class classification as AUC-Hand-Till.
The Brier Score of a multi-class predictor p(x) = (p1(x), p2(x), · · · , pI(x)) : X →
{(p1, p2, · · · , pI)|

∑
i∈[I] pi = 1} is defined as

K∑
k=1

I∑
i=1

‖p(xk)− ek‖22 (49)

where ek = (ek1 , · · · , ekI ) and eki = 1 if the kth sample is of the ith class, otherwise eki = 0 for i =

1, · · · , I.

As we have mentioned in Appendix B.2, both RF and MLE are predictors of the multi-class clas-

sification problem with label set as L= {(0,4), (0,M), (1,4), (1,M), · · · , (T − 1,4), (T − 1,M)},
the above AUC-Hand-Till and Brier score can be used to assess their performance.

To plot a calibration curve under MLE or RF, we first sort all the orders according to their

predicted probabilities of placing consecutive orders. Then, we divide the sorted orders into five

even clusters. For each cluster, we compute its orders’ average predicted probability of placing

consecutive orders and the empirical percentage of the orders in the cluster that have a consecu-

tive order. Each cluster corresponds to a point with its x coordinate equals the cluster’s average

predicted probability of placing consecutive orders, and its y coordinate equals the empirical per-

centage of the orders in the cluster that have a consecutive order. The calibration curve is formed

by linking the points. Note that the nearer the calibration curve is to the diagonal line, the nearer

the predictions are to their empirical counterparts.
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D. Comparing Out-of-Sample Costs

We further compare the out-of-sample costs of MLE, KCDE, and RF. Table 7 reports the total
out-of-sample costs of MLE and KCDE over the same 20 experiments described in Section 7.1.1.
Again, we randomly sample 500 transaction paths for each experiment to reduce the computation
time. The table shows that MLE outperforms KCDE based on their out-of-sample costs, which is
consistent with the comparison results based on other performance metrics in Section 7.1.1. Table
8 shows that the out-of-sample costs under MLE and RF are still close to each other, with the
relative cost gap (defined as CRF−CMLE

CMLE
× 100%) ranges from -0.056% to -0.011%.

Table 7: Out-of-sample costs of MLE and KCDE

h(×10−3) Cost of KCDE Cost of MLE GAPKCDE(%)

0.262 10,174 10,164 0.098
0.861 10,169 10,155 0.138
1.775 10,145 10,117 0.277
2.788 10,109 10,065 0.437

Table 8: Out-of-sample costs of MLE and RF

h(×10−3) Cost of RF Cost of MLE GAPRF (%)

0.262 298,120 298,152 -0.011
0.861 299,120 299,288 -0.056
1.775 299,674 299,786 -0.038
2.788 299,964 300,085 -0.040

E. Static Policy

The basic idea to get the optimal static threshold follows the idea of the Sample Average Approxi-
mation (SAA). Specifically, given a set of training samples {pathk}k∈T1 (T1 is the index of training
samples), the static threshold denoted by ST ∗ can be obtained by minimizing the empirical holding
and order arrangement cost f(ST ;h,{pathk}k∈T1), which is defined as follows.

f(ST ;h,{pathk}k∈T1) =
∑
k∈T1

{
Lk−1∑
l=1

I{DT kl ≤ ST}(DT kl ·h) + I{DT kl >ST}(ST ·h+ c)

}
+{ST ·h+ c}, (50)

where the first term accounts for the total cost for the first Lk − 1 consecutive orders whose
subsequent choice is to make another order. For each order at position l < Lk, DT

k
l ≤ ST indicates

that a new order arrives by the holding threshold ST . According to the static policy, it only incurs
a holding cost DT kl · h for the current order. In contrast, if DT kl > ST , a new order arrives after
the holding threshold ST , in which case the current order has been sent to the 3PL. Therefore,
not only the holding cost ST · h but also the order arrangement cost is incurred. The last term
represents the cost incurred by the order at position Lk. By definition, no orders arrive for the
maximal dwell time hence both holding and order arrangement cost is incurred.

With the optimal threshold ST ∗ obtained from the training samples, we can evaluate its perfor-
mance on the testing samples {pathk}k∈T2 where T2 is the indices of testing samples. The static
policy is easy to implement and computationally efficient.

F. Estimating The Holding Cost Per Period h

We estimate the holding cost per period h as follows: (i) The retailer sets a target order arrangement
fee reduction R. (ii) We determine the minimum threshold (number of periods) τ(R) to achieve the
target. (iii) We find the maximum holding cost per period h such that the optimal static threshold
is at least τ(R).

First, we can formulate a linear program to determine the threshold τ(R) to achieve the target
of order arrange fee reduction.

τ(R) = min
τ
τ

s.t. f(0; 0,{pathk}k∈[K])− f(τ ; 0,{pathk}k∈[K])≥Rf(0; 0,{pathk}k∈[K]) (51)

τ ∈ 〈30〉,
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where R denotes the target order-arrangement cost reduction level and 0 ≤ R ≤ RU =
f(0;0,{pathk}k∈[K])−f(30;0,{pathk}k∈[K])

f(0;0,{pathk}k∈[K])
. By setting h to 0, f(τ ; 0,{pathk}k∈[K]) represents the empirical

order arrangement cost by holding the order for τ , which is decreasing in τ . Therefore, the problem
can be solved via bisection search efficiently.

Given a threshold τ , we intend to find the maximal h such that the threshold is the optimal
static threshold leading to the smallest total holding and order-arrangement cost, which serves as
a soft constraint to ensure the timely delivery. Specifically, h∗(τ) can be estimated by solving the
following linear program:

h∗(τ)∈ arg max
h≥0

h (52)

s.t. f(τ ;h,{pathk}k∈[K])≤ f(ST ;h,{pathk}k∈[K]),∀ST ∈ 〈T 〉, ST 6= τ,

where the cost function f(ST ;h,{pathk}k∈[K]) defined in (50) is linear in h. We start by setting τ
to τ(R). If problem (52) with τ = τ(R) is feasible, we set the holding cost per period to h∗(τ(R))
for a given target R. If problem (52) with τ = τ(R) becomes infeasible, we set h to h∗(τ ∗) where
τ ∗ is the smallest τ > τ(R) such that the problem (52) is feasible. It is worthwhile to point out
that we can always find such a τ ∗ as when τ ∗ = T , h= 0 is feasible. With the estimation above,
the optimal static policy of the system with the estimated h as the holding cost per period can
achieve the target of order-arrangement reduction level R.

For the numerical experiments in Section 7, we use transaction paths with T = 30 minutes.
We set R= 0.85RU ,0.65RU ,0.45RU , and 0.25RU , where RU =1.72%, which results in h= 0.262×
10−3,0.861× 10−3,1.775× 10−3, and 2.788× 10−3 respectively.

G. Tables

Table 9 Description of the “SKUs” table

Field Data type Description Sample value

sku ID string Unique identifier of a product b4822497a5
type int 1P or 3P SKU 1
brand ID string Brand unique identification code c840ce7809
attribute1 int First key attribute of the category 3
attribute2 int Second key attribute of the category 60
activate date string The date at which the SKU is first introduced 2018/3/1
deactivate date string The date at which the SKU is terminated 2018/3/1

Table 10 Description of the “users” table

Field Data type Description Sample value

user ID string User unique identification code 000000f736
user level int User level 10

first order month string First month in which the customer placed an
order on JD.com (format: yyyy-mm) 2017-07

plus int If user is with a PLUS membership 0
gender string User gender (estimated) F
age string User age range (estimated) 26-35
marital status string User marital status (estimated) M
education int User education level (estimated) 3
purchase power int User purchase power (estimated) 2
city level int City level of user address 1
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Table 11 Description of the “orders” table

Field Data type Description Sample value

order ID string Order unique identification code 3b76bfcd3b
user ID string User unique identification code 3cde601074
sku ID string SKU unique identification code 443fd601f0
order date string Order date (format: yyyy-mm-dd) 2018/3/1

order time string Specific time at which the order gets placed 2018-03-01
11:10:40

quantity int Number of units ordered 1
type int 1P or 3P orders 1
promise int Expected delivery time (in days) 2
original unit price float Original list price 99.9
final unit price float Final purchase price 53.9
direct discount per unit float Discount due to SKU direct discount 5
quantity discount per unit float Discount due to purchase quantity 41
bundle discount per unit float Discount due to bundle promotion 0
coupon discount per unit float Discount due to customer coupon 0
gift item int If the SKU is with gift promotion 0
dc ori int Distribution center ID where the order is shipped from 29

dc des int Destination address where the order is shipped to
(represented by the closest distribution center) 29

Table 12 Description of the “clicks” table

Field Data type Description Sample Value

sku ID string SKU unique identification code b4822497a5
user ID string User unique identification code 94ff800585

request time string The time at which the customer clicks the SKU item page 2018-03-01
23:57:53

channel string The click channel wechart

Table 13 Summary of consecutive orders for each user level

user level
proportion
of orders for
each user level

number of
non-consecutive
orders

number of
consecutive
orders

empirical percentage of
the orders that have
a consecutive order

average predicted
probability of placing
consecutive orders

1 (Individual) 28.05% 120,227 809 0.72% 0.72%
2 (Individual) 30.87% 131,948 1,273 0.90% 0.90%
3 (Individual) 21.01% 89,654 1,014 1.08% 1.07%
4 (Individual) 18.96% 79,718 2,083 2.50% 2.49%
10 (Enterprise) 1.07% 3,347 1,291 27.84% 27.80%

Table 14 Summary of consecutive orders for each position

position 1 2 3 4

empirical percentage of the orders that have a consecutive order (%) 1.16 12.29 51.89 83.40
average predicted probability of placing consecutive orders (%) 1.16 12.22 51.42 82.74
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