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Bring-Your-Own-Application (BYOA): Optimal
Stochastic Application Migration in Mobile Cloud

Computing
Jonathan Chase†, Dusit Niyato†, and Sivadon Chaisiri‡

† School of Computer Engineering, Nanyang Technological University, Singapore
‡ Cyber Security Lab, Department of Computer Science, University of Waikato, New Zealand

Abstract—The increasing popularity of using mobile devices
in a work context, has led to the need to be able to support
more powerful computation. Users no longer remain in an office
or at home to conduct their activities, preferring libraries and
cafes. In this paper, we consider a mobile cloud computing
scenario in which users bring their own mobile devices and are
offered a variety of equipment, e.g., desktop computer, smart-
TV, or projector, to migrate their applications to, so as to save
battery life, improve usability and performance. We formulate
a stochastic optimization problem to optimize the allocation of
user applications to equipment despite future uncertainties. Fur-
thermore, we extend the scenario to consider multiple locations
and geographic migration. The performance evaluation shows
the superior benefit, e.g., higher profit, compared with a baseline
algorithm.

Index Terms—Mobile cloud computing, application migration,
stochastic programming.

I. INTRODUCTION

Mobile cloud computing is pervasive in all its many forms,
such as phones, tablets, and laptops. Such is the ubiquity
of these devices, that even users who are not ‘tech savvy’
prefer to use their mobile hardware for work and play, rather
than desk-bound equipment. Bring Your Own Device (BYOD)
paradigm aims to provide all the features of corporate com-
puting, whilst not inhibiting the convenience and mobility of
workers using their own mobile computers. These devices
vary in computational resources, operating systems, as well
as battery life, and this heterogeneity presents a number of
technical challenges. Inspired by this phenomenon, this paper
examines a mobile cloud computing setting, with the option
to offload computation and migrate user interface to more
powerful equipment when constrained by battery life. The
surfeit of mobile devices at coffee shops is a clear indicator of
the average person’s desire to work ‘on the go’. By employing
application migration, users can move away from their battery-
limited mobile device with small screen when necessary, and
continue working on alternative equipment. We consider an
environment in which users can bring their own mobile devices
to a location such as a library and offload their application
to local equipment such as a desktop computer, smart-TV,
or projector. This application migration can be done, e.g.,
using app and desktop virtualization technology. One example
is from Citrix [1]. The term “Bring-Your-Own-Application”
expresses the idea that the user brings applications (and

mobile device) and use available facility and equipment. We
then examine an extension case, where users are distributed
across multiple physical locations, with the option to move
between locations to access the best resources. Each problem
is formulated as a stochastic optimization and solved, yielding
numerical results that support the optimality of our solution.

The structure of the paper is as follows. In Section II, we
outline some relevant work to provide a background and basis
for our research. In Section III, we provide the context for our
two scenarios, which are presented as stochastic programs in
Section IV and Section V for each case respectively. Finally,
in Section VI we provide test data and numerical results to
support our method.

II. RELATED WORK

Mobile application migration has been a possibility for
several years, but may take place at different levels. If a
virtual machine (VM) is running on a mobile device, the
entire VM can be migrated. Alternatively, applications using
middleware platforms such as J2EE can migrate independent
of OS. Migration can be seamless, online, directly between
mobile devices. An application can be paused on one device
and the state transferred to a new device [2] that supports the
same middleware.

An application-level approach may be useful to overcome
hardware heterogeneity. [3] migrates at the application-level,
partitioning the migration to minimize overhead. This also
employs Java’s virtualization, similar to the offloading pro-
posed in [4], which partitions to maximize performance. [5]
builds on this work, considering the impact of migration
on performance, as live migration should be seamless, with
minimal overhead. However, whilst application-layer VMs are
relatively straightforward to partition for offloading, a signif-
icant portion of mobile activity uses web-based technologies,
for applications such as social media, and productivity. HTML
5.0’s Web Workers allow easier partitioning of Javascript pro-
grams, which allows offloading of web-based applications [6].

The described work focuses on migration to the cloud,
but we consider a local offloading point. [7] shows this is
possible by using cloud ‘access points’ as base stations. Rather
than VMs, however, we employ physical equipment that can
be migrated to, similarly to [2]. The ability to carry out a
variety of tasks on your own mobile device, with the option



to offload to more potent computers, gives a strong context for
the scenario we envisage. Application migration is the logical
next step in the development of mobile computing.

This paper aims to exploit an under-researched area, where
users may bring their own devices to a commercial location,
and continue to work, whilst taking advantage of a variety of
offloading options that improve power-efficiency, and simul-
taneously prove profitable to the service providers.

III. MIGRATION ENVIRONMENT

We consider a system model, illustrated in Fig. 1, in a mo-
bile cloud computing setting where users travel to a location,
such as a library or Internet cafe, with their mobile devices.
Here, they can carry out computer-based activities, such as
work or communication, by either offloading applications
to mains-powered equipment (such as a desktop computer
or smart-television) at the location, or by making use of
their mobile device (such as a phone or laptop). App and
desktop virtualization can be used. Demand is communicated
via agent-based discovery, with software running on a user’s
mobile device communicating over a wireless network with
the service provider’s Mobile Device Management System
(MDMS - a similar concept adopted in the BYOD paradigm).
The MDMS can then make a resource provisioning decision
and communicate the result to the user via their mobile device.

Users

Offloading
Devices

Location Geographic
Migration
Route

Case 1

Case 2

User Mobile
Device

Fig. 1. Illustration of the two problem cases, and their intersection.

A commercial location is managed by a system administra-
tor, who will seek to maximize their profits by charging users
for the use of their equipment, much as an Internet cafe would.
It is in the administrators’ interests, therefore, to maximize
the number of users who are able to offload, for as long as
they require the equipment available. Users who cannot access
equipment, or who run out of battery, are lost customers.

Users do not interact directly with the system administrator,
however. A third party who acts as a broker, aims to maxi-
mize the profit from user allocation. The broker is location-
independent, and is therefore free to consider moving users
to alternative locations where equipment may be available.
Geographic migration has a negative impact on a user’s battery
level, and creates a less positive image of the service, which
may result in lost business in the future. The broker aims to
maximize allocation, and therefore profit.

Users may arrive with their own mobile device, which has a
limited battery charge, and varying application requirements.
The number of users arriving at any point in time is uncertain,
as is the length of their stay, the application that they wish to
offload, and the battery level of their mobile device. These
factors are only exactly known at the moment of the user’s
arrival. To optimally allocate equipment to users, we must con-
sider these uncertainties. Thus a decision made in the present
will have implications for future equipment availability. We
model this using a series of time periods. Users arrive at the
beginning of a time period (e.g. every 5 minutes), and are
allocated to equipment. In subsequent time periods, users must
be allocated to what is available, or be turned away - thus
the initial allocation must be well chosen. We can model this
scenario using a stochastic optimization problem with multi-
stage recourse.

A. Uncertainty Parameters

The system model under consideration contains various
uncertain factors. For a given time period, the number of users
is unknown in advance; it is revealed at the beginning of the
time period. Additionally, for each user, the battery level of
their mobile device, the application they wish to run, and the
duration of their stay are also uncertain. These factors can be
modeled as a tuple, containing the number of users, and each
of the uncertain factors for each user. Each tuple is a scenario
ω ∈ Ω, where Ω is the set of all scenarios. Once the particular
scenario that has occurred is known, it is then known as a
‘realization’, each with a probability. Stochastic optimization
aims to maximize the expectation across all scenarios. The set
of terms representing all these concepts are given in Table I. In
the following two sections, we introduce two allocation cases
in this environment.

IV. CASE 1: SINGLE LOCATION

The first case that we consider concerns a single location.
A location administrator aims to maximize their profits by
finding the optimal allocation of users to equipment. Users
may have a variety of applications that they wish to run, which
are compatible with some, but not necessarily all, equipment.
Once a user is allocated to a particular piece of equipment,
they must be allowed to remain for the full duration of their
stay. If a user cannot be allocated to compatible equipment
for the full length of their visit, they are turned away. Turning
away users does not literally incur a cost to the administrator.
However, it can still be regarded as lost business. Thus, to
limit the number of rejected users, we model the lost users as



TABLE I
LIST OF KEY NOTATIONS.

Symbol Definition
I Set of all users, while i ∈ I denotes the user index.
J Set of all equipment classes that can be offloaded to. j ∈ J denotes the equipment class index.
T Set of all time periods while t ∈ T denotes the time period index.
P Set of all physical locations while p ∈ P denotes the location index.

Fij(ω) Binary compatibility switch, indicating compatibility between user’s application and offloading equipment.

D
(n)
i (ω), D

(b)
i (ω), D

(m)
i (ω) Demand parameters, for network and battery for a user’s application, and the battery migration cost for user i.

Dit(ω), Dipt(ω) Binary demand value for user i and the equivalent value by provider for Case 2.

T (n), T
(b)
i (ω) Capacity of network, user’s mobile device battery under scenario ω.

Tj , Tjp The amount of available equipment of class j, and the equivalent capacity for each provider for Case 2.
Bj Binary parameter indicating whether equipment class j uses mobile battery.

Cj , Cjp, Ci, C
(m)
i Equipment profits under Case 1 and 2, respectively. Cost of losing users and migrating users, respectively.

xijt(ω), xijpt(ω) Decision variables for equipment allocation in Case 1 and Case 2, respectively.
zit(ω), mipt(ω) Penalty variables for lost users and user migration.

a negative cost in the problem formulation. The profit gained
by a provider in a given scenario is calculated as the sum
of profits from each user-equipment allocation across all time
periods, minus the total penalty cost of all lost users in the
same time frame. Given the uncertainties, we aim to maximize
the net expected profit given the set of possible scenarios. This
cost function is given in (1).

Q(ω) = max EΩ

[ ∑
i∈I

∑
j∈J

∑
t∈T

(Cjxijt(ω) − Cizit(ω))
]
, (1)

Application migration is performed wirelessly across the
location’s network. Since this network has a bandwidth limit,
the bandwidth requirements and application migration band-
width costs for all applications must be less than the bandwidth
capacity of the network. This is modelled in (2), where the sum
of the bandwidth costs of each user-equipment allocation must
be less than the network capacity in each time slot.

∑
i∈I

∑
j∈J

D
(n)
i (ω)xijt(ω) ≤ T (n), ∀t ∈ T , (2)

Due to the limited battery life of a mobile device, for any
allocation that requires usage of a user’s mobile battery, the
battery must have sufficient charge to satisfy the application
demands for the duration of its usage. We model this in (3). For
each user-equipment allocation, we sum their battery demand
for the duration of their stay across the set Tiω , which is the
subset of T containing the time periods that user i requires
equipment for, under scenario ω.

∑
t∈Tiω

BjD
(b)
i (ω)xijt(ω) ≤ T

(b)
i (ω), ∀i ∈ I,∀j ∈ J , (3)

A physical location has limited equipment capacity. We
ensure that the number of users allocated to each equipment
class does not exceed the amount of available equipment of
that class in a given time slot, given in (4).

∑
i∈I

xijt(ω) ≤ Tj , ∀j ∈ J ,∀t ∈ T , (4)

A user’s demand in a given time period is either 1 or 0 - they
either want equipment or do not. The demand for a user must
be met either by an equipment allocation or by a rejection of
the user. The number of users allocated to equipment cannot
be greater than the actual user demand (given in (5)), and
any unallocated users must be accounted for, they cannot be
ignored, this is defined in (6).

∑
j∈J

xijt(ω) ≤ Dit(ω), ∀i ∈ I,∀t ∈ T , (5)

(
zit(ω) +

∑
j∈J

xijt(ω)
)
≥ Dit(ω), ∀i ∈ I,∀t ∈ T , (6)

Not all applications are suitable or compatible with all
equipment. A desktop computer may be valid for all appli-
cations, whilst a projector may only be applicable to certain
uses. To prevent allocation of users to equipment that is not
consistent with their chosen application, we use a binary
parameter, Fij(ω) to limit the allocation of user to equipment
under a given scenario. Since the decision variable xijt(ω) is
binary, if Fij(ω) is 0, the constraint (7) ensures that xijt(ω)
will also be 0.

xijt(ω) ≤ Fij(ω), ∀i ∈ I,∀j ∈ J ,∀t ∈ T , (7)

Finally, we must restrict the range of the decision variables.
A user can either be allocated to equipment or not, thus we
use binary variables to indicate the allocation of users to
equipment and if a user has been rejected, as shown in (8)

xijt(ω), zit(ω) ∈ {0, 1}. (8)

To find the optimal user-equipment allocation for Case 1, we
use a stochastic optimization to find the maximum expected
profit, (1), subject to constraints (2)-(8). Stochastic optimiza-
tion problems are not straightforward to solve. However, it is
reasonable to assume that the problem has finite support. We
can formulate the stochastic optimization as a deterministic
equivalent. Each constraint is evaluated for all members of
Ω, with the cost function summed across Ω, weighted by
the probability of each scenario. This results in a binary



linear program, which can be solved using a branch-and-bound
algorithm.

V. CASE 2: MULTIPLE LOCATIONS

In the second case, a user can migrate application between
locations. This is not seamless, rather we assume that mi-
gration time is included within a time period, but incurs a
battery penalty as the user has to use their mobile device to
work while moving. A service provider manages inter-location
allocation interacting with the location administrators to max-
imize total profit across the whole system. Location migration
is preferable to rejecting users but still creates a negative user
experience. Therefore, we introduce a penalty price, similar to
the rejected user penalty but smaller, as migration is preferable
to rejection. Total cost is the expected sum of net profit across
all time periods, locations and equipment, as given in (9).

Q(ω) = max EΩ

[ ∑
i∈I

∑
j∈J

∑
p∈P

∑
t∈T

(Cjpxijpt(ω)

−Cizit(ω) − C
(m)
i mit(ω))

]
, (9)

The Case 1 network capacity constraint, (2), is mirrored
as expressed in (10), but is additionally specified to constrain
each location, since they do not share a network. Instead, they
operate independently of each other. Applications migrating
to a location must not overload that location’s network.

∑
i∈I

∑
j∈J

D
(n)
i (ω)xijpt(ω) ≤ T (n), ∀p ∈ P,∀t ∈ T , (10)

We simulate battery consumption for each user-equipment
allocation in the same way as (3). However, we must track a
user’s battery consumption as they move between locations.
Since each user is unique, we can find the sum of their
battery consumption across all locations. If migration occurs,
a penalty, D

(m)
i (ω), is imposed, representing the amount of

battery used when a user i physically migrates. This adds to
the battery consumption, which must be less than the user’s
mobile battery capacity. This constraint is given in (11).

∑
t∈Tiω

( ∑
p∈P

(BjD
(b)
i (ω)xijpt(ω)) + D

(m)
i (ω)mit(ω)

)

≤ T
(b)
i (ω), ∀i ∈ I,∀j ∈ J ,

(11)

Offloading equipment is maintained by each location, with
equipment remaining stationary. (12) mirrors (4) in Case 1,
but must be calculated for each location separately.

∑
i∈I

xijpt(ω) ≤ Tjp, ∀j ∈ J ,∀p ∈ P,∀t ∈ T , (12)

Demand is met in the same fashion as Case 1, but must be
met across all locations, as shown in (13)- (14). This ensures
that the total demand for the whole system is satisfied.

∑
j∈J

∑
p∈P

xijpt(ω) ≤
∑
p∈P

Dipt(ω), ∀i ∈ I,∀t ∈ T , (13)

(
zit(ω)+

∑
j∈J

∑
p∈P

xijpt(ω)
)
≥

∑
p∈P

Dipt(ω), ∀i ∈ I,∀t ∈ T ,

(14)
Demand for each individual user at a location must be met

by either migration, assignment or rejection, as in (15). This
complements the previous constraint, which ensured that the
demand is met across the whole system. Thus all demand
is satisfied, but any demand not satisfied at a user’s arrival
location incurs the migration penalty.

mit(ω) + zit(ω) +
∑
j∈J

xijpt(ω) ≥ Dipt(ω),

∀i ∈ I,∀p ∈ P,∀t ∈ T , (15)

(16) performs the same function as (7). Unlike Case 1,
compatibility must be checked at each location - a user cannot
be migrated only to discover that the equipment available at
the other location is not compatible.

xijpt(ω) ≤ Fij(ω), ∀i ∈ I,∀j ∈ J ,∀p ∈ P,∀t ∈ T , (16)

We constrain xijpt(ω) and zit(ω) similarly to (8). mit(ω)
is also constrained to be a binary variable in (17), as a user
cannot partially migrate, in the same way that a user cannot
be partially rejected.

xijpt(ω), zit(ω),mit(ω) ∈ {0, 1}. (17)

Case 2 can also be formulated as a stochastic optimization
problem, as laid out in equations (9)-(17). This optimization
will maximize profit across multiple locations, even if one lo-
cation has a smaller amount of equipment. Similarly to Case 1,
we can reformulate Case 2 as a deterministic binary linear
program, and solve with the same method. It is important to
define user demand carefully for Case 2, to ensure that a user
does not appear at multiple locations, as this is not explicitly
precluded in the formulation.

VI. PERFORMANCE EVALUATION

A. Parameter Settings

To test our formulations, we evaluate a moderately sized In-
ternet cafe. The evaluation considers 4 periods. There are four
different equipment classes, two of which are mains-powered
and two of which are not. Users may require equipment for
either one period or two periods, and have a choice of three
different applications - either productivity, video streaming,
or online communication. The wireless LAN has a total
capacity of 300Mbps, achieved by a few access points com-
bined together. Each instance of the productivity application
requires 256kbps bandwidth, the video application requires
1500kbps (based on Netflix recommended bandwidth [8]) and
the communication application requires 500kbps - based on
Skype bandwidth estimates [9]. Equipment prices are based
on prevailing Internet cafe rates in Singapore [10], with
J1 returning $2 profit, and the remaining three equipment



classes gaining $1 per period. Battery charge levels and
battery demand are modeled as decimals where 1.00 is a full
battery. Applications K1,K2 and K3 use 0.10, 0.20 and 0.30
battery per time period, respectively, while user battery levels
may be 0.25, 0.50, 0.75, or 1.00. Users for each combination
of application, duration and battery level are unique, only
appearing once during the entire 4 periods, with the number
of unique users fitting each scenario in each time period
being either 15, 30 or 40. The maximum number of users
per time period is 40, as users fitting one profile will not
reappear with a different set of requirements. Demand settings
are synthesized from survey data on the use of a Malaysian
Internet cafe [11]. Compatibility is chosen according to the
power of the equipment and the demands of the applications.

1) Case 1: In Case 1, the default amount of equipment for
J1, J2, J3 and J4 are 30, 20, 30 and 20, respectively. This is
also applicable to Case 2.

2) Case 2: In Case 2, there are three equidistant locations.
The amount of available equipment at each is identical, with
user demand divided across each location - a user may arrive
at any of the locations, although only one location at a time.
However, the wireless LAN capacity varies between locations
with P1, P2 and P3 having capacities 300, 600 and 450 Mbps,
respectively. Travelling between locations drains 10% of the
battery lost in one time period by the required application.

B. Numerical Results

As long as a stochastic optimization has finite support, a
deterministic equivalent can be formulated and solved as a
linear, mixed integer, or binary integer program.

1) Case 1: Effect of the amount of available equipment on
lost users: We set the amount of available equipment to 30
and, varying each class in turn, examine the effect on the
expected number of lost users. The results, given in Fig. 2,
are as expected. Increasing the amount of available equipment
reduces the number of lost users. The differing steepness of
the lines is primarily caused by the compatibility settings. J1
is compatible with all application types, and is also the most
profitable, thus it is prioritised, with reduction in the amount
of J1 equipment affecting the number of lost users most.
Conversely, J3 is only compatible with one application type,
and therefore has the least impact. Equipment class J2’s larger
effect than J4 is most likely caused by the fact that J2 does
not consume battery resources, making J2 more desirable, as
those users assigned to it are those with lower battery levels
that may not last without offloading. The graphs tend to level
out at the upper end of the curve, this is likely also due to
compatibility, as once all applications of a certain type are
covered, the users lost from incompatible applications cannot
be helped by further increasing that equipment class.

2) Case 1: Effect of changing battery level on lost users:
We also examined the effect of changing the battery level on
the number of lost users. We specify four battery level scenar-
ios, with the highest and lowest having lower probabilities and
the middle values having higher probabilities. We set all the
battery scenario levels to 0.5 and modified one scenario across
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Fig. 2. Variation in lost users by modifying the quantity of each equipment
class in turn.

the range of charges from empty to full in turn. The results for
the battery scenarios with identical probabilities yield the same
shape on the graph, shown in Fig. 3. After a battery level of
0.6, however, both graphs become constant. This is due to the
parameter settings, as the maximum battery consumption from
an application is 0.3 and the maximum length is 2 periods.
Hence, after this, any application can be offloaded to any
equipment regardless of whether battery is required or not.
Each curve is stepped as there is a finite number of battery
demand options, and any battery levels between these demand
values will yield the same number of lost users.
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Fig. 3. Variation in lost users by modifying the battery charge level of users
in each scenario.

3) Case 1: Comparison with a greedy approach: To eval-
uate the benefits of stochastic optimization, we compare its
performance to a greedy allocation of users to equipment on
arrival, without any consideration of future user demand. To
clearly see the result, we use only equipment class J1 and set
its quantity to 30, ensuring that some users are at risk of being
lost. We use a two-period scenario, and vary the percentage of
users who require the full two periods, rather than one. The
difference in profits is shown in Fig. 4. When no users require
the full time, the results are identical, as each decision has no
impact on later periods. However, as the proportion increases,



the stochastic optimization is able to choose users to maximize
profits across both time periods, whilst the greedy approach
does not. The profits from each approach rapidly diverge,
showing the importance of using stochastic optimization over
a simple greedy approach.
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Fig. 4. Demonstration of the value of stochastic optimization over a simple
greedy approach.

4) Case 2: Effect of equipment availability on migration:
The key feature of Case 2 is the ability to migrate unallocated
demand between locations. To test this scenario, we set the
amount of equipment available in each class to 50 for locations
P2 and P3. The amount of equipment available in each class
at P1 is then varied to observe the migratory behaviour. In
Fig. 5, we show the curve for P2, as the migrated demand
is split evenly between P2 and P3. This could be altered
by setting different migration penalties or the amount of
equipment for each provider, an extension we leave for future
work. The curves converge, as the amount of equipment at
P1 increases and the migrations decrease. This is expected,
although it is interesting to observe that the graph is curved,
rather than linear. This is likely due to a combination of
different probabilities between application types, with the least
compatible also being the least frequent. As the amount of
equipment increases, the application demands can be managed
within a location, rather than migrating to other locations.
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Fig. 5. Effect of varying the amount of available equipment on user migration.

VII. CONCLUSION

In this paper we have presented a novel scenario in which
users can offload applications in a mobile cloud computing
setting, to powerful, mains-powered equipment such as PC,
smart-TV, or projector. We maximize profit to the service
provider, and minimize lost users. We have introduced a sec-
ond scenario, with multiple locations, using physical migration
of users to avoid rejections. The stochastic optimization formu-
lations optimally solve each case, accounting for uncertainties
such as the type, quantity, and duration of demand. We have
presented results that accentuate the benefits of our methods,
showing the effectiveness of stochastic optimization over an
alternative, and the value of migration in a combined solution.

Future work would aim to increase the sophistication of
the model. Improvements could include the creation of a
larger, unified solution, consideration of travel delays when
migrating users, bandwidth uncertainty and routing, users
changing application requirements during their session, and
an expansion to include cloud-based resource offloading.

This research area is a logical next step, given mobile device
popularity, and the offering of offloading resources in a mobile
cloud computing setting is an opportunity not to be ignored.
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