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A Scalable Approach to Joint Cyber Insurance
and Security-as-a-Service Provisioning in Cloud

Computing
Jonathan Chase, Dusit Niyato, Ping Wang, Sivadon Chaisiri, Ryan K L Ko

F

Abstract—As computing services are increasingly cloud-based, corpo-
rations are investing in cloud-based security measures. The Security-as-
a-Service (SECaaS) paradigm allows customers to outsource security
to the cloud, through the payment of a subscription fee. However, no
security system is bulletproof, and even one successful attack can result
in the loss of data and revenue worth millions of dollars. To guard
against this eventuality, customers may also purchase cyber insurance
to receive recompense in the case of loss. To achieve cost effectiveness,
it is necessary to balance provisioning of security and insurance, even
when future costs and risks are uncertain. To this end, we introduce a
stochastic optimization model to optimally provision security and insur-
ance services in the cloud. Since the model we design is a mixed integer
problem, we also introduce a partial Lagrange multiplier algorithm that
takes advantage of the total unimodularity property to find the solution
in polynomial time. We also apply sensitivity analysis to find the exact
tolerance of decision variables to parameter changes. We show the
effectiveness of these techniques using numerical results based on real
attack data to demonstrate a realistic testing environment, and find that
security and insurance are interdependent.

Index Terms—Cloud computing, cyber insurance, security as a service,
partial Lagrange multiplier method, sensitivity analysis.

1 INTRODUCTION

In a 2014 report by McAfee it was estimated that financial
losses due to cyber risks were between USD 300 billion
and USD 1 trillion a year [1]. The Identity Theft Resource
Center’s 2016 data breach category summary found that
as of November, there were 873 recorded breaches in the
US with over 29 million records exposed [2]. With the
number of cyber attacks growing, successful attacks are now
a question of ‘when’, not ‘if’. Yet, the Monetary Authority of
Singapore observed that cyber insurance adoption for small
and medium-sized enterprises (SMEs) is less than 10% in
Asia, despite 42% of the world’s Internet users living in the
region [3]. 90% of all cyber insurance is purchased by US
companies, whilst in the UK, only 2% of companies have
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specialist cyber insurance. The market, therefore, has con-
siderable room for further growth, with PricewaterhouseC-
oopers (PwC) estimating that annual premiums could grow
USD 5 billion by 2018 and exceed USD 7.5 billion by 2020 [4].

Outsourcing computation to the cloud is now com-
mon practice, and it is not surprising that the Security-
as-a-Service (SECaaS) paradigm has arisen to counter the
growing level of cyber threats. Thus, an application may
guard against attacks by provisioning security services from
providers such as McAfee [5] and Trend Micro [6]. These ser-
vices may take various forms, such as secure data storage,
identity and access management (IAM), and intrusion de-
tection services to screen incoming traffic [7]. These services
can be provisioned in a similar manner to other cloud ser-
vices, either through advance subscription or dynamically
through on-demand options. SECaaS allows customers to
reduce their security overheads while maintaining a high
level of protection.

Despite the variety of security options available, it is
inevitable that they will eventually be circumvented. Cyber
insurance is used to provide explicit cover in the event that
malicious activity leads to financial loss. Insurance cover-
age may be first- or third-party with first-party insurance
covering eventualities such as theft of money and digital as-
sets, business interruption, and cyber extortion. Third-party
insurance may cover problems such as privacy breaches,
loss of third-party data (e.g. user account information),
and public relations expenses [8]. Major insurers, such as
Allianz [8] or QBE [9] offer cyber insurance policies that
cover a range of first- and third-party risk. Cyber insurance
is an important and growing field, but carries some unique
features that makes it challenging. For example, in 2013,
millions of credit card details were stolen from Target [10].
The extent of a cyber attack can be difficult to assess, and
Target revised its estimate of stolen user records from 40
million to over 70 million. Additionally, the costs of the
attack were not measured in the literal value of the data
stolen, but must be calculated from a combination of factors,
such as damage to business (sales dropped 3-4% over the
previous year), settlement costs with credit card companies,
management of public relations damage, and legal fees. By
2016, costs directly attributable to the breach neared USD
300 million, but the damages were offset by USD 90 million
in cyber insurance payouts [11]. Therefore, it is clear that
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for the majority of companies, whose data breaches will be
of lesser magnitude, cyber insurance is a crucial addition to
their security plans.

As the Target case shows, damages are costly, indem-
nity payouts can be expensive, and it is in an insurance
company’s best interests to encourage customers to also
provision adequate security, rather than only buying cyber
insurance. [12] introduced a combined security and cyber
insurance provisioning scheme that balances the need of
a customer to invest in security to reduce the likelihood
of a successful cyber attack, whilst also acknowledging the
inevitability of cyber damage. The paper employed stochas-
tic optimization to account for the uncertainty of attacks
to avoid both overprovisioning and underprovisioning of
services. We significantly extend the work in that paper
to consider multiple time periods and uncertain costs of
security and insurance premiums. We also improve the
scalability of the solution through a partial Lagrange multi-
plier method, perform an analytical sensitivity analysis, and
base our result on parameters derived from real data. Our
contributions are summarized as follows:

• We devise a stochastic optimization for a customer
to jointly provision security services and buy cyber
insurance premiums across multiple time periods.
We account for uncertainty in traffic quantities and
attack frequency, as well as future uncertainty of
security service prices and insurance premiums.

• Due to the tractability problems of integer program-
ming, we introduce a partial Lagrange multiplier
algorithm to find the optimal solution in, at worst,
polynomial time. We provide proofs of convergence
and scalability.

• We perform a sensitivity analysis, which provides
precise values for solution tolerance to parameter
change. We then demonstrate the effectiveness of our
methods through evaluation of an example scenario,
based on analysis of real attack data to provide
realistic parameter settings.

The paper is organised as follows: Section 2 outlines
the related work, giving background and context on cyber
insurance and SECaaS provisioning. Section 3 outlines the
system model for our combined security and insurance
environment, and the stochastic optimization formulation is
provided in Section 4. To improve the runtime performance
of our solution, we introduce the partial Lagrange multiplier
algorithm in Section 5, and give proofs of its performance
in Section 6. The technique used in our sensitivity analysis
is presented in Section 7. We give comprehensive practical
results in Section 8 demonstrating the effectiveness of our
ideas.

2 RELATED WORK

There are two aspects to the system model which we pro-
pose in this paper. The first is the problem of security service
allocation, and the second is cyber insurance provisioning.
Research in this area primarily addresses the problem of
security allocation, the setting of cyber insurance parame-
ters, and whether there is a symbiotic relationship between
Internet security and cyber insurance.

The notion of Security-as-a-Service (SECaaS) was intro-
duced in [13], where it was proposed as a way of securing
cloud-based data through encryption and distribution of
data. [14] addresses the problem of selecting cloud service
providers (CSP) with security considerations as a priority.
The authors propose a framework to manage risk through
a combination of technology, processes, and people. [15]
considers allocation of resources in a parallel computing
context with the security overhead considered for both
heterogeneous and homogeneous systems. [16] similarly di-
vides security services by priority to optimize processing re-
quirements in a mobile cloud context. Considering real-time
systems that are security-critical, [17] provisions security
services to optimize performance, where the scheduling of
jobs is combined with the allocation of security services. [18]
takes an approach that is both security-aware and budget-
aware.

[19] introduces the idea of firewall-style SECaaS
providers, similarly [20] introduces an API called FlowTap
to provide a security policy enforcement and monitoring
infrastructure for network traffic. This is shown to be impor-
tant as, whilst users can install security software in a virtual
environment, they have no control over the network traffic
in the cloud. We consider this approach for the SECaaS
providers in this paper, which focuses on network traffic
analysis.

The field of cyber insurance contains a number of unique
problems compared to other fields of insurance. Information
asymmetry is a particular problem, where companies are
reluctant to share full details of their security provisioning
with insurers [21]. Further, the frequency of breaches is
difficult to predict [22] and security systems are often in-
terdependent, making it difficult to assess the vulnerability
of a system [23]. This correlation extends to different insured
entities, where the vulnerability of one client may impact an-
other, due to the homogeneity of modern computer systems
and lack of geographical variation. Thus, a vulnerability in
one client’s software package installation may be mirrored
in many others, and may allow the infection of another
client through the first’s system. A scarcity of data com-
pounds the problem, making it challenging to accurately
assess the risk level and determine the correctness of that
assessment [24]. Unlike other fields of insurance, it is even
challenging to determine when an attack has actually taken
place, as many are lengthy and leave liability unclear [25].
The quantification of damage is difficult to define, due to
the intangibility of losses. For the sake of this paper, we
make assumptions that the probability distribution of risk
is known, and damages incurred can be correctly assessed.
This area of cyber insurance requires further work to de-
velop that is beyond the scope of this paper.

Cyber insurance is primarily concerned with the prob-
lem of risk transfer - where the cost from risk is transferred
to the insurer. However, risk management and assessment
is also a notable part of the literature, attempting to address
the issues described above. Risk management is achieved
through the establishment of methodologies and best prac-
tices that are adapted from normal business practices, with
consideration for IT-specific measures [26]. ISO/IEC 27001
is an example of a standard for IT security risk manage-
ment [27], showing that solutions are primarily based on
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business practices, rather than technology. An important as-
pect of risk transfer in cyber insurance is the specification of
the premium. The research in this area is primarily divided
between independent security and interdependent security.
In this paper we focus on the independent case, where
clients are independent of one another. The interdependent
case is more complex and is beyond the scope of this paper.

[28] presents a mathematical model and experimental
results to show that cyber insurance encourages good se-
curity practices, one of the key aspects of cyber insurance.
In many cases, there are both security-related and non-
security-related IT risks, and these are not always easy to
separate. [29] proposes a model of cyber insurance called
Aegis where users choose to take a proportion of liability on
themselves. When insurance is compulsory, this is shown to
be preferable. [30] looks at non-life cyber insurance, that is,
insurance that covers repeated events rather than insuring
against a single event, such as a major cyber attack. Using a
Markov chain to model attack scenarios, the probability of
damages/survival can be established, and premiums are set
accordingly. [12] considers the problem of allocating non-
life insurance alongside SECaaS services, with a stochastic
optimization model finding the optimum allocation of se-
curity and insurance as a joint decision to minimize the
customer’s cost. We use this model as the basis for the
work in this paper, in which we focus on non-life insurance
in an independent-security context. We must assume that
the liabilities can be determined, and that the probability
distribution for attacks is known. Since real cyber attacks
cannot be assumed to conform to typical probability distri-
butions, we require a realistic custom distribution, and so
our numerical results are based on parameters derived from
an analysis of cyber attack data. Whilst it can be argued that
security-conscious system design and business processes are
the most effective defence against cyber threats, the rapidly
changing nature of cyber attacks means that traditional
preventative measures are still necessary. Further, there is
precedent for the use of statistical analysis in protection,
for example in IDS (Intrusion Detection System) imple-
mentations to identify attack behaviours [31] [32]. In this
paper we aim to demonstrate a connection between cyber
insurance and SECaaS provisioning, as properly designed
insurance contracts can incentivize security investment. [33]
shows that cyber insurance does not intrinsically encourage
security investment, but in this paper we add the stipulation
that if packets are not assessed by security services, they are
not liable for insurance coverage, and demonstrate that in
this case, cyber insurance encourages investment in security.
Whilst this is a strong assumption, it is a reasonable and
practical one, as, at the very least, network traffic should
pass through a firewall, and it is common practice for
insurance companies to add exclusions to policies to protect
themselves from reckless clients.

3 SYSTEM MODEL

We consider a SECaaS framework similar to the one used
in [12], containing a customer who uses applications, which
receive Internet traffic in the form of packets. These packets
are scanned by services from SECaaS providers, provisioned
by a subscription management process (SMP). In the event

that harmful packets elude security, cyber insurers, sub-
scribed to by an insurance management process (IMP),
provide compensation for damages incurred. In this section
we outline the components of the system as illustrated in
Fig. 1. The notations for the system model elements are
given in Table 1.

Customer

Applications

Data 

Packets

SMPIMP

Cyber 

Insurers

Security 

Providers

purchase security 

services for customer
purchase insurance 

policies for 

customer

screens 

incoming 

packets

allowed packets 

either screened as 

clean or unhandled

monitors losses 

from unhandled 

packets

pays indemnity for 

covered damages

unhandled packets 

cause damages

Fig. 1: Illustration of interaction between system compo-
nents.

3.1 Security-as-a-Service Model
In our security model, a customer runs applications (de-
noted by set A) that we assume to be Internet-accessible,
either on a cloud service such as Amazon EC2, or in-house
servers managed by the customer. Applications receive data
packets in accordance with their operating purpose, e.g.
email data or financial transactions. Legitimate packets are
called safe packets, while packets used in cyber attacks
are called unsafe packets. Unsafe packets are deemed han-
dled if they are correctly detected by security services,
or unhandled if they are not successfully processed (for
example if they are undetected). These unhandled packets
will cause damage, which incurs costs to the customer.
In reality, security threats may take various forms, and
malicious packets may represent various types of threat,
including malware and backdoor exploits, as well as the
damages caused being manifested in various ways (such
as business interruption caused by malware, data breach
caused by backdoor exploitation). Since this paper examines
the relationship between SECaaS and cyber insurance, we
focus on those threats that can be represented by malicious
packets. However, the model may be extended and applied
to consider other security flaws and the probability of their
exploitation, as well as the nature of the damage caused, and
the duration of the damage. This extension is left for future
work. Security services are provisioned and charged on a
per-packet basis. Security providers (denoted by set S) can
offer customers prepaid plans tailored to each application
(denoted by set Pas) which have a particular per-packet
price, duration, and maximum number of packets. Prepaid
services are provisioned in advance, with services utilized
according to the incoming traffic at the present time. In the
event that the prepaid services are not sufficient, further
services can be provisioned under an on-demand pricing
scheme. On-demand allocation can be done dynamically,
at a per-packet usage price that is higher than that of the
prepaid scheme.
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3.2 Cyber Insurance Model
Customers can purchase cyber insurance products in the
form of insurance policies (denoted by set L) from insurance
companies (denoted by set I) that compensate them for
incidents and disasters such as data breach, data corruption,
and business interruption. The IMP purchases insurance
policies, which includes the premium, types of risks cov-
ered, indemnity value, and policy duration. These insurance
policies can be packaged with security services, to cover
damages caused by undetected unsafe packets. The price
for insurance purchased in advance is charged at a rate
known as a ‘present premium’. However, the insurer may
adjust charges for the same policy at a future time, which
is obtained in an on-demand fashion, known as a ‘future
premium’. Insurance covers an application and the coverage
of an application can only be purchased from one insurer
at a given time. Further, we assume that damages can be
accurately determined. This may be in various forms, such
as a ‘ransom’ paid [34], or the cost of legal fees and court
settlements, as in the case of Target’s 2013 data breach [11].
We assume that both first- and third-party damages are
covered by the insurance, and that each unhandled packet
for an application has the same damage cost and insurance
coverage. These assumptions simplify the model with re-
moval of each assumption left for future work.

7/11/2016 - 14/11/2016

Preparation Stage Packet Arrival Stage Claim Stage

7/11/2016 - 14/11/2016 7/11/2016 - 14/11/2016

· SMP purchases security 

services using prepaid plans

· IMP purchases insurance 

using present premiums

· Packets arrive, quantity 

passed to SMP and IMP

· SMP allocates security 

services, purchases on-

demand services if necessary

· IMP may purchase insurance 

using future premiums if 

necessary

· IMP identifies the number of 

unhandled malicious packets

· Claims for damages are 

made to the insurance 

company

7/11/2016 - 14/11/2016 7/11/2016 - 14/11/2016 7/11/2016 - 14/11/2016

Each time period contains each provisioning stage:

T1 T2 T3

Prep Arrival Claim Prep Arrival Claim Prep Arrival Claim

Fig. 2: In each time period, there are three provisioning
stages. This figure illustrates an example case with 3 time
periods, however this can be freely expanded to n time
periods.

3.3 Decision Stages
Our system model takes place across multiple time periods
(e.g. one hour or one day), as illustrated in Fig. 2. The set
of all time periods is defined as T = {t1, t2, t3, . . . , tn},
where n denotes the number of time periods. Security
service reservation and cyber insurance policies may last for
multiple time periods. For example, a user may purchase
prepaid security services for two time periods, allowing
them to use those services in the following time period at

no additional cost. Let t denote the current time period, then
Fpt denotes the set of previous time periods (including the
current time period) in which security plan p could have
been purchased and still be active. Let |p| denote the length
of plan p, then Fpt = {max(1, t−|p|+1), . . . , t}. Flt denotes
the equivalent set for insurance policies, where l denotes the
policy. Each individual time period consists of three decision
stages. The first stage is the ‘preparation stage’. In this
stage, the SMP and IMP make initial provisioning choices
to provision prepaid security services and buy insurance
policies using the present premium. The second stage is
the ‘packet arrival stage’, where the number of incoming
packets is realized. The number of required prepaid services
and any additional on-demand services are provisioned,
and additional insurance can be purchased using the future
premium. The third and final stage is the ‘claim stage’,
where the number of unhandled packets is realized and the
damage costs and per-packet indemnity are calculated. It is
assumed that insurance claims for unhandled packets are
approved and there are no attempts to defraud the insurer.

3.4 Uncertainty Parameters

Our model contains a number of uncertain parameters,
which are not known in advance. For example in the prepa-
ration stage, the number of arriving packets at an applica-
tion, and the corresponding number of unhandled packets,
are unknown, and are represented by random parameters.
Likewise, insurance premium costs and SECaaS prices may
be uncertain, as they can be adjusted by providers, so these
are also treated as random parameters (since the pricing
strategy is opaque to the customer). In the preparation stage,
the prepaid security and present premium prices are known.
In the packet arrival stage, the number of arriving packets
and the future premiums are known. In the claim stage, the
number of unhandled packets is known.

An unrealized circumstance is known as a scenario,
which is called a realization when it occurs at a particular
time. Let Ω† represent the set of scenarios in the prepara-
tion stage. Then, given realization ω†, Ω‡(ω†) represents
the set of possible scenarios in the packet arrival stage.
Likewise, given the pair of realizations (ω†, ω‡), Ω‡‡(ω†, ω‡)
represents the set of possible scenarios in the claim stage.
The terms πω† , πω‡ , and πω‡‡ represent the corresponding
probabilities of the scenarios, and scenario sets of each pro-
visioning stage have finite support and have probabilities
summing to 1. The scenario probabilities of a time period t
are independent from those of other time periods, so the
probabilities of scenarios in period t are not affected by
events in period t− 1.

3.5 Decision Variables

The solution of a stochastic optimization formulation is
known as a decision, and is represented by a set of values
assigned to the decision variables.

3.5.1 Preparation Stage Variables
The following are the decision variables for the preparation
stage. (1) defines the domain of prepaid security services,
where X†

asptω† denotes prepaid services from provider s,
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covering application a under security plan p, and (2) defines
the domain of W †

asiltω† , which denotes the binary decision
to buy insurance policy l using the present premium from
insurer i to cover application a as protected by security
provider s. These are evaluated over time stage t, and
therefore must be considered for each scenario ω†.

X†
asptω† ∈N0,∀a ∈ A, s ∈ S, p ∈ Pas,

t ∈ T , ω† ∈ Ω†, (1)

W †
asiltω† ∈{0, 1},∀a ∈ A, s ∈ S, i ∈ I, l ∈ L,

t ∈ T , ω† ∈ Ω†. (2)

3.5.2 Packet Arrival Stage Variables
The variables for the packet arrival stage are defined as
follows:

W ‡
asiltω‡ ∈{0, 1},∀a ∈ A, s ∈ S, i ∈ I, l ∈ L, t ∈ T ,

ω‡ ∈ Ω‡(ω†), (3)
Yasptω‡ ∈N0,∀a ∈ A, s ∈ S, p ∈ Pas, t ∈ T ,

ω‡ ∈ Ω‡(ω†), (4)

Zastω‡ ∈N0,∀a ∈ A, s ∈ S, t ∈ T , ω‡ ∈ Ω‡(ω†). (5)

W ‡
asiltω‡ in (3) represents the choice to purchase insurance

using the future premium, as an alternative to W †
asiltω† ,

subject to scenario ω‡ in time t. Yasptω‡ in (4) indicates the
number of prepaid services to be executed and Zastω‡ in (5)
is the number of on-demand services that additionally need
to be provisioned to cover any shortfall.

3.5.3 Claim Variables
The variables for the claim stage are defined as follows:

Cω‡

asitω‡‡ ∈N0,∀a ∈ A, s ∈ S, i ∈ I, t ∈ T ,
ω‡ ∈ Ω‡, ω‡‡ ∈ Ω‡‡(ω†, ω‡), (6)

C‡ω
‡

asitω‡‡ ∈N0,∀a ∈ A, s ∈ S, i ∈ I, t ∈ T ,
ω‡ ∈ Ω‡, ω‡‡ ∈ Ω‡‡(ω†, ω‡). (7)

Cω‡

asitω‡‡ , whose domain is defined in (6), is the number of
unhandled packets claimed for that have insurance cover-
age paid for by a present premium whilst C‡ω

‡

asitω‡‡ , defined
in (7), is the number of unhandled packets claimed for
that have coverage paid for by a future premium. This
is under the realization of unhandled packets in scenario
ω‡‡ ∈ Ω‡‡(ω†, ω‡).

4 PROBLEM FORMULATION

The stochastic optimization problem can be represented as a
nested formulation with multi-stage recourse. The solutions
for both the IMP and the SMP can be obtained using the
following sequence of equations:

min EΩ†

[
Q†(X†,W †, ω†) + EΩ‡

[
Q‡(Y, Z,W ‡, ω†, ω‡)

+ EΩ‡‡ [Q‡‡(C,C‡, ω†, ω‡, ω‡‡)]
]]
. (8)

The objective function in (8) minimizes the total cost of
both security service and insurance allocation across all time
periods in the set T , and thus it is only necessary to solve the
optimization once for all t ∈ T . The problem formulation
is nested, as the expected value of each decision stage is
affected by the expected value of the following stages. For
example, the expected value of the packet arrival stage is
determined, not only by the packet arrival stage variables,
but also by the expected value of the claim stage. Therefore,
the decisions made in the preparation stage and packet
arrival stage are made in consideration of the effect those
decisions will have on the expected value of the subsequent
stages. This allows decisions to be made in the present
that will have the best outcome in the future. The function
Q†(·) is an optimization problem to minimize the cost of the
preparation stage across all time periods, and is defined as
follows:

Q†(X†,W †, ω†) = min
[
R†(ω†)

]
(9)

where: R†(ω†) =
∑
a∈A

∑
s∈S

∑
t∈T

( ∑
p∈Pas

k†
asptω†X

†
asptω†

+
∑
i∈I

∑
l∈L

f†
asiltω†W

†
asiltω†

)
, (10)

s.t. (1), (2),∑
p∈Pas

X†
asptω† ≤ easp,∀a ∈ A, s ∈ S, t ∈ T , (11)∑

i∈I

∑
l∈L

W †
asiltω† ≤ 1,∀a ∈ A, s ∈ S, t ∈ T . (12)

The objective function in (9) is to minimize the value of
the function R†(·), which denotes the cost of the prepa-
ration stage in all time periods, where k†

asptω† gives the
prepaid security service cost, and f†

asiltω† is the present
insurance premium price. The constraint in (11) ensures that
the number of prepaid services does not exceed the packet
limit of provider s, for plan p, denoted by easp. Similarly,
the constraint in (12) ensures that each application is only
covered by one insurer at a time. Given fixed values of the
decision variables, X†

asptω† and W †
asiltω† , we optimize the

cost of the packet arrival stage as follows:

Q‡(Y, Z,W ‡, ω†, ω‡) = min
[
R‡(ω†, ω‡)

]
(13)

where: R‡(ω†, ω‡) =
∑
a∈A

∑
s∈S

∑
t∈T

(
k‡
astω‡Zastω‡

+
∑
i∈I

∑
l∈L

f‡
asiltω‡W

‡
asiltω‡

)
, (14)

s.t. (3)− (5),

Yasptω‡ ≤
∑

t̂∈Fpt

X†
aspt̂ω† ,∀a ∈ A, s ∈ S, p ∈ Pas, t ∈ T ,

(15)

naω‡ ≤
∑
s∈S

Zastω‡ +
∑

p∈Pas

Yasptω‡

 ,∀a ∈ A, t ∈ T ,
(16)
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TABLE 1: List of Key Notations.

Symbol Definition
A Set of all user applications, while a ∈ A denotes the application index.
S Set of all SECaaS providers, while s ∈ S denotes the provider index.
T Set of all time periods, while t ∈ T denotes the time period index.
Pas Set of all security plans, while p ∈ Pas denotes the plan index.
I Set of all cyber insurers, while i ∈ I denotes the insurer index.
L Set of all insurer policies while, l ∈ L denotes the policy index.

Ω†,Ω‡(ω†),Ω‡‡(ω†, ω‡) Set of all scenarios for preparation stage, packet arrival stage, and claim stage with each set dependent on the
scenario choice from the previous stage, while ω†, ω‡, ω‡‡ are the corresponding scenario indices.

k†
asptω† , k

‡
astω‡ The cost of prepaid security services and on-demand under scenarios ω†, and ω‡, respectively.

f†
asiltω† , f

‡
asiltω‡ Present insurance premium and future premium under scenarios ω†, and ω‡, respectively.

easp Limit of prepaid packets for application a set by provider s under plan p.
naω‡ The total number of packets arriving at application a in scenario ω‡.
ua The damages cost caused per packet .

mω‡

asω‡‡ The number of packets unhandled by provider s arriving at application a.
hasi The indemnity payable for unhandled packets by insurer i.
gasi The number of packets covered by insurer i for security service s.

X†
asptω† Decision variable for prepaid security services in the preparation stage.

W †
asiltω† ,W

‡
asiltω‡ Decision variables for present and future insurance premiums, respectively.

Yasptω‡ , Zastω‡ Decision variables for security services to be utilized under the prepaid and on-demand schemes, respectively.

Cω‡

asitω‡‡ , C
‡ω‡

asitω‡‡ Decision variables for number of packets claimed for under present and future premiums, respectively.

∑
l∈L

(W †
asiltω† +W ‡

asiltω‡) ≤ 1,∀a ∈ A, s ∈ S, i ∈ I, t ∈ T ,

(17)∑
i∈I

∑
l∈L

W ‡
asiltω‡ ≤ 1,∀a ∈ A, s ∈ S, t ∈ T . (18)

The optimization problem in (14) minimizes the cost
of the packet arrival stage. k‡

astω‡ gives the on-demand
security cost and f‡

asiltω‡ is the future insurance premium
cost. The constraint in (15) ensures that utilized security
does not exceed the prepaid provisioning. The constraint
in (16) ensures that the mixture of prepaid and on-demand
security services are sufficient to cover incoming packets
naω‡ . The constraints in (17) and (18) are similar to that
in (12), ensuring that only one insurer is bought from under
present or future premiums per application. Finally, we also
minimize the cost of the claim stage. Assuming fixed values
of the decision variables W ‡

asiltω‡ , Yasptω‡ and Zastω‡ , we
can define the function Q‡‡(·) as a minimization problem in
the following way:

Q‡‡(C,C‡, ω†, ω‡, ω‡‡) = min
[
R‡‡(ω†, ω‡, ω‡‡)

]
(19)

where: R‡‡(ω†, ω‡, ω‡‡) =
∑
a∈A

∑
s∈S

∑
t∈T

(
uam

ω‡

asω‡‡−

∑
i∈I

hasi
(
Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡

))
, (20)

s.t. (6)− (7),

Cω‡

asitω‡‡ ≤
∑
l∈L

∑
t̂∈Flt

gasiW
†
asilt̂ω† ,

∀a ∈ A, s ∈ S, i ∈ I, t ∈ T , (21)

C‡ω
‡

asitω‡‡ ≤
∑
l∈L

∑
t̂∈Flt

gasiW
‡
asilt̂ω‡ ,

∀a ∈ A, s ∈ S, i ∈ I, t ∈ T , (22)

Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡ ≤ Zastω‡ +
∑

p∈Pas

Yasptω‡ ,

∀a ∈ A, s ∈ S, i ∈ I, t ∈ T , (23)

Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡ ≤ mω‡

asω‡‡ ,∀a ∈ A, s ∈ S, i ∈ I, t ∈ T .
(24)

The damages per packet are denoted by ua, with the
number of penetrating packets given by mω‡

asω‡‡ . This cost
is offset by hasi the per-packet indemnity. The claims are
governed by the constraints in (21) and (22), which ensure
that the numbers of packets claimed do not exceed those
covered by the insurer, who can insure number of packets,
gasi, per policy. The constraint in (23) ensures that the
packets were processed by security (a requirement for the
insurance claims). The constraint in (24) ensures that they
are not greater than the number of actual malicious packets.

Having defined the problem, we must now solve it.
When a stochastic optimization problem has finite support,
it is possible to create a deterministic equivalent formu-
lation, which can be solved as a mixed integer problem
using an established technique, such as the branch-and-
bound algorithm (B&B) [35]. In our case, it is reasonable
to assume that this criterion holds, and so the following
equation provides the equivalent objective function:

min
∑

ω†∈Ω†

πω†

(
R†(ω†) +

∑
ω‡∈Ω‡(ω†)

πω‡

(
R‡(ω†, ω‡)

+
∑

ω‡‡∈Ω‡‡(ω†,ω‡)

πω‡‡R‡‡(ω†, ω‡, ω‡‡)

))
. (25)

Given that the only modification required for the con-
straints is that they are evaluated over the scenario sets,
we include them in Appendix A, due to space limits. We
can therefore find the optimal solution to our problem,
although in real world terms, the optimality of the solution
is dependent on the quality of the chosen parameters and
the accuracy with which the model reflects reality.
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5 PARTIAL LAGRANGE MULTIPLIER METHOD

The mixed integer programming deterministic equivalent
formulation is an effective way of finding the optimum solu-
tion to the stochastic optimization, but suffers from tractabil-
ity problems, as we would normally use a technique such
as branch-and-bound, which has exponential computational
complexity [35]. However, if we can convert our problem to
a linear program (LP) without loss of precision, we can solve
it in polynomial time. In this section we introduce the partial
Lagrange multiplier method [36], which solves a sequence
of LPs with at worst a polynomial number of steps.

5.1 Total Unimodularity of Constraint Matrix
To solve the tractability problem, we take advantage of
the Total Unimodularity (TU) property [37]. If the set of
constraints in (11)-(24) are considered as a matrix M and
vector~b, as in standard LP notation (we give an example of
standard notation in (22)), then if ~b is all-integer (which in
our case it is), and M satisfies TU, we can relax all integer
variables to linear ones and solve as an LP in polynomial
time while guaranteeing integer variable solutions.

In our case, however, M only partially satisfies TU,
which we can establish according to Theorem 3 in [38].
The matrix M is trimmed by removing the constraints that
obviously violate TU, for example, those with coefficients
not equal to −1, 0, or 1. The resultant matrix, M ′ can then
be divided into two disjoint subsets, one containing the
rows corresponding to constraints (12), (15), (17), and (24),
and the other containing (11), (16), and (18). It is clear
from these constraints that the conditions for unimodularity
given in [38] are satisfied for the matrix,M ′, and that it will
also hold for every square, non-singular submatrix, which
is the criterion for unimodularity to be ‘total’. Therefore,
total unimodularity is satisfied for M ′. The remaining con-
straints, which do not satisfy TU, mean that it is necessary
to still use an inefficient method, therefore we resort to the
partial Lagrange multiplier method, which is described as
follows.

5.2 Partial Lagrange Multiplier
The full Lagrange multiplier method is an established tech-
nique for solving convex optimization problems using linear
constraints. In the vector notation of standard form, the
problems are written as follows:

min
~x
f0(~x)

fi(~x) ≤ 0, i = 1, . . . ,m;

hi(~x) = 0, i = 1, . . . , p,
(26)

where ~x ∈ Rn. The constraints in (26) can be moved into the
objective function weighted by Lagrange multipliers, as in
the following equation:

L(~x, ~λ, ~v) = f0(~x) +
m∑
i=1

λifi(~x) +

p∑
i=1

vihi(~x), (27)

where ~λ ∈ Rm and ~v ∈ Rp are the Lagrange multipliers.
The dual function, expressed in ~λ and ~v is therefore:

g(~λ, ~v) = min
~x∈Rn

L(~x, ~λ, ~v), (28)

and the corresponding dual problem can be written:

max
~λ,~v

g(~λ, ~v)
~λ ≥ 0. (29)

When used for convex optimization problems, the dual
problem can be solved for ~λ and ~v via the subgradient
method. The corresponding values found by the dual prob-
lem for ~x are also the optimal values for the primal problem,
due to the convexity of the primal problem. The partial
Lagrange multiplier method for linear programs adopts a
similar strategy, with the constraints that do not satisfy TU
being moved into the objective function with the set of ~λ
Lagrange multipliers. The remaining, TU-satisfying, con-
straints remain as constraints in the problem, allowing it to
be solved as an LP. Therefore, applying this to the objective
function in (25) along with the remaining constraints in (21)-
(23), we get the following dual function in terms of ~λ:

g(~λ) =
∑
ω†

πω†

(
R†(ω†) +

∑
ω‡

πω‡

(
R‡(ω†, ω‡)

+
∑
ω‡‡

πω‡‡R‡‡(ω†, ω‡, ω‡‡)

))
+

∑
a,s,i,t,ω†,ω‡,ω‡‡

λ1
asitω†ω‡ω‡‡

(
Cω‡

asitω‡‡

−
∑

l,t̂∈Flt

gasiW
†
asilt̂ω†

)
+

∑
a,s,i,t,ω†,ω‡,ω‡‡

λ2
asitω†ω‡ω‡‡

(
C‡ω

‡

asitω‡‡

−
∑

l,t̂∈Flt

gasiW
‡
asilt̂ω‡

)
+

∑
a,s,i,t,ω†,ω‡,ω‡‡

λ3
asitω†ω‡ω‡‡

(
(Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡)

− (Zastω‡ +
∑

p∈Pas

Yasptω‡)
)
. (30)

In this formulation, we use an abbreviated notation for
the sake of brevity and readability, where

∑
a,s is equivalent

to writing
∑

a∈A
∑

s∈S .

5.3 Solution to the Partial Lagrange Multiplier
To solve our optimization problem using the partial La-
grange multiplier method, we iteratively minimize the dual
problem in terms of ~λ, given by the objective function
in (30):

min g(~λ), (31)

subject to the TU-satisfying constraints in (11)-(12), (15)-(18),
and (24). We also relax the variable range constraints to be
linear intervals.

5.3.1 Dual Problem Solution
Since the outlined dual problem can be solved as an LP
with variables guaranteed to give integer values, we can
solve it in polynomial time using the Interior Point Method
(IPM) [35]. In each iteration of the algorithm, we solve the
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dual problem, and use the new values of the primal vari-
ables to determine the value of the original primal objective
function. This value is then used to calculate the Lagrange
multipliers for the next iteration of the algorithm.

5.3.2 Updating Lagrange Multipliers

The behaviour of the algorithm is governed by the updated
values of the Lagrange multipliers. This calculation is gov-
erned by the stepsize αk for a given step k. The Lagrange
multipliers are updated by adding the old value to the
gradient of the dual function weighted by the step size, or
0, whichever is larger:

~λ
(k+1)

= ~λ
(k)

+ αk · ∇g(~λ
(k)

). (32)

The stepsize, αk can be calculated in a variety of ways,
for example, as a constant value, 1/k, or 1/

√
k. The ideal

value will depend on the problem being solved, with a
calculation dependent on k giving a decreasing stepsize as k
increases, providing greater precision. A constant value may
converge more rapidly, but may also result in oscillation
between two fixed values, of which one is the optimum.

The function ∇g(~λ
(k)

) is the derivative of the dual function
with respect to ~λ and, when derived from (30) is as follows:

∇g(~λ) =
∑

a,s,i,t,ω†,ω‡,ω‡‡

(
Cω‡

asitω‡‡ −
∑

l,t̂∈Flt

gasiW
†
asilt̂ω†

)
+

∑
a,s,i,t,ω†,ω‡,ω‡‡

(
C‡ω

‡

asitω‡‡ −
∑

l,t̂∈Flt

gasiW
‡
asilt̂ω‡

)
+

∑
a,s,i,t,ω†,ω‡,ω‡‡

(
(Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡)

− (Zastω‡ +
∑

p∈Pas

Yasptω‡)
)
. (33)

5.3.3 Stopping Criterion

The partial Lagrange multiplier method will always con-
verge to the optimal solution, as we prove in Section 6. To
determine when the solution has been reached, we use the
stopping criterion. If the best value for the primal objective
does not improve by more than the marginal value ε and
Φ iterations have passed since the best value was found,
then the algorithm terminates. If ε is sufficiently small and
Φ is sufficiently large, the best value on termination would
be guaranteed to be the optimum. However, the user may
choose values for ε and Φ that suit their desired tradeoff be-
tween accuracy and runtime. The pseudocode for the partial
Lagrange multiplier algorithm outlined in this section, with
the described stopping criterion, is given in Algorithm 1.

Algorithm 1 Partial Lagrange Multiplier Method

Input : Dual problem g(~λ), Φ
Output: Optimal solution for X†, W †, W ‡, Y , Z , C , C‡

Initialize g(0)
best = −∞ ;

Set the iteration index: k = 1, kx = 0 ;
Initialize ~λ values ≥ 0, upper bounds given in (34) ;
do

Find optimal solution for g(~λ), given in Eq. (30) ;
Compute solution of primal problem ;
if g(k)

best − g
(k−1)
best ≥ ε then kx = k;

k = k + 1;
Compute step size αk;
Update Lagrange multipliers using Eq. (32) and (33);

while k − kx ≤ Φ;

6 THEORETICAL PERFORMANCE ANALYSIS

In this section we demonstrate analytically the convergence
and scalability of the partial Lagrange multiplier method.

6.1 Convergence Analysis
To prove the convergence of the algorithm, we need to
prove three elements. Firstly, we demonstrate that the dual
function is concave. Secondly, since the function is concave,
we can demonstrate that the algorithm will converge to the
optimum by iteratively updating ~λ. Finally we show that
we can guarantee strong duality, thus the solution to the
dual problem found by the algorithm, is also the optimal
solution to the corresponding primal problem.

6.1.1 Proof of Convergence
To prove the convergence of the algorithm, we first prove its
concavity. This proof is given in Appendix B due to space
constraints. Since we have proved that g(~λ) is concave, we
can assume that ∇g(~λ) ≤ G, where G is a value that we
define in (35) and (36). Further, each individual Lagrange
multiplier value, denoted by λi, is bounded above, as well
as by the defined bound of λi ≥ 0. We can derive the upper
bounds of ~λ from Eq. (30), giving the following limits:

λ1
asitω†ω‡ω‡‡ ≤

πω†f†
asiltω†

gasi

λ2
asitω†ω‡ω‡‡ ≤

πω‡f‡
asiltω‡

gasi

λ3
asitω†ω‡ω‡‡ ≤ πω‡k‡

asω‡ .

(34)

Given these upper bounds, we can say ||~λ
(1)
−~λ
∗
||2 ≤ R,

where ~λ
(1)

denotes the Lagrange multipliers in the first step,
~λ
∗

denotes the optimal values for the Lagrange multipliers,
and R is a value that we will define in Section 6.2. With this
established, we can write the convergence proof from [36],
which we provide in Appendix C for reference. This proof
is a known result from convex optimization, and thus we
know that g(k)

best, which denotes the best solution value for
g(~λ) at step k, will converge to g(~λ

∗
), the optimal solution

of the dual problem. For the optimal version of the stepsize
calculation αk = (R/G)/

√
k, the number of iterations re-

quired to do so will be bounded above by K ≤ (RG/ε)2,
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where ε is the error margin covered under Section 5.3.3 on
the stopping criterion.

6.1.2 Strong Duality
We have shown that the partial Lagrange multiplier al-
gorithm will converge to an optimal solution of the dual
problem. However, we must also show that this solution is
optimal for the original primal problem. Since we have satis-
fied the property of total unimodularity, we are guaranteed
an integer solution. By the Slater’s constraint qualification,
if the optimization problem is convex, and there is at least
one solution that is strictly feasible (which it is not difficult
to find), then the solution to the Lagrange dual problem is
equivalent to the primal solution [39]. Therefore if g(~λ

∗
) is

the optimal solution to the dual problem, the corresponding
values of the decision variables are the optimal solution to
the original mixed integer optimization problem.

6.2 Scalability Analysis
We have proved that the partial Lagrange multiplier method
will converge within a maximum of K ≤ (RG/ε)2 it-
erations. We have already established that, using vector

notation, ||~λ
(1)
− ~λ

∗
||2 ≤ R. Given the upper bounds

on the Lagrange multipliers in (34), we can reason-
ably assume that, given the probability multipliers and
larger denominators giving upper bounds ≤ 1, R =
|~λ|, where |~λ| denotes the total number of Lagrange
multipliers. Additionally, we have also given the bound
||∇g(~λ)||2 ≤ G, with g(~λ) given in (33). If the expres-
sions (Cω‡

asitω‡‡ −
∑

l,t̂∈Flt
gasiW

†
asilt̂ω†) ≥ 0, (C‡ω

‡

asitω‡‡ −∑
l,t̂∈Flt

gasiW
‡
asilt̂ω‡) ≥ 0, and (Cω‡

asitω‡‡ + C‡ω
‡

asitω‡‡ −
(Zastω‡ +

∑
p∈Pas

Yasptω‡)) ≥ 0, then:

||∇g(~λ)||2 ≤ ||~c||2 = G, (35)

where ~c is the vector representation of the claim variables.
Conversely, if the expressions given above from (33) are less
than 0, then we have:

||∇g(~λ)||2 ≤ ||W~u||2 = G, (36)

where ~u is the vector representation of the security uti-
lization and insurance provisioning variables, while W is
the matrix representation of their coefficients in the above
equations. Substituting these values for R and G into the in-
equality K ≤ (RG/ε)2, we have a function that is bounded
by a linear function of the problem size. The solution to
the dual problem is the main point of complexity in the
partial Lagrange multiplier algorithm, which can be solved
in polynomial time using the IPM [35]. Therefore we have
a worst case of polynomial execution time for the partial
Lagrange multiplier algorithm.

7 SENSITIVITY ANALYSIS

Stochastic optimization finds the optimal solution to a pro-
gramming problem given uncertain parameters. In [40], an
analytical sensitivity analysis was introduced to find the
precise breakpoints for parameters at which the correspond-
ing variable allocations change. This technique is specifically
for linear programs. Therefore, we use the best result from

the partial Lagrange multiplier algorithm, fixing the values
of the Lagrange multipliers at their optimal values. We
define the variable γ to denote the offset value for the
cost coefficient under examination. Two linear program-
ming problems can then be formulated to give γ1 and γ2,
which are the lower and upper bounds of γ, within a linear
interval. We give the standard form of the two optimization
problems in (37) and (38), where ej = 1 if j is the index of
the cj under analysis, else ej = 0.

γ1 = min{γ : A>~y+~s = ~c+γej , ~b
>~y = ~c>~x∗+γx∗j ,~s ≥ 0},

(37)

γ2 = max{γ : A>~y+~s = ~c+γej , ~b
>~y = ~c>~x∗+γx∗j ,~s ≥ 0}.

(38)
We give full details of the linear optimization problems

to be solved in Appendix D, along with further explanation
of the sensitivity analysis technique from [40] as it applies
to our problem.

8 PERFORMANCE EVALUATION

8.1 Parameter Settings

To test the performance of our optimization formulation,
we consider a scenario across two time periods with three
SECaaS providers (i.e. s1, s2, and s3) and two cyber insurers
(i.e. i1 and i2). Each time period lasts for one day, with all
traffic to the user’s applications hosted in the cloud scanned
by a SECaaS provider before reaching the user’s application.
Each SECaaS provider offers two prepaid plans (i.e. p1 and
p2), with one lasting for one time period, the other lasting
for two. Provider s1 offers services in units of 5 packets for
p1 and 8 packets for p2 with each unit costing $0.10 and
$0.15, respectively. Provider s2 offers units of 15 and 20 at
$0.25 and $0.30. The damages for a packet that is undetected
by the security services is priced at $1.5 per packet. To
simulate the possibility of packets not being processed by se-
curity, we include an additional ‘dummy’ SECaaS provider,
s3, with no cost and no insurance coverage. The user may
purchase policies from either of the two insurers, who each
offer two premiums (i.e. q1 and q2), with q1 lasting for one
time period, and q2 lasting for two, and being priced just
below twice the price of q1. Values for service prices are
synthesized based on cloud and security providers, such
as Amazon EC2 [41] and Trend Micro [6]. Packet damages
and indemnity are synthesized from estimated damages
caused by historic cyber attacks and example insurance
premiums for small scale businesses, scaled according to our
incoming packet data [42] [43]. Packet demand levels and
detection probabilities are generated from real honeypot
data provided by the University of Waikato’s Cyber Security
Lab [44]. Honeypots positioned in Singapore, Sao Păolo,
Brazil, and San Jose, USA, collected packet data over a
number of days. Using this data, we employed the Snort
IDS [45] with two different rulesets. The more complete
ruleset provided the benchmark for the number of mali-
cious packets, with the other ruleset giving the proportion
of missed packets and the corresponding missed-detection
probabilities for each scenario. This analysis provides us
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with realistic values for cyber attacks and provides more
informative numerical results.

8.2 Numerical Results
The deterministic equivalent of the problem formulation
was encoded in a GAMS script and solved using the CPLEX
solver [46]. The tests were designed to examine the per-
formance of the stochastic optimization formulation, and
explore the relationship between security provisioning and
insurance coverage.

8.2.1 Influence of prepaid security on cost
In Fig. 3 we set the number of prepaid SECaaS services
provisioned from each security provider and measure the
impact on the expected cost and provisioning quantities
across all scenarios. The upper plot measures the total used
services. As the provisioned prepaid services increase, the
number of on-demand services required decreases. This is
the expected result, but compares well with the lower plot,
which measures the change in prepaid services against total
cost. The total cost curve is convex and shows that there
is an ideal prepaid point where the number of prepaid
services mitigates the damages of both overprovisioning
and underprovisioning. Thus the optimal solution requires
some on-demand services when demand is high, as the
increased expense does not outweigh the wasted expense
from overprovisioning at low demand that more prepaid
services would incur. This shows the usefulness of stochastic
optimization, as our formulation finds this optimal point.
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Fig. 3: Impact of prepaid SecaaS services on service utiliza-
tion and total cost.

8.2.2 Impact of packet damages and indemnity on security
provisioning
One of the key challenges in cyber insurance is the accurate
estimation of damages caused by cyber attacks. In Fig. 4
we investigate the effect of changing the damage values
assigned to individual packets on security provisioning. The
model allows for some incoming packets to not be covered
by the security services. We then measure the decrease in
the number of ignored packets as the damage per malicious
unhandled packet. The result is clear - the damages caused

by inadequate security necessitate the increasing of security
provisioning, and cyber insurance is not a sufficient mitiga-
tion. This also shows the importance of insurers correctly
assessing the expected damages caused by cyber attacks so
as to optimally set their insurance policies.
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Fig. 4: Impact of packet damages on security provisioning
measured in unprocessed packets. As damages increase in
cost, it becomes more costly to leave packets unprocessed,
and so security provisioning is increased to ensure more
packets are processed.

We also examine the influence that the indemnity values
(set by the insurers) have on security provisioning. As
before, we measure the quantity of unprocessed packets as
the indemnity changes. This is shown in Fig. 5. In this graph
we consider three different packet damage values, with each
showing that the number of unprocessed packets decreases
as the indemnity rises. This is because packets unprocessed
by the security services are not covered by the insurance
policy. Thus, higher indemnity values create an incentive
for users to employ comprehensive security coverage. The
height of the curves shows that this is complementary to
the per-packet damage costs, as the greater the damage the
lower the curve, and the faster it descends. Therefore we
conclude that cyber insurance can be used to incentivize
security provisioning.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

x 10
4

Per−packet indemnity ($)

N
um

be
r 

of
 u

np
ro

ce
ss

ed
 p

ac
ke

ts

 

 

$0.1 per packet cost
$0.05 per packet cost
$0.01 per packet cost

Fig. 5: Impact of packet indemnity on security provisioning
measured in unprocessed packets. Higher indemnity pro-
vides an incentive to increase security provisioning so that
packets are not left unprocessed.
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8.2.3 Comparison of solution methods with varying attack
probability
To justify our use of the stochastic optimization approach,
we compare the performance of the stochastic optimiza-
tion to various alternative methods under varying attack
probabilities. This will highlight the importance of accurate
security provisioning and insurance provisioning. In Fig. 6
we provide a comparison between the methods of stochastic
optimization, expected value function, and no-insurance,
and also include a fourth result, with no security (and
therefore no insurance), to demonstrate the high cost of ig-
noring cyber security. The expected value function method
purchases prepaid security services sufficient to process the
mean number of packet arrivals as specified by the proba-
bility distribution. The four methods are compared across
three different probability distributions - normal, uniform,
and the one derived from our real data. The expected value
function gives a good result but is inferior to stochastic
optimization as it does not consider future impact, with the
order of the bar heights following the expected order.
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Fig. 6: Comparison of alternative solution methods with
varying attack probability distributions.

8.2.4 Influence of budget on provisioning
In the real world, a user will have a restricted budget to
spend on security services and insurance. To examine the
priorities of the user, we introduced a budget limit which
acts as a maximum value for the objective function solution.
In Fig. 7 we provide a comparison between the amount of
security provisioning and the number of insurance claims.
As the budget rises, the security provisioning increases until
it reaches a maximum to correspond with the maximum
incoming traffic, showing that security is the top priority.
The increase in packet claims, however, shows that not
only is the insurance provision increased, but using the
prediction from stochastic optimization, the user can in-
crease their security knowing that the indemnity benefits
from covered packets will offset the security costs. Thus we
see a symbiotic relationship between security and insurance
provisioning where the insurance coverage provides an
incentive for the security provisioning, which in turn limits
the costs from packet damages.

8.2.5 Influence of security capacity on total cost
Each security plan from a provider has a maximum capacity
of prepaid SECaaS packets that can be provisioned. In Fig. 8
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Fig. 7: Exploration of the relationship between security and
insurance provisioning under budget constraints.

we vary the prepaid capacity of the security providers,
and measure the impact on the total cost. As expected,
with more limited prepaid options, costs are higher, as the
number of packets that must be processed by on-demand
services increases. This problem is more severe initially,
as the number of on-demand services must be increased.
The impact lessens non-linearly, as the prepaid plans reach
a capacity sufficient to handle most demand without on-
demand services, and further increases have limited impact.
The number of on-demand services required decreases and
so security costs also decrease. To provide a comparison we
add results using the mean number of incoming packets
and a curve with no insurance provision. The stochastic
optimization performs best, as expected, but the mean value
result offers worse performance, because it is inflexible and
results in underprovisioning, making it worse than the no-
insurance option, due to the cost penalty from excessive on-
demand security.
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Fig. 8: Exploration of the effect security capacity has on total
cost.

8.2.6 Benefits of joint optimization
The premise of our formulation is that optimizing the secu-
rity provisioning and cyber insurance jointly is preferable to
handling the two separately, due to the influence that the
two services have on each other. We have demonstrated
this connection in our previous results. Nonetheless, to
justify our premise we implemented an alternative method
that first, independently, provisions security, before making
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cyber insurance decisions. Again, we vary the security ca-
pacity, to show how the solutions perform. The result, given
in Fig. 9 shows that the joint solution gives clear financial
benefits over the separate approach. Thus, the symbiotic
nature of security and insurance is demonstrated in cost
benefits.
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Fig. 9: Demonstration of the benefits of joint optimization.

8.2.7 Performance of partial Lagrange multiplier method
The key purpose of introducing the partial Lagrange mul-
tiplier method is to achieve improved scalability over the
conventional branch-and-bound (B&B) method for solving
mixed integer programming problems. In Fig. 10 we intro-
duce a reduced size version of our test case and vary the
number of time periods, allowing us to increase the problem
size linearly. We compare the execution time for a stan-
dard B&B algorithm with the execution time for the partial
Lagrange multiplier method and find that the increase in
execution time matches the expectation from our analytical
results. The B&B curve increases at a rapid rate, showing
that for a large problem, the memory and processing time re-
quirements would rapidly become impractical. By contrast,
using a stepsize of α = 1, we find that the partial Lagrange
multiplier method converges quickly and only increases at
a very slow rate, and linearly, as the problem size grows.
This result supports our claims that the partial Lagrange
multiplier method offers much improved scalability over
traditional mixed integer program solution methods.

8.2.8 Convergence Behaviour
In Fig. 11 we demonstrate the manner in which the partial
Lagrange multiplier method converges to the solution, test-
ing the performance on the same problem as the previous
result. We observe that the convergence is extremely rapid,
as the initial value is high, but the solution drops quickly to
near the optimum, and finds the optimal value on the third
iteration. We find that this performance remains the same
independent of the initial value of the Lagrange multipliers,
or the value of the stepsize - the optimal value is still
found within three steps. After the optimal value is found,
the solution alternates between this value and a slightly
higher one, until the algorithm terminates. This is within
the expected behaviour of the algorithm, which specifies
termination if the algorithm does not improve within a pre-
determined number of iterations. In this case, we terminate
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Fig. 10: Comparison of execution time and memory usage
of partial Lagrange multiplier and branch-and-bound (B&B)
methods as problem size increases.

after ten iterations, with the best value being the solution
to the original integer problem. The speed of convergence
is therefore dependent on the structure of the problem,
and the tightness of the constraints (i.e. those that satisfy
total unimodularity). If the constraints are tight, within the
parameters set, then the solution can be found faster than
the polynomial worst case, as we find here.
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Fig. 11: Example case of speed of convergence of the partial
Lagrange algorithm to the optimal value.

8.2.9 Sensitivity Analysis of Prepaid SECaaS Provisioning
We use parameter settings that allow the customer to choose
security plans of varying lengths, with a choice of service
provider. To understand how pricing influences the user’s
provisioning decisions, we perform an analytical sensitivity
analysis on the variable instance X†1,1,1,1,1. The sensitivity
analysis formulation, using the final step of the reduced-size
partial Lagrange multiplier algorithm result, gives precise
values for the change in cost at which the customer changes
their prepaid security allocation. The point of change is
called a ‘breakpoint’, and we show this in Fig. 12. As the
price increases, the value ofX†1,1,1,1,1 decreases, as expected,
with prepaid security provisioning redistributed to the al-
ternative plan. At each point on the graph, a threshold is
reached, causing the customer to change their purchasing
choices. The breakpoints are primarily determined by the
cost of the alternative. However, since X† is a prepaid



13

service variable, it must also consider the increased cost
against the on-demand cost. Thus, an increased cost of this
variable may not immediately result in a drop to 0, if the
on-demand cost is still high, rather the customer prefers
to change plan. The primary benefit of this approach over
a trial-and-error approach, where the cost values must be
manually changed and the solution recalculated, is that we
can guarantee that we find the exact point at which the cost
changes, and minimize the number of tests required to find
those points. To demonstrate this, a second line is plotted,
showing a set of reasonable values for cost variation, and
the corresponding variable allocation. Whilst the various
levels of provisioning are found, the exact breakpoints are
not, and further measurements would be required to find
them. Service providers may employ this sensitivity analysis
method to set competitive prices, as they can see exactly
how to price their services such that the customer chooses
them over the competition, without offering a lower price
than necessary. To examine the choice between providers,
we take the result of the partial Lagrange multiplier method
for the full-size problem in Fig. 13, and vary the cost of
plan p2 from provider s1 across two time stages. We plot
the breakpoints and measure the allocation for plans p1
and p2 from providers s1 and s2. As the cost increases, the
customer prefers to switch provider, up to the capacity limit
of that provider, rather than choose a short-term plan. As the
price increases further, the customer switches to the short-
term plan to cover the remaining demand. Therefore, it is
better to choose a long-term plan from any provider, as they
are more cost-efficient than short-term plans, with stochastic
optimization allowing us to minimize the long-term costs.
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ing analytical and experimental approaches to sensitivity
analysis.

8.2.10 Results conclusions
From the above numerical results, we can see clearly that
the stochastic optimization provides benefits as it allows for
variation in future demand and attack probabilities, as well
as the corresponding damages and indemnity values. It also
offers clues as to how those values should be optimally set,
as we see the relationship between security provisioning
and cyber insurance, as good insurance encourages good
security, and vice versa. Further, we demonstrate the signif-
icantly better scalability of the partial Lagrange multiplier
method over traditional branch-and-bound for MIP solving.
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Fig. 13: Cost breakpoints of the variable X†1,1,2,1,1, for the
full-size problem showing the choices made between plans
and providers.

Finally, we implement our analytical sensitivity analysis,
and show that it is more efficient and precise than an
experimental approach.

9 CONCLUSION

In this paper we have presented a combined approach to
security and cyber insurance provisioning in the cloud. Us-
ing a stochastic optimization, we have presented a method
of optimally provisioning both services in the face of uncer-
tainty regarding future pricing, incoming traffic and cyber
attacks. Since our optimization involves solving an integer
programming problem, we present the partial Lagrange
multiplier method, which exploits the total unimodularity
property to guarantee integer solutions, while relaxing the
problem to a linear programming problem. This problem
is solved iteratively using a subgradient method, which we
prove converges to the optimal solution in at worst polyno-
mial time. Using the solution produced by the algorithm, we
apply an analytical sensitivity analysis approach that gives
precise sensitivity values for individual parameters. Finally
we provide an experimental evaluation of our contributions
using realistic traffic and attack data derived by running
real traffic data through an Intrusion Detection System. The
main challenge of cyber insurance is the number of assump-
tions that must be made, for example, the ability to detect
cyber attacks, establish accurate damages, and successfully
make insurance claims. Future extensions could consider the
interaction of applications, where the security performance
of one part of the system can impact the security of other
parts. We have introduced real honeypot data, but future
extensions could consider more extensive data to produce
more accurate options. Accuracy of data could further be
extended through the implementation of systems to update
parameters on a daily or weekly basis, to improve future
decisions.
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