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MRIM: Enabling Mixed-Resolution Imaging for Low-Power
Pervasive Vision Tasks

Ji-Yan Wu, Vithurson Subasharan, Tuan Tran and Archan Misra
Singapore Management University.

Email: {jiyanwu, vithursons, tuantran, archanm}@smu.edu.sg.

Abstract—While many pervasive computing applications in-
creasingly utilize real-time context extracted from a vision sensing
infrastructure, the high energy overhead of DNN-based vision
sensing pipelines remains a challenge for sustainable in-the-wild
deployment. One common approach to reducing such energy
overheads is the capture and transmission of lower-resolution
images to an edge node (where the DNN inferencing task is
executed), but this results in an accuracy-vs-energy tradeoff,
as the DNN inference accuracy typically degrades with a drop
in resolution. In this work, we introduce MRIM, a simple but
effective framework to tackle this tradeoff. Under MRIM, the
vision sensor platform first executes a lightweight preprocessing
step to determine the saliency of different sub-regions within a
single captured image frame, and then performs a saliency-aware
non-uniform downscaling of individual sub-regions to produce a
“mixed-resolution” image. We describe two novel low-complexity
algorithms that the sensor platform can use to quickly compute
suitable resolution choices for different regions under differ-
ent energy/accuracy constraints. Experimental studies, involving
object detection tasks evaluated traces from two benchmark
urban monitoring datasets as well as a prototype Raspberry
Pi-based MRIM implementation, demonstrate MRIM’s efficacy:
even with unoptimized embedded platform, MRIM can provide
system energy savings of 35+% or increase task accuracy by 8+%,
over conventional baselines of uniform resolution downscaling or
image encoding, while supporting high throughput.

Index Terms—Mixed resolution, imaging tasks, energy con-
sumption.

I. INTRODUCTION

Vision-based sensing, typically using a network of
infrastructurally-deployed cameras, is an important enabler for
a variety of pervasive computing applications, such as situation
awareness [3], human activity detection [13], shopper behav-
ior analytics [2] and vehicular traffic monitoring [25]. Such
expanded use of vision-based sensing has been accelerated
by the reduced cost of high-resolution vision sensors and
the impressive accuracy gains achieved by DNNs for tasks
such as object detection [16] and object recognition [28]. The
high energy overhead of visual sensing pipelines, however,
continues to remain a major obstacle to its more widespread
adoption, especially for in-the-wild deployments in spaces
such as forests, parks and highways.

Given the increasing importance of developing ultra-low
power or a battery-less sensing infrastructure [8], a variety
of approaches have explored the development of low-power
vision sensing systems. Most such low-power vision systems
adopt an offloading-based architecture, where the pervasive
sensor platform simply captures and wirelessly transmits (pos-
sibly preceded by some lightweight encoding) to a more-
resourced (e.g., GPU-equipped) edge node, where the actual

DNN-based AI pipelines are executed. Even so, pervasive
applications continue to suffer from the fidelity-vs.-energy
tradeoff: reduction in energy consumption is achieved by
sacrificing either resolution (spatial granularity) or frame rate
(temporal granularity), which in turn affects the DNN infer-
ence accuracy.

In this work, we explore the use of a novel information-
centric approach, Mixed-Resolution IMaging (MRIM), as
a means of improving this fidelity-vs.-energy tradeoff. The
MRIM approach (illustrated in Figure 1a) hypothesizes that the
operational lifetime of the sensor platform could be increased
if we could find a lightweight mechanism to reduce the
volume of transferred data (and thus the dominant transmission
energy cost) without affecting the subsequent DNN inference
accuracy. Under this approach (as illustrated in Fig. 1b, where
4 different sub-regions are processed at two distinct resolu-
tions), the individual images captured by a camera sensor are
broken up into multiple sub-regions, with the different sub-
regions then down sampled at different resolutions prior to
transmission. Our proposed approach, involving differential
resolution within a single frame, is distinct from prior work on
dynamic camera resolution adaptation [9], [15], which assume
that any single frame is acquired, processed and/or transmitted
at a uniform spatial resolution.

Intuitively, MRIM enables a more judicious use of system-
resources on an energy-constrained vision sensor platform,
adopting a lower resolution budget for the low-priority areas,
while conserving the usage of higher resolution for the region
of interest. The MRIM approach is motivated by two intuitive
observations: (a) in most event-monitoring scenarios, objects
or activities of interest are often not spread out uniformly
over a camera’s entire field-of-view (FoV) but localized or
concentrated in certain salient sub-regions of the captured
image; and (b) because the resolution reduction (and the corre-
sponding loss in information fidelity) is directed preferentially
towards the regions with lower saliency, the overall accuracy of
DNN-based vision tasks remains largely unaffected. Building
a practical MRIM-based vision-based sensing approach is,
however, a non-trivial task and must address the following
key research questions:
• How can the camera platform determine the saliency of

different sub-regions within an image (a necessary pre-
requisite before applying the principle of mixed-resolution
downsampling)? In particular, to ensure that any savings in
transmission energy are not negated by a higher processing
energy overhead, it is essential that this determination be
computationally cheap and incur low latency.

• Can the relationship between the energy overheads vs. vision
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Fig. 1: MRIM Paradigm and Overall Benefit

task accuracy (for varying resolution values) be accurately
estimated across a diverse set of image/environmental con-
text (e.g., for both images with a large number of small
objects or a small number of large objects)?

• Given such saliency and energy-vs.-accuracy estimates, how
can the camera platform determine, in a computationally
lightweight manner, the right levels of resolution reduction
(fidelity reduction) to be applied to each such sub-region?
Through our work, we show that it is indeed feasible to

develop a practical MRIM approach that can overcome these
challenges, focusing specifically on the commonplace object
detection task. In particular, we shall (a) propose and demon-
strate the efficacy of mixed-resolution determination algo-
rithms that significantly reduce transmission bandwidth/energy
without adversely affecting the accuracy of state-of-the-art
DNN-based object detectors, and (b) develop a lightweight,
low-power and accurate saliency determination approach that
executes on the camera platform. Using a combination of
a real-world prototype and diverse, real-world image traces,
we shall demonstrate that MRIM can provide either a total
systems-level energy savings of ≈ 35% or task accuracy
improvement of 8% over current approaches of uniform reso-
lution reduction or image encoding.
Key Contributions: We make the following key contributions:

• Introduce the MRIM framework: Through systematic stud-
ies, we establish both (a) the tradeoff between the visual
resolution of objects and the resulting accuracy of DNN
object detectors, and (b) the non-uniform spatial properties
of such objects in the FoV of typical pervasive camera
deployments. These insights help motivate the principle
of mixed-resolution imaging, which preferentially preserves
pixel resolution in sub-regions with a greater predicted
number of objects, while degrading the resolution of less
salient sub-regions.

• Devise & Evaluate Mixed-Resolution Algorithms: We for-
mulate the MRIM problem as one of (i) either minimizing
the total image transmission size subject to a mean task
accuracy constraint, or conversely, (ii) maximizing the task
accuracy subject to a maximum energy budget. We then
present two novel algorithms: (a) Max-Min, which pref-
erentially increases the resolution of higher saliency sub-
regions until the image-level objectives are satisfied, and (b)
Water-Filling, which incrementally increases the resolution
of all individual sub-regions equitably, until the image-
level objectives are achieved. Via experimental studies with
two different tasks/datasets–(a) human detection using Wild-

Track [4] and (b) vehicle detection using CityScapes [5]—
we show that our proposed algorithms can provide ∼ 10−
20% improvement in object detection accuracy compared
to currently-adopted approaches of either image encoding
or uniform resolution adjustment. Fig. 1c summarizes the
performance gains achieved by our MRIM strategy.

• Demonstrate the Overall Effectiveness of an MRIM-based
System: We build and evaluate a working prototype of
an MRIM-based camera, using the RPi (v3) board. The
prototype integrates the mixed-resolution algorithms with a
lightweight object detection technique (empirically shown
to incur only 10 mJ/frame energy overhead) to determine
the saliency of different sub-regions. Through careful ex-
perimental studies, we demonstrate that, in spite of many
non-ideal system characteristics (e.g., high baseline power
consumption), our MRIM approach provides energy sav-
ings/frame of 33 − 36% and 28%, respectively, over the
uniform resolution and image encoding approaches, while
achieving equivalent object detection accuracy. Overall,
MRIM allows the operational lifetime of such pervasive
vision sensors to be doubled without loss in task accuracy.

II. RELATED WORK

MRIM draws upon prior work in both (a) adaptive resolu-
tion in image capture, and (b) energy/power optimization in
intelligent vision sensing systems.

A. Low Power Camera/Vision Sensing

LiKamWa et al. [15] demonstrated that image sensor energy
consumption is ideally proportional to frame rate and resolu-
tion, and suggested multiple techniques (clock frequency con-
trol and low-power standby mode) to further reduce sensing
power. To reduce the energy overhead of vision-related tasks,
prior approaches utilize either on-board image processing
(e.g., Cyclops [22]), a combination of low & high resolution
cameras (e.g., SensEye [12]) or selective event-triggered acti-
vation of power-hungry vision sensors (e.g., Glimpse [20]).
Several novel approaches have developed ultra-low power
or battery-less camera sensors—for example, WISPCam [19]
uses an RFID-powered harvester to trigger the capture of
low-resolution, low frame-rate images, [18] utilizes analog
backscatter communication to transfer HD-quality video trans-
fer from an energy-harvesting vision sensor, while Elf [27]
supports object counting by solar-powered cameras by adap-
tively adjusting the frame rate. In almost all cases, these
approaches either require specialized hardware or additional



infrastructure (e.g., RFID readers) and usually support low
quality, infrequent (< 1 FPS) image capture. Collaborative
sensing, across multiple cameras, has also been used to reduce
the per-sensor energy overheads by opportunistically deac-
tivating selected cameras-e.g., EECS [6] uses knowledge of
(a) each camera’s object detection accuracy, and (b) potential
energy overhead to select a preferred set of {activated cameras,
video processing parameters} to monitor a common region.

B. Mixed-Resolution Image Processing

Past work has studied the broad relationship between image
resolution and accuracy of vision-based tasks. The Banner pro-
totype [9] demonstrated how dynamically reducing the overall
image resolution (in contrast to MRIM’s approach of utilizing
differential resolution within a single image), based on the
object’s distance, can reduce camera sensing energy by 70%.
The concept of image resizing, as a means of accelerating the
computation of vision tasks, has also been recently explored
in [10], where different regions of a single image are reduced,
at an edge node, to different sizes (based on their priority),
thereby increasing the overall inferencing throughput. Vision-
based systems have also explored the processing of mixed-
resolution multiview videos, where different cameras capture
images at different spatial resolution and content from higher-
resolution video streams is used to upscale the images captured
by lower-resolution cameras (e.g., [17], [24]).

C. Efficient On-board Image Processing

We shall see that MRIM’s success lies partly in being
able to determine the saliency of different image sub-regions
in an ultra-lightweight manner. Light-weight neural detection
detection models, such as Haar feature [1], LFFD [7] and
libface [21]), have been proposed for on-board execution. To
support accurate object detection, approaches such as Mo-
biSR [14] utilize a cheaper, low-resolution camera for image
capture, followed by on-board upscaling on mobile devices to
generate super-resolution images.

III. MOTIVATING THE MRIM APPROACH

Our overall approach for low-power pervasive vision utilizes
the system architecture illustrated Fig. 2. In this architec-
ture, the vision sensor platform performs the following key
functions: (a) image capture–i.e., using the sensor to capture
the raw image; (b) image pre-processing–i.e., performing any
functions (such as compression) locally prior to transmission;
and (c) image transmission–i.e., using a suitable networking
interface (e.g., WiFi/4G) to transfer the processed image to
an edge/cloud device. The edge/cloud platform then performs
the vision task by executing the DNN pipeline; to keep the
pervasive sensor cost and energy overheads low, we assume
that the sensor platform does not have specialized hardware
(e.g., GPUs) and cannot thus support efficient, high-throughput
execution of the complex state-of-the-art DNN models, such
as YOLO v3 [23].

Our focus is purely on reducing the total power/energy
consumption of the sensor platform (without compromising on

the eventual accuracy of the vision task), such that this sensor
platform can operate for longer duration without needing
recharging. To achieve this, the sensor platform performs
additional pre-processing via two conceptually distinct func-
tional components: (a) Saliency Estimator: as a precursor to
performing diffential resolution downscaling, it determines the
saliency of different regions in the image frame by estimating
the likely general location and other relevant attributes of ob-
jects of interest. Note that, for high frame rate video, saliency
determination need not be performed on each frame, but only
intermittently (e.g., once every 1-2 secs), as object attributes
are unlikely to dramatically vary over O(msec) timescales; (b)
Resolution Adjuster: this component, which lies at the hear
of MRIM, modifies the resolution of each sub-region of the
captured image, taking into account the region’s saliency and
the resulting accuracy-vs.-energy tradeoffs.

MRIM’s requires careful consideration of the tradeoff be-
tween the Pre-processing and Transmission energy overheads:
intuitively, the additional steps of saliency estimation and
resolution adjustment will result in increased pre-processing
energy, which should be offset by a greater reduction in
transmission energy. In addition, we will need to show that our
proposed approach offers a superior energy-vs.-accuracy pro-
file compared to two established baselines for reducing trans-
mission overheads: (i) Image compression/encoding, where
standard codecs (often implemented in hardware) are used to
perform lossy compression of the image/video content, and
(ii) Uniform resolution adaption, where the entire image is
uniformly downscaled (without consideration of the image
content) to a specified size. Determining the right choices for
MRIM thus first requires a careful understanding of both (i) the
energy overheads of different pre-processing mechanisms and
the subsequent transmission phase, and (ii) the resulting impact
of different image sizes/resolutions on the DNN inference
accuracy.

TABLE I: Mathematical notations

Nd no. of detections Nr no. of sub-regions
mAP target mean average

precision
Ri|1≤i≤N image regions

Si|1≤i≤N confidence scores E energy constraint
E total energy

consumption
S image file size

Vi|1≤i≤N regional resolution
values

Est Eng est. energy
consumption

A. Modeling System Energy Consumption

We first model the energy consumption for processing and
transmitting target image frames captured by an embedded
camera platform (Table I lists the basic mathematical notations
used). Specifically, the image processing (with our resolution
adjustment algorithm or JPEG encoding) and data transmission
(using 3G/4G/Wi-Fi chip) account for the main portion of
power consumption of image application.

The total system energy consumption E including the idle
(baseline) energy, as well as the energy spent in image capture,
processing and subsequent transmission, is represented as:

E = Eidle + Ecap + Eproc + Etrans, (1)
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Fig. 2: System design of the proposed accuracy and energy aware mixed-resolution image transmission framework.

where Eidle,Ecap,Eproc,Edetect represent the idle state (i.e.,
baseline), image capture, processing and transmission energy,
respectively. The idle baseline energy includes energy spent
in powering the different system components (e.g., processor,
SD card, etc.). The transmission energy depends on the data
transmission power Ptran and duration (i.e., the amount of data
transferred), and can be represented as Etrans = Ptran · d; also,
the capture energy Ecap is usually negligibly smaller (O(µW),
compared to O(mJ)) than the other components.

The processing energy incurred consists of both Esal, the
energy spent in saliency estimation (if this step is required),
and Eimage, the subsequent energy spent in modifying the
captured image–i.e.,:

Eproc = Esal + Eimage. (2)

For MRIM, Eimage includes the energy spent in computing the
modified resolution values and the subsequent downsampling;
for a conventional compression-based approach, Eimage would
represent the energy spent in lossy compression.
Lightweight Saliency Estimator: MRIM relies on the use of a
lightweight model to derive the approximate count/distribution
of objects in each image sub-region and thereby derive each
region’s saliency. To ensure MRIM’s overall energy efficiency,
it is important to characterize the energy profile of such
candidate lightweight models. As measured via an imple-
mentation on the Raspberry Pi 3B platform, a Haar feature
based detector [26] is able to achieve as low as 200 mJ for
each iteration, and is shown to provide adequate indication
of the likely presence of objects in individual sub-regions. In
practice, this estimator can be run intermittently (e.g., once
every 1/2 seconds or 20/30 frames), resulting in a very low
normalized energy overhead (∼1-2mJ/frame).

B. DNN Accuracy vs. Resolution

The MRIM approach is premised on the observation that
the accuracy of DNN-based object detectors depends on the
resolution (reflecting the information fidelity) of the underlying
images. To understand this phenomenon in detail, we consider
a typical state-of-the-art DNN model, such as YOLO v5 [11].
The output of such an object detector includes the class id
(e.g., a person or vehicle object), bounding box coordinates
(the center point, width and height) and the confidence score
(a value between (0,1) that represents the probability of the
bounding box containing an object. To represent accuracy,

we adopt the widely-used mean Average Precision (mAP)
metric, which computes the mean AP over all classes and/or
overall IoU (Intersection over Union) thresholds as follows:
mAP =

∑Nc
k=1 APk

Nc
, where Nc is the number of classes and

APk indicates the average precision for the kth class.

(a) 1350*900 (b) 225*75

Fig. 3: DNN Detection Accuracy vs. Image Resolution.

As an illustration of our underlying hypothesis, Fig. 3 plots
the bounding boxes and confidence values identified by the
YOLO v5 object detector [11] on two images of the same
scene, but at different levels of resolution (original= 1350∗900
in Fig. 3a, reduced= 255∗75 in Fig. 3b. We can clearly observe
both a decrease in the number of detected vehicles, as well as
a substantial reduction in the confidence scores of the detected
objects. On closer inspection, we see that the ‘smaller size”
vehicles appearing in the upper half part of the image suffer
a higher accuracy loss than those “larger-sized” vehicles in
the lower half. Although the mAP is reduced from 69.3% to
56.8% due to the resolution downgrade, the file size S of the
underlying image exhibits a 12-fold reduction, from 707 to 57
KB, which should (as per Equation 1) lead to a reduction in
the total energy consumption. Motivated by these observations,
we now conduct a deeper study of the relationship between
the system energy E, deep learning model accuracy mAP and
image quality.

C. Energy-Quality-Accuracy (EQA) Tradeoff

Generally speaking, the model accuracy is proportional
to image fidelity, with the fidelity itself correlated to the
resolution of the input image. To illustrate this point, we study
how the fidelity/quality of images varies as the overall image
resolution is progressively decreased. Fig. 4 plot the mean and
confidence intervals (based on a corpus of 500 images curated
from the WildTrack and CityScapes datasets) of two widely



used measures of objective and subjective image quality,
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity), respectively, as the input image resolution varies
from 2048*2048 to 256*256. We see that a reduced resolution
leads to a progressive loss in quality, due to the degradation
in the color and positional features of the underlying objects.
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Fig. 4: Image quality vs. resolution.

Similar to image quality, the accuracy of DNN-based vision
tasks should also increase with the underlying image resolu-
tion. However, after a certain point, any increase in image
resolution provides only a marginal improvement in vision task
accuracy. As mentioned earlier, a reduction in image resolution
has two effects: it decreases the mAP of task accuracy as
well as the size of the underlying image files. To capture this
relationship, Fig. 5 plots the mAP vs. file sizes (resolution)
for two different baseline strategies: (a) uniform resolution
downsampling and (b) compressive image encoding (using
the principle component analysis compression technique). The
figure plots the mean and 95% confidence intervals, computed
over the 500 representative images mentioned earlier. In addi-
tion, we also use our Raspberry Pi implementation (Section V)
to empirically measured the resulting processing latency and
energy consumption.
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Fig. 5: mAP versus file size.

We observe that both approaches, uniform downscaling and
encoding, exhibit almost identical mAP-vs.-size tradeoff. In
addition, the improvement in mAP values is more dramatic at
low file sizes and becomes more muted as the image resolution
increases from medium to high resolution–e.g., an ∼4-fold
increase in image size from 1.46MB to 5.82MB results in an
mAP increase of ≤2%. In addition, on carefully analyzing the
mAP performance for individual images, we observe that:
• For images with predominantly larger-sized objects, the
mAP degradation is not significant as the file size decreases.
Conversely, the mAP values for images with predominantly
small objects exhibit a much steeper drop as the file size
(image resolution) decreases.

• While the mAP-vs.-file size variation is similar for both res-
olution downscaling and image encoding, the two strategies
differ in their computational cost and latency. In particular,

the image compression approach incurs much higher latency
and energy (avg.=261 msecs and 73.8mJ) than the resolution
downscaling approach (avg.=141 msecs and 53.7 mJ).

The EQA Tradeoff: Combining the individual experimental
results allows us to now understand the energy-vs.-accuracy
tradeoff generated by changing image quality (reflected by
different image sizes). We conduct the experiments in two
ways: (i) evaluate the energy and detection accuracy (preci-
sion) of different uniform resolutions (from 160p to 1080p)
and (ii) later, gradually decrease the resolution values of the
image regions of the 1080p image until the mAP reduces to
{75%,70%,65%,60%}. Fig. 6 plots the results, for both the
uniform downscaling approach and, for comparison, the dif-
ferential techniques (MRIM) that we shall detail in Section IV.
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Fig. 6: Energy versus mAP.

The results in Fig. 6a indicate the crux of the problem:
under uniform resolution, both energy and precision drop sig-
nificantly when resolution drops from 720p to 160p. However,
as shown in Fig. 6b, permits a much more gentle decrease in
mAP compared to the linear drop in energy. By deliberately
and gradually changing the resolution of individual regions,
we can achieve approximately the same level of precision (as
shown in the green plot) with lower energy (blue plot) than
that achieved via uniform resolution downscaling.

D. Problem Formulation

MRIM’s choice of the downscaled resolutions for each sub-
region can then be formulated as one of two distinct objective
functions:
• P1: Given a minimum mean average precision, adjust the

resolution of each image sub-region so as to minimize the
total energy consumption, i.e.,

P1 : Vi|1≤i≤N = arg min
mAP≥mAP

{E} .

For this objective (suited for scenarios where the vision task
has a minimum required fidelity), the accuracy serves as as
a lower-bound constraint (e.g., mAP ≥ 75%).

• P2: Given an energy constraint E, adjust the resolution
values of each image sub-region so as to maximize the DNN
task accuracy, i.e.,

P2 : Vi|1≤i≤N = arg max
E≤E

{mAP} .

In this case (suited for scenarios where the platform has a
finite battery capacity and a target lifetime), E serves as an
upper-bound constraint (e.g., E ≤ 50 mJ/frame).



Given the many real-world non-ideal characteristics in both
system energy consumption and DNN performance, develop-
ing a provably optimal solution to each problem is infeasible
and impractical. Hence, we shall next focus on developing
efficient (low-complexity) heuristic algorithms for P1 and P2.

IV. RESOLUTION ADJUSTMENT ALGORITHMS

We now describe two different algorithms that the Reso-
lution Adjuster can use to determine the different resolution
choices for each of the sub-regions. The algorithm design is
driven by our observation (using open-source image datasets
corresponding to two representative tasks, human detection
and vehicle detection, and illustrated in Fig. 7 below) that most
captured images exhibit one of two spatial characteristics:

(i) Uniform spatial distribution (see Fig. 7a), where objects
of interest are typically distributed across the entire image,
even though the size of the objects vary depending on the
observer-object distance.

(ii) Skewed Distribution (see Fig. 7b) , where objects of interest
are typically observed in selected salient sub-regions of the
image–e.g., mostly confined to the upper or left portion of
the camera’s FoV.

In addition, as observed earlier in Fig. 3, reduced resolution
impacts the detection accuracy for smaller-sized objects dis-
proportionately, implying that the algorithms must also incor-
porate the different resolution-to-mAP relationship for differ-
ent object sizes. Given these observations, (i) the Max-Min
algorithm tends to allocate higher resolution disproportionately
to a smaller number of high saliency areas until the image
satisfies a minimum predicted mAP value, and is thus better
suited for images with skewed spatial distribution, whereas
(ii) the Water-Filling algorithm, which conceptually attempts
to equalize the predicted mAP values of all sub-regions, is
better suited for images with uniform spatial distribution.

(a) Even distribution (b) Skewed distribution

Fig. 7: Even & Skewed Spatial Distributions

A. Estimating Resolution-to-mAP Values

To enable the MRIM algorithms to determine the right res-
olution choices, we first need to build a predictive estimate of
how the final DNN task accuracy will be affected by different
possible downscaled resolution candidates. To estimate this,
we first compute the weighted confidence of the objects de-
tected by the Saliency Estimator as: WConf =

∑N
i=1 Si·bboxi∑N

i=1 bboxi
,

where bbox represents the bounding box area and S represents
the class confidence of each detected object. Subsequently,
we utilize a look-up table (which has been populated by
extensive empirical studies) that maps this confidence value to
an overall image mAP predicted to be achieved, for different

image resolution/size values, when the heavyweight DNN
(YOLOv5 [11] in our case) is executed on the edge node.
For example, a sample entry in the lookup table might be
of the form (WConf = 57.2, Res = 300,mAP = 67.6),
implying that that a Saliency Estimator WConf value of 57.2%
is estimated to eventually result in a YOLO mAP=≈ 67.6%,
if the image was downsized to a 300x300 resolution.

Algorithm 1: Accuracy-Aware Energy Minimization

Input: Nd, Nr, bounding boxes, Si|1≤i≤N, mAP ,
Vi|1≤i≤N;

Output: Vi|1≤i≤N , Qi|1≤i≤N , mAP ;
1 Calculate mAP based on confidence scores for each

class;
2 if mAP < mAP then
3 Rank the regions Ri|1≤i≤Nr

based on included
bounding box areas in descending order;

4 for each region Ri|1≤i≤Nr
do

5 for ∆V from small to large resolution changes
do

6 Vi = Vi + ∆V;
7 Sj = Sj + S,∀ object j ∈ Ri;
8 Qj = Qj −∆V;

9 mAP =
∑N

i=1 Si
N ;

10 if mAP ≥ mAP then
11 break;
12 end
13 end
14 end
15 end
16 else
17 Rank the regions Ri|1≤i≤N based on included

bounding box areas in ascending order;
18 for each region Ri|1≤i≤N do
19 for ∆V from small to large resolution changes

do
20 Vi = Vi −∆V;
21 Sj = Sj + S,∀ object j ∈ Ri;

22 mAP =
∑N

i=1 Si
N ;

23 if mAP < mAP then
24 Vi = Vi + ∆V;
25 break;
26 end
27 end
28 end
29 end
30 return Vi|1≤i≤N , mAP ;

B. Max-Min Algorithm

The Max-Min algorithms operate in greedy fashion, pref-
erentially adjusting the resolution of individual sub-regions
in order of descending priority, until the overall image mAP
reaches the specified threshold. The priority order is deter-
mined by the saliency of individual sub-regions (which is pre-
computed based on the number of objects predicted by the



Lightweight Saliency Estimator) as well as an evaluation of
whether the initial overall image mAP is lower or higher than
the target mAP. At a high-level, if the current overall image
AP is higher than the target mAP, we seek to preferentially
increase the resolution of the regions with highest saliency;
conversely, if the current overall image AP is higher than the
target mAP, we preferentially decrease the resolution of the
regions with the lowest saliency.

Algorithm 1 provides the high-level pseudocode of the Max-
Min algorithm for objective P1. The algorithm inputs include
the number of sub-regions Nr, number of objects Nd and their
bounding boxes (detected by the Lightweight Saliency Estima-
tor), and target mean average precision mAP . The algorithm
starts with a nominal (low) resolution allocation to each of
the sub-regions, and uses the afore-mentioned lookup table to
estimate (line 1) each sub-region’s anticipated mAP score, as
well as the image’s overall mAP. In case the estimated mAP is
below the target mAP, the algorithm proceeds to progressively
increase the resolution of individual sub-regions individually,
starting with the most salient sub-region (the one with the
largest number of predicted objects). At each step of such
resolution adjustment, it recomputes the overall mAP (lines 6-
9) and stops wheneve this overall mAP has exceeded the target
value (lines 10-12). However, if the overall image mAP has
not reached the target value even after the first sub-region’s
resolution has been maximally increased, the algorithm then
greedily proceeds to the region with the next highest saliency.
This process is repeated until the overall mAP target has
been achieved or all possible regions have been expanded to
the maximum permissible resolution. Conversely, if the initial
estimated overall mAP is higher than the target mAP, the
algorithm assumes that the current resolution choices are too
generous and seeks to iteratively decrease the resolution of
sub-regions, starting with the lowest saliency region, until it
‘just’ exceeds the target mAP. The complexity of Algorithm 1
is O(Nr · Nd · V

∆V ). We shall show in Section V that, under
reasonable values of Nr (=4, 6, 8,...), the complexity of this
algorithm is low enough to permit low-latency, low-energy
execution on embedded platforms.

The overall greedy approach of Max-Min can also be suit-
ably adapted to tackle the optimization problem P2 with the
energy constraint E , as detailed in Algorithm 2. As before, the
algorithm operates in greedy fashion, prioritizing individual
sub-regions on the basis of their estimated saliency. In this
case, however, during each iteration of resolution adjustment,
the total energy consumption for that specific region (and thus
the overall image) is re-estimated (using Equation 1), with the
adaptation process continuing until the estimated total energy
is ‘just’ below the permitted energy budget.

C. Water-Filling Algorithm

The Water-Filling Algorithms are inspired by prior work on
equalizing channel performance in communication systems,
and are based on the observation that water height effectively
equalizes across multiple connected reservoirs independent
of their individual heights. At a high-level, the algorithm
views the resolution (pixel count) as a fluid resource that is

Algorithm 2: Energy-Constrained Accuracy Maxi-
mization

Input: Nd, Nr, bounding boxes, Si|1≤i≤N, E,
Vi|1≤i≤N;

Output: Vi|1≤i≤N , Ri|1≤i≤N , Est Eng;
1 Ri = Rmin

i ,∀1 ≤ i ≤ N ;
2 Rank the regions Ri|1≤i≤N based on included

bounding box areas in descending order;
3 for each region Ri|1≤i≤N do
4 for ∆V from small to large resolution changes do
5 Vi = Vi + ∆V;
6 Sj = Sj + S,∀ object j ∈ Ri;
7 Qj = Qmin;
8 Ei = Eidle

i + Eenc
i + Etran

i ;
9 Est Eng =

∑N
i=1Ei;

10 if Est Eng ≥ E then
11 Vi = Vi −∆V;
12 break;
13 end
14 end
15 end
16 return Vi|1≤i≤N , Est Eng;

effectively distributed among the different sub-regions so as
to equalize their water height, where the height is defined by
each region’s predicted mAP value.

Algorithm 3 provides the high-level pseudocode for this ap-
proach for objective P1 (minimizing energy under an accuracy
constraint). The algorithm starts by assuming each sub-region
to be associated with the lowest permitted spatial resolution
(pixel count). The resolution level is then incrementally in-
creased across the board, and the resulting average accuracy
is computed. Subsequently, each sub-region’s individual pre-
dicted mAP score (height) is compared against this image-
wide average, and the resolution for that region is iteratively
increased until it is no longer below the current image-
wide average value. This iterative approach effectively causes
regions with higher saliency (larger number of objects or
smaller-sized objects) to benefit from an increased allocation
of pixel account, thereby assuring that such regions do not
suffer poor accuracy. The Water-Filling approach can also be
similarly adapted to objective P2 (maximizing accuracy under
an energy constraint), although the pseudocode is omitted due
to space constraints.

V. PERFORMANCE EVALUATION

We evaluate the performance of our proposed algorithms,
both in terms of its (a) the resulting object detection task ac-
curacy (mAP), and (b) the actual energy and latency overheads
on real-world embedded vision sensor platforms. Accuracy
performance is evaluated by replacing images from multiple
benchmark public datasets. For the energy and latency metrics,
we evaluate MRIM using the Raspberry Pi (RPi) 3B. RPi 3B
is a popular embedded platform, equipped with Imx219 image
sensor, BCM2837, a quad-core 1.2GHz ARM-Cortex proces-
sor, 1GB of LPDDR2 SDRAM and an onboard BCM43438



Algorithm 3: Water-Filling Resolution Adjustment
With Accuracy Requirement

Input: Nd, Nr, bounding boxes, Si|1≤i≤N, mAP,
Vi|1≤i≤N;

Output: Vi|1≤i≤N , Ri|1≤i≤N , Est Eng;
1 Cur ACC =

∑N
i=1 Si
N ;

2 if Cur ACC < mAP then
3 for each region Ri do

4 Cur ACCRi
=

∑N
j=1 SRi

NRi
;

5 while Cur ACCRi
< mAP do

6 Vi = Vi + ∆V;

7 Cur ACC =
∑N

i=1 Si
N ;

8 Ei(Vi) = Eidle
i (Vi) + Etran

i (Vi);
9 end

10 end
11 end
12 Est Eng =

∑N
i=1Ei(Vi);

13 return Vi|1≤i≤N , Est Eng;

chip supporting an 802.11ac radio. Power measurements, both
system-level and for individual functional components, are
obtained via the use of the Monsoon power monitor.

A. Alternative Baselines

We compare MRIM’s differential downscaling approach (via
either Max-Min or Water-filling algorithms) with baselines of:
• Compressive Image Coding: We utilize the JPEG encoder

of Python 3.8, and modify the compression quality val-
ues (higher value → higher quality) within the range
(100, . . . , 20) to execute different levels of compression.

• Uniform Resolution Downscaling: In this approach, the en-
tire image is uniformly downscaled to the target resolution,
without considering the saliency of different sub-regions.
We compare with image encoding method because this is

commonly used in image transmission and storage systems.

B. Datasets

We utilize two different public benchmark datasets that are
representative of typical pervasive vision applications:
• WildTrack: The WildTrack dataset [4] involves the use of

multiple HD 1920x1080 cameras (with an average ∼55%
FoV overlap across cameras) to capture a very crowded
public area on a university campus for the purposes of
human object detection.

• CityScapes: The CityScapes dataset [5] includes 5000 im-
ages, across 27 cities, representing a wide variety of urban
environments, and annotated with objects corresponding
to 30 classes (e.g., vehicle, construction, human). In our
studies, we utilize a subset of 2000 images most suited for
the vehicle object detection task.

C. Energy-Accuracy Tradeoff

We first study how the total energy of the vision platform,
as well as the task accuracy (YOLOv5 based object detection)
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Fig. 8: Energy vs. Accuracy: MRIM vs. Alternatives

is affected by different resolution choices, expressed by file
size constraints. Fig. 8 plots the average energy consumption
vs. mAP, across both WildTrack and CityScapes, as measured
using the RPi platform. In addition, Figure 1c ( presented
earlier in Section I) demonstrates the tradeoff between mAP
and transmission file size for the different approaches. Overall,
we see that both Max-Min and Water-filling outperform the
other baselines–in particular, the MRIM approaches are able
to achieve ≈20% increase in accuracy under identical energy
overheads. We also note that, as expected, the mAP of Uniform
Downscaling degrades rapidly as the image is downscaled.
While Image Encoding can achieve, on average, higher mAP,
its energy overhead is significantly higher compared to all
other approaches.

D. Max-Min vs. Water-filling

To further study the differences between the two algorithms
presented in Section IV, Table II plots the energy-vs.-mAP
variation for two different scenarios: (i) Water-Filling applied
to objective P1 and (ii) Max-Min applied to objective P2, when
the raw camera image has a resolution of 1350*900. We can
see that both approaches are able to dramatically reduce the
overall file size (by ≈ 80-65%, compared to an original image
size of ∼ 1.2 MB) with only a modest 3.6% loss of accuracy
(to ∼ 0.68 from the maximum value of 0.73, achieved when
the raw image is input to the DNN). MRIM can thus achieve
at least a significant reduction in system energy, in spite of the
RPI’s non-negligible baseline power of 230 mW. Also, Fig. 9
illustrates the resulting compressed images (and the object
detection output) under both schemes, for one representative
image from each dataset. We can see that Max-Min is more
aggressive in reducing the resolution for less salient regions
(notice the increased blockiness of the foreground areas for
WildTrack), whereas Water-filling tends to preserve greater
detail for such lower-saliency regions.

E. Delay & Energy Characteristics:

To further illustrate the appeal of MRIM’s computationally-
efficient, yet effective, technique of image downsampling,
Table III plots the variation in file size/energy consumption
and processing latency (on the RPi) as the degree of compres-
sion is varied. We see that while compressive encoding can
indeed reduce the file size significantly, the additional on-board
processing overhead dampens the reduction in overall latency
and energy, relative to MRIM. For example, under compressive
encoding, a file size of 96KB incurs a processing latency of



(a) Original Images (b) Max-Min Algorithm (c) Water-Filling Algorithm

Fig. 9: Original vs. MRIM-based Images
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TABLE II: Water-filling vs. Max-Min Performance.

Water filling (accuracy-aware)
Index File size (KB) Total (mJ) Target mAP

1 472.8 107.52 0.673
2 119.5 27.62 0.642
3 52.09 10.83 0.568
4 17.6 3.472 0.526

Max-min (energy constraint)
Index File size (KB) Target

energy (mJ)
mAP

1 715.3 156.878 0.687
2 183.5 43.836 0.663
3 69.07 13.93 0.593
4 18.79 3.854 0.539

141 msecs; in contrast, with MRIM, a reduced file size of 69
KB incurs a processing latency of only 3.5 msecs.

TABLE III: MRIMvs. Image Encoding.

Resolution Adjustment
Resolution File size (KB) Total (mJ) latency (ms)
1350*900 736 156.9 196
775*450 219 43.8 50.8
338*225 69.07 13.9 14.3
225*75 19 3.9 3.56

Image encoding
Jpeg quality File size (KB) Total (mJ) latency (ms)

100 736 156.9 196
80 143.4 54.4 145
60 96.43 46.2 141
20 51.87 39.6 134

VI. DISCUSSION

While our work attests to the power of MRIM, there are a
few additional open issues requiring further investigation.
Choice of Nr: We experimentally observe that the most
suitable values for the number of distinct sub-regions (an
input to our algorithms) are in the range of [4, 6, 8, 10, 12].
Figure 10 plots the energy vs. mAP variation for different
values of Nr. Intuitively, a larger value of Nr permits more
fine-grained resolution adjustment (and thus improved mAP);
however, the increased algorithm complexity leads to a larger
value of Eproc. Indeed, we can see that a choice of Nr = 6
provides higher accuracy at lower energy overheads, compared
to Nr = 10 or 12 . As the optimal value of Nr depends on
the deployment-specific spatial properties of objects, we plan
to develop a technique that allows a specific sensor instance
to autonomously determine its optimal choice of Nr.

Extension to Other Vision Tasks: While we considered
only the object detection task, we believe that the general
phenomenon of “reduced DNN accuracy with reduced image
resolution” is more general, implying that MRIM should be
applicable for a wider variety of vision tasks (e.g., scene
classification). However, the accuracy-vs.-resolution tradeoff
can be discontinuous for different tasks–e.g., it is likely that
person identification requires a minimum resolution to operate.
Low Power Vision Platforms: We chose the RPi platform
for our experiments primarily for expediency (easily available,
open source drivers, etc.). However, the RPi’s baseline/idle
power of 230mW is significantly higher than other specialized
ultra-low power platforms (such as Pixy21), making the system
far from energy-proportional [15] and thus limiting the gains
exhibited by MRIM. We believe that MRIM can achieve
substantially higher energy reduction (∼70-80%) when applied
to such specialized sensing platforms.

VII. CONCLUSION

MRIM introduces an approach for performing differential
resolution downscaling on different regions of a single image,
so as to reduce the overall energy overheads of pervasive
vision sensing without compromising the accuracy of DNN-
based vision tasks. We have described simple, but effective
and computationally efficient, techniques for both dynamically
estimating the saliency of different sub-regions of a single
captured image, and subsequently determining the resolution
values for each sub-region. Via the use of multiple benchmark
urban monitoring datasets and an RPi-based implementation,
we have demonstrated that MRIM can consume ∼30% less
energy than even a hardware-optimized image encoder and
achieve ∼20% improvement in object detection accuracy over
a comparable uniform resolution downscaling approach.
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