
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2022

Which neural network makes more explainable decisions? An Which neural network makes more explainable decisions? An

approach towards measuring explainability approach towards measuring explainability

Mengdi ZHANG
Singapore Management University, mdzhang.2019@phdcs.smu.edu.sg

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jingyi WANG
Zhejiang University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
ZHANG, Mengdi; SUN, Jun; and WANG, Jingyi. Which neural network makes more explainable decisions?
An approach towards measuring explainability. (2022). Automated Software Engineering. 29, (2), 1-26.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7160

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Vol.:(0123456789)

Automated Software Engineering (2022) 29:39
https://doi.org/10.1007/s10515-022-00338-w

1 3

Which neural network makes more explainable decisions?
An approach towards measuring explainability

Mengdi Zhang1 · Jun Sun1 · Jingyi Wang2

Received: 17 August 2021 / Accepted: 20 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Neural networks are getting increasingly popular thanks to their exceptional perfor-
mance in solving many real-world problems. At the same time, they are shown to be
vulnerable to attacks, difficult to debug and subject to fairness issues. To improve
people’s trust in the technology, it is often necessary to provide some human-under-
standable explanation of neural networks’ decisions, e.g., why is that my loan appli-
cation is rejected whereas hers is approved? That is, the stakeholder would be inter-
ested to minimize the chances of not being able to explain the decision consistently
and would like to know how often and how easy it is to explain the decisions of a
neural network before it is deployed. In this work, we provide two measurements on
the decision explainability of neural networks. Afterwards, we develop algorithms
for evaluating the measurements of user-provided neural networks automatically.
We evaluate our approach on multiple neural network models trained on benchmark
datasets. The results show that existing neural networks’ decisions often have low
explainability according to our measurements. This is in line with the observation
that adversarial samples can be easily generated through adversarial perturbation,
which are often hard to explain. Our further experiments show that the decisions of
the models trained with robust training are not necessarily easier to explain, whereas
decisions of the models retrained with samples generated by our algorithms are eas-
ier to explain.

Keywords  Neural network testing · Model interpretability · Deep learning models

 *	 Jun Sun
	 junsun@smu.edu.sg

	 Mengdi Zhang
	 mdzhang.2019@phdcs.smu.edu.sg

	 Jingyi Wang
	 wangjyee@zju.edu.cn

1	 Singapore Management University, Singapore, Singapore
2	 Zhejiang University, Hangzhou, China

Published in Automated Software Engineering. November 2022, Vol. 29 Issue 2. pp. 1-26.
https://doi.org/10.1007/s10515-022-00338-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00338-w&domain=pdf

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 2 of 26

1  Introduction

Neural networks are getting increasingly popular thanks to their exceptional per-
formance in solving many real-world problems, such as face recognition (Tran
et al. 2017), language translation (Lewis et al. 2019) and self-driving cars (Bojar-
ski et al. 2016). At the same time, multiple issues have been identified as well.
For instance, it has been shown that neural networks are subject to adversarial
sampling attacks, i.e., a correctly classified sample would be easily misclassified
once some perturbation is applied (Goodfellow et al. 2014). For another instance,
a neural network model may be embedded with a backdoor to predict differently
in the presence of certain trigger (Liao et al. 2018) or may be discriminative
against certain groups (Mohammed et al. 2020).

One way to reduce people’s distrust in neural networks is to make sure that
there is a human-understandable explanation of the neural network’s decisions.
Consider a scenario where a neural network is used to decide whether a bank
loan application is approved or rejected. It would be an issue if we cannot explain
why one application is rejected whereas a similar one is approved. Worse yet, it
becomes a fairness issue if the only explanation possible is based on certain sen-
sitive features (such as race and gender). A stakeholder thus would be interested
to minimize the chances of not being able to explain the decision consistently.
How often and how easy it is to explain the decisions of a neural network would
be significant evaluation criteria. In other words, there is a need to test neural net-
works in terms of the explainability of their decisions. To the best of our knowl-
edge, this is a testing problem which is yet to be addressed.

Since we aim to explain decisions from users’ perspectives, the need is closely
related yet different from existing studies on neural network interpretability. It
is based on recent studies on what are considered human-understandable. These
studies are typically conducted through human studies (Lombrozo 2007; Oaks-
ford and Chater 2001; Lage et al. 2019). The conclusion is that comparing dif-
ferent models for explanation, human understanding goes only as far as simple
models such as decision trees and linear functions. The consequence is that when
we explain a neural network’s decisions, we are limited to simple linear functions
(e.g., “your loan is rejected before your annual income is below 50K whereas
hers is more than 50K”) or simple decision trees (e.g., “your loan is rejected
because your annual income is below 50K and you have an existing loan, whereas
although her annual income is similar, she does not have an existing loan”). Note
that this need (of providing a human-understandable explanation of neural net-
work decisions) is different from the need addressed by works which aim to pro-
vide interpretation on the inner working of neural networks (Kim et al. 2014;
Lakkaraju et al. 2016), such as the studies in Simonyan et al. (2013), Yosinski
et al. (2015), and Guo et al. (2018) which provide hints on how a neural network
makes certain decision through highlighting certain pixels of the input picture or
certain words of an input text.

In this work, we develop an approach and a software toolkit to address the
problem. We first propose multiple measurements on how easy it is to explain a

1 3

Automated Software Engineering (2022) 29:39 	 Page 3 of 26  39

user-provided neural network’s decisions based on the results of the above-men-
tioned user studies (Lombrozo 2007, 2006; Oaksford and Chater 2001; Lage et al.
2019). Intuitively, we define the measurements based on how often the predic-
tion results can be explained consistently using a human-understandable model
and how simple the model is. These measurements allow us to compare differ-
ent neural networks in terms of how explainable their decisions are. Afterwards,
we develop multiple algorithms that allow us to automatically evaluate and com-
pare neural networks in terms of the measurements. Given a neural network, our
algorithms systematically explore the input space and measure the percentage of
inputs on which the prediction results can be consistently explained with a certain
simple model. We remark that our approach can be regarded as a generalization
of the recent work on evaluating fairness (Agarwal et al. 2018; Zhang et al. 2020)
(where fairness is defined in terms of individual discrimination). That is, a fair-
ness issue is a special case of a decision explainability problem, i.e., the only pos-
sible explanation is based on the sensitive features. In our testing,

Our approach has been implemented as a self-contained toolkit (open-source at
Zhang (2021)). We conduct multiple experiments on neural network models trained
based on benchmark datasets to evaluate the relevance of our approach and the
effectiveness of our algorithms. Our experiment results show that, unsurprisingly,
the neural network models almost always have a low decision explainability. One
of the reasons seems to be the existence of adversarial samples. We further per-
form experiments to check whether models obtained through robust training have
improved decision explainability. The results suggest that it is not always the case.
Lastly, we check whether we can improve the decision explainability of a model by
retraining it using samples generated by our algorithms without reducing accuracy
significantly, and the results are affirmative.

The rest of the paper is organized as follows. In Sect. 2, we define our problem
and provide multiple measurements of the decision explainability of neural net-
works. In Sect. 3, we present our algorithms for evaluating neural networks based
on our measurements. In Sect. 4, we evaluate our approach through multiple experi-
ments. Lastly, we review related work in Sect. 5 and conclude in Sect. 6.

2 � Problem definition

In this work, our goal is to develop systematic methods to measure how easy it
is to explain the decision of neural networks in a human-understandable way. To
define the problem properly, we must answer questions such as: what are considered
human-understandable and what quantitative measurements do we use? In the fol-
lowing, we first review existing related literature and then define the problem.

2.1 � What are human‑understandable?

There are multiple human studies on what are considered human-understandable.
For example, it is observed that human beings prefer explanations that are both

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 4 of 26

simple and highly probable (Lombrozo 2007) and often develop simplified under-
standing of complex systems by ignoring low-probabilistic cases (Oaksford and
Chater 2001). One study compares the effectiveness of different forms of explana-
tions by measuring human response time (Lage et al. 2019). The result shows that
simulation was the fastest, followed by verification and then counterfactual reason-
ing. The counterfactual reasoning task also has the lowest accuracy.

Recent studies (Carvalho et al. 2019) found that human-understandable models
include linear regression, logistic regression, and decision trees. The linearity of the
learned relationship makes human-understanding easy, especially for the model with
monotonous constraints (Carvalho et al. 2019).

Logistic regression is an extension of linear regression, typically for classification
problems. Instead of fitting a straight line or a hyperplane, it outputs the predic-
tion probabilities between 0 and 1 for different classes. While linear regression and
logical regression are limited to linear relationships, decision trees can be used to
represent non-linear relationships to some extent (i.e., some Boolean combinations
of them). A decision tree model splits the data multiple times according to certain
atomic propositions on the input features.

Figure 1 shows one sample model for each kind. The task is to classify the blue
and red dots. Given the task, a linear regression, shown in Fig. 1a, is a best-fit
straight line which aims to separate the dots based on predicted value; a logistic
regression, shown in Fig. 1b, takes the weighted sum of the inputs and applies an
activation function such as Sigmoid to generate classifications; and a decision tree,
shown in Fig. 1c, separates the input space into multiple regions and each of the
regions is assigned with one predicted classification label.

Intuitively, our idea of defining and measuring how easy it is to explain the deci-
sions of a neural network model is based on measuring how often the prediction
results can be “explained” consistently using a human-understandable model. Exist-
ing user studies suggest that humans are capable of understanding simple models
such as the kind of decision trees that we focus on Breiman (1984). Thus, by meas-
uring how often the neural network’s decisions can be explained by such a simple
model, we get a measure on how often people can understand the neural network’s
decisions.

In this work, we focus on decision trees over linear regressions for the follow-
ing reasons. First, as samples end up in distinct groups according to a decision tree
model, it is arguably easier to understand than points on lines or multi-dimensional
hyperplanes as in linear regression models. Secondly, the tree structures of decision

(a) Linear regression (b) Logistic regression (c) Decision tree

Fig. 1   Human-understandable models

1 3

Automated Software Engineering (2022) 29:39 	 Page 5 of 26  39

trees have a natural visualization and humans can reason about its decision-making
process following its hierarchical structure. Thirdly, decision trees are reasonably
expressive (e.g., they are more expressive than linear regressions and they can cap-
ture certain non-linear relationships) and often achieve more accurate prediction
results on real-world tasks (Zhang et al. 2019; Ke et al. 2017).

2.2 � Learning decision trees

Note that our approach is not approximating a given neural network using deci-
sion tree, but quantitatively evaluating neural network explainability based on deci-
sion tree (or any other simple approximation model) which works as a proxy. So
our approach relies on methods for generating decision trees. In the literature, there
are well-studied algorithms for generating decision trees (Steinberg and Colla 2009;
Chen et al. 2016; Ke et al. 2017). In this work, we adopt the existing method called
the classification and regression trees (CART (Breiman 1984))to construct deci-
sion trees. CART relies on the learning samples which are a set of historical data
with assigned classes for all observations to learn decision trees. It raises a sequence
of yes/no questions, each of which splits the learning samples into two partitions.
In other words, given a set of labeled feature vectors, the algorithm identifies one
atomic proposition each time for splitting the domain of each feature. The atomic
proposition is identified greedily by minimizing the Gini score, which is defined in
David (1980). In the following, we provide a formal definition of decision trees and
refer the readers to the existing literature on how to learn decision trees.

Definition 1  (Decision trees) Given a set of atomic propositions �1,�2,⋯ ,�m , a
(binary) decision tree is a binary tree where each node has two outgoing edges, one
labeled with a proposition �i and the other labeled with ¬�i . 	� ◻

A sample decision tree is shown in Fig. 2. If a decision tree has height n, there are
a maximum of 2n leaf nodes. Each leaf node is associated with a prediction. Given a
sample, the prediction by the tree can be identified by navigating from the root of the
tree and following the edges according to the truth value of the proposition associ-
ated with the node, until a leaf node is reached.

The above definition is parameterized with a set of propositions. The choice
of propositions would obviously be related to whether the decision tree is con-
sidered human-understandable. In this work, we restrict propositions to the form

Fig. 2   A sample decision tree
on the Bank dataset

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 6 of 26

f ≥ d where f is a feature and d is a constant, e.g., income ≥ 50K  . We choose
Boolean proposition for linear relationship instead of continuous in the range,
e.g., income ∈ [50K, 60K] , because the former proposition always splits the
space into two partitions which is easier for human reasoning and two such
propositions work the same as continuous in the range. We leave it to future
work to consider propositions relating to multiple features.

The details of the decision tree building algorithm are shown in Algorithm 1.
We limit the height of the tree to be maximum K, which is an input parameter,
along with a set of labeled samples LD and features KF. Note that, instead of let-
ting CART algorithm do the feature selection, we use KF to define features used
to approximating the neural network. In this setting, we support evaluating how
easy it is to explain neural network’s decisions using any user-provided feature
set and also ignore the possible effect of sensitive features, e.g., gender or race.
In the base case, if K = 0 , we simply return a new node, which will be a leaf of
the decision tree. Otherwise, we identify a proposition � at line 5 (by trying all
feature f and constant d in f’s domain). Afterwards, the set of labeled samples
is split into two, i.e., right contains those which satisfy � , and left contains the
rest. A perfect split is one that all samples in left have the same label and all
samples in right have the same label. In such a case, the Gini score is 0. Since
we exhaustively search for the � which has the minimum score (assuming that
there are finitely many d values) for each level of the decision tree, the generated
decision tree is guaranteed to have better accuracy on LD than any other deci-
sion trees. This is stated in the following theorem.

Theorem 1  (Breiman 1984) If Algorithm 1 returns a decision tree D with accuracy
� , that does not exist a decision tree D with the same height and accuracy �′ such
that 𝜙′ > 𝜙.

1 3

Automated Software Engineering (2022) 29:39 	 Page 7 of 26  39

2.3 � Defining measurements

In the following, we define multiple measurements that can be used to quantify how
easy it is to explain the decisions of a neural network and also how easy it is for
human to understand neural network’s decisions. Note that we evaluate on the pre-
dictions of the neural network instead of the ground truth labels.

Definition 2  (K-explainability) A model N’s decisions are K-explainable with
respect to a set of samples T iff there exists a decision tree D such that height(D) ≤ K
and D(i) = N(i) for all i ∈ T  , where N(i) is the prediction on i by N and D(i) is the
prediction on i by D. 	� ◻

Intuitively, a model N’s decisions are K-explainable if and only if its decisions
can be consistently explained using a decision tree with a height no more than K. In
the above definition, the decision explainability is parameterized with a limit on the
height of the decision tree K. It is known (Ke et al. 2017) that the higher the decision
tree is, the less understandable it is. Thus, we must take the height of the decision
tree into account. Furthermore, the above is defined with respect to a set of samples
T, i.e., the set of samples on which we evaluate the model’s decision explainability.
In this work, we focus on two sets. One is the training set, i.e., the decision explain-
ability of a model is tested and measured against those samples in the training set.
The other is the entire input space, i.e., the decision explainability of a model is
tested against any sample, including those that are yet to be seen. The latter is clearly
more demanding than the former. Given the above definition, our problem is to test
whether a model N’s decisions are K-explainable. We show an algorithm to solve the
problem in Sect. 3.

In the following, we define K,�-explainability which is a slightly relaxed notion
of decision explainability. That is, instead of demanding that a neural network is
completely consistent with a decision tree with a limited height (which is often
unlikely in practice as we show in Sect. 4), we require that the explaining model
must reach a certain level of consistency with the neural network model in terms of
the decisions.

Definition 3  (K,�-explainability) Let � be a percentage. A model N’s decisions are
K,�-explainable with respect to a set of samples T if and only if there exists a deci-
sion tree D such that height(D) ≤ K and the fidelity of D with respect to N is no less
than � where fidelity is defined as follows.

where Sign(b) is a function which returns 1 if b is true.

Intuitively, a model N’s decisions are K,�-explainable if and only if its decisions
can be explained consistently using a decision tree with a height no more than K
in most of the cases (defined by � ). The value of � provides a quantification of the

(1)Fidelity =

∑

i∈T Sign(N(i) = D(i))

#T

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 8 of 26

explainability. Note that we similarly distinguish two cases based on what T refers
to. One is the training set and the other is the entire input space. Note that in the lat-
ter case, since there may be infinitely many samples, measuring the fidelity is non-
trivial. To evaluate whether a model’s decisions are K,�-explainable, we would like
to have an algorithm which can systematically measure the fidelity of the best deci-
sion tree with a height no more than K. We present such an algorithm in Sect. 3.

With the above-defined measurements, we can then compare the decision explain-
ability of two neural network models N1 and N2 . We say that N1 is more explainable
than N2 if N1 ’s decisions are K1-explainable, N2 ’s decisions are only K2-explainable
and K1 < K2 ; or N1 ’s decisions are K,�1-explainable, N2 ’s decisions are only K,�2

-explainable and 𝜙1 > 𝜙2.

3 � Testing decision explainability

In this section, we answer the following question: how do we measure the decision
explainability of a user-provided neural network model? We present four algorithms
according to the two measurements defined in Sect. 2.

3.1 � K‑Explainability testing against training set

In the following, we present algorithms for testing whether a neural network’s deci-
sions are K-explainable. We distinguish two cases. One is that the decision explain-
ability is defined with respect to the training set. The other is that it is defined with
respect to the entire input space. The former is solved using Algorithm 2.

Intuitively, the goal of Algorithm 2 is to test whether there exists a decision tree
of height K which perfectly explains every prediction of the neural network. It takes
the neural network model N and the training set T as well as K as inputs. At line 1,
we label each feature vector in T with the corresponding prediction of the neural
network N. Note that our goal is to explain N’s decisions and thus the ground truth
labels of T are irrelevant here.

1 3

Automated Software Engineering (2022) 29:39 	 Page 9 of 26  39

At line 2, we identify all combinations of K-features. Suppose each input fea-
ture vector has a total of M features. Then there are CK

M
 different combinations of K

features. The loop from line 3 to 10 tries every combination one by one. Note that
this loop can be easily parallelized. For each combination, Algorithm 1 is applied to
generate the ‘best’ decision tree using the given set of features. If perfect accuracy
is achieved, i.e., every feature vector is classified with a label that is consistent with
that of N, a decision tree satisfying Definition 2 with respect to the training set is
identified and thus the neural network model’s decisions are K-explainable. Further-
more, the generated decision tree is reported as evidence of the model’s decision
explainability. The complexity of the testing is Θ(CK

M
) , where M is the dimension of

feature vectors and K is the depth of decision trees. We remark that the complexity
can be high when M is large and we experiment heuristics in Sect. 4 which may sig-
nificantly reduce the complexity.

The following theorem states the soundness and completeness of the algorithm,
whose correctness can be easily established based on Theorem 1.

Theorem 2  A neural network N’s decisions are K- explainable with respect to the
training set if and only if Algorithm 2 returns true. 	� ◻

Example 3.1  We use the Bank (Moro et al. 2014) dataset to illustrate Algorithm 2.
Each sample in the dataset has 16 features. Assume K is 2 and there are C2

16
 different

combinations of 2 features. Next, each combination is tested. Let us take the combi-
nation of f12 (with domain 0 − 99 ) and f16 (with domain 0 − 3 ) as an example. The
decision tree generated at line 4 is shown in Fig. 2.

Based on the decision tree, we have 3 propositions. �1 means f16 < 3 , �2 means
f12 < 90 and �3 means f12 ≥ 14.

We then travel through all samples in the training set to see whether the decision
tree is completely consistent with the neural network. If we find a sample x such that
the prediction of the neural network and decision tree is different, the neural network
is considered not explainable according to this decision tree. That is, the decisions
of the neural network cannot be explained entirely based on the values of the feature
f12 and f16 . The following is such an example, whose prediction according to the
neural network is 1 whereas its prediction according to the decision tree is 0.

x = [3, 7, 0, 2, 0, 1, 0, 0, 0, 8, 4, 81, 1, 1, 0, 0]

3.2 � K‑Explainability testing against all inputs

It may be insufficient to explain a model’s decisions over the training set only, as
a future sample might not fit in the explanation. In the following, we present an
approach to test the explainability of a model N’s decisions against all possi-
ble inputs including the unseen ones. In this setting, applying Algorithm 2, which
requires us to exhaustively enumerate all possible inputs, is infeasible due to the
enormous input space.

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 10 of 26

We use a best-effort approach to solve the problem. That is, we first sample
(uniformly in the entire input sample space) a certain number of feature vectors
and their corresponding labels (i.e., predictions made by N). Note that our algo-
rithms can be readily adopted to a prior distribution (such as a normal distribu-
tion) is provided. We remark that it is hard to define the actual feature distribu-
tions and we view the problem of identifying the actual feature distribution as a
problem that is orthogonal to our problem. After sampling, we learn a decision
tree that is best consistent with the samples and then test whether the decision
tree is consistent throughout the sample space. The details of the algorithm are
shown in Algorithm 3.

It takes N as well as K as inputs. At line 1, we first generate a set of feature
vectors as X from the entire input space randomly. Note that our approach can be
easily modified to sample according to the data distribution of the training set if
it is provided (or extracted using existing approaches (Shore 1998; Zhang et al.
2009)). Then at line 2, we label all feature vectors in X with the prediction of N to
obtain a set of labeled samples LD. Afterwards, the same as in Algorithm 2, we
identify all combinations of K-features at line 3. Then we test every combination
in the loop from line 4 to 9. For each combination, Algorithm 1 is applied to build
the ‘best’ decision tree. If the decision tree fails to achieve 100% accuracy on LD,
we proceed to try the next combination. Otherwise, we further test whether the
decision tree is applicable to the entire input space using Algorithm 4.

Algorithm 4 is inspired by existing approaches on adversarial perturbation
(Goodfellow et al. 2014; Kurakin et al. 2016) with a different objective function.
That is, the goal is to apply perturbation to samples in LD so as to find a ‘counter-
example’, i.e., one such that the prediction of N and that of the decision tree are
different. First, we cluster those samples in LD using a standard clustering algo-
rithm k-means at line 1, where #c is the size of clusters (Lloyd 1982). Note that
the reason for clustering is that we can diversify the search for counterexamples.
Afterwards, we obtain seed samples from each cluster in a round-robin fashion
at line 2. For each seed sample, we apply a gradient-based algorithm to search
for counterexamples iteratively (see loop at line 4 to 11). The gradient is com-
monly used to generate adversarial samples (Pei et al. 2017; Moosavi-Dezfooli
et al. 2016). The intuition is to perturb the original input according to the direc-
tion of the gradient so that the prediction of the neural network has the maximum
change. During each iteration of the loop, we calculate the gradient of the loss
function on the input x as J(x) and calculate sign of the gradient as sign(J(x)) .
Here, the sign function is used to extract the sign of the real gradient. Then we
perturb the seed sample x with an amount step_size ∗ grad , where step_size is
used to determine the perturbation degree in each time and grad is the gradient.

Note that Algorithm 4 is a best-effort approach as we limit the number of itera-
tions at line 4. If we find a counterexample, the algorithm returns false; other-
wise, it returns true. Only if Algorithm 4 fails to find a counterexample, Algo-
rithm 3 reports true with D at line 7.

1 3

Automated Software Engineering (2022) 29:39 	 Page 11 of 26  39

Example 3.2  We illustrate how Algorithm 3 works using the Bank dataset example
based on the feature combination

(

f12, f16
)

 . We first generate 5000 samples randomly
and generate a decision tree D which is consistent with the neural network predic-
tions. We then apply Algorithm 4 to test whether D is consistent throughout the
input space. Assume that we take the following x as a seed.

x ∶ [5, 10, 1, 1, 0, 19, 1, 0, 0, 5, 4, 81, 1, 1, 0, 0]

Intuitively, the goal is to perturb x such that its label changes and hopefully
becomes different from that of D. The perturbation is guided by the gradient (so that
the perturbation would cause a maximum change in the prediction). That is, we cal-
culate the sign of x’s gradient as follows.

grad ∶ [1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 0,−1,−1,−1, 0]

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 12 of 26

Next, we perturb x by updating each feature fi to be fi + step_size ∗ grad[i] where
step_size is 1 in this example. The result is the following sample.

x� ∶ [6, 11, 2, 0, 1, 20, 0, 1, 1, 4, 5, 81, 1, 0, 0, 0]

Note that a clipping function is applied to make sure the perturbed feature value
remains in its domain. The predictions of this sample by N and D are 0 and 1 respec-
tively. As a result, D fails to be taken as an explanation of the neural network N.

3.3 � K,�‑Explainability testing

As discussed above, due to the gap between the expressiveness of decision trees and
neural networks, there is likely no decision tree (with a height limit such as K) that
can be used to perfectly explain the decisions of the neural network. It is thus more
useful to quantify the explainability by testing K,�-explainability of the given neu-
ral network in practice. In the following, we similarly distinguish two cases, i.e., the
training set and the entire input space. The former is addressed using Algorithm 5.
The latter is addressed using Algorithm 6.

Algorithm 5 is similar to Algorithm 2. The only difference is that once Algo-
rithm 1 is applied to generate the ‘best’ decision tree, the fidelity of the decision tree
is compared with the given threshold � . If a decision tree with a fidelity no less than
� is identified, the algorithm returns true together with the decision tree. The follow-
ing theorem states the soundness and completeness of the algorithm, whose correct-
ness can be easily established based on Theorem 1.

Theorem 3  A neural network N’s decisions are K,�-explainable with respect to the
training set if and only if Algorithm 5 returns true. 	� ◻

Example 3.3  Assume that we are testing whether a neural network trained on the
Bank dataset is 2, 90%-explainable. Further, assume that we are testing the com-
bination of f12 and f16 . Applying Algorithm 1, we obtain the decision tree shown
in Fig. 2, which has an accuracy of 94.92% (calculated based on LD). As a result,

1 3

Automated Software Engineering (2022) 29:39 	 Page 13 of 26  39

Algorithm 5 returns true. That is, we can explain 90% of the decisions of the neural
network (over the training set) using a simple explanation based on the decision tree.

Testing whether a model’s decision is K,�-explainable with respect to all inputs
is challenging as it is infeasible to exhaustively enumerate all inputs and check
whether there exists a decision tree with prediction accuracy more than � . We thus
take a best-effort approach similar to that of Algorithm 3. That is, we uniformly
sample a certain number of samples and build a candidate decision tree. Afterwards,
we evaluate whether this candidate has a fidelity of � throughout the input space.
We formulate the latter problem as a hypothesis evaluation problem and solve it
systematically using hypothesis testing (so that we have a certain level of statisti-
cal confidence in the evaluation result (Wald 1945)). That is, given the candidate
decision tree D and the threshold � , we formulate two hypotheses. One is that the
fidelity of D is no less than � and the other is that it is less than � . We then keep
sampling randomly (in an IID manner (Clauset 2011)) from the entire input space
until one of the hypotheses reaches a certain level of statistical confidence.

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 14 of 26

The details of the algorithm used to evaluate whether a candidate decision tree
achieves a fidelity of � against all inputs are shown in Algorithm 6. It is designed
based on the sequential probability ratio test (SPRT) algorithm proposed in Wald
and Wolfowitz (1948). SPRT decides whether to accept a hypothesis after evaluating
every new sample. The SPRT algorithm is parameterized by � , � and indifference
region � , which intuitively define the error bounds. According to � and � , we calcu-
late p0 and p1 in line 1 and 2. During the loop from line 4 to 15, we keep generating
new samples (i.e., by randomly generating values for each feature from its domain).
Then we detect whether labels predicted by N and D are the same and update n and
s respectively (see in line 6 and 7). Then we calculate the SPRT probability ratio at
line 8 using the following formula.

From line 9 to 14, we compare the SPRT ratio with the acceptance/rejection bounds.
The test accepts the hypothesis if the SPRT ratio is larger than or equal to the
acceptance bound or denies it if the SPRT ratio is less than or equal to the rejection
bound. The algorithm stops whenever a hypothesis is accepted at line 10 or denied
at line 13. Note that this algorithm is guaranteed to terminate and the probability of
accepting the wrong hypothesis is bounded (Wald and Wolfowitz 1948).

Example 3.4  Let us use the Bank dataset and the feature combination of f12 and f16
as an example. The candidate decision tree is shown in Fig. 2. To check whether
this decision tree is able to explain the decisions on 90% of the inputs throughout
the input space, we apply the above-mentioned algorithm. In our experiments, we
set �=�=0.05, �=0.05 and �=0.90. Then accept_bound and deny_bound are 19.0

(2)sprt_ratio =
ps
1

(

1 − p1
)n−s

ps
0

(

1 − p0
)n−s

1 3

Automated Software Engineering (2022) 29:39 	 Page 15 of 26  39

and 0.053 respectively. After detecting 28 samples, all 28 samples have consist-
ent prediction labels and the calculated sprt_ratio is 22.52 by formula 2. Since
pr ≥ accpet_bound , we accept the hypothesis that the probability of consistency
within the entire input space can reach 90%. 	� ◻

4 � Implementation and evaluation

Our approach has been implemented as a self-contained software toolkit based on
Tensorflow (Abadi et al. 2016) and scikit-learn (Pedregosa et al. 2011). It is imple-
mented with a total of about 4K lines of Python code. Our experiments are based on
the following datasets which have been used as evaluation subjects in multiple previ-
ous studies (Agarwal et al. 2018; Zhang et al. 2020).

–	 Census (Kohavi et al.1996) The Census income dataset was published in 1996.
The prediction task is to determine whether the income of an adult is above
$50,000 annually based on his/her personal information. The dataset contains
32561 samples, each of which has 13 features.

–	 Bank Marketing The dataset came from a Portuguese banking institution and
is used to train models for predicting whether the client would subscribe a term
deposit based on his/her information. The size of the dataset is more than 45,000
and each record contains 16 attributes.

–	 German Credit (Hofmann1994) This is a small dataset with 600 samples, each
of which has 20 features. The task is to assess an individual’s credit based on
personal and financial records.

For each dataset, we train a neural network using the exact same configuration as
reported in the previous studies (Huchard et al. 2018; Zhang et al. 2020). The details
are shown in Table 1. All these neural networks contain six layers. Each hidden layer
contains 64, 32, 16, 8 and 4 units. The output layer contains 2 (number of predict
classes) units. ReLU is used as the active function. Lastly, the Softmax function is
used to output prediction probabilities. Although we focus on feedforward neural
networks on classification tasks in our study, our algorithms work for more com-
plex neural networks such as convolutional neural networks (CNNs) in general. Fur-
thermore, we focus on neural networks trained on tabular feature vectors instead of
complex data such as images and texts. This is because, in order to explain the deci-
sions of neural networks trained on images and texts, we must additionally address

Table 1   Dataset and models of experiments

Dataset Model Accuracy (%) Attributes

Census income Six-layer Fully-connected NN 86.13 13
Bank marketing Six-layer Fully-connected NN 91.62 16
German credit Six-layer Fully-connected NN 100 20

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 16 of 26

the challenge of identifying high-level human-understandable features before we can
learn the decision trees. Note that high-level feature extraction for such complicated
data is itself an active research field (Latif et al. 2019; Deshwal et al. 2019).

In the following, we report the evaluation results which are conducted to answer
multiple research questions (RQ). Note that Algorithm 4 and Algorithm 7 require
multiple hyper-parameters, whose values are either determined empirically (such as
the number of clusters and the max number of iterations for perturbation in Algo-
rithm 4) or adopted from standard practice (such as � and � for hypothesis testing).
The details are shown in Table 2. Here p_num is set to be 1000 for Census and
Bank data and 600 for Credit data due to its small size. All experiments are con-
ducted on a laptop running macOS (10.15.6) with 16 GB memory. Each experiment
is set with a timeout of 1000 hours. All models and experiment details are available
online at Zhang (2021).

RQ1: Are our algorithms efficient on testing the models’ decision explainability?
This question is designed to evaluate the efficiency of our algorithms, particularly
the effect of the design parameters such as K and � . To answer this question, we
systematically apply our algorithms to the above-mentioned models and measure the
results including efficiency. That is, we test each model against K-explainability for
different K against the training set and the entire input space; and test each model
against K,�-explainability with different K and � . The results of testing K-explaina-
bility are summarized in Table 3.

The third column shows the testing results and time taken for all three models
with respect to different K on the training set. For all models, we can evaluate the
models’ K-explainability with a K value of 2 or 3. Note that in this setting, the opti-
mal decision tree on the training set is generated based on all instances in the train-
ing set for each combination of K features, which is time-consuming. As a result, we
can test 4 or 5-explainability only on the model trained based on the Credit dataset.
In our experiments, more than 99% of the time is spent on generating the decision
trees. One way to reduce time consumption is to parallelize the generation of deci-
sion trees for different combinations of features.

The fourth column shows the testing results and time taken for all inputs. We
sample a threshold number of instances to build a candidate decision tree. The
results here are based on training candidate models with 5000 random instances.
Note that given the relatively small number of instances for building the candidate
tree, we can finish testing up to 5-explainability for all models before timeout and

Table 2   Parameters of the
experiments

Parameter Value Description

c_num 4 Cluster count
max_iter 10 Max number of iterations for perturbation
step_size 1 Step size of perturbation
p_num 1000,600 Number of seed instances for perturbation
�, � 0.05 Error probability bounds
� 0.05 Indifference region

1 3

Automated Software Engineering (2022) 29:39 	 Page 17 of 26  39

the number of random instances may have an effect on the quality of the candidate
models. The number 5000 is determined empirically based on the experiment results
shown in Table 4. It shows the time taken of generating one decision tree as well as
the maximum accuracy � achieved by the candidate model on the Census dataset.
It can be observed that the accuracy achieved by the decision tree often maximizes
when the number of instances is 5000. Further increasing the number of instances
increases the time proportionally without increasing the accuracy. In multiple cases,
the accuracy even drops. Thus, we set the 5000 as a threshold to learn candidate
decision trees in testing against all inputs.

The results of testing K,�-explainability against different K and � as well as the
training set or all inputs are summarized in Table 5. � is set to be 5 values, i.e.,

Table 3   K-explainability testing
results

Dataset K Testing training set Testing all inputs

Result Time (min) Result Time (min)

Census 2 No 370.01 No 33.68
3 No 12485.24 No 223.27
4 No T/O No 685.57
5 No T/O No 2110.25

Bank 2 No 5538.10 No 45.60
3 No 51647.40 No 384.63
4 No T/O No 1980.77
5 No T/O No 6149.42

Credit 2 No 0.48 No 241.77
3 No 7.22 No 1470.45
4 No 33.12 No 6456.20
5 No 121.17 No 28250.87

Table 4   Training time with
different #instances

K #instances T
dt

(s) max(�)

2 2000 4.20 93%
5000 25.74 93%
10000 112.11 93%

3 2000 9.06 95%
5000 46.66 96%
10000 133.21 95%

4 2000 15.17 95%
5000 57.34 97%
10000 140.94 95%

5 2000 21.32 96%
5000 98.15 97%
10000 202.06 97%

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 18 of 26

Ta
bl

e 
5  

K
,
�

-e
xp

la
in

ab
ili

ty
 te

sti
ng

 re
su

lt

D
at

as
et

K
Te

sti
ng

 a
ga

in
st

tra
in

in
g

se
t

Te
sti

ng
 a

ga
in

st
al

l i
np

ut
s

70
%

80
%

90
%

95
%

99
%

70
%

80
%

90
%

95
%

99
%

Re
.

Ti
m

e
Re

.
Ti

m
e

Re
.

Ti
m

e
Re

.
Ti

m
e

Re
.

Ti
m

e
Re

.
Ti

m
e

Re
.

Ti
m

e
Re

.
Ti

m
e

Re
.

Ti
m

e
Re

.
Ti

m
e

C
en

su
s

2
Ye

s
4.

75
Ye

s
4.

75
N

o
37

0.
02

N
o

37
0.

02
N

o
37

0.
02

Ye
s

0.
43

Ye
s

6.
75

Ye
s

33
.7

8
N

o
33

.8
3

N
o

33
.7

9
3

Ye
s

43
.6

9
Ye

s
43

.6
9

N
o

12
48

5.
33

N
o

12
48

5.
33

N
o

12
48

5.
33

Ye
s

1.
75

Ye
s

44
.7

0
Ye

s
22

3.
42

Ye
s

22
3.

42
N

o
22

3.
38

4
Ye

s
T/

O
Ye

s
T/

O
Ye

s
T/

O
N

o
T/

O
N

o
T/

O
Ye

s
0.

96
Ye

s
13

7.
14

Ye
s

41
1.

43
Ye

s
48

0.
02

N
o

68
5.

69
5

Ye
s

T/
O

Ye
s

T/
O

Ye
s

T/
O

N
o

T/
O

N
o

T/
O

Ye
s

1.
64

Ye
s

42
2.

08
Ye

s
12

66
.2

5
Ye

s
15

82
.8

2
N

o
21

10
.3

7
B

an
k

2
Ye

s
46

.1
5

Ye
s

46
.1

5
Ye

s
46

.1
5

N
o

55
38

.1
4

N
o

55
38

.1
4

Ye
s

0.
38

Ye
s

0.
38

Ye
s

38
.8

9
N

o
45

.7
8

N
o

45
.7

4
3

Ye
s

92
.2

3
Ye

s
92

.2
3

Ye
s

92
.2

3
Ye

s
92

.2
3

N
o

17
52

3.
23

Ye
s

0.
69

Ye
s

1.
67

Ye
s

19
2.

39
Ye

s
37

3.
27

N
o

38
4.

78
4

Ye
s

T/
O

Ye
s

T/
O

Ye
s

T/
O

Ye
s

T/
O

N
o

T/
O

Ye
s

1.
09

Ye
s

1.
09

Ye
s

99
0.

47
Ye

s
17

23
.4

1
N

o
19

80
.9

1
5

Ye
s

T/
O

Ye
s

T/
O

Ye
s

T/
O

Ye
s

T/
O

N
o

T/
O

Ye
s

1.
41

Ye
s

1.
41

Ye
s

36
47

.7
9

Ye
s

57
80

.6
1

N
o

61
49

.5
9

C
re

di
t

2
Ye

s
0.

48
N

o
0.

48
N

o
0.

48
N

o
0.

48
N

o
0.

48
Ye

s
26

.6
9

N
o

24
1.

79
N

o
24

1.
79

N
o

24
1.

79
N

o
24

1.
79

3
Ye

s
0.

63
N

o
7.

22
N

o
7.

22
N

o
7.

22
N

o
7.

22
Ye

s
24

2.
50

N
o

14
70

.4
8

N
o

14
70

.4
8

N
o

14
70

.4
8

N
o

14
70

.4
8

4
Ye

s
0.

68
N

o
33

.1
7

N
o

33
.1

7
N

o
33

.1
7

N
o

33
.1

7
Ye

s
17

00
.3

4
N

o
64

56
.2

3
N

o
64

56
.2

3
N

o
64

56
.2

3
N

o
64

56
.2

2
5

Ye
s

0.
78

N
o

12
1.

30
N

o
12

1.
30

N
o

12
1.

30
N

o
12

1.
30

Ye
s

83
94

.7
3

N
o

28
25

0.
90

N
o

28
25

0.
90

N
o

28
25

0.
90

N
o

28
25

0.
89

1 3

Automated Software Engineering (2022) 29:39 	 Page 19 of 26  39

70%, 80%, 90%, 95%, and 99%. In the third column, we show the testing results
and time taken for evaluating the fidelity of all decision trees against the training
set. Note that we can still measure prediction accuracy on decision trees generated
before timeout. The fourth column shows the results and time taken on testing K,�
-explainability against all inputs.

We note that the execution time is dominated by the time required for learning
the decision trees. Since we consider all feature combinations with different size
K, the number of all possible feature sets would be large especially with regards to
some training set with high-dimensional feature vectors. In the case of testing K,�
-explainability against all inputs, it is strongly related to the number of feature com-
binations and the number of samples we use to train the candidate decision trees.

One practical way to reduce the complexity is thus to heuristically select a subset
of the features, i.e., those which are likely correlated to the neural network’s deci-
sion. For example, SHapley Additive explanation uses Shapely values to compute
the contributions of the features (Lundberg et al. 2017). Based on the Shapely val-
ues, we can focus on the features with high contribution to generate the decision
trees. In the following, we conduct experiments to evaluate this idea by focusing
on the top 6 contributing features based on Shapely value ranking. That is, we only
consider the decision trees with the selected features and test each model against k,�
-explainability against the training set and the entire input space. The reason why we
select 6 features is that the maximum K in our experiments is 5. The testing results
are summarized in Table 6.

We can observe that, although we focus on the top 6 features only, the test-
ing results (i.e., whether each model satisfies the corresponding explainability
metric) remain exactly the same as the results in Table 5. The time cost how-
ever decreases significantly, especially for the first two neural networks trained on

Table 6   K,�-explainability testing result based on Shapley values

Dataset K Testing against training set

70% 80% 90% 95% 99%

Re. Time Re. Time Re. Time Re. Time Re. Time

Census 2 Yes 5.04 Yes 5.04 No 37.24 No 37.24 No 37.24
3 Yes 5.34 Yes 5.34 No 41.86 No 41.86 No 41.86
4 Yes 6.87 Yes 6.87 Yes 33.55 No 70.87 No 70.87
5 Yes 5.11 Yes 5.11 Yes 5.11 No 29.25 No 29.25

Bank 2 Yes 4.16 Yes 4.16 Yes 41.82 No 41.82 No 41.82
3 Yes 5.31 Yes 5.31 Yes 46.05 Yes 46.05 No 46.05
4 Yes 5.94 Yes 5.94 Yes 29.63 Yes 44.31 No 44.31
5 Yes 6.24 Yes 6.24 Yes 6.24 Yes 27.11 No 27.11

Credit 2 Yes 1.53 No 19.06 No 19.06 No 19.06 No 19.06
3 Yes 5.45 No 15.77 No 15.77 No 15.77 No 15.77
4 Yes 2.96 No 20.28 No 20.28 No 20.28 No 20.28
5 Yes 4.03 No 11.22 No 11.22 No 11.22 No 11.22

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 20 of 26

Census dataset and Bank dataset. When K is set as 4 or 5, the time cost reduces
from T/O to no more than 71 minutes. Furthermore, the execution time for most
tests is far less than 1 hour.

RQ2: Are existing models’ decisions explainable? This question aims to
apply our approach to study decision explainability of neural network models.
To answer the question, we investigate the decision explainability of the models
using our approach based on the results shown in Table 3 and Table 5.

In terms of K-explainability, it can be observed that every model is found to be
un-explainable, whether considering only those in the training set or all inputs.
In other words, no matter what combination of K-features used to explain the
decisions of the neural network, there are always counterexamples, i.e., instances
which are predicted differently by the decision tree and the neural network. In
particular, the adversarial sampling approach adopted in Algorithm 4 is proved to
be effective in identifying such counterexamples. These results show that indeed
it is unlikely that we can always explain the decisions of a neural network using
a decision tree. Thus, the goal should perhaps be minimizing the percentage of
such un-explainable cases.

In terms of K,�-explainability test, the results shown in Table 5 are mixed. We
have several observations. First, comparing the results with different K values, the
bigger the K is, the bigger a � can be achieved. This is intuitively reasonable since it
is easier to explain the prediction of a neural network with a more complicated deci-
sion tree. Second, it is not necessarily easier to explain the instances in the training
set than to explain all input instances. Note that there are instances where a model
fails a K,�-explainability test on the training set but passes the test on the entire
input space. For instance, the models trained on Census dataset pass the test with
higher � against all inputs than against the training set. In a close investigation, we
discover that this training set is highly imbalanced, e.g., samples with one label are
significantly more than samples within the other labels. Neural networks trained on
such an imbalanced dataset are known to produce imbalanced predictions, e.g., the
majority of predictions on random samples are the same label. The majority of the
randomly generated samples of Census dataset are predicted as label 1. Such imbal-
anced predictions are much easier to explain, i.e., it can be explained with a simple
decision tree which always generates the same prediction (e.g., “everyone’s applica-
tion is rejected”). This is confirmed in our experiments, most of the randomly gener-
ated samples are predicted with the same label. As a result, even with a K value of 3,
a � of 95% can be achieved. Furthermore, in our experiments, we test K,�-explain-
ability against all inputs using the SPRT algorithms, since it is infeasible to enumer-
ate all inputs. The SPRT algorithm provides only statistically results with a bounded
range of errors, which is more “relaxed” compared to testing against all samples in
the training set.

Lastly, it can be seen that the results vary across different models. For instance,
the neural network trained on the Credit dataset has the lowest decision explain-
ability. The fidelity of the learned decision trees with respect to the training set and
all inputs is less than 80% no matter what K value is used. The highest � achieved
by the neural network against all inputs is only 70% . Our interpretation of the result
is as follows. Because this dataset is very small, the model is less robust compared

1 3

Automated Software Engineering (2022) 29:39 	 Page 21 of 26  39

with the models trained on the other dataset. In other words, its predictions on
unseen instances are rather random and thus hard to explain.

RQ3: Are robust models’ decision more explainable? One of the observations in
the above experiments is that Algorithm 4 is often successful in finding instances
which are un-explainable by the decision tree with adversarial sampling. The above
experiment results seem to suggest that the lack of robustness often makes a model’s
decision un-explainable. This question is thus designed to test this hypothesis, i.e.,
with the help of robust training, we aim to see whether more robust models’ deci-
sions are more explainable. That is, whether it becomes harder to find ’counterex-
amples’ that have different predictions of the neural network and the decision tree
after retraining. Here, we use the technique called FGSM (Goodfellow et al. 2014)
to compute adversarial perturbations and retrain the model. Note that the label of
the samples generated through adversarial perturbation is the same as the original
sample.

To answer this question, we test the decision explainability of the retrained mod-
els using our approach and check whether a higher � can be achieved. After robust
training, the level of � on the training set remains almost identical to that without
robust training. We thus focus on K,�-explainability testing against all inputs. The
results are shown in Table 7, where 7 values of � (i.e., 70%, 75%, 80%, 85%, 90%,
95% and 99%) are tested. We highlight improved results in green and worsened
results in red.

Compared to the corresponding entries in Table 5, we observe that among the 12
cases (4 different K values on three models), 4 results show improvement and 5 results
show worse decision explainability after robust training. The two models trained on
the Census and Bank dataset become less explainable. For instance, the model trained
on Census without robust training is 2, 90%-explainable against all inputs and it is
only 2, 85%-explainable after training. Our hypothesis is that the two models trained
on Census and Bank dataset are able to achieve high K,�-explainability because the

Table 7   Results after robust
training

Dataset K � in testing against all inputs

70% 75% 80% 85% 90% 95% 99%

Census 2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes Yes No No
4 Yes Yes Yes Yes Yes No No
5 Yes Yes Yes Yes Yes No No

Bank 2 Yes Yes Yes Yes Yes No No
3 Yes Yes Yes Yes Yes No No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Credit 2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes No No No
4 Yes Yes Yes Yes No No No
5 Yes Yes Yes Yes No No No

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 22 of 26

model makes simplified predictions as the result of imbalanced training data. After
robust training, the training data (i.e., the original data plus those generated through
adversarial perturbation) become relatively more balanced. As a result, the neural
network model makes more complicated predictions, and thus its K,�-explainability
decreases. On the contrarily, the model trained on the Credit dataset becomes much
more explainable after robust training. This can be explained by the fact that the
Credit dataset, although small, is more balanced, and in such a case, robust training
actually improves decision explainability. We acknowledge that this hypothesis needs
to be evaluated with a large number of models to be conclusive.

RQ4: Can we improve model decision explainability using our testing results?
Many practical scenarios would prefer models whose decisions can be explained. This
RQ thus aims to see whether our approach could help improve model decision explain-
ability. The idea is to check whether a neural network that fails to reach a certain level
of K,�-explainability can be improved through retraining with un-explainable adver-
sarial samples identified using our approach. That is, we label those adversarial sam-
ples generated by Algorithm 4 with the labels of corresponding seed instances (i.e.,
the labels of the samples in training set predicted by the neural network). Then we
retrain the neural network with these additional samples and apply our approach to test
the decision explainability of the retrained models. Note that the premise condition of
Algorithm 4 is that all samples x in the original labeled dataset LD satisfy D(x) = N(x)
(as shown in line 6 at Algorithm 3). That is, all seed instances x in Algorithm 4 have
the same predictions by the neural network and decision tree. Here, we assume the
generated adversarial sample x′ has the same ground truth label with the original seed
instance x. The testing results as well as the accuracy of retrained models are shown
in Table 8. We highlight improved results in green as well. Note that 6 results show
improvement after retraining and none shows worsened decision explainability.

We observe that all three models’ decisions become more explainable after
retraining. For instance, the models trained on Census and Bank dataset are both

Table 8   Results after training
with ‘counterexamples’

Dataset Accuracy K � in testing against all inputs

70% 75% 80% 85% 90% 95% 99%

Census 84.91% 2 Yes Yes Yes Yes Yes Yes No
3 Yes Yes Yes Yes Yes Yes No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Bank 91.53% 2 Yes Yes Yes Yes Yes Yes No
3 Yes Yes Yes Yes Yes Yes No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Credit 90.3% 2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes No No No
4 Yes Yes Yes Yes No No No
5 Yes Yes Yes Yes No No No

1 3

Automated Software Engineering (2022) 29:39 	 Page 23 of 26  39

2, 90%-explainable against all inputs before retraining. After retraining, both of the
two models achieve 2, 95%-explainable. The model trained on Credit can achieve
� as 85% for any given K after retraining. The results thus proof that our testing
algorithms could be potentially used to improve model decision explainability, by
paying a relatively small price in terms of accuracy. Although the improvement in
the model trained on Credit is more substantial, the accuracy drops mostly from
100% to 90.3% compared with the models trained on Census and Bank dataset.
This result suggests that higher explainability may come at the cost of prediction
accuracy. More precise trade-offs between the neural network’s explainability and
accuracy need further experiments.

Threats to validity In the experiment, only 3 datasets are applied to evaluate the
effectiveness of our approach. This could be further improved with more models
and datasets as well as protected features. Furthermore, in the experiments, we focus
on feed-forward neural networks only. Our approach can be potentially adopted for
other neural network models. Lastly, the datasets are all tabular data. For compli-
cated models such as RNN for text, the task is likely more complicated.

5 � Related work

The term explainability or interpretability has been used to refer to multiple different
things. For instance, Murdoch et al. attempted to define interpretability in the con-
text of machine learning and placed it as a part of the generic data science life cycle
(Murdoch et al. 2019). They defined interpretable machine learning as the use of
machine learning models for the extraction of relevant knowledge in data. Montavon
et al. defined interpretation as the mapping of an abstract concept into a domain
that the human can make sense of. Examples of interpretable domains are images or
texts (Montavon et al. 2018). Models from domains with abstract vector spaces are
deemed to be un-interpretable. The notion of explainability or interpretability in the
above studies is informal and not measurable, i.e., there is no way to quantitatively
measure or compare models in terms of explainability or interpretability.

The term interpretability is often associated with studies which aim to provide
hints on how neural networks work internally, such as studies on local/global inter-
pretability of neural networks. Studies on local interpretability focus on investi-
gating neural network prediction on one or a specific set of samples. One of the
popular methods is the saliency map approach (Zeiler et al. 2014). The idea is to
identify specific parts of an input sample that contribute the most to the prediction
of the network (Sundararajan et al. 2017; Dabkowski and Gal 2017) or the activity
of a specific layer in the network (Zhang et al. 2019). In the case of image classifier
interpretation, it is useful to know which parts of the input activate certain filters
for the prediction and how each part contributes to the prediction score at the pixel
level (Lundberg et al. 2017) or at the object level (Zhang et al. 2019). In Kim et al.
(2018), proposed TCAV which quantitatively tests the contribution of user-defined
concepts. The difference between these approaches and ours is that these approaches
focus on explaining prediction on one particular input, whereas we aim to provide a
way of measuring neural networks’ decision explainability as a whole.

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 24 of 26

Studies on the global interpretability of neural networks aim to come up with
models that are simple enough to be human-understandable and yet expressive
enough to predict the predictions of the neural network (at least in most of the cases).
Such candidates include regression models (Schielzeth 2010), decision trees (Loh
2011), decision rules (Lakkaraju et al. 2016). In Lakkaraju et al. (2016), proposed
interpretable decision sets, i.e., a framework for building high-accurate predictive
models, yet also interpretable. They capture the interpretability of a decision set by
defining four natural metrics: size, length, cover and overlap. They also set metrics
to measure the accuracy of each rule. While these approaches share the same idea of
using simple models to mimic neural networks, they do not provide ways of testing
and measuring the degree of decision explainability.

This work is also related to work on testing neural networks. Unlike traditional
software systems that have clear and controllable logic, the lack of interpretability
of neural networks makes system testing difficult. In Pei et al. (2017), introduced the
concept of neuron coverage for measuring testing coverage of a neural network. They
considered a neuron to be activated if its output is higher than a threshold value and
unactivated otherwise. They generated neurons’ activation status and a set of test
inputs based on the number of neurons activated by the inputs and propose a number
of alliterative coverage metrics. In terms of fairness testing, Kusner et al. introduced
a causal approach to address fairness. They leveraged the causal framework to model
the relationship between protected attributes (Kusner et al. 2017). This work can
work as an assisting tool to fairness testing. It can analyze whether the model’s deci-
sions are relevant to sensitive features. If the explainable decision tree with high fidel-
ity contains propositions with certain sensitive attributes, the model is likely unfair.
Once this work helps understanding predictions and behaviors of neural networks, it
might help with further improvement as well. To the best of our knowledge, this is
the first approach on testing neural networks’ decision explainability.

6 � Conclusion

In this work, we propose multiple definitions of neural network interpretability and
develop algorithms to systematically test the decision explainability of neural net-
works. We define decision explainability based on measuring its fidelity against
decision trees with a height limit. We remark that this is an initial attempt at testing
model decision explainability and there is much to be done in the future.

Acknowledgements  This research/project is supported by the National Research Foundation, Singapore
under its AI Singapore Programme (AISG Award No: AISG-RP-2019-012).

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: 12thfUSENIXg sympo-
sium on operating systems design and implementation (fOSDIg 16). pp. 265–283(2016)

1 3

Automated Software Engineering (2022) 29:39 	 Page 25 of 26  39

Agarwal, A., Lohia, P., Nagar, S., Dey, K., Saha, D.: Automated test generation to detect individual discrimi-
nation in AI models’. In: arXiv preprint arXiv:​1809.​03260 (2018)

Bojarski, M., Testa, DD., Dworakowski, D.,Firner, B., Flepp, B., Goyal, P., Jackel, LD., Monfort, M., Mul-
ler, U., Zhang, J., et al.: End to end learning for self-driving cars’. In: arXiv preprint arXiv:​1604.​07316
(2016)

Breiman, L.: Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression trees.
CRC press, (1984)

Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and
metrics. In: Electron. 8(8), 832 (2019)

Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system’. In: Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining. , pp. 785–794 (2016)

Clauset, A.: A brief primer on probability distributions’. In: Santa Fe Institute. (2011)
Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: Advances in Neural Informa-

tion Processing Systems. , pp. 6967–6976(2017)
David, W.J.A.D.: A single-parameter generalization of the Gini indices of inequality. In: J. Econom. Theory

22(1), 67–86 (1980)
Deshwal, D., Sangwan, P., Kumar, D.: Feature extraction methods in language identification: a survey. In:

Wireless Personal Commun. 107(4), 2071–2103 (2019)
Goodfellow, IJ., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples’. In: arXiv preprint

arXiv:​1412.​6572 (2014)
Guo, P., Anderson, C., Pearson, K., Farrell, R.: Neural network interpretation via fine grained textual sum-

marization. In: arXiv preprint arXiv:​1805.​08969 (2018)
Hofmann, H.: German credit dataset. In: (1994). https://archive. ics . uci . edu / ml / datasets / statlog + (ger-

man + credit + data)
Huchard, M., Kästner, C., Fraser, G.: Proceedings of the 33rd ACM/IEEE International Conference on Auto-

mated Software Engineering (ASE 2018). In: ASE: Automated Software Engineering. ACM Press.
(2018)

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.: Lightgbm: A highly efficient gra-
dient boosting decision tree’. In: Advances in neural information processing systems. pp. 3146–3154
(2017)

Kim, Been., Rudin, Cynthia., Shah, Julie A.:“The bayesian case model: A generative approach for case-based
reasoning and prototype classification”. In: Advances in neural information processing systems. pp.
1952–1960(2014)

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.:Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (tcav). In: International conference on
machine learning. pp. 2668–2677 (2018)

Kohavi, BBR.:Data Mining and Visualization. In: (1996). https://archive.ics.uci.edu/ml/datasets/adult
Kurakin, A., Goodfellow, I., Bengio, S.: dversarial examples in the physical world. In: arXiv preprint arXiv:​

1607.​02533 (2016)
Kusner, MJ., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness”. In: Advances in neural information

processing systems. pp. 4066–4076(2017)
Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman, S., Doshi-Velez, F.: An evaluation of the

human-interpretability of explanation. In: arXiv preprint arXiv:​1902.​00006 (2019)
Lakkaraju, H., Bach, SH., Leskovec, J.: nterpretable decision sets: A joint framework for description and pre-

diction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. pp. 1675–1684(2016)

Latif, Afshan., R, Aqsa., S, Umer., A, Jameel., A, Nouman., R, Naeem I., Zafar, B., Dar, SH., Sajid, M.,
Khalil, T.:Content-based image retrieval and feature extraction: a comprehensive review. In: Mathemat-
ical Problems in Engineering 2019 (2019)

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer,
L.:Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In: arXiv preprint arXiv:​1910.​13461 (2019)

Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.:Backdoor embedding in convolutional neural net-
work models via invisible perturbation. In: arXiv preprint arXiv:​1808.​10307 (2018)

Lloyd, S.: Least squares quantization in PCM. In: IEEE Trans. Inform. theory 28(2), 129–137 (1982)
Loh, W.-Y.: Classification and regression trees. In: Wiley Interdis. Rev.: Data Mining and Knowledge Dis.

1(1), 14–23 (2011)

http://arxiv.org/abs/1809.03260
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1805.08969
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1902.00006
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1808.10307

	 Automated Software Engineering (2022) 29:39

1 3

 39   Page 26 of 26

Lombrozo, T.: The structure and function of explanations. In: Trends in Cognitive Sci. 10(10), 464–470
(2006)

Lombrozo, T.: Simplicity and probability in causal explanation. In: Cognitive Psychol. 55(3), 232–257
(2007)

Lundberg, SM., Lee, S.: unified approach to interpreting model predictions. In: Proceedings of the 31st inter-
national conference on neural information processing systems. pp. 4768–4777(2017)

Mohammed, M.A., Ghani, M.K.A., Arunkumar, N., Hamed, R.I., Mostafa, S.A., Abdullah, M.K., Burha-
nuddin, M.A.: Decision support system for nasopharyngeal carcinoma discrimination from endoscopic
images using artificial neural network. In: J Supercomput. 76(2), 1086–1104 (2020)

Montavon, G., Samek, W., Müller, K.-R.: Methods for interpreting and understanding deep neural networks.
In: Digit. Sig. Process 73, 1–15 (2018)

Moosavi-Dezfooli, SM., Fawzi, Al., Frossard, P.:Deepfool: a simple and accurate method to fool deep neu-
ral networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
2574–2582(2016)

Moro, S., Cortez, P., Rita, P.:A data-driven approach to predict the success of bank telemarketing. In: Deci-
sion Support Systems 62 (2014). https://archive.ics.uci.edu/ml/datasets/bank+marketing, pp. 22–31

Murdoch, W J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.:Interpretable machine learning: definitions,
methods, and applications. In: arXiv preprint arXiv:​1901.​04592 (2019)

Oaksford, M., Chater, N.: The probabilistic approach to human reasoning. In: Trends in Cognit. Sci. 5(8),
349–357 (2001)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. In: J. Mach. Learn. Res. 12,
2825–2830 (2011)

Pei, K., Cao, Y., Yang, J., Jana, S.:Deepxplore: Automated whitebox testing of deep learning systems. In:
proceedings of the 26th Symposium on Operating Systems Principles. , pp. 1–18(2017)

Schielzeth, H.: Simple means to improve the interpretability of regression coefficients. In: Methods in Ecol
Evol 1(2), 103–113 (2010)

Shore, H.: Approximating an unknown distribution when distribution information is extremely limited. In:
Commun. Statistics-Simulation and Comput. 27(2), 501–523 (1998)

Simonyan, K., Vedaldi, A., Zisserman, A.:Deep inside convolutional networks: Visualising image classifica-
tion models and saliency maps. In: arXiv preprint arXiv:​1312.​6034 (2013)

Steinberg, D., Colla, P.: CART: classification and regression trees. In: The top ten Algorithms in Data Min 9,
179 (2009)

Sundararajan, M., Taly, A., Yan, Q.:Axiomatic attribution for deep networks. In: arXiv preprint arXiv:​1703.​
01365 (2017)

Tran, L., Yin, X., Liu, X.:Disentangled representation learning gan for pose-invariant face recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1415–1424(2017)

Wald, A.: Sequential tests of statistical hypotheses. In: Ann. Math. Statistics 16(2), 117–186 (1945)
Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. In: The Annals of Math-

ematical Statistics pp. 326–339(1948)
Yosinski, Jason., Clune, Jeff., Nguyen, Anh., Fuchs, Thomas., Lipson. Hod .:“Understanding neural networks

through deep visualization”. In: arXiv preprint arXiv:​1506.​06579 (2015)
Zeiler, Matthew D., Fergus, R.: Visualizing and understanding convolutional networks. In: European confer-

ence on computer vision. Springer. pp. 818–833(2014)
Zhang, M.:GitHub Repository. In: (2021). https://github.com/zhangmengling/NN_interpretability.git
Zhang, P., Wang, J., Sun, J., Dong, G., Wang, X., Wang, X., Dong, JS., Dai, T.: White-box Fairness Testing

through Adversarial Sampling. In: Proceedings of the 42rd International Conference on Software Engi-
neering (ICSE 2020), Seoul, South Korea (2020)

Zhang, P., Hou, Y., Song, D.: Approximating true relevance distribution from a mixture model based on
irrelevance data. In: Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval. pp. 107–114(2009)

Zhang, Q., Yang, Y., Ma, H., Wu, YN.: Interpreting cnns via decision trees. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6261–6270 (2019)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1901.04592
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1506.06579

	Which neural network makes more explainable decisions? An approach towards measuring explainability
	Citation

	Which neural network makes more explainable decisions? An approach towards measuring explainability
	Abstract
	1 Introduction
	2 Problem definition
	2.1 What are human-understandable?
	2.2 Learning decision trees
	2.3 Defining measurements

	3 Testing decision explainability
	3.1 K-Explainability testing against training set
	3.2 K-Explainability testing against all inputs
	3.3 -Explainability testing

	4 Implementation and evaluation
	5 Related work
	6 Conclusion
	Acknowledgements
	References

