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Abstract

Motivation: Graphs or networks are widely utilized to model the interactions between different entities
(e.g., proteins, drugs, etc) for biomedical applications. Predicting potential links in biomedical networks
is important for understanding the pathological mechanisms of various complex human diseases, as well
as screening compound targets for drug discovery. Graph neural networks (GNNs) have been designed
for link prediction in various biomedical networks, which rely on the node features extracted from different
data sources, e.g., sequence, structure and network data. However, it is challenging to effectively integrate
these data sources and automatically extract features for different link prediction tasks.
Results: In this paper, we propose a novel pre-training model to integrate different data sources for
link prediction in biomedical networks. First, we design expressive deep learning methods (e.g., CNN
and GCN) to learn features for individual nodes from sequence and structure data. Second, we further
propose a GCN-based encoder to effectively refine the features of nodes by modelling the dependencies
among nodes in the network data. Third, the model is pre-trained based on graph reconstruction tasks.
Extensive experiments have been conducted on two critical link prediction tasks, i.e., synthetic lethality
(SL) prediction and drug-target interaction (DTI) prediction. Experimental results demonstrate that the
features generated by our pre-training model can help to improve the performance and reduce the training
time for existing GNN models. In addition, fine-tuning the pre-trained model to a specific task can also
achieve the performance comparable to the state-of-the-art methods.
Availability: Python codes and dataset are available at: https://github.com/longyahui/PT-GNN
Contact: luojiawei@hnu.edu.cn and xlli@i2r.a-star.edu.sg

1 Introduction
Advances in biomedical research boost the enormous accumulation of
biological relational data (Su et al., 2020). Graphs (or networks) have
been extensively utilized to represent the relations (i.e., links or edges)
between biomedical entities (i.e., nodes) (Yue et al., 2020). The analysis
of biomedical networks can provide great insights into the prevention,

diagnosis and treatment of various human complex diseases, as well as the
screening of targeted compounds for drug discovery.

Identifying the potential relations/links between biomedical entities
based on traditional wet-lab experiments often suffers from high cost
and risk. In contrast, in-silico methods of predicting potential links in
a biomedical network can be a rapid and cost-effective way to guide
the experimental methods. Recently, biomedical network analysis has
attracted much attention and a large number of computational methods
have been developed to address various important link prediction tasks,
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such as drug-target interaction (DTI) prediction (Liu et al., 2016), synthetic
lethality (SL) prediction (Cai et al., 2020) and microbe-drug association
prediction (Long et al., 2020b). We can classify these computational
methods into three main categories, i.e., diffusion-based methods, matrix
factorization methods and graph neural network (GNN) methods.

In particular, diffusion-based methods leverage random walks to full
exploit the topological structure information of nodes in the network
to infer potential links. For example, Chen et al. (2017) developed
a KATZ-based computational method to predict potential microbe-
disease associations by calculating walking number of node pairs in
bipartite network. Following that, Luo and Long (2020) constructed a
heterogeneous network, and further proposed a random walk-based model
named NTSHMDA to predict microbe-disease associations, which uses
network topological similarity to influence the walking preference of
the walker. Chen et al. (2018) developed a bipartite network projection-
based method of BNPMDA to infer latent microRNA-disease associations,
which takes into account the bias preference degree of a node for different
neighbors. In addition, Zong et al. (2017) proposed a similarity-based
method to predict drug-target associations, which utilizes DeepWalk
algorithm (Perozzi et al., 2014) to calculate similarities between drugs and
targets based on the topological information in a heterogeneous network.

Matrix factorization has shown promising performance in exploring
intrinsic structure of various data (Zhang et al., 2020) and achieved success
in various link prediction tasks, such as DTI prediction and SL prediction.
The main idea behind matrix factorization is to learn node representations
by exploring the latent patterns of interactive node pairs. For example,
Zheng et al. (2013) developed a collaborative matrix factorization method
to predict drug-target interactions. Liu et al. (2016) proposed a novel
neighborhood regularized logistic matrix factorization method for drug-
target prediction. Following that, Liu et al. (2019) further extended logistic
matrix factorization to predict synthetic lethality interactions. Xiao et al.
(2018) released a graph regularized non-negative matrix factorization
model for miRNA-disease association prediction. More recently, Zhang
et al. (2020) developed a regularized generalized matrix factorization
model called GRGMF for link prediction in various biomedical bipartite
networks, e.g., DTI prediction and miRNA-disease association prediction.

Graph neural networks (GNNs, e.g., GCN and GAT) have recently
shown powerful capability in modeling graph-structured data. The main
purpose of GNN-based methods is to learn node representations for
downstream tasks, which preserve structural information of nodes. For
example, Long et al. (2020b) proposed a novel GCN-based named
GCNMDA to predict microbe-drug associations by using GCN to
aggregate representations of neighbors. After that, Long et al. (2020a)
proposed another GAT-based model of EGATMDA for microbe-drug
association prediction by leveraging GAT to capture hierarchical structure
information. Finally, Cai et al. (2020) developed a dual-dropout GCN-
based framework for synthetic lethality prediction.

In addition to the network data, other biological data sources (e.g.,
protein sequence data, drug structure data, gene ontology annotations,
etc) are also valuable for link prediction tasks involving proteins or
drugs. However, network-based methods mentioned above have different
issues to integrate other data sources for link prediction. First, diffusion-
based methods are usually not able to integrate the data sources other
than network data. Second, matrix factorization methods need to first
calculate the similarity matrices based on features manually extracted
from other data sources (Zheng et al., 2013; Liu et al., 2016), and then
define regularization terms based on the similarity matrices to improve the
performance for link prediction. Third, GNN methods can take the node
features, which are manually extracted from other data sources, as inputs
for link prediction Long et al. (2020b,a). However, such manual feature
extraction requires domain-specific knowledge.

To address the above issues, we propose a generic pre-training
model, as shown in Figure 1, to integrate different data sources for link
prediction in biomedical networks. Our model consists of the following
key components. First, we leverage biological data to construct interaction
networks for nodes (e.g., proteins and drugs). We then implement
expressive CNN or GNN methods to capture node features, e.g., from
protein sequence data and drug structure data. Second, with the networks
and node features as inputs, we further design a GCN-based encoder
to effectively preserve the dependencies between nodes to refine node
features, which are transferable to different downstream tasks. Third, the
model is pre-trained based on the graph reconstruction tasks. Extensive
experiments were conducted on two link prediction tasks, i.e., SL
prediction and DTI prediction. Experimental results demonstrate that the
node features generated by our pre-training model are effective and can
help to improve the performance and reduce the training time for existing
GNN models. In addition, fine-tuning the pre-trained model to a specific
task can also achieve performance comparable to the state-of-the-art
methods.

Overall, our main contributions are summarized as follows:

• A generic pre-training graph neural network framework was proposed
for link prediction in biomedical networks. To the best of our
knowledge, this is the first study in the area of pre-training graph
neural network model for biomedical link prediction.

• To enhance link prediction performance, We fully leveraged rich
biological data, including protein sequences, drug molecular
structures and their networks (e.g., PPI network and DDI network),
to learn their features in our pre-training model. Moreover, the pre-
trained features can provide the existing models in the downstream
tasks with high-quality initialization to improve their performance.

• To validate the effectiveness of our model, we conducted extensive
experiments on two critical link prediction tasks, i.e., SL prediction
and DTI prediction. The results demonstrated that our proposed pre-
training model is highly effective for downstream tasks.

2 Related work
In this section, we first present graph neural networks, including graph
convolutional network (GCN) and graph attention network (GAT). Then,
we introduce pre-training and its applications in biological domains.

2.1 Graph neural networks

Graph neural networks have shown powerful capability in modeling graph-
structured data. In particular, graph convolutional networks (GCNs),
proposed by Kipf and Welling (2016), aim to learn node representations
by aggregating the features of neighbours. Due to its great performance,
GCN has attracted increasing attentions and achieved remarkable success
in various research domains, such as text classification (Yao et al., 2019),
recommender system (Liu et al., 2020) and computer vision. Graph
attention network (GAT) (Veličković et al., 2018) is an extension of GCN,
which focuses on more important neighbors by assigning greater weight
values to them. Such operation enables the model to learn more informative
representations. Graph attention network has been successfully applied for
social influence analysis (Qiu et al., 2018), recommender system (Wu et al.,
2019) and bioinformatics (Long et al., 2020a).

2.2 Pre-training

Pre-training is a type of transfer learning that aims to transform knowledge
from a full domain to domain-specific tasks. Pre-training can provide a
model with high-quality initialization and thus enhance its performance.
In addition, it accelerates model convergence during training.
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(a) Overall framework of our pre-training model
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Fig. 1. The overall architecture of GCATSL for gene representation learning and SL prediction. (a) Overall framework of our pre-training model. (b) Downstream tasks. (c) Protein sequence
encoder to learn initial features for proteins. (d) Drug molecule structure encoder to learn initial features for drugs.

More recently, pre-training has achieved significant success in multiple
domains, such as natural language processing (Devlin et al., 2018;
Chung et al., 2020), computer vision (Qi et al., 2020; Li et al., 2020)
and link prediction (Hu et al., 2020b; Lu et al., 2021). Meanwhile,
several pre-training models have been proposed to address biological
tasks. For example, Navarin et al. (2018) developed a task-independent
pre-training method that combines GNN with graph kernels to predict
chemical compounds carcinogenicity. Hong et al. (2020) proposed a
pre-training model named EPIVAN for enhancer-promoter interaction
prediction. EPIVAN pre-trains models on genome sequences to learn DNA
vectors, which are then used to encode enhancers and promoters. Hu et al.
(2020a) developed a novel pre-training graph neural network model for
protein function prediction, which pre-trains GNNs in a self-supervised
way to learn protein features for protein classification tasks. Strodthoff
et al. (2020) released a universal deep sequence model, which pre-trains
the model on unlabeled protein sequences and fine-tunes it on protein
classification tasks. While much effort has been made to use pre-training
to solve different biological issues, few pre-training methods have been
proposed for link prediction in biomedical networks.

3 Methods
This work focuses on pre-training the protein and drug representations
that can fully exploit the protein and drug attribute information, as well as
the protein-protein interaction (PPI) data and the drug-drug interaction
(DDI) data, to benefit downstream tasks such as SL prediction and
DTI prediction. Figure 1(a) shows the framework of the proposed pre-
training model, which contains three main components: 1) node feature
initialization, 2) GCN-based interaction graph encoder, and 3) interaction
graph reconstruction. Before we detail each component in this section, we
provide a preliminary background.

3.1 Preliminaries

For proteins, we firstly leverage the PPI data to build the PPI graphGPPI =

{V P, EPPI}, where V P denotes the set of nodes (i.e., proteins) and EPPI

denotes the set of edges describing the interaction relationships between
proteins. Moreover, we also calculate a semantic similarity matrix for
proteins based on their GO terms. To extract more important association
pairs, we apply the random walk with restart (RWR) algorithm on this
similarity matrix and construct the protein GO similarity graph GGO =

{V P, EGO}, by selecting the top-N neighbors as interaction pairs for
a given protein. In addition, the protein sequence data is treated as the
protein attribute information, and a protein sequence encoder, as shown
in Figure 1(c), is developed to exploit this attribute information for pre-
training the protein representations.

For drugs, we utilize DDI data from the Drugbank database to construct
the DDI graph GD = {V D, EDDI}, where V D denotes the set of nodes
(i.e, drugs) and EDDI denotes the set of edges describing the interaction
relationships between drugs. For each drug, its drug molecule structure is
considered as the drug attribute information, and a drug molecule structure
encoder, as shown in Figure 1(d), is developed to exploit this drug attribute
information for pre-training the drug representations.

3.2 Node Feature Initialization

In this section, we present the details of the protein sequence encoder
and drug molecule structure encoder, which are used to extract the initial
features for proteins and drugs, respectively.

3.2.1 Protein Sequence Encoder
For a protein sequencesp , we firstly split it into a set of overlappingn-gram
amino acid segments with r as the size of sliding window. For example,
the sequence ‘ARKMPN’ can be split into ‘ARK’, ‘RKM’ ,‘KMP’, and
‘MPN’, whenn and r are set to 3 and 1 respectively. Assume that an-gram
amino acid segment is considered as a word, and each word is represented
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by a d1-dimension feature vector (empirically, we set d1 as 100). The
feature vectors of all words is denoted by FW ∈ RNw×d1 , where Nw
denotes the number of all possible words (i.e., corpus) in the dataset, and
each row of FW is the feature vector of a possible word. Note that FW are
trainable parameters, which are randomly initialized and can be updated
in the training phase for more accurately capturing the intrinsic features
of sequences.

As shown in Figure 1(c), we can convert a protein sequence sp into a
feature matrix Mp, where each row denotes a d1-dimension word feature
vector. To learn protein features from the sequence data, we design a two-
layer convolutional neural network, including a 1D convolutional layer
and a max-pooling layer. The input of the convolutional neural network is
the word feature matrix Mp. The convolutional layer is designed to learn
local features, and the max-pooling layer is used to reduce dimension. The
average length of sequences of all proteins used in our experiments are
558. As the convolutional layer requires the same length of inputs, we set
the maximal length of sequence to 800. The sequences with length less
than 800 are padded with null label (i.e., Z). Moreover, we use 16 filters
with a kernel size of 10 in the convolutional layer. This indicates that the
model will learn 16 different features for each sequence.

Following that, with the outputs of the convolutional layer as inputs,
we further perform a max-pooling layer to reduce the feature dimension.
Here, both the pooling window size and stride are set to 60. Subsequently,
by applying this sequence encoder on all protein seqeuence data, we can
obtain a feature matrix XP ∈ RNP×d1 for all proteins, whereNP denotes
the number of proteins.

3.2.2 Drug Molecule Structure Encoder
The molecule structures are important components to achieve chemical
functions of drugs. Essentially, the molecule structure of a drug d can be
described by a graph Gd = (V d, Ed), where V d represents the set of
nodes (i.e., atoms) and Ed represents the set of edges (i.e., bonds). The
adjacency matrix of this graph is denoted by Ad ∈ RNa×Na , where Na
denotes the number of all atoms. Moreover, we denote the feature matrix
of all atoms by FA ∈ RNa×d2 , where each row of FA denotes the feature
of an atom, d2 represents the dimension of atom feature.

In this work, we implement a graph convolutional network on the
molecule graphGd to learn initial feature for drugd. As a single-layer GCN
can only capture limited features from one-hop (or immediate) neighbors,
we design a multi-layer GCN on the molecule graph Gd to aggregate the
features of multi-hop neighbors. More specifically, the k-th GCN layer
can be formulated as follows,

Rd
(k) = ReLU

(
ÃdRd

(k−1)W
(k−1)
1 + b

(k−1)
1

)
, (1)

where Ãd = Dd
− 1

2 AdDd
− 1

2 is a normalized adjacency matrix.
Dd is a diagonal matrix with the diagonal element being Dd(i, i) =∑Na
j=1 Ad(i, j). W(k−1)

1 and b
(k−1)
1 are the trainable weight matrix and

bias vector respectively. ReLU(·) is the Rectified Linear Unit activation
function. Rd

(k) denotes the feature matrix of atoms at the k-th layer. Note
that Rd

(0) is the original feature matrix FA of atoms. AfterK GCN layers,
we can obtain the atom representations Rd

(K).
To learn the drug feature, we further implement a max-pooling layer on

Rd
(K) to form the initial feature vector xd ∈ R1×d2 for the drug d. Here,

we set the size of pooling window as the number of atoms Na, and set
the step size o 1. By applying the drug structure encoder on the molecule
structures of all drugs, we can derive a feature matrix XD ∈ RND×d2 for
all drugs, where ND represents the number of drugs. In the experiments,
we empirically set K to 2.

In the literature, there are several existing studies (Öztürk et al., 2018;
Lee et al., 2019) that use drug molecule structure information to learn

representations for drugs. However, most of them use fixed invariant values
(e.g., one-hot encoding) to initialize atom features. Thus, they cannot
adaptively learn the structure features of drugs. Instead of setting invariant
values, we treat the atom feature matrix FA as trainable parameters, which
are randomly initialized and would be learned through graph structure
reconstruction in Eq. (5). Such operation enables the proposed model to
flexibly learn the properties of molecule structures.

3.3 GCN-based Interaction Graph Encoder

In Section 3.2, we make full advantage of the protein and drug attribute
information to extract initial features XP and XD for proteins and
drugs, respectively. As shown in Figure 1(a), a GNN-based interaction
graph encoder is then used to exploit the structures of the protein/drug
interaction graph for learning the protein/drug representations. Note
that this interaction graph encoder is a unified structure that can be
used to learn both the protein and the drug representations. The only
difference is the input interaction graph and the initial node features. In the
following sections, we only describe the operations for learning protein
representations with input graph GPPI and initial node features XP.

Let us denote the adjacency matrix of the PPI graph GPPI =

{V P, EPPI} by APPI ∈ RNP×NP . For a node υi in GPPI, the main
purpose of the graph encoder is to learn its representation by iteratively
aggregating the representations of its neighbors. Formally, the `-th layer
of a GNN-based graph encoder is as follows,

h
(`)
i = AGGREGATE

({
h

(`−1)
j : υj ∈ Ni

})
, (2)

where h
(`−1)
j denotes the feature representations of the node υj at the

(`−1)-th layer, andNi denotes the first-hop neighbors of υi in the graph.
Note that Ni also includes υi in this work. AGGREGATE(·) denotes
aggregator function, which can be defined by various different graph neural
architectures, such as GCN and GAT.

In this work, we leverage GCN as the aggregator function to integrate
the representations of nodes in the interaction graph. The `-th layer of the
graph convolutional network can be formulated as follows,

HPPI
(`) = ReLU

(
ÃPPIHPPI

(`−1)W
(`−1)
2 + b

(`−1)
2

)
, (3)

where ÃPPI is the normalized diagonal adjacency matrix with self-
connection, HPPI

(`−1) denotes the outputs of the model at the (`− 1)-th
layer. Note that HPPI

(0) is defined as the input feature matrix XP.
Moreover, W`−1

2 and b`−1
2 are trainable weight matrix and bias vector

respectively. After L GCN layers, we adopt the output of the last layer as
the final representations of proteins HPPI ∈ RNP×d3 , where d3 denotes
the dimension of the protein representation features.

Note that HPPI is the protein representations obtained from the PPI
graph GPPI with node features XP. Similarly, we can obtain the protein
representations HGO ∈ RNP×d3 from the protein GO graph GGO with
node features XP, and the drug representations HDDI ∈ RND×d3 from
the DDI graph GDDI with node features XD.

3.4 Model Optimization

The proposed model is pre-trained with the graph structure reconstruction
task. More specifically, for a given input interaction graph G with the
adjacency matrix A and the output of the GCN-based graph encoder H,
we reconstruct the adjacency matrix in Eq. (4) and derive the reconstruction
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loss in Eq. (5),

P = ReLU
(

HH>
)
, (4)

L =
∑

(i,j)∈Ω+∪Ω−

Φ

(
P(i, j),A(i, j)

)
+ δ
∥∥Θ∥∥2

F
, (5)

where ReLU is activation function, and P is the reconstructed score matrix
where each element describes the interaction score for a node pair (e.g.,
protein-protein pair). Θ is the parameter matrix of the pre-training model.
δ is weight factor that is used to control the influence of Θ on our model.
In addition, Φ(·) is the MSE (i.e., mean square error) loss. Note that
when pre-training the protein and drug representations, the parameters of
the protein sequence encoder and the drug molecule structure encoder are
also updated. In this work, for better training, we adopt negative sampling
strategy to train our model. Ω+ and Ω− represent the sets of positive and
negative samples for model training, respectively.

4 Experimental Results
In this section, we first present the experimental settings, and then conduct
extensive experiments to demonstrate the performance of our model for
two downstream tasks, i.e., SL prediction and DTI prediction.

4.1 Experimental setups

4.1.1 Datasets
SL prediction. For pre-training, we downloaded the whole genome
sequences of 20,375 human proteins from Uniprot (Consortium, 2019).
Moreover, we constructed two gene-gene interaction graphs from PPI and
Gene Ontology (GO) data, respectively. In particular, we collected 383,122
interactions associated with these 20,375 proteins from the latest version
of BioGrid (Oughtred et al., 2019), which was used to construct PPI graph.
In addition, we first downloaded the ontology and annotation files from
http://geneontology.org/. Then a semantic similarity matrix was calculated
based on the sub-ontology “biological process (BP)”. Given a node, we
further prioritized all the neighbors according to their similarity scores
and selected the top-t neighbors to construct the GO similarity graph. We
empirically set t as 50. As a result, the GO similarity graph (or GO graph
for short) contains 917,393 interactions between 20,375 proteins. For the
task of SL prediction, we utilized SL pairs derived from SynLethDB (Guo
et al., 2016) to construct a SL graph, which includes 19,667 SL interactions
between 6,375 genes. It should be noted that we use simultaneously PPI
and GO graphs to pre-train our model to learn protein features. Here we
use factors γ and (1− γ) to weight the influences of PPI and GO graphs
on our model, respectively.
DTI prediction. We collected 1,113,252 drug-drug interactions (DDI)
involving 3,543 drugs from Drugbank (Wishart et al., 2018) to pre-train
the model to learn drug features. Meanwhile, we downloaded the SMILES
(Simplified Molecular Input Line Entry System) for these 3,543 drugs from
Drugbank to construct the drug molecule graphs. In addition, we derived
drug-target interaction data from Drugbank for experimental validation
in DTI prediction task. In particular, we selected 9,679 drug-target
interactions between 1,971 drugs and 1,899 targets from Drugbank, where
all the drugs and targets here have SMILES and sequences respectively.

4.1.2 Experimental settings
In this work, we conducted 5-fold cross validation (CV) to evaluate the
performance of our model. Specifically, taking SL as example, we first
randomly divide all known SL pairs into five groups. Then one group of
SL pairs are in turn selected for model testing while the rest of SL pairs
are used for model training. Following Long et al. (2020b), we adopt
negative sampling strategy to better train the model. Negative SL pairs

are randomly sampled from unknown SL pairs and the same numbers of
negatives and positives are used for model training (including pre-training
and downstream task) and testing. We adopt two well-known metrics for
performance evaluation, i.e., area under ROC curve (AUC) and area under
precision recall curve (AUPR). To offset the bias of random division, we
repeat each experiment for 10 times and take their average as final AUC
and AUPR values.

For pre-training of both proteins and drugs, the training epoch is set
to 200 and the learning rate is set to 0.005. To learn initial features for
proteins, the length of amino acid segment n and sliding window size r
are set as 3 and 1 respectively. Since there are totally 20 types of amino
acids, the number of corpus Nw is 8001 (including one null label ‘Z’). In
the drug structure encoder, we set the number of GCN layers as 2. The
numbers of neurons for the first and second hidden layers are set to 256 and
128 respectively. While the above parameters are empirically set, we also
make parameter analysis for several other important parameters, including
the dimension of representation d3, the number of layers of GCN-based
encoder L and weight factor γ, in the following section.

4.1.3 Baseline methods
In this work, we validate the performance of our model via fine-tuning
and two downstream tasks. We introduce seven state-of-the-art baseline
methods for downstream tasks as follows:

• GCATSL (Long et al., 2020b) is a novel graph attention network-based
model developed for SL prediction.

• SLMGAE (Huang et al., 2019) is a multi-view graph auto-encoder
based method to predict SL pairs.

• DDGCN (Cai et al., 2020) presents a dual-dropout graph convolutional
network model for SL prediction.

• NeoDTI (Wan et al., 2019) develops a end-to-end deep learning
model to predict drug-target interactions by integrating heterogeneous
biological data.

• NRLMF (Liu et al., 2016) utilizes neighborhood regularized logistic
matrix factorization to learn node representations for drug-target
interaction prediction.

• GCN (Kipf and Welling, 2016) is a benchmark graph convolutional
network.

• GAT (Veličković et al., 2018) is a benchmark graph attention network.

For all the above methods, we adopt the default parameters from their
original implementations. GCN and GAT are used as baseline models for
both SL and DTI prediction tasks. GCATSL, SLMGAE and DDGCN are
applied for SL prediction task while NeoDTI and NRLMF are applied for
drug-target prediction task.

4.2 Performance evaluation

In this section, we evaluate the performance of our pre-training model on
two downstream tasks, i.e., SL prediction and DTI prediction. We first
pre-train our model and subsequently use the pre-trained representations
to initialize features of both genes (or targets) and drugs in downstream
tasks. Hence, each baseline method (i.e., using original features) has an
additional variant (i.e., using our pre-trained features). We can thus validate
the effectiveness of our pre-training model by comparing different baseline
methods with their variants.

4.2.1 SL prediction
Table 1 shows the comparison results of various methods on SL prediction
task. As mentioned above, each baseline method used two types of features
as inputs, i.e., original features and our pre-trained features. We can
observe that for all the methods, pre-trained features achieved better
performance than the original features consistently. For example, GCATSL
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with pre-trained representations obtained an average AUC of 0.9576 and
average AUPR of 0.9620, which are 2.14% and 1.44% higher than its
original model. These results demonstrate that the pre-trained features
learned from sequence data, PPI and GO networks are effective and can
enhance prediction performance for SL prediction. In particular, DDGCN
does not integrate any data sources other than the SL graph and thus the
pre-trained features can significantly improve its performance. Meanwhile,
other methods already exploit additional data sources, e.g., GCATSL and
SLMGAE utilize PPI and GO graphs, and GCN and GAT utilize PPI
network as original inputs. Therefore, their performances with original
features are already very good. Nevertheless, the pre-trained features,
which effectively integrate protein sequence data and PPI/GO network
data, can still improve their performances.

In addition, we analyse the influences of our pre-trained features on
the training time of various baseline models. As shown in Table 1, all
the methods with pre-trained features take less epochs than using original
features. Therefore, we can conclude that our pre-training model is helpful
to reduce the training time of various baseline models.

Table 1. Performance comparison of baseline methods with different feature
initialization on SL prediction in 5-fold CV.

Methods Features Epochs AUC AUPR

GCATSL
Pre-trained 100 0.9576±0.0016 0.9620±0.0018

Original 600 0.9375±0.0024 0.9483±0.0018

SLMGAE
Pre-trained 200 0.9279±0.0040 0.9465±0.0032

Original 300 0.9140±0.0049 0.9405±0.0030

DDGCN
Pre-trained 10 0.9204±0.0103 0.9305±0.0075

Original 2000 0.8796±0.0080 0.9161±0.0046

GCN
Pre-trained 100 0.9286±0.0056 0.9345±0.0052

Original 200 0.9083±0.0034 0.9203±0.0027

GAT
Pre-trained 100 0.9087±0.0091 0.9097±0.0130

Original 200 0.8964±0.0136 0.8981±0.0157

4.2.2 DTI prediction
Similarly, we pre-train our model on DDI and PPI networks to derive
drug and protein features respectively for the downstream task of DTI
prediction. Here, we use the Gaussian kernel similarity (van Laarhoven
et al., 2011) as original features in various baseline models for DTI
prediction. As shown in Table 2, pre-trained features outperform the
original features (i.e., Gaussian kernel similarity) consistently, which
demonstrates once again that our pre-trained features can help improve
the performances of various methods for downstream tasks. Similarly, it
could be found in Table 2 that the pre-trained features can help to reduce
the training time of various baseline methods significantly.

Table 2. Performance comparison of baseline methods with different feature
initialization on DTI prediction in 5-fold CV.

Methods Features Epochs AUC AUPR

NeoDTI
Pre-trained 100 0.8386±0.0116 0.8626±0.0111

Gaussian 300 0.7903±0.0103 0.8281±0.0112

NRLMF
Pre-trained 50 0.9223±0.0030 0.9388±0.0020

Gaussian 100 0.8962±0.0066 0.9240±0.0040

GCN
Pre-trained 100 0.9052±0.0036 0.9097±0.0053

Gaussian 200 0.8885±0.0047 0.9036±0.0032

GAT
Pre-trained 100 0.8716±0.0052 0.8954±0.0051

Gaussian 200 0.8657±0.0082 0.8827±0.0036

4.2.3 Impact of fine-tuning
In this section, we further show the performance of fine-tuning our pre-
trained model in the task of SL prediction. In particular, we first pre-train
our model by optimizing the loss function in Equation (5) to reconstruct
both PPI and GO networks. Then, we fine-tune both the protein sequence
encoder and GCN based graph encoder by reconstructing the SL graph
instead. We also feed the pre-trained features to a GCN model for SL
prediction. As shown in Table 3, we can observe that our fine-tuned model
achieved an average AUC of 0.9197 and average AUPR of 0.9329, which
are 1.26 % and 1.37 % better than that of GCN. Besides, our fine-tuned
model takes less training time than GCN. The results demonstrate once
again the effectiveness of our pre-training model.

In general, input features for the graph neural network models (e.g.,
GCN) need to be manually extracted, which require domain-specific
knowledge and are time-consuming. Instead, our pre-training model is able
to automatically learn features for nodes from a comprehensive knowledge
domain, which can be used for different downstream tasks. Therefore, we
believe that our model has a powerful capability in real-life applications.

Table 3. Performance comparison between fine-tuning and GCN in SL
prediction task.

Methods Epochs AUC AUPR

Fine-tuning 20 0.9197±0.0015 0.9329±0.0035

GCN 200 0.9083±0.0034 0.9203±0.0027

4.3 Ablation study

Recall that we use two types of data sources (i.e., PPI and GO) to construct
graphs for proteins to pre-train our model. Here we conduct ablation studies
to measure their influences on our pre-trained model for SL prediction.

GCATSL DDGCN SLMGAE GCN GAT
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Fig. 2. Comparison between different methods and their variants on SL prediction in terms
of AUC.
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Fig. 3. Comparison between different methods and their variants on SL prediction in terms
of AUPR.
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Fig. 4. Parameter sensitivity analysis for our pre-training model in terms of dimension of representation d3 , number of layers of encoder L and weight factor γ.

Table 2 and Table 3 show that the methods, which use pre-trained
features learned from PPI and GO, consistently outperform the original
methods in terms of AUC and AUPR, indicating that both PPI and GO can
contribute to enrich the protein features. Moreover, all the methods also
achieve higher AUC and AUPR values when using the pre-trained features
learned from either PPI or GO network than their original methods. Finally,
we can conclude that both PPI and GO networks are important for our
pre-training.

4.4 Parameter analysis

There are several important parameters that influence the performance of
our model, such as the dimension of representation d3 in the GCN-based
interaction graph encoder, the number of GCN layers in the interaction
graph encoder L and weight factor γ. Here, we fine-tune the pre-trained
model with different parameter values to analyze their impact for the task
of SL prediction.

The representation dimension d3 is important to our model. We select
its values from {16, 32, 64, 128, 256, 512, 1024}. As shown in Figure 4
(a), a small or large value of representation dimension d3 is not good for
the model performance and the best performance is achieved when d3 is
set to 128. In the GCN-based interaction graph encoder, the number of
layersL determines the aggregation of neighbors’ features. To evaluate its
influences on our pre-training model, we change its value from 1 to 5 with
a step size of 1. It can be observed in Figure 4 (b) that as L increases, the
performance first increases and then decreases. In particular, our model
achieves the best performance whenL is set as 2. We note that more layers
do not help improve the performance. This is because too many layers can
lead to the problem of “over-smoothing", which is faced by most of GNN
models (Chen et al., 2020).

In addition, weight factor γ controls the contributions of two different
gene interaction graphs (i.e., PPI graph and GO graph). To determine its
influences, we evaluate our model by ranging its value from 0 to 1 with a
step value of 0.1. It should be noted that γ = 0 means only GO similarity
data are used for pre-training and γ = 1 means only PPI data are used for
pre-training. The results in Figure 4 indicate that our pre-training model
is relatively robust against γ, and thus we set it as 0.5 in our experiments.

5 Conclusion
In this work, we propose a novel universal pre-training framework based on
graph neural networks for critical link prediction in biomedical networks
- this is the first work in this area. Firstly, we leverage multiple sources of
biological data to construct interaction graphs for nodes (i.e., proteins and
drugs). In particular, we introduce CNN to capture latent features of protein
sequences to generate initial features for proteins. Meanwhile, we adopt
GCN to model drug molecular structures and learn initial drug features.
Secondly, with the interaction graphs and initial features as inputs, we
further design a GCN-based interaction graph encoder to aggregate the

features of a node and its neighbors in the graph. Finally, our model
is pre-trained on graph reconstruction tasks. We conducted extensive
experiments on two important downstream tasks, i.e., SL prediction
and DTI prediction, experimental results demonstrate our pre-trained
model outperforms existing state-of-the-art techniques significantly for
both tasks, in term of both accuracy and efficiency.
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