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Abstract—We introduce the concept of Least Similar Nearest
Neighbours (LeSiNN) and use LeSiNN to detect anomalies
directly. Although there is an existing method which is a special
case of LeSiNN, this paper is the first to clearly articulate the
underlying concept, as far as we know. LeSiNN is the first
ensemble method which works well with models trained using
samples of one instance. LeSiNN has linear time complexity with
respect to data size and the number of dimensions, and it is
one of the few anomaly detectors which can apply directly to
both numeric and categorical data sets. Our extensive empirical
evaluation shows that LeSiNN is either competitive to or better
than six state-of-the-art anomaly detectors in terms of detection
accuracy and runtime.

Index Terms—Least Similar Nearest Neighbours; kNN ;
Anomaly Detection; Ensemble.

I. INTRODUCTION

kNN (k-nearest neighbour) has been used as a core mecha-
nism in many successful methods for anomaly detection. In
density-based methods [1], [2], kNN is used as a density
estimator to model density distribution, and identify anomalies
as instances in low density regions. In distance-based methods
[3]–[5], the underlying assumption is that anomalies have large
distances to their nearest neighbours. So in these methods the
distance to the k-th nearest neighbour or the average distance
to the k nearest neighbours can be used as an anomaly score.

In this paper we introduce the concept of Least Simi-
lar Nearest Neighbour (LeSiNN) and use LeSiNN to detect
anomalies directly, i.e., instances that have the least similar
nearest neighbour are considered as anomalies. It is obvious
that least similar nearest neighbours are all that is required to
detect scattered anomalies, as scattered anomalies distribute far
away from other instances in the feature space and thus have
the smallest similarity to their nearest neighbours. However,
least similar nearest neighbours are not sufficient to detect
clustered anomalies. Clustered anomalies can have a very
similar nearest neighbour and hence can be masked by other
anomalies.

In order to reduce the masking effect of clustered anomalies,
LeSiNN operates in small random samples of a data set instead
of the full data set. Using small samples also substantially
reduce the time complexity of nearest neighbour searching,
from quadratic time complexity to linear time complexity.

Though based on distance, LeSiNN is different from exist-
ing kNN methods in three ways. First, LeSiNN only requires
for each test instance to find the nearest neighbour. Whereas
kNN methods often require to use k > 1. Second, most
if not all, of the kNN methods focus on numeric data sets
only. We show that LeSiNN performs well in both numeric
and categorical data sets. Third, LeSiNN works best in an
ensemble approach while kNN often operates as a single
model. Though there are current distance-based methods (e.g.,
Sp [6]) which advocate the use of nearest neighbour. However,
they operate as a single model too. We show that Sp is a special
case of LeSiNN, and both Sp and LeSiNN can perform well
in some situations using sample size of one instance!

LeSiNN has the following features:
• It is the first ensemble method which works well with

models trained using samples of one instance!
• It is one of the few anomaly detectors which can apply

directly to both categorical and numeric data sets.
• It has linear time complexity with respect to data size and

the number of dimensions. Most state-of-the-art anomaly
detectors have at least quadratic time complexity with
respect to either data size or the number of dimensions.

• While kNN can be reduced to LeSiNN by using k = 1,
this condition is rarely applied in practice because the
theoretical analysis of kNN density estimators posits that
k > 1 [7]. In contrast, LeSiNN operates using only
nearest neighbours.

The rest of this paper is organised as follows. Section II
reviews related work. We introduce LeSiNN in Section III,
and the empirical evaluation results are presented in Section
IV. Section V provides some discussions over the results, and
Section VI concludes this paper.

II. RELATED WORK

Existing kNN-based anomaly detection methods, e.g., state-
of-the-art distance-based methods [3]–[5] and density-based
methods [1], [2], require distance computation, which has
O(n2) time complexity, and thus cannot scale up to very large
data sets. Although this cost can be reduced to O(n log n)
when instances are preprocessed by an indexing scheme
such as R∗-tree [8], most indexing schemes work in low
dimensional data sets only; and they break down in high



dimensionality. Also, these indexing schemes are numeric data
oriented only.

Recent research [6] has advocated the use of nearest neigh-
bour in a method called Sp; and it is a special case of k-th
nearest neighbour which employs a small sample. The authors
[6] use a probabilistic analysis to suggest a plausible reason
as to why a small sample is sufficient to detect anomalies
using this method. We state their reason as follows: (i) Because
anomalies constitute a small proportion in a data set, a small
sample is likely to have normal instances only; thus, (ii)
instances which have long distances to their nearest neighbours
in this sample are likely to be anomalies. It shall be pointed
out that [6] has emphasised point (i), but point (ii) was left
implicit. We think the concept, i.e., the least similar nearest
neighbours are anomalies, is the key. The concept can be
applied by finding nearest neighbours in either the given data
set or multiple random samples. Sp finds nearest neighbour in
only one random sample and hence can perform very unstably.

Sp [6] has been reported to perform better than k-th nearest
neighbour [3] and LOF [1] using numeric data sets. However,
this comparison is unfair because these methods are known to
be sensitive to k setting (see our results in Tables V and VII),
and a fixed k was used in their experiments.

LOF-based ensembles [2] and iForest [9] are closely related
to LeSiNN in the sense that they employ sampling techniques
to build ensemble models for anomaly detection. An ensemble
of LOF models, each built on a sample, was reported to
improve the detection accuracy over single LOF model [2] but
often at a cost of higher computation time than LOF, because
it requires sufficiently large sampling size (e.g., 10% in [2]) to
accurately approximate density using kNN [7]. iForest builds
isolation trees on samples to isolate instances and detects
anomalies using the average path length of isolated trees.
iForest has similar time and space complexities as LeSiNN,
but it is based only on numeric data, and there is no good
method, so far, to extend it to categorical data.

Compared to methods for numeric data, significantly less re-
search has been conducted for categorical data. Most anomaly
detection methods [10]–[12] for categorical data are pattern-
based algorithms which build on frequent or infrequent pat-
terns. These methods, such as FPOF [10] and LOADED [12],
need to search for frequent or infrequent itemsets to build
detection models, which have time and space complexities
exponential to data dimensionality. COMPREX [11] employs
Minimum Description Length to avoid the costly frequent
itemset search, but its time complexity is still quadratic in
terms of data dimensionality. Compared to these methods,
LeSiNN has linear time in terms of data size and data
dimensionality. Also, at the core of these methods, is that they
are based on density/frequency. In contrast, LeSiNN does not
compute density, though a similarity measure is required.

III. LEAST SIMILAR NEAREST NEIGHBOURS:
CONCEPT AND ANOMALY DETECTOR

This section is organised as follow: We provide our intuition
of using least similar nearest neighbours (LeSiNN) to detect

anomalies in Section III-A. The formal definitions of anomaly
and anomaly score based on LeSiNN is given in Section III-B.
The analyses of time and space complexities are described in
Section III-C. The symbols and notations used are provided
in Table I.

TABLE I
SYMBOLS AND NOTATIONS

D A data set with d attributes, where |D| = n
x An instance in D
ηx The nearest neighbour of x.
D A sample of D, where |D| = ψ

sim(·, ·) A similarity function
t The number of samples

A. Intuition

We provide two examples to demonstrate the intuition
of using LeSiNN to detect anomalies: one using real-world
objects with categorical attributes and another using synthetic
numeric data.

The first intuitive example is provided in Figure 1 (a). Using
the characteristics of each object represented by four attributes:
edible, colour, shape and texture, we can find the nearest
neighbour of each object shown in Figure 1 (a). The nearest
neighbour of the orange-coloured toy car is an orange because
they share the same colour but nothing else, and all other
fruits have no shared attributes with the toy car. In contrast,
an orange is the nearest neighbour of another orange because
they share four attributes, and all other fruits have less than
four shared attributes with orange. Each of the other fruits and
its nearest neighbour share two to four attributes. Using the
number of shared attributes of objects as measure of similarity,
we can to rank all objects in Figure 1 (a) in ascending order of
least similar nearest neighbour. The toy car, which is intuitively
the anomaly in this case, is ranked top because it has the least
similar nearest neighbour, and oranges are ranked bottom since
they have the most similar nearest neighbours.

The second example is based on a two-dimensional numeric
data set with 200 instances, shown in Figure 1 (b). Figure 1 (c)
shows the three curves of similarity to the nearest neighbour in
three different subsets of the data set. The first curve uses the
whole data set for the nearest neighbour search. The second
curve uses only one instance, i.e., the instance at the centre
of the distribution. While the third uses 10 random samples
of size one. (The random sample method is to be described
in Section III-B.) In each of the curves, x and y, which are
the outlying instances, have the smallest similarities to their
nearest neighbours in all three curves. Whereas z is an instance
inside the cluster and is more similar to its nearest neighbour
than x and y are to their nearest neighbours.

B. Definitions of anomaly and anomaly score

We define anomaly and anomaly score as follows:
Definition 1: Anomalies are instances which are least similar

to their nearest neighbours.
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Fig. 1. Anomalies are less similar to their nearest neighbours than normal instances are to their nearest neighbours. (a) Intuition example using real-world
objects. (b) A data set of a Gaussian distribution with 200 instances. x, y and z are example instances and ηx, ηy and ηz are their nearest neighbours in D,
respectively. (c) Three curves of instances sorted in ascending order according to the similarity to their nearest neighbours in D, the instance at the centre of
the distribution, and 10 random samples of size one, respectively. This result reveals that x and y, which are intuitively anomalies, are ranked as the top two
instances which have the least similar nearest neighbours in all three sorted lists.

Definition 2: The similarity between x ∈ D and its nearest
neighbour in D is defined as the nearest neighbour similarity
of x:

nn sim(x|D) = max
y∈D

sim(x,y) (1)

Definition 3: The anomaly score for x is defined as the
reciprocal of the average of its nearest neighbour similarity
over t samples Di, i = 1, 2, · · · , t:

score(x) = (
1

t

t∑
i=1

nn sim(x|Di))−1 (2)

Anomalies are instances which have the largest anomaly
scores, i.e., they have the least similar nearest neighbours.

LeSiNN’s ability to use small samples in an ensemble
brings about three advantages. First, the ensemble significantly
reduces its time complexity from n2 to nψ, where ψ � n.
Second, small samples can reduce the masking effect of
clustered anomalies; and this is a necessary step to detect
clustered anomalies (this is the same requirement in iForest
[9]). Third, with a sufficient large ensemble size, it produces
a stable anomaly detector. In contrast, Sp [6] is an unstable
detector because it uses only one small sample.

The similarity measure used depends on the attribute type.
In this paper, we use the overlap similarity for data sets with
categorical attributes, and (inverse) Euclidean distance for data
sets with numeric attributes.

Overlap Similarity. The overlap similarity measure is
defined as sim(x,y) = 1

d

∑d
i=1 I(xi, yi), where I(xi, yi) is

1 when xi is identical to yi, and 0 otherwise.

Euclidean distance. Given two instances x and y, their sim-
ilarity based on Euclidean distance is defined as sim(x,y) =(
1 +

√∑d
i=1(xi − yi)2

)−1
.

C. Complexity analysis

In the training stage, LeSiNN needs t samples only, each
having ψ instances. Thus, LeSiNN has time complexity
O(ψtd). For each test instance, LeSiNN computes ψ pairwise

similarities in each sample to find the nearest neighbour,
which takes O(ψd), and so LeSiNN has time complexity
O(ψtd) using t samples. To score n instances in a data set,
LeSiNN has time complexity O(nψtd). Therefore, the total
time complexity of LeSiNN is O(nψtd).

LeSiNN has space complexity O(ψtd) as it needs to store
t samples, each having ψ instances.

TABLE II
TIME AND SPACE COMPLEXITIES OF LESINN AND SIX STATE-OF-THE-ART

DETECTORS.

Detectors Time complexity Space complexity

LeSiNN O(nψtd) O(ψtd)
iForest O(nψt) O(ψt)
Sp O(nψd) O(ψd)
kNN O(n2d) O(nd)
LOF O(n2d) O(nd)
FPOF O(n2d) O(2d)
COMPREX O(nd2) O(d2)

A comparison of time and space complexities between
LeSiNN and six state-of-the-art detectors, including iForest
[9], Sp [6], LOF [1], kNN [4], FPOF [10] and COMPREX
[11], is provided in Table II.

Only LeSiNN and iForest are ensemble methods; and only
LeSiNN, iForest and Sp employ samples. Since the sampling
size and the ensemble size used are very small, i.e., ψ � n
and t � n, LeSiNN and Sp has linear time complexity
with respect to both data size and dimensionality, and iForest
has linear time complexity to data size. LeSiNN, iForest
and Sp have constant space complexity with respect to data
size. kNN, LOF, FPOF and COMPREX have much higher
time and space complexities than LeSiNN. Though the time
complexity of kNN and LOF can be reduced to O(nd log(n))
when using some indexing scheme such as R∗-tree [8], most
indexing schemes do not work on categorical data or data
with high dimensionality. The time complexity of FPOF is
linear to data size but exponential to dimensionality. The time
complexity of COMPREX is linear to data size but quadratic
to data dimensionality, though it becomes near-linear to the



dimensionality when many attributes are correlated [11].

IV. EXPERIMENTS

A series of experiments were conducted to compare the
detection performance of LeSiNN and its contenders on data
sets with categorical attributes or numeric attributes. After
a description of the experiment settings in Sections IV-A
and IV-B, we compared LeSiNN with three state-of-the-art
categorical data oriented detectors in categorical data sets in
Section IV-C, and we then compared LeSiNN with three state-
of-the-art numeric data oriented detectors in numeric data sets
in Section IV-D. We examine the scalability of LeSiNN in
Section IV-E and the effect of using different sampling sizes
is presented in Section IV-F.

A. Contenders and their parameter settings

kNN [4], FPOF [10] and COMPREX [11] are selected as
the contenders of LeSiNN in categorical data, and iForest [9],
LOF [1] and Sp [6] are selected as the contenders in numeric
data. These detectors are selected as our contenders, because
they are state-of-the-art methods that are closely related to
LeSiNN, as discussed in Section II.

Both LeSiNN and iForest employed t = 50 as the default
ensemble size setting. Sp is equivalent to LeSiNN using t = 1.
These three methods need to search for the best setting for ψ.
The search for ψ was over the range 1, 2, 4, 8, 16, 32, 64,
128 and 256, except that Sp includes an additional ψ = 20
which was used as default in [6].

Following [10], FPOF employed 5 as the maximum length
of itemsets by default, and we searched the minimum support
threshold δ over the range 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9, and report the best results. COMPREX is a
parameter-free method.

The size of neighbourhood or reference set (i.e., k) in kNN
and LOF was searched over the range 1, 10, 20, 40, 60, 80,
150, 250, 300, 500, 1000, 2000, 3000 and 4000, and report
the best results.

Note that LeSiNN and kNN used the same overlap similarity
measure in handling categorical data, and LeSiNN and LOF
used the same Euclidean distance in dealing with numeric data.

We implemented LeSiNN, kNN and Sp in WEKA [13].
FPOF was implemented using the Apriori algorithm in
WEKA. iForest in the WEKA platform and LOF in the ELKI
platform [14] were used in the experiments. COMPREX was
implemented by [11] in Matlab.

In dealing with numeric data, R∗-tree indexing [8] was used
by default in LOF; R∗-tree is not available in WEKA, and k-
d tree [15] was used instead in LeSiNN and Sp. Note that
tree based indexing methods do not work in categorical data
because there are too many identical values in the attributes,
so LeSiNN and kNN were employed without using indexing
methods.

All the experiments were performed as a single-thread job
at 2.27 GHz in a Linux cluster with 40GB memory.

B. Datasets and detection performance measure

Experiments were conducted on 18 real-world data sets
from the UCI repository [16] and one synthetic data set having
one normal cluster with two anomaly clusters, which was
generated by the Mulcross data generator [17]. Following [2],
[9], [11], the smallest class(es) or a small random subset of the
smallest class was used as anomaly class against the largest
class(es). A summary of the data sets is given in Table III.
These data sets are from different application domains (e.g.,
health care, network security, image recognition and Internet
advertising) and widely used in the literature [6], [9], [11].
The first seven data sets with mixed-type attributes were used
as categorical attributes only or numeric attributes only in our
two experiments. All numeric attributes are normalised before
using in our experiments. We also generated multiple synthetic
data sets for scaleup test in Section IV-E.

TABLE III
A SUMMARY OF DATA SETS USED. #num AND #cate DENOTE THE NUMBER

OF NUMERIC AND CATEGORICAL ATTRIBUTES RESPECTIVELY. THE
Anomaly class COLUMN PRESENTS THE ANOMALY CLASS SELECTED AND

ITS PERCENTAGE IN EACH DATA SET. Ad, Arrhy AND Mammo ARE FOR
Advertisements, Arrhythmia AND Mammography.

Data set n #num #cate Anomaly class

Linkage 5749132 2 5 match(0.36%)
Census 299285 7 33 50K+(6.20%)
CoverType 286048 10 44 cottonwood (0.96%)
Probe 64759 34 7 attack(6.43%)
U2R 60821 34 7 attack(0.37%)
Ad 3,279 3 1,555 ad(0.14%)
Arrhy 452 206 73 arrhythmia(14.60%)
Nursery 4648 0 8 very recom (7.06%)
Chess 4580 0 6 zero(0.59%)
Mushroom 4429 0 22 poisonous(5.00%)
SolarFlare 1066 0 10 flare X(0.47%)
Http 567497 3 0 attack(0.39%)
Mulcross 262144 4 0 two clusters(10.00%)
Smtp 95156 3 0 attack(0.03%)
Shuttle 49097 9 0 classes 2,3,5,6,7 (7.15%)
Mammo 11183 6 0 class 1(2.32%)
Satimage 6435 36 0 crop(10.92%)
Isolet 730 617 0 class Y (1.37%)
Mfeat 410 649 0 digit 0 (2.44%)

The area under ROC curve (AUC) [18] was used as a
measure of effectiveness for the anomaly ranking produced
by an anomaly detector. Higher AUC indicates better detection
performance. We also recorded the runtime to compare their
efficiency. The AUC and runtime results were averaged over
10 runs for all randomised methods. In this paper, confidence
intervals are based on the average AUC over 10 runs and its
two standard errors; so the statistical significance statement is
at 95% confidence level.

We employed a commonly used performance evaluation
method for unsupervised anomaly detection techniques [19].
Specifically, we trained and evaluated detection models on the
same data set, but it is assumed that class labels are unavailable
in the training stage. The class labels are only used to compute
AUC in the evaluation stage.



C. Detection performance on categorical data

The best detection performance of LeSiNN, kNN, FPOF
and COMPREX is shown in Table IV. LeSiNN is significantly
better than kNN in seven data sets, draws in two and loses in
one. LeSiNN outperforms FPOF significantly in four data sets,
with four draws and one loss. Note that FPOF cannot work in
the high dimensional data set, Arrhythmia and Advertisements,
due to an out-of-memory exception error resulting from its
high space complexity, even though they are small data sets,
e.g., Arrhythmia has no more than 500 instances. LeSiNN
outperforms COMPREX significantly in 6 out of 10 data
sets, with two draws and two losses. Note that we cannot
obtain the results of kNN and COMPREX in Linkage and
Advertisements, respectively, within three weeks, due to their
high time complexity with respect to data size and data
dimensionality respectively.

TABLE IV
AUC DETECTION PERFORMANCE OF LESINN, kNN, FPOF AND

COMPREX ON CATEGORICAL DATA.

Data set LeSiNN kNN FPOF COMPREX

Linkage 0.9974±0.0005 na 0.9978 0.9973
Census 0.6225±0.0029 0.6209 0.6148 0.5046
CoverType0.9960±0.0022 0.9446 0.9965 0.9936
Probe 0.9856±0.0014 0.9522 0.9867 0.9790
U2R 0.9916±0.0006 0.9880 0.9203 0.9893
Ad 0.8008±0.0019 0.7924 na na
Arrhy 0.6921±0.0008 0.6667 na 0.6848
Nursery 1.0000±0.0000 1.0000 1.0000 1.0000
SolarFlare 0.9772±0.0010 0.9642 0.9791 0.9793
Mushroom0.9972±0.0004 0.9982 0.9400 0.9359
Chess 0.9900±0.0024 0.9318 0.9290 0.9943
#na 0 1 2 1
#wins/draws/losses 7/2/1 4/4/1 6/2/2

The runtimes and the best parameters of the four detectors
are reported in Table V. LeSiNN runs three to five orders
of magnitude faster than kNN in large data sets, i.e, Census,
CoverType and Probe. LeSiNN is significantly faster than
FPOF in all three data sets with more than 20 attributes,
Census, CoverType and Mushroom; LeSiNN is faster by a
factor of more than 1,900, 348,000 and 50, respectively.
LeSiNN runs slower than FPOF (but in the same order of
magnitude) in the largest data set, Linkage, which has only
five dimensions, as FPOF has lower linear time complexity
than LeSiNN with respect to data size. Because LeSiNN
and COMPREX were implemented in different programming
languages. we will compare them in equal footing in the
scaleup test in Section IV-E.

LeSiNN obtains its best performance with ψ ≤ 16 in 7 out
of the 11 data sets, while kNN requires to search for a wide
range of values to get its best performance. FPOF works best
in most data sets with δ ≤ 0.1, as a small δ is normally needed
in order to obtain a sufficient number of frequent patterns.

D. Detection performance on numeric data

The AUC performance detection comparison of LeSiNN,
iForest, LOF and Sp is presented in Table VI. LeSiNN is

competitive to or significantly better than iForest in 14 out of
15 data sets. LeSiNN performs comparably to or significantly
better than LOF in 9 out of 14 data sets. We cannot obtain the
results of LOF in the two largest data sets, Linkage and Http,
due to an out-of-memory exception error, resulting from high
space complexity of R∗-tree indexing. LeSiNN outperforms
Sp significantly in six data sets, with nine draws and no
loss; LeSiNN performs stably and has small standard errors
over different runs in each data set, whereas the detection
performance of Sp fluctuates a lot in many data sets. Note that
LeSiNN, iForest and Sp can detect the two anomaly clusters
in Mulcross, while LOF fail to detect them. This is because
the neighbourhood size of LOF requires to be larger than the
size of anomaly cluster in order to detect clustered anomalies,
but the size of the two clusters in Mulcross is far larger than
the k search range used in LOF.

TABLE VI
AUC PERFORMANCE COMPARISON OF LESINN, IFOREST, LOF AND SP

ON NUMERIC DATA.

Data set LeSiNN iForest LOF Sp

Linkage 0.9975±0.0000 0.9974±0.0000 na 0.9577±0.0389
Census 0.7808±0.0334 0.7906±0.0247 0.6690 0.6965±0.0049
CoverType0.9275±0.0032 0.8726±0.0173 0.9781 0.8231±0.0560
Probe 0.9976±0.0001 0.9747±0.0081 0.6321 0.9979±0.0005
U2R 0.9878±0.0005 0.9860±0.0015 0.8873 0.9871±0.0008
Ad 0.7389±0.0056 0.6957±0.0069 0.7435 0.6623±0.1500
Arrhy 0.8256±0.0025 0.8164±0.0106 0.8296 0.7993±0.0329
Http 1.0000±0.0000 0.9997±0.0001 na 1.0000±0.0000
Mulcross 1.0000±0.0000 0.9979±0.0012 0.6035 0.9411±0.0996
Smtp 0.8873±0.0026 0.8834±0.0058 0.9535 0.8582±0.0333
Shuttle 0.9897±0.0006 0.9962±0.0007 0.9809 0.9104±0.1039
Mammo 0.8464±0.0061 0.8557±0.0101 0.8644 0.8113±0.0175
Satimage 0.9973±0.0006 0.9836±0.0027 0.9934 0.8386±0.0626
Isolet 1.0000±0.0000 0.9997±0.0003 1.0000 0.9996±0.0004
Mfeat 0.9808±0.0013 0.9401±0.0124 0.9800 0.8533±0.0943
#na 0 0 2 0
#wins/draws/losses 8/6/1 6/3/4 6/9/0

The runtimes and best parameters of the four detectors are
reported in Table VII. LeSiNN runs significantly faster than
LOF in the two large data sets, Census and Probe, by a factor
of more than 800 and 300, respectively. LeSiNN is slower than
iForest by a factor of between 10 and 50 in larger data sets
(e.g., CoverType) or high-dimensional data sets (e.g., Isolet
and Mfeat); LeSiNN is slower than Sp by a factor of between
10 and 80 in larger data sets. LeSiNN and Sp obtain their best
performance using ψ ≤ 16 in 14 and 12 data sets, respectively;
while iForest requires much larger ψ, e.g., 256, in most data
sets. LOF requires to search for a wide range of values to get
its best performance.

It is interesting to note that both LeSiNN and Sp using
ψ = 1 can obtain the best results in data sets with different
characteristics, e.g., data sets with clustered anomalies like
Mulcross, large data sets Http and Probe.

We have a more direct comparison between LeSiNN and
Sp such that tψ used in LeSiNN and Sp is equal (i.e., the
number of instances they use in the training stage is the same):
LeSiNN using ψ = 1 with varying t values, and Sp (equivalent



TABLE V
RUNTIMES AND BEST PARAMETERS FOR LESINN, kNN, FPOF AND COMPREX ON CATEGORICAL DATA.

Runtime (in seconds) Best parameter
Data set LeSiNN kNN FPOF COMPREX LeSiNN (ψ) kNN (k) FPOF (δ)
Linkage 129 na 50 10,442 8 na 0.5
Census 45 68,722 89,168 640 16 3,000 0.1
CoverType 3 143,958 1,044,166 3,609 1 3,000 0.1
Probe 0.6 93,470 1.8 826 4 3,000 0.2
U2R 8 58,359 5 456 64 2,000 0.05
Ad 269 62 na na 256 10 na
Arrhy 0.02 0.16 na 494 4 150 na
Nursery 0.05 6.25 0.34 18.83 2 500 0.1
SolarFlare 0.02 0.29 0.35 6.30 2 250 0.1
Mushroom 10 6 520 69 256 10 0.05
Chess 0.56 2.87 0.17 22.76 64 60 0.05

TABLE VII
RUNTIMES AND BEST PARAMETERS FOR LESINN, IFOREST, LOF AND SP ON NUMERIC DATA

Runtime (in seconds) Best parameter
Data set LeSiNN iForest LOF Sp LeSiNN (ψ) iForest (ψ) LOF (k) Sp (ψ)
Linkage 328 141 na 8 8 256 na 4
Census 8 2 6,787 2 1 8 80 256
CoverType 185 7 6,866 3 128 256 3,000 128
Probe 4 2 1,351 0.1 1 128 4,000 1
U2R 16 2 753 0.2 8 256 500 2
Ad 0.3 0.1 4 0.02 16 16 1,000 1
Arrhy 0.2 0.1 0.1 0.02 2 128 80 1
Http 12 14 na 1 1 256 na 1
Mulcross 6 1 542 0.3 1 16 40 1
Smtp 30 3 350 0.5 256 256 1,000 256
Shuttle 4 1 418 0.1 8 128 4,000 2
Mammo 0.4 0.1 16 0.1 2 64 150 128
Satimage 1.4 0.1 16 0.05 8 64 2,000 16
Isolet 1 0.05 2 0.07 1 256 20 4
Mfeat 2 0.05 1 0.05 16 256 80 4
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Fig. 2. LeSiNN (ψ = 1 with varying t) versus Sp (with varying ψ) such that tψ is the same.
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Fig. 3. Scaleup test of LeSiNN, using kNN, FPOF and COMPREX as baselines in categorical data; iForest, LOF and Sp as baselines in numeric data. Figures
(a) and (b) are the results of the data size scaleup tests. Figures (c) and (d) are the results of the dimensionality scaleup tests.



to LeSiNN with t = 1) with varying ψ values. The results
in Figure 2 shows that LeSiNN performs comparably to or
significantly better than Sp using different combinations of tψ
in all four data sets; and LeSiNN is much more stable too
with lower standard errors. Similar results can also be found
in other data sets.

E. Scalability examination

We examined the scalability of LeSiNN with respect to
data size using five subsets of the largest data set Linkage.
The smallest subset contains 16,000 instances, and subsequent
subsets are increased by a factor of four, until the largest subset
which contains 4,096,000 instances. Only one attribute type is
used when examining the categorical data oriented methods or
the numeric data oriented methods.

The scalability of LeSiNN with respect to dimensionality
was tested using synthetic binary and Gaussian continuous
data sets in categorical data and numeric data, respectively.
The data sets contain the same number of instances, i.e.,
10,000 instances. The data set with the lowest dimensionality
contains 10 attributes, and subsequent data sets are increased
by a factor of two, until the data set with the highest dimen-
sionality contains 320 attributes.

The scaleup test results are presented in Figure 3. Figure 3
(a) shows that LeSiNN, FPOF and COMPREX have runtime
linear to the data size, and run two to three orders of magnitude
faster than kNN. Figure 3 (b) shows that LeSiNN, iForest
and Sp have linear time complexity to data size, and run at
least two orders of magnitude faster than LOF. LeSiNN runs
slower than iForest because it needs to search for the nearest
neighbours; LeSiNN is slower than Sp because LeSiNN uses
multiple samples while Sp uses only one sample. Note when
the data size reaches 4,096,000, we cannot get the runtime of
kNN within three weeks, and LOF runs out of memory.

For scalability with respect to data dimensionality, Figure 3
(c) shows that both LeSiNN and kNN have runtime linear to
the data dimensionality, and run up to five orders of magnitude
faster than FPOF. Note that the space complexity of FPOF
increases exponentially with increasing dimensions, and FPOF
runs out of memory when the number of dimensions was
increased to 80. The runtime of COMPREX increases by a
factor of more than 7,000 when the dimensionality increases
by a factor of 32; while that of LeSiNN increases by less
than 30. Therefore, though LeSiNN and COMPREX were
implemented in different programming languages, the runtime
increasing ratio indicates that LeSiNN runs significantly faster
than COMPREX by a factor of more than 200. In numeric
data, Figure 3 (d) shows that LeSiNN, LOF and Sp have
linear time complexity to data dimensionality, while the time
complexity of iForest is constant to data dimensionality since
it works on a few randomly selected attributes only.

F. The effect of varying ψ

The detection performance of LeSiNN with varying ψ
values is shown in Figure 4. It shows that LeSiNN performs
stably and obtains the best results using ψ ≤ 16 in three out of

four data sets. A larger ψ is needed in order to detect anomalies
in data sets with multiple normal clusters, e.g., Mushroom with
multiple edible mushroom species. Due to the space limitation,
we only present some typical results here. Similar results can
also be found in other data sets.

V. DISCUSSION

Parameter ψ. The probability for the inclusion of a scattered
anomaly into a sample is 1 −

(
n−1
ψ

)
/
(
n
ψ

)
, which is close to

zero as long as ψ � n. Thus, scattered anomalies have the
least similar nearest neighbours in each of these samples.
The occurrence probability of clustered anomalies in the
samples increases with the cluster size. To detect clustered
anomalies, especially large clustered anomalies, ψ is required
to be sufficiently small in order to avoid sampling clustered
anomalies into the samples. As illustrated in Figure 4 (c), the
detection performance of LeSiNN in Mulcross drops quickly
when ψ gets larger.

For data sets with unimodal distribution, ψ can be as small
as one to detect all the anomalies, such as the results on Http,
Mulcross and Probe in Tables VI and VII. ψ is required to be
larger in order to perform well in multi-modal data sets.

CoverType produces two interesting results: In the data set
version of 44 categorical attributes, LeSiNN with ψ = 1
produces AUC=0.9960; and in the data set version of 10
numeric attributes, LeSiNN needs to use ψ = 128 to produce
AUC=0.9275. This indicates that the categorical version has a
single mode and the numeric version has multiple modes.

In practice, based on our results in Sections IV-C and IV-D,
in order to obtain favourable detection accuracy in data sets
with different types of anomalies, LeSiNN is suggested to
employ ψ ≤ 16.
Parameter t. Our results have shown that the performance of
LeSiNN converges quickly with respect to the ensemble size
t, and there is normally no statistically significant difference
in detection accuracy when t ≥ 30. t = 50 is recommended
for LeSiNN. As expected with any ensemble method, a small
ensemble size (i.e., small t value) will have high variance.
This is the reason why Sp is very unstable.
LeSiNN versus kNN methods. Compared to LeSiNN, kNN
methods, such as kNN and LOF, can also detect scattered
anomalies successfully using k = 1, i.e., the nearest neighbour.
However, in order to detect clustered anomalies, k needs
to be as large as the size of anomalous clusters in kNN
methods, while only small ψ is required in LeSiNN. Therefore,
kNN methods are much more sensitive to the setting of k
than LeSiNN to ψ in real-world data sets having scattered
anomalies or/and clustered anomalies.

As discussed in Section II, some effort have been made
to using kNN methods in an ensemble approach, e.g., LOF-
based ensemble using sampling techniques in [2]. As shown
in [2], such ensembles could gain some improvement in terms
of effectiveness but often at a cost of higher computation time,
because large sample sizes are required to accurately approx-
imate density using kNN. We have also tried to use k nearest
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Fig. 4. Detection performance of LeSiNN with varying ψ values in 1, 2, 4, 8, 16, 32, 64, 128, 256. In categorical data sets, the best performance of kNN,
FPOF and COMPREX are used as baselines. In numeric data, the best performance of LOF, and the performance of iForest and Sp with varying ψ values
are used as baselines. Note that iForest must use sample size larger than two in order to build its isolation trees.

neighbours to replace nearest neighbours in LeSiNN, but it
worked significantly worse than using nearest neighbours.
Relative measure. Note that LeSiNN is in a disadvantage
position in comparison with LOF because LOF employs a
relative measure and LeSiNN does not. LeSiNN employing a
relative measure is expected to perform better than the results
presented here.

VI. CONCLUSION AND FUTURE WORK

The concept of LeSiNN provides a new perspective in un-
derstanding nearest neighbour methods. The use of LeSiNN is
certainly simpler and more direct than the ones based on kNN
or density. As a result, it is one of the most efficient anomaly
detectors in terms of time and space complexities which can
easily scale up to large data size and high dimensionality. As
far as we know, this is the first ensemble method which works
well with models trained from one instance!

LeSiNN is one of few anomaly detection algorithms which
can detect anomalies in both categorical and numeric data.

We show that LeSiNN performs comparably to or signif-
icantly better than all three state-of-the-art categorical data
oriented anomaly detectors and LOF in terms of AUC; and
LeSiNN runs at least two orders of magnitude faster than these
four methods. Compare with more efficient iForest and Sp,
LeSiNN outperforms both of them significantly in most data
sets in terms of AUC.

This paper empirically shows the effectiveness and effi-
ciency of LeSiNN only. We are interested in investigating the
theoretical support for LeSiNN in our future work.
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