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Abstract—Proper feature selection for unsupervised outlier de-
tection can improve detection performance but is very challenging
due to complex feature interactions, the mixture of relevant
features with noisy/redundant features in imbalanced data, and
the unavailability of class labels. Little work has been done on this
challenge. This paper proposes a novel Coupled Unsupervised
Feature Selection framework (CUFS for short) to filter out
noisy or redundant features for subsequent outlier detection in
categorical data. CUFS quantifies the outlierness (or relevance)
of features by learning and integrating both the feature value
couplings and feature couplings. Such value-to-feature couplings
capture intrinsic data characteristics and distinguish relevant
features from those noisy/redundant features. CUFS is further
instantiated into a parameter-free Dense Subgraph-based Feature
Selection method, called DSFS. We prove that DSFS retains a
2-approximation feature subset to the optimal subset.

Extensive evaluation results on 15 real-world data sets show
that DSFS obtains an average 48% feature reduction rate, and
enables three different types of pattern-based outlier detection
methods to achieve substantially better AUC improvements
and/or perform orders of magnitude faster than on the original
feature set. Compared to its feature selection contender, on
average, all three DSFS-based detectors achieve more than 20%
AUC improvement.

Index Terms—Outlying Feature Selection, Coupling Learning,
Non-IID Outlier Detection

I. INTRODUCTION

Outliers are usually rare, i.e., those objects with rare combi-

nations of feature values, compared to the majority of objects.

Unsupervised outlier detection in categorical data is essential

for broad applications in various domains, such as fraud

detection, insider trading, intrusion detection and terrorist

detection. In these cases, categorical features are uniquely

available or indispensable in data objects.

Unsupervised outlier detection faces typical challenges such

as sophisticated interactions within and between features, the

mixture of relevant features with noisy/redundant features, and

the extreme imbalance between normal and outlying objects.

In such a complex problem nature, outliers are easily masked

as normal objects in noisy features - features for which normal

objects contain infrequent behaviours while outliers contain

frequent behaviours, and only detectable in a subset of features

[1], [2]. For example, in loan fraud detection, suspects may be

spotted by partial features, such as marital status and income

level, while they may fake themselves as normal with other

features, such as education and professional. In addition, many

categorical data sets contain a large number of redundant
features - weakly relevant features that contribute very limited

capability, or none, for identifying outliers when combined

with other features, e.g., property holdings to income level.

In outlier detection, most unsupervised methods for cat-

egorical data (e.g., [3]–[8]) are pattern-based. They search

for outlying/normal patterns and employ pattern frequency

as a direct outlierness measure. However, these methods fail

to perform effectively and efficiently in data sets that have

the characteristics discussed above for three main reasons:

(i) noisy/redundant features are deeply mixed with relevant

features and make it difficult to distinguish outliers from

normal objects; (ii) many noisy features mislead the pattern

search and result in a large proportion of faulty patterns and a

high ‘false positive’ rate; and (iii) feature redundancy results

in numerous redundant patterns and downgrades the efficiency

of the pattern search and outlier detection.

Filtering out noisy and redundant features may therefore

substantially improve the effectiveness and efficiency of sub-

sequent outlier detection. However, it is very challenging to

recognise and remove these features when there are complex

interactions between noisy/redundant features and relevant

features in highly imbalanced data without class labels.

Little work has been designed to conduct feature selection

for unsupervised outlier detection in categorical data. Most

feature selection research focuses on classification, regression

and clustering [9]–[11]. Existing work on feature selection for

very imbalanced data [12]–[14] concerns imbalanced classifi-

cation or supervised outlier detection. The feature weighting

method in [8] weights features for outlier detection in categor-

ical data, but it evaluates individual features not considering

feature interactions and fails to handle noisy features.

Coupling learning is an emergent research area that aims

to model complex couplings (e.g., a mixture of association,

correlation and dependency) and feed them into existing

learning models to address non-IID (i.e., Independent and

Identically Distributed) data mining issues [15]. Its efficacy

has been showcased in various domains [16]–[19].

In this paper, by utilising hierarchical value-feature cou-

plings, we propose a novel Coupled Unsupervised Feature
Selection framework (CUFS for short) to filter out noisy and
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redundant features for outlier detection in categorical data.

CUFS first estimates the outlierness of feature values by mod-

elling the low-level intra- and inter-feature value couplings.

These value couplings reflect the intrinsic data characteristics

and facilitate the differentiation between relevant and other

features. We further incorporate the value-level outlierness into

feature outlierness by learning value-to-feature interactions.

This value-to-feature outlierness is then mapped onto graph

representations, on which existing graph mining techniques

will be used to identify the desirable relevant feature subset.

We further instantiate CUFS to a Dense Subgraph-based
Feature Selection method called DSFS, which synthesises the

advantages of hierarchical couplings captured in CUFS and

the dense subgraph search theories. DSFS computes value

outlierness by integrating intra-feature value frequency devi-

ation and inter-feature value correlation and obtains feature

outlierness by a linear combination of value outlierness. The

max-relevance feature subset evaluation criterion, which is

equivalent to the maximum subgraph density of a feature

graph, and sequential search strategy are then used to identify

the relevant feature subset.

This work makes the following major contributions.

1) We propose a novel and flexible coupled unsupervised

feature selection (CUFS) framework for detecting out-

liers in categorical data, in which relevant features are

highly mixed with noisy and redundant features. CUFS

captures complex feature interactions by modelling the

outlierness (relevance) of features w.r.t. hierarchical

intra- and inter-feature couplings, which distinguish rel-

evant features from noisy and redundant features.

2) The performance of CUFS is verified by its instance,

i.e., a parameter-free feature subset selection method

DSFS. We prove that the feature subset selected by

DSFS has a 2-approximation to the optimal subset.

This demonstrates the flexibility of CUFS in enabling

state-of-the-art graph mining techniques to tackle the

feature selection challenge in unlabelled and imbalanced

categorical data.

Extensive experiments show that (1) DSFS obtains a large

average feature reduction rate (48%) on 15 data sets with a

variety of complexities, including different levels of noisy and

redundant features, and greatly improves three different types

of pattern-based outlier detectors in AUC and/or runtime per-

formance; (2) DSFS substantially defeats its feature weighting-

based contender (maximally 94% improvement on a data set);

and (3) DSFS achieves good scalability w.r.t. data size (linear

to data size, completing execution within one second for a data

set with over one million objects) and the number of features

(completing the execution within 20 seconds for a data set

with over 1000 features).

The rest of this paper is organised as follows. We discuss

related work in Section II. CUFS is detailed in Section III.

DSFS is introduced in Section IV. Empirical results are

provided in Section V. We conclude this work in Section VI.

II. RELATED WORK

Numerous outlier detection methods have been introduced,

e.g., distance-based methods, clustering-based methods, and

density-based methods, but most of them are proximity-based

and require a distance/similarity measure. Consequently, they

have high computational cost and they are also ineffective for

handling data sets with many irrelevant/noisy features due to

the curse of dimensionality [1], [2], [20].

Most methods for categorical data are pattern-based, to

address the discrete nature of this data. They can be generally

classified into three categories: association rule-based [4]–[6],

information theory-based [3], [8], and probability test-based

methods [7]. Typically, these methods first identify subspaces

that contain normal/outlying patterns and then define an outlier

score based on the pattern frequency in each subspace. Outlier

scores are assigned to objects based on the summation of the

outlier scores in subspaces. However, these methods identify

a large proportion of misleading patterns when a data set

has many noisy features, leading to a high ‘false positive’

rate. In addition, many pattern-based methods (e.g., [3]–[5])

have at least quadratic time complexity w.r.t. the number of

features. The presence of redundant features aggravates the

computational cost of pattern discovery and outlier detection

whereas detectors receive no improvement in accuracy.

Feature selection has been shown critical for removing

irrelevant and redundant features (note that all features that

are not relevant to learning tasks are defined as irrelevant

features, including noisy features [21]), but most existing

methods focus on regression, classification and clustering [9]–

[11]. Very few feature selection methods have been specifically

designed for outlier detection. Some relate work has been

on feature selection for imbalanced data classification and

supervised outlier detection [12]–[14]. However, they fail in

the context without class label information or being costly

to obtain class labels. Unfortunately, many real-life outlier

detection applications fall in this scenario.

Even less work is available on unsupervised feature se-

lection for outlier detection. Two related studies are [22]

and [8]. In [22], the partial augmented Lagrangian method

simultaneously selects objects from the minority class and

features that are relevant to minority class detection. While

it shows to be effective in selecting features for unsupervised

rare class detection, this method assumes that the objects of

rare classes are strongly self-similar. This assumption does not

apply to the nature of outlier detection, where many outliers

are isolated objects and distributed far away from each other in

data space. The unsupervised entropy-based feature weighting

in [8] for categorical data is most closely related to this paper.

It weights features and highlights strongly relevant features for

subsequent outlier detection. However, it evaluates individual

features without considering underlying feature interactions,

and thus wrongly treats noisy features as relevant.

Recently, learning value-to-object coupling relationships has

shown valuable and been successfully applied to various

problems, e.g., outlier/group outlier detection [16], [17], rec-
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ommendation systems [18] and similarity learning [19]. This

work builds on their methodology to learn value-to-feature

outlierness in unlabelled categorical data and integrate the

outlierness with graph mining techniques to select features for

unsupervised outlier detection.

III. THE CUFS FRAMEWORK

In this section, we introduce the CUFS framework. CUFS

builds and integrates two-level hierarchical couplings, i.e.,

feature value couplings and feature couplings, toward a proper

estimation of the feature relevance to outlier detection. Specif-

ically, it learns the intra- and inter-feature value couplings to

compute outlierness on the feature value level and constructs a

value graph with the outlierness being the edge weights. We

then feed the value graph to feature-level coupling analysis

and construct a feature graph by aggregating the value-

level outlierness. Our coupled feature selection framework for

unsupervised outlier detection (i.e., CUFS) is shown in Fig. 1.

Fig. 1: The Proposed CUFS Framework. VCA and FCA

are short for Value Coupling Analysis and Feature Coupling

Analysis, respectively.

The value coupling analysis captures the intrinsic inter-

actions between the values of data objects, which enables

a proper estimation of the value outlierness in data and

distinguish outlying values from noisy values. As the features

build their capability on their values, feature outlierness is

thus modelled by aggregating value outlierness in terms of

the value-to-feature interactions. Such feature couplings dis-

tinguish useful features from noisy and redundant features.

As a result of these factors, CUFS builds on the deep under-

standing of intrinsic data characteristics in outlying data, and

effectively combines the advantages of data-driven complex

feature relation analysis with unsupervised feature selection

and graph theories for outlier detection. It has the graph

properties and a feature subset search strategy as input to

search and select a feature subset for outlier detection. Table

I presents major notations used throughout this paper.

A. Value Graph Construction

The outlying behaviours of a feature value are captured by

intra-feature and inter-feature value couplings. Accordingly,

we define value couplings and value graph as follows.

Definition 1 (Value Coupling): The couplings in a value

v of feature f are represented by a three-dimensional tuple

VC = (f, δ(·), η(·, ·)) , where

• f ∈ F , where F is the feature space.

TABLE I: Symbols and Definitions

Symbol Definition

X A set of data objects with size N = |X |
F The set of D = |F| categorical features in X
V The whole set of feature values contained in F
S Feature subset of F with D′ = |S| features

G Value graph in which each node is a feature value

A The weighted adjacent matrix of G

G∗ Feature graph in which each node is a feature

A∗ The weighted adjacent matrix of G∗

• δ(·) captures the outlying behaviours of the value v w.r.t.

the value interactions within feature f . For example, δ(·)
may be a function of deviations of value frequencies from

the mode frequency or value similarities, etc.

• η(·, ·) captures the outlying behaviours of the value v
w.r.t. interactions with the values in the rest of features

in F . For example, η(·, ·) may be a function of value co-

occurrence frequency, conditional probabilities or other

value correlation quantisation methods.

With the value couplings of all feature values, a value graph
can be built to present their relationship.

Definition 2 (Value Graph): The value graph G is defined as

G =< V,A, g(δ(·), η(·, ·)) >, where a value v ∈ V represents

a node, the entry of the weighted adjacent matrix A(v, v′) (i.e.,

edge weight) is determined by function g(·, ·), which is a joint

function of δ(v) and η(v, v′), ∀v, v′ ∈ V .

The graph G can be an undirected or directed graph

depending on how the edge weight is defined.

One major benefit of mapping the value couplings to the

value graph is that we can utilise the value graph properties

(e.g., ego-network, shortest path, node centrality, or random

walk distance [23]) to infer deeper value interactions and to

further explore feature interactions by building the following

feature graph.

B. Feature Graph Construction

The feature couplings are derived from the value couplings

to capture the value-to-feature interactions.

Definition 3 (Feature Coupling): The couplings within a

feature f are described as a three-dimensional tuple FC =
(dom(f), δ∗(·), η∗(·, ·)), where

• dom(f) is the domain of the feature f , which consists

of a finite set of possible feature values contained in f .

• δ∗(·) computes the outlying degree of f based on its value

outlierness δ(·). For example, δ∗(f) may be a linear or

non-linear function for combining all δ(v), ∀v ∈ dom(f).
• η∗(·, ·) captures the outlying degree of f w.r.t. its value

interactions with other features in F . Specifically, given

∀f ′ ∈ F \ f , η∗(f, f ′) may be a linear or non-linear

function for incorporating η(v, v′) for ∀v ∈ dom(f) and

∀v′ ∈ dom(f ′).
These couplings are then mapped into a feature graph G∗.
Definition 4 (Feature Graph): The feature graph G∗ is

defined as G =< F ,A∗, h(δ∗(·), η∗(·, ·)) >, where a feature
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f ∈ F represents a node and the entry of the weighted adjacent

matrix A∗(f, f ′) is determined by h(·, ·), a function combining

δ∗(f) and η∗(f, f ′) for ∀f, f ′ ∈ F .

With the feature graph, existing graph mining algorithms

and theories (e.g., dense subgraph discovery, graph partition

and frequent graph pattern mining [23]) can then be applied to

identify the most relevant feature subset for outlier detection.

As presented in Section IV, by utilising dense subgraph

discovery theories, the CUFS instance can efficiently retain

a 2-approximation feature subset.

C. Feature Subset Selection

Our goal here is to find a feature subset, i.e., a subgraph of

the feature graph, which reserves feature nodes with high out-

lierness while at the same time reduces redundancy between

the reserved features.

The feature subset search contains two major ingredients:

search strategy and objective function (i.e., subset evalua-

tion criteria) [24]. Typical search strategies include complete

search, sequential forward or backward search, and random

search. Complete search can obtain an optimal feature subset,

but its runtime is prohibitive for high-dimensional data. Se-
quential search and random search are heuristic and result in

a suboptimal subset, but they are more practical than complete

search as they have much better efficiency.

A generic objective function for this context is:

max J(S) (1)

where J(·) is a function evaluating the outlierness in the

feature subset S, which needs to be specified based on the

chosen search strategy.

As illustrated in Fig. 1, we may need to iteratively update

the value graph and feature graph during the subset searching,

e.g., when adding or removing features in sequential search,

before obtaining an optimal subset.

IV. THE CUFS INSTANCE: DSFS

The CUFS framework can be instantiated by first specifying

the three functions δ, η and g for constructing the value graph

and the other three functions δ∗, η∗ and h for building the

feature graph. A subset search strategy can then be formed by

utilising the graph properties of the feature graph to identify

the desired feature subset.

We illustrate the instantiation of CUFS by identifying the

dense subgraph of the feature graph, i.e., DSFS. DSFS uses

the recursive backward elimination search with the subgraph

density as the objective function.

A. Specifying Functions δ, η and g for the Value Graph

Per the definition of outliers, the frequencies of values

are closely related to the degree of outlierness. Hence, the

outlierness of feature values is dependent on its intra-feature

frequency distribution and inter-feature value co-occurrence

frequencies. Motivated by this, we specify the intra- and inter-

feature value outlierness in terms of frequency deviation and

confidence values.

Definition 5 (Intra-feature Value Outlierness δ): The intra-

feature outlierness δ(v) of a feature value v ∈ dom(f) is

defined as the extent to which its frequency deviates from the

frequency of the mode:

δ(v) =
freq(m)− freq(v) + ε

freq(m)
(2)

where m is the mode of the feature f , freq(·) is a frequency

counting function and ε = 1
N .

In Equation (2), the mode frequency is used as a benchmark,

and the more the frequency of a feature value deviates from the

mode frequency, the more outlying the value is. We use ε = 1
N

to estimate the outlierness of the mode, which is proportional

to the data size. δ(·) makes the outlierness of values from dif-

ferent frequency distributions more comparable, which differs

from many existing work [3]–[5] in which the outlierness of

each pattern is measured without considering its associated

frequency distributions.

Definition 6 (Inter-feature Value Outlierness η): The inter-

feature outlierness η(v, v′) of a value v ∈ dom(f) and another

value v′ ∈ dom(f ′) is defined as follows:

η(v, v′) = δ(v)conf (v, v′)δ(v′) (3)

where conf (v, v′) = freq(v,v′)
freq(v′) .

η(v, v′) models a simple outlierness diffusion effect. That is,

a value has high outlierness if it has strong correlation with

outlying values. For example, a person having both weight

loss and frequent urination is more suspicious to have health

problems than those who has the symptoms of weight loss and

normal urination, assuming weight loss and frequent urination

are outlying symptoms.

Definition 7 (Edge Weighting Function g for Value Graph
G): The edge weight of the value graph G, i.e., the entry

(v, v′) of the weight matrix A, is defined as follows:

A(v, v′) = g(v, v′) =

{
δ(v), v = v′

η(v, v′), otherwise
(4)

We have δ(·) ∈ (0, 1) and η(·, ·) ∈ [0, 1) according to

Equations (2) and (3), and thus g(·, ·) ∈ [0, 1). That is, the

edge weight would be zero iff two distinctive nodes v and v′

have no association.

Note that although the two cases in Equation (4) are in

slightly different ranges, they will be used independently in the

next section to avoid incomparable issues. We will also discuss

in Section IV-D how this function helps us to distinguish noisy

features from relevant features.

Overall, the value graph G has the following properties.

1) G is a directed graph with self loops, as there exists

A(v, v′) �= A(v′, v) and A(v, v) �= 0.

2) Its adjacent matrix A is a value outlierness matrix,

representing outlying degree of individual values and

pairs of distinctive values. The larger a matrix entry is,

the higher the outlierness is.
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B. Specifying Functions δ∗, η∗ and h for the Feature Graph

For simplicity and the consideration of common scenar-

ios, we assume that the intra-feature and inter-feature value

outlierness measures are linearly dependent. Accordingly, we

estimate the intra- and inter-feature outlierness of a feature

and their integration for feature-level outlierness by simply

summing its associated δ and η values.

Definition 8 (Intra-feature Outlierness δ∗): The intra-feature

outlierness of a feature f ∈ F is specified below:

δ∗(f) =
∑

v∈dom(f)

δ(v) (5)

Definition 9 (Inter-feature Outlierness η∗): The inter-feature

outlierness of a feature f w.r.t. feature f ′ is quantified as:

η∗(f, f ′) =
∑

v∈dom(f),v′∈dom(f ′)

η(v, v′) (6)

Similar to g, we specify the function h using intra-feature

outlierness as diagonal entries and inter-feature outlierness as

off-diagonal entries in the weight matrix A∗.
Definition 10 (Edge Weighting Function h for Feature

Graph G∗): The edge weight A∗(f, f ′) of the feature graph

G∗, i.e., the entry (f, f ′) of A∗, is measured as:

A∗(f, f ′) = h(f, f ′) =

{
δ∗(f), f = f ′

η∗(f, f ′), otherwise
(7)

Note that, to make the entries in A∗ comparable, δ∗ and

η∗ are normalised into the same range [0, 1] for further use in

feature subset searching.

The feature graph G∗ has the following key properties.

1) G∗ is a complete graph with self loops, as δ∗(·) > 0
and η∗(·, ·) > 0.

2) G∗ is an undirected graph, as we always have

A∗(f, f ′) = A∗(f ′, f) for ∀f ′, f ∈ F .

3) Its adjacent matrix A∗ is a feature outlierness matrix,

representing outlying degree of features and their combi-

nations. Larger values in A∗ indicate higher outlierness.

4) The total edge weight of a feature node f is large if

both of its intra- and inter-feature outlierness are high.

C. The Search Strategy

Our target is to find a subset of features with the highest

relevance to outlier detection, i.e., with the highest outlierness.

A feature has high outlierness if it has large edge weights in

the feature graph G∗, according to the properties (3) and (4)

of G∗. However, simply selecting the top-ranked k features

does not necessarily obtain the best feature subset, since the

outlierness of a feature also depends on its coupled features.

This distinguishes our design from existing methods that

overlook feature interactions.

Motivated by the max-relevance idea in [25], the following

max-relevance objective function is designed to search for the

most relevant feature subset S.

max
1

|S|
∑
f∈S

∑
f ′∈S

A∗(f, f ′) (8)

In other words, we specify J(·) in Equation (1) as J(S) =
1
|S|

∑
f∈S

∑
f ′∈S A

∗(f, f ′).
Searching the exact S is computationally intractable for

high dimensional data, as the search space is 2D. A heuris-

tic sequential search strategy, namely Recursive Backward

Elimination (RBE), is used to search for an approximately

best subset. RBE conducts an iterative search as shown in

Algorithm 1. In the next section, we prove that the resultant

subset is a 2-approximation to the optimum.

Algorithm 1 RBE (F)

Input: F - full feature set

Output: S - the feature subset selected

1: while |F| > 0 do
2: for f ∈ F do
3: Compute J(F \ f)
4: end for
5: Remove the feature f that results in the largest J(F\f)
6: end while
7: return Return the subset with the largest J(·) as S

D. Analysis of DSFS

Theoretical analysis is provided for DSFS in the first

subsection and we then discuss why DSFS can handle noisy

and redundant features in the remaining two subsections.
1) Approximation: Following the definition of subgraph

density for unweighted graphs in [26], [27], we define the

subgraph density for weighted graphs by replacing the total

number of edges with the total weight defined in our graph.

Definition 11 (Subgraph Density): The density of an undi-

rected weighted subgraph S is its average weighted degree:

den(S) = vol(S)
|S| (9)

where vol(S) =
∑

f∈S
∑

f′∈S A∗(f,f ′)
2 is the volume of S .

With Equations (8) and (9), we have the following lemma.

Lemma 1 (Equivalence to the Densest Subgraph Discovery):
Equation (8) is equivalent to calculating the maximum of

den(S), i.e., the densest subgraph of the feature graph G∗.
Proof: It is easy to see that Equation (8) is equivalent to

maximising 2den(S), and thus the densest subgraph of G∗ is

the exact solution S to Equation (8).

We show below that the RBE search with quadratic time

complexity can be simplified to an equivalent procedure with

linear time complexity. Following theorems of dense subgraph

discovery in unweighted graphs [26], [27], we further prove

that the RBE search on the weighted graph G∗ achieves a

feature subset with a 2-approximation to the optimum.

Lemma 2 (Search Strategy Equivalence): Steps (2-5) of RBE

in Algorithm 1 are equivalent to the removal of the feature

node f with the smallest weighted degree.

Proof: If the feature node f has the smallest weighted

degree, then
∑

f ′∈F\f
∑

f ′′∈F\f A
∗(f ′, f ′′) is the largest in

the current iteration. Since 1
|F\f ′| is the same ∀f ′ ∈ F , the

removal of f results in the largest J(·).
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Instead of recursively computing J(·) for each feature in

each iteration, we therefore remove the feature node with the

smallest weighted degree to achieve the same result, which

avoids the inner loop and has linear time complexity.

Theorem 1 (2-Approximation): The feature subset S created

by the RBE search is a 2-approximation to the optimal subset.

Proof: Let Sopt be the set of feature nodes in the densest

subgraph. According to Lemma 1, below we show den(S) ≥
den(Sopt)

2 to prove the theorem.

Since Sopt forms the densest subgraph, we have

den(Sopt) =
vol(Sopt)
|Sopt|

≥ vol(Sopt)− d(f)

|Sopt| − 1
, ∀f ∈ Sopt

, where d(f) =
∑

f ′∈Sopt
A∗(f, f ′) denotes the weighted

degree of a feature node. After some replacements we have

d(f) ≥ den(Sopt), ∀f ∈ Sopt, i.e., every node in Sopt has

weighted degree at least den(Sopt).
Let Ti be the set of feature nodes left after the i-th node is

removed. Considering the iteration of RBE, let Tj be the set of

remaining nodes when the first node f contained in the optimal

subset Sopt is removed, so Tj−1 is the set of remaining nodes

before the node f is removed, which indicates that d(f ′) ≥
den(Sopt), ∀f ′ ∈ Tj−1, according to Lemma 2. Since G∗ is

a complete graph, we have

2vol(Tj−1) ≥ den(Sopt)|Tj−1|
. We then have

den(Tj−1) =
vol(Tj−1)

|Tj−1|
≥ den(Sopt)

2

. Since RBE returns the feature subset S with the largest

subgraph density over all iterations and Tj−1 is one of the

feature subset candidates, den(S) has at least
den(Sopt)

2 .

2) Handling Noisy Features: According to Equation (4),

a value node has high outlierness if δ and η are high.

Given a noisy feature value that occurs infrequently but is

contained by normal objects, since it has low frequency, its

intra-feature value outlierness δ is high. However, since these

noisy values tend to be more frequently or only contained by

normal objects, they are presumed to have stronger couplings

with normal values versus weak/no couplings with outlying

values. On the other hand, truly outlying values have high

outlierness in terms of both δ and η, because the frequency is

low and the couplings with other outlying values are strong,

and thus the overall value outlierness is often much higher

than that of noisy feature values. Since the intra- and inter-

feature outlierness is linearly correlated to intra- and inter-

feature value outlierness respectively, the intra- and inter-

feature outlierness of outlying features is also higher than that

of noisy features. As a result, the noisy features are removed

during the iterative procedure in RBE, while the relevant

features are reserved in order to maximise J(·).
3) Handling Redundant Features: Redundant features

refers to features that are weakly relevant when evaluating the

features individually while have very limited or no capability

for outlier detection when they are combined with strongly

relevant features [21]. In other words, redundant features have

quite high intra-feature outlierness, but their inter-feature out-

lierness is low. This results in a low overall feature outlierness,

and consequently these features are not retained in S since all

the features in S have high outlierness.

Algorithm 2 DSFS (X )

Input: X - data objects

Output: S - the feature subset selected

1: Initialise A as a |V | × |V | matrix

2: for f ∈ F do
3: Compute δ(v) for each v ∈ dom(f)
4: for f ′ ∈ F do
5: A(v, v′)← g(v, v′), ∀v′ ∈ dom(f ′)
6: end for
7: end for
8: Initialise A∗ as a |D| × |D| matrix

9: for f ∈ F do
10: for f ′ ∈ F do
11: A∗(f, f ′)← h(f, f ′)
12: end for
13: end for
14: Set S ← F and s← den(A∗)
15: for i = 1 to D do
16: Find f that has the smallest weighted degree in A∗

17: F ← F \ f and update A∗

18: S ← F and s← den(A∗) if s ≤ den(A∗)
19: end for
20: return S

E. The DSFS Algorithm

Algorithm 2 presents the procedures of the proposed instan-

tiation DSFS. Steps (1-7) and (8-13) construct the value graph

G and the feature graph G∗, respectively. Steps (14-19) obtain

the feature subset S. As proved in Lemma 2, Steps (16-17)

are equivalent to Steps (2-5) in RBE in Algorithm 1.

DSFS requires only one database scan to compute the intra-

and inter-feature value outlierness in Steps (1-7), and thus

has O(N). DSFS has O(D2), as inner loops are required in

order to generate the adjacent matrices of the value graph and

the feature graph. However, the computation within the inner

loop, i.e., Steps (5) and (11), is a very simple multiplication

and value assignment, enabling it to complete the execution

quickly in high dimensional data. Hence, DSFS has good

scalability w.r.t. data size and the number of features.

V. EXPERIMENTS AND EVALUATION

A. Data Sets

15 publicly available real-world data sets 1 are used, which

cover diverse domains, e.g., intrusion detection, image object

1aPascal and CelebA are available at http://vision.cs.uiuc.edu/attributes/ and
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, respectively. Sylva is avail-
able at http://www.agnostic.inf.ethz.ch/datasets.php. The other 12 data sets are
from the UCI machine learning repository at http://archive.ics.uci.edu/ml/.
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recognition, advertising and marketing, population and eco-

logical informatics, as shown in Table II. Eleven of these data

sets are directly transformed from highly imbalanced data,

where the smallest class is treated as outliers and the rest of

classes as normal [20], [28]. For the other four data sets, Probe
and U2R are derived from the KDDCUP99 data sets which

integrates multiple types of probing and user-to-root attacks as

outliers; following [3], [20], [28], we transform two balanced

classification data sets (i.e., Mushroom, and Optdigits with

classes ‘1’ and ‘7’) by sampling a small subset of the small

class as outliers, resulting in 5% outliers in the created data

sets. These transformation methods guarantee that the outlier

class chosen is either a rare class or a class with outlying

semantics. All data sets are used with categorical features only.

Features with only one feature value are removed.

B. Baselines and Settings

We first evaluate the feature selection method DSFS by

examining its capability of improving the effectiveness and

efficiency of unsupervised outlier detectors. Three different

types of representative pattern-based outlier detection methods,

MarP [7], COMP [3] and FPOF [4], are compared.

• MarP is a probabilistic method. It uses the inverse of

marginal probabilities of feature values of individual fea-

tures as an outlier measure. It has linear time complexity

w.r.t. the number of features and is parameter-free.

• COMP is an information-theory-based method. It com-

bines minimum description length models with informa-

tion gain to automatically partition the features and builds

coding tables based on feature groups to detect objects

with high compression cost as outliers. It has quadratic

time complexity w.r.t. the number of features and requires

no parameter settings.

• FPOF is an association rule-based method. It uses the

inverse of the frequencies of frequent patterns as an

outlier measure. It has exponential time complexity w.r.t.

the number of features. Following [4], FPOF is set with

the minimum support threshold supp = 0.1 and the

maximum pattern length l = 5.

We further compare DSFS with the entropy-based feature

weighting method (denoted by ENFW) [8] for outlier detection

by the above three detectors. Feature weighting methods only

assign relevance weights to features and require a decision

threshold to select a feature subset. To have a fair comparison,

the top-ranked D′ features are selected, where D′ is the

number of features in the feature subset selected by DSFS.

The scalability of DSFS w.r.t. data size and the number

of features is evaluated on six subsets of the two UCI data

sets LINK and AD, which have the largest number of objects

and features in our data sets. For LINK, the smallest subset

contains 1,000 objects, and subsequent subsets are increased

by a factor of four until the largest subset which contains

1,024,000 objects. For AD, the data with the smallest fea-

ture subset contains 40 features, and subsequent subsets are

increased by a factor of two, until the largest feature subset

which contains 1,280 features.

DSFS 2, ENFW, FPOF and MarP are implemented in JAVA

in WEKA [29]. COMP is obtained from the authors of [3] in

MATLAB. All the experiments are performed at a node in a

3.4GHz Phoenix Cluster with 32GB memory.

C. Performance Evaluation Method

We measure the detector effectiveness in terms of the area

under ROC curve (AUC). All the three outlier detectors assign

an outlier score to each data object and thus rank all objects

w.r.t. their degree of outlierness. AUC is then computed based

on the ranking using the Mann-Whitney-Wilcoxon test [30].

Higher AUC indicates better detection accuracy.

The unsupervised detectors are trained and evaluated on the

same data set, but the class labels are not employed in training;

rather they are used in testing for computing AUC.

The runtime of feature selection and outlier detection is

recorded to evaluate their efficiency. Here runtime is the time

for executing the core algorithms, excluding the runtime for

data loading and outputting results.

Two data indicators are introduced to describe the underly-

ing data characteristics, which are sensitive to the performance

of learning methods. They provide some insights into our

design, and their quantisation is reported in Table II.

• Feature noise level κnos. Based on the AUC measured

by using MarP for each feature, a feature is regarded as

noisy if AUC is less than 0.5. We report the percentage

of noisy features as κnos.

• Feature redundancy level κrdn. Features are retained if

their corresponding AUC is more than 0.5 (i.e., redundant

features need to be relevant features). The pairs of se-

lected features are checked to compare the AUC by using

pairwise feature combinations with that using individual

features. One feature is thought to be redundant to another

if the AUC difference is less than 0.01. We report the

percentage of such combinations as κrdn.

Having an accurate estimation of the data complexity itself

is a very challenging task. Although the above two indicators

are based on low-order information only, they assist us in

understanding data complexity and our empirical results.

D. Findings and Analysis

The feature selection results are presented in the first

subsection. The next two subsections discuss the AUC perfor-

mance and runtime of three outlier detectors with or without

using DSFS and compare DSFS with its contender ENFW,

respectively. Lastly, a scale-up test is conducted.
1) Large Average Feature Reduction Rate: We record the

number of selected features by DSFS, D′, and the reduction
rate, RED. The reduction rate is defined as the rate of the

reduced number of features in the feature subset selected by

DSFS to that in the full feature set, which is shown in the

last column in Table II. The results show that DSFS leads to a

significant reduction rate, ranging from 13% up to 97% across

15 data sets. On average, DSFS obtains 48% reduction rate.

2The source code of DSFS is available for downloading at
https://github.com/GuansongPang/DSFS.
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The two data indicators κnos and κrdn demonstrate that

nearly all data sets have a large proportion of noisy or

redundant features. These noisy and redundant features make

the three types of pattern-based outlier detectors less effective

and efficient. We show in the next section that proper feature

selection is essential for enabling the detectors to handle the

data complexities.

2) Improving Three Different Types of Pattern-based Outlier
Detectors in AUC and/or Efficiency: The AUC performance

and runtime of three detectors: MarP, COMP and FPOF

compared with their editions by incorporating DSFS: MarP∗,
COMP∗ and FPOF∗ are presented in Table III 3. On average,

MarP∗, COMP∗ and FPOF∗ obtain 6%, 4% and 3% AUC

improvements respectively while they only use 52% features

compared to their counterparts. In particular, the maximal

improvement that MarP∗ achieves is 42% on aPascal, COMP∗

makes 33% on aPascal, and FPOF∗ gains 18% on Census. It

is interesting to see that less improvement is made on UCI

data sets, which is understandable as UCI data sets tend to be

highly manipulated and simpler.

TABLE II: Feature Selection Results on Data Sets with

Different Characteristics. The data sets are sorted by κnos.

The middle horizontal line roughly separates data sets with

many noisy features (i.e., κnos > 35%) from other data sets.

RED = D−D′
D (%) denotes the reduction rate by DSFS. N is

the number of data objects in a data set, D is the number of

features, and D′ is the number of reserved features by DSFS.

Data Set Acronym κnos κrdn N D D′ RED

BankMarketing BM 90% 0% 41188 10 4 60%

aPascal - 81% 0% 12695 64 20 69%

Sylva - 78% 0% 14395 87 66 24%

Census - 58% 0% 299285 33 10 70%

CelebA - 49% 4% 202599 39 34 13%

CMC - 38% 4% 1473 8 5 38%

CoverType CT 34% 22% 581012 44 5 89%

Chess - 33% 0% 28056 6 4 33%

U2R - 17% 7% 60821 6 3 50%

SolarFlare SF 9% 0% 1066 11 8 27%

Optdigits DIGIT 8% 26% 601 64 46 28%

Mushroom MRM 5% 2% 4429 22 13 41%

Advertisements AD 5% 78% 3279 1555 49 97%

Probe - 0% 7% 64759 6 2 67%

Linkage LINK 0% 0% 5749132 5 4 20%

Avg. 34% 10% 470986 131 18 48%

With regard to efficiency, MarP∗, COMP∗ and FPOF∗ run

orders of magnitude faster than their counterparts as they work

on the highly reduced feature subsets. For example, FPOF∗

runs six orders of magnitude faster than FPOF on CT. DSFS

enables COMP and FPOF to perform outlier detection on high

dimensional data, such as Sylva with 87 features and AD with

3All runtime refers to the runtime of the detectors only, excluding that of
DSFS, but our empirical results show that the runtime of DSFS is within one
second in most data sets and that is almost negligible in practice.

1555 features, where these detectors are otherwise prohibitive

in terms of runtime and/or space requirements.

A more straightforward benefit is that the simplest detector

MarP empowered by DSFS can obtain the AUC performance

that is the same as, or very competitive with, that of the two

other complex detectors COMP and FPOF, while at the same

time saving several orders of magnitude runtime. In other

words, only simple detectors are needed to obtain the desired

efficacy with the premise of DSFS.

Next two subsections further explore the performance of

these three detectors in data sets with many noisy or redundant

features, respectively.

2.1) Substantially Enhancing both AUC and Runtime on
Data Sets with High Feature Noise Level: In data with many

noisy features, e.g., BM (90% w.r.t. κnos), aPascal (81%),

Sylva (78%), Census (58%), CelebA (49%) and CMC (38%)

(see Table II), on average, DSFS removes 45% features

and enables MarP, COMP and FPOF to respectively obtain

14%, 10% and 10% AUC improvements as shown in Table

III, compared to their counterparts. This is because DSFS

successfully removes many noisy features from these highly

noisy data, and enables pattern-based detectors to work on

much cleaner data, which thus perform more effectively.

In other data sets (e.g., Sylva and CelebA) where feature

reduction rates are smaller, resulting in a number of noisy

features retained in the selected feature subset, it is very dif-

ficult to separate them from the relevant features. As a result,

the detectors make very limited, or none, AUC improvements.

This shows that such tough noisy features are deeply mixed

with the outlier-discriminative features, and generate higher

outlierness than truly outlying features. In these cases, it is too

difficult for DSFS to distinguish them from outlying features.

In addition to the AUC improvement, the DSFS-enabled

detectors can also have a significant speedup due to the

significant feature reduction rate, e.g., FPOF runs 409 times

slower than FPOF∗ on Census.

2.2) Achieving a Substantial Speedup on Data Sets with
High Feature Redundancy Level: In data sets with a high

feature redundancy level, e.g., CT (22% w.r.t. κrdn) and AD
(78% w.r.t. κrdn), DSFS generates a very aggressive feature

reduction, removing 89% and 97% features, respectively.

Although this massive feature reduction might result in little

loss in terms of AUC, e.g., 1% on CT, the outlier detectors

can obtain up to six orders of magnitude speedup by working

on a substantially smaller feature set, e.g., FPOF on CT and

COMP on AD. On the other hand, MarP using DSFS obtains

6% AUC improvement on AD even if it works on the data

with only 3% original features left.

For data sets such as U2R, SF, MRM, Probe and LINK, the

reduction rates are more than the sum of κnos and κrdn. It

should be noted that we only have a conservative estimation

of κnos and κrdn, so the true feature noise and redundancy

levels might be much higher than the estimated values. This

explains why the three detectors empowered by DSFS can still

perform equally well or very competitively on these data sets,

compared to their counterparts not using DSFS.
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TABLE III: AUC and Runtime of the Three Detectors with or without DSFS. Three baseline detectors are MarP, COMP and FPOF.

Their editions using DSFS are MarP∗, COMP∗ and FPOF∗, respectively. IMP and SU indicate the AUC improvement and runtime

speedup of the detectors combined with DSFS.

AUC Performance Runtime (s)

MarP MarP∗ IMP COMP COMP∗ IMP FPOF FPOF∗ IMP MarP MarP∗ SU COMP COMP∗ SU FPOF FPOF∗ SU

BM 0.56 0.59 5% 0.63 0.62 -2% 0.55 0.58 5% 0.17 0.15 1 212.46 170.43 1 0.85 0.57 1

aPascal 0.62 0.88 42% 0.66 0.88 33% ◦ 0.88 ◦ 0.31 0.12 3 451.36 41.00 11 ◦ 53.29 ◦
Sylva 0.96 0.96 0% 0.95 0.96 1% ◦ ◦ ◦ 0.21 0.20 1 1137.07 498.59 2 ◦ ◦ ◦
Census 0.59 0.69 17% 0.64 0.71 11% 0.61 0.72 18% 1.62 0.51 3 18174.49 12878.14 1 30790.78 75.23 409

CelebA 0.74 0.74 0% 0.76 0.76 0% 0.74 0.75 1% 0.89 0.82 1 1647.47 1169.27 1 159377.51 50188.65 3

CMC 0.54 0.66 22% 0.57 0.66 16% 0.56 0.65 16% 0.14 0.01 11 5.14 2.42 2 0.10 0.06 2

CT 0.98 0.97 -1% 0.98 0.97 -1% 0.98 0.97 -1% 3.14 0.36 9 3914.33 341.98 11 410016.55 1.09 377547

Chess 0.64 0.64 0% 0.64 0.63 -2% 0.62 0.61 -2% 0.12 0.08 1 95.35 49.30 2 0.42 0.18 2

U2R 0.88 0.92 5% 0.99 0.99 0% 0.92 0.97 5% 0.28 0.13 2 318.95 255.28 1 0.39 0.22 2

SF 0.84 0.85 1% 0.85 0.86 1% 0.86 0.86 0% 0.02 0.01 1 6.33 4.40 1 0.39 0.09 4

DIGIT 0.95 0.95 0% 0.97 0.97 0% 0.96 0.94 -2% 0.04 0.03 1 217.10 111.51 2 10196.85 31.99 319

MRM 0.89 0.89 0% 0.93 0.94 1% 0.91 0.91 0% 0.07 0.07 1 48.72 32.18 2 19.32 2.70 7

AD 0.70 0.74 6% • 0.75 • ◦ 0.74 ◦ 0.85 0.10 9 • 126.35 • ◦ 54088.52 ◦
Probe 0.98 0.98 0% 0.98 0.98 0% 0.99 0.98 -1% 0.28 0.11 3 576.08 456.00 1 0.47 0.20 2

LINK 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0% 2.74 2.27 1 6365.26 5203.67 1 23.56 17.93 1

Avg. 6% 4% 3% 3 3 31525

‘◦’ indicates out-of-memory exceptions.
‘•’ indicates that we cannot obtain the results within four weeks, i.e., 2,419,200 seconds.

3) Defeating the Feature Weighting-based Contender: The

comparison between two feature selection methods ENFW

and DSFS via the performance of the three detectors on data

with selected feature sets is shown in Table IV. On average,

MarP, COMP and FPOF using DSFS obtain 24%, 25% and

24% AUC improvements, compared to MarP, COMP and

FPOF using ENFW, respectively. Impressively, the maximal

improvement that the DSFS-empowered MarP gains is 91%

on aPascal, the DSFS-empowered COMP makes 94% on CT,

and the DSFS-empowered FPOF achieves 91% on aPascal,

compared to their ENFW-empowered counterparts.

TABLE IV: AUC Performance Comparison of the Three

Detectors Using ENFW and DSFS respectively. IMP denotes

the improvement of DSFS over ENFW.

MarP COMP FPOF

ENFW DSFS IMP ENFW DSFS IMP ENFW DSFS IMP

BM 0.53 0.59 11% 0.56 0.62 11% 0.53 0.58 9%

aPascal 0.46 0.88 91% 0.46 0.88 91% 0.46 0.88 91%

Sylva 0.82 0.96 17% 0.82 0.96 17% ◦ ◦ ◦
Census 0.43 0.69 60% 0.43 0.71 65% 0.46 0.72 57%

CelebA 0.74 0.74 0% 0.76 0.76 0% 0.75 0.75 0%

CMC 0.50 0.66 32% 0.52 0.66 27% 0.51 0.65 27%

CT 0.51 0.97 90% 0.50 0.97 94% 0.51 0.97 90%

Chess 0.64 0.64 0% 0.63 0.63 0% 0.61 0.61 0%

U2R 0.86 0.92 7% 0.83 0.99 19% 0.86 0.97 13%

SF 0.81 0.85 5% 0.82 0.86 5% 0.83 0.86 4%

DIGIT 0.93 0.95 2% 0.95 0.97 2% 0.93 0.94 1%

MRM 0.89 0.89 0% 0.93 0.94 1% 0.90 0.91 1%

AD 0.56 0.74 32% 0.56 0.75 34% 0.56 0.74 32%

Probe 0.93 0.98 5% 0.88 0.98 11% 0.93 0.98 5%

LINK 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0%

Avg 24% 25% 24%

‘◦’ indicates out-of-memory exceptions.

3.1) Beating ENFW in Data Sets with Noisy Features: We

further explore the power of DSFS on noisy data. As shown

in IV, DSFS generally performs much better than ENFW

on almost all data sets that contain noisy features. This is

mainly because ENFW evaluates features independently and

wrongly takes noisy features as relevant features. However,

DSFS estimates the outlierness of features based on the intra-

and inter-feature couplings embedded within/between features,

thus can much better filter out noisy features than ENFW.

The exceptional cases are on CelebA and Chess, where

DSFS and ENFW perform equally well. This is because both

DSFS and ENFW cannot remove a sufficient number of noisy

features, and as a result the three detectors not using DSFS and

ENFW obtain equally good performance as their counterparts

using either DSFS or ENFW. This also shows the challenge

of identifying intrinsic characteristics and sophisticated inter-

actions between features for outlier detection.

1000 4000 16000 64000 256000 1024000
Data Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
xe

cu
ti

o
n

 T
im

e 
(i

n
 s

ec
o

n
d

s)

DSFS
ENFW

40 80 160 320 640 1280
Number of Features

0

5

10

15

20

E
xe

cu
ti

o
n

 T
im

e 
(i

n
 s

ec
o

n
d

s)

DSFS
ENFW

Fig. 2: Scale-up Test Results of DSFS against ENFW w.r.t.

Data Size and the Number of Features.

4) Good Scalability: The scalability test results of DSFS

against ENFW as a baseline are illustrated in Fig. 2. As

expected, DSFS has linear time complexity with respect to data
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size and is quadratic to the number of features. Although DSFS

runs slower than ENFW, it still has quite good scalability with

respect to both data size and the number of features, given that

DSFS completes its execution within one second for the largest

data set with 1,024,000 objects and less than 20 seconds for

the high-dimensional data with 1,028 features.

VI. CONCLUSIONS

This paper proposes a novel and flexible unsupervised

feature selection framework for outlier detection (CUFS).

Unlike existing feature selection and unsupervised outlier

detection, CUFS effectively captures the low-level hierarchical

interactions embedded in relevant features which are mixed

with noisy and redundant features. We further introduce a

parameter-free instantiation (DSFS) of the CUFS framework.

DSFS combines the advantage of CUFS with graph-based

strategies. We prove that the feature subset selected by DSFS

achieves a 2-approximation to the optimum.

Our extensive evaluation results show that, on average, (i)

DSFS obtains 48% feature reduction rate on 15 real-world

data sets with different levels of noisy features and redun-

dant features, and (ii) DSFS enables three different types of

pattern-based outlier detectors (i.e., MarP, COMP and FPOF)

to respectively obtain 6%, 4% and 3% AUC improvements

compared to their counterparts not using DSFS.

On data sets with high noise level, in particular, DSFS is

able to remove a large proportion of noisy features, resulting in

more than 10% improvements for all the three detectors. More-

over, by working on data sets with significantly smaller feature

subsets, COMP and FPOF, which have at least quadratic time

complexity w.r.t. the number of features, perform orders of

magnitude faster than on the original full feature set.

Compared to its feature selection contender ENFW, DSFS

performs substantially better in most data sets with noisy

features. On average, all three DSFS-based detectors obtain

more than 20% AUC improvements compared to ENFW.

As expected, DSFS has linear time complexity to data size.

Although DSFS has quadratic time complexity to the number

of features, it completes the data set containing 1,280 features

within 20 seconds. This enables DSFS to scale up well with

respect to data size and the number of features.

We are working on enhancing CUFS and DSFS by con-

sidering heterogeneity between features to address the feature

selection challenges in more complex non-IID data.
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