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Abstract

This paper introduces a novel wrapper-based
outlier detection framework (WrapperOD) and its
instance (HOUR) for identifying outliers in noisy
data (i.e., data with noisy features) with strong
couplings between outlying behaviors. Existing
subspace or feature selection-based methods are
significantly challenged by such data, as their
search of feature subset(s) is independent of
outlier scoring and thus can be misled by noisy
features. In contrast, HOUR takes a wrapper
approach to iteratively optimize the feature subset
selection and outlier scoring using a top-k out-
lier ranking evaluation measure as its objective
function. HOUR learns homophily couplings
between outlying behaviors (i.e., abnormal be-
haviors are not independent - they bond together)
in constructing a noise-resilient outlier scoring
function to produce a reliable outlier ranking in
each iteration. We show that HOUR (i) retains
a 2-approximation outlier ranking to the optimal
one; and (ii) significantly outperforms five state-
of-the-art competitors on 15 real-world data sets
with different noise levels in terms of AUC and/or
P@n. The source code of HOUR is available at
https://sites.google.com/site/gspangsite/sourcecode.

1 Introduction
Outliers are rare or inconsistent objects, compared to the ma-
jority of objects. In recent applications such as insider trad-
ing, network intrusion detection and fraud detection, a key
task is to detect unexpected objects in a sophisticated envi-
ronment with noise and complex feature relations.

Unsupervised outlier detection methods assign each object
an outlier score and report the top-ranked objects as outliers
without using class labels. They have been receiving great
attention due to the high cost of obtaining class labels in
real-world applications. However, they face big challenges
in handling data with a mixture of relevant and noisy fea-
tures (such data is referred to as noisy data hereafter). In such
data, outliers can be detected in relevant features while they
are masked as normal objects with the inclusion of noisy fea-

tures - features in which outliers may contain normal behav-
iors while normal objects may contain abnormal behaviors.

Subspace and feature selection are two major approaches
to handle outlier detection in noisy data. Subspace outlier
detection methods (e.g., FPOF [He et al., 2005] and COMP
[Akoglu et al., 2012]) first identify a set of relevant fea-
ture subspaces/patterns and then apply outlier scoring func-
tions to combine the outlierness (i.e., outlying degree) of
objects in these subspaces. These methods separate sub-
space/pattern search from outlier scoring to facilitate mod-
ular design and the application of existing subspace/pattern
discovery techniques into outlier detection. However, such
search can be misled by noisy features and produce faulty
subspaces/patterns, resulting in high false positives.

Outlying feature selection is to select relevant features for
subsequent outlier detection. Limited work has been done
in this area. Moreover, the existing work (i.e., [Pang et al.,
2016a; 2016b]) on filter-based approaches [Li et al., 2016] se-
lects a feature subset independently from subsequent learning
methods. Consequently, the relevant features they retain can
be noisy w.r.t. subsequent outlier detection methods. In con-
trast to filter-based approaches, wrapper-based approaches
choose an optimal feature subset w.r.t. the learning methods
[Kohavi and John, 1997]. However, although wrapper-based
feature selection is popular for classification and clustering
[Li et al., 2016], as far as we know, no such work has been
reported on outlier detection.

Figure 1: The Proposed WrapperOD Framework

This paper proposes a novel Wrapper-based Outlier Detec-
tion framework (WrapperOD) to detect outliers in noisy data.
As shown in Figure 1, WrapperOD first defines an outlier
scoring function to rank objects based on their outlierness in a
given feature subset, and then designs an outlier ranking eval-
uation function to measure the relevance of the feature subset
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by the outlier ranking quality. These two steps are iteratively
performed until the best feature subset (alternatively the best
outlier ranking) is obtained. Essentially, WrapperOD unifies
the outlier ranking quality with the feature subset relevance
into one objective function and makes a joint optimization.

We further instantiate WrapperOD to a Homophily
cOupling-based oUtlieR detection method, called HOUR,
for categorical data which has been insufficiently explored.
Many real-world data often demonstrates strong homophily
coupling between outlying behaviors (i.e., feature values)
[Chau et al., 2011; Pang et al., 2016a]. That is, outlying be-
haviors are not independent and they tend to be concurrent.
As a result, the outlierness of a behavior is dependent on its
coupled behaviors, i.e., a behavior has large outlierness if it
has strong linkage to many outlying behaviors and vice versa.
HOUR treats such data as data with non-independent and
identically distributed (non-IID) behaviors [Cao, 2014] and
specifies a homophily coupling-based outlier scoring func-
tion to capture such non-IID behaviors. It further specifies
the outlier ranking evaluation function to guide the joint op-
timization by maximizing the margin between the top-ranked
k objects and the other objects. A heuristic search is used to
generate reliable feature subsets.

This work makes the following two major contributions.

• We propose a novel WrapperOD framework to identify
outliers in noisy data. In contrast to existing solutions
that search feature subset(s) independently from outlier
scoring, WrapperOD simultaneously optimizes its out-
lier scoring and feature selection, which enables its out-
lier scoring function to produce a much more reliable
outlier ranking in noisy data.

• The performance of WrapperOD is verified by an in-
stance HOUR. HOUR models homophily couplings be-
tween outlying behaviors to construct a fast and noise-
resilient outlier scoring function that empowers the joint
optimization in WrapperOD. HOUR is guaranteed to ob-
tain a 2-approximation outlier ranking w.r.t. a given out-
lier ranking evaluation measure.

Extensive experiments show that HOUR (i) significantly
outperforms three state-of-the-art outlier detectors and their
combination with two of the latest outlying feature selection
methods in terms of AUC and/or P@n on 15 real-world data
sets with a diverse range of noise levels; (ii) performs stably
w.r.t. k in most cases; and (iii) obtains good scalability: it is
linear to data size and quadratic to the number of features.

2 Related Work
Subspace outlier detection is a popular direction recently
proposed to handle data with many noisy/irrelevant features
[Zimek et al., 2012]. Traditional methods (e.g., distance-
and density-based methods [Chandola et al., 2009]) iden-
tify outliers in original feature space and fail to work well
in those data due to the meaningless distance with the pres-
ence of noisy/irrelevant features [Zimek et al., 2012]. In con-
trast, subspace-based methods [He et al., 2005; Lazarevic
and Kumar, 2005; Angiulli et al., 2009; Keller et al., 2012;
Akoglu et al., 2012; Pang et al., 2016c] compute outlier

scores in subspaces. Most of these methods use heuristic
search to identify outlying subspaces/patterns. This kind of
search ignores subsequent outlier scoring functions. Conse-
quently, noisy features may mislead the search, resulting in
many faulty subspaces/patterns. The other methods work on
a set of randomly generated subspaces and thus do not in-
volve subspace search, but they include many noisy features
into subspaces during the random generation of subspaces.

Feature selection has shown effective in removing
noisy/irrelevant features for classification and clustering [Li
et al., 2016], but limited work has been done on out-
lier detection. Some work has been conducted on semi-
supervised/supervised outlying feature selection [Azmandian
et al., 2012; Jeong et al., 2012; Lorena et al., 2015]. In con-
trast, very limited unsupervised methods are available in the
literature due to the challenges brought by extreme class im-
balance and the unavailability of class labels. The earliest
related work is the PALM method for unsupervised minority
class analysis [He and Carbonell, 2010], which assumes the
minority class objects are strongly self-similar. However, this
assumption is opposite to that of outlier detection, in which
many outliers are isolated objects and far away from each
other. CBRW FS (denoted as CBFS) [Pang et al., 2016a]
computes the weights of features for weighted outlier scoring,
which can also determine outlying feature selection. As far as
we know, DSFS [Pang et al., 2016b] is the first work specif-
ically designed for unsupervised outlying feature selection.
These two methods are filter-based approaches that evaluate
feature subsets independently from subsequent outlier scor-
ing functions and may retain many noisy features.

CBRW [Pang et al., 2016a] also models similar homophily
couplings to estimate value outlierness for handling noisy fea-
tures, but HOUR is fundamentally different from CBRW in
two aspects below: (i) HOUR is a joint optimization of out-
lier scoring and feature selection while CBRW involves no
optimization and works on full feature space; and (ii) CBRW
requires iteration algorithms to compute value and object out-
lierness, whereas the outlier scoring function in HOUR has a
closed-form solution and runs substantially faster.

Great effort has been made on non-IID learning in recent
years [Cao et al., 2012; Cao, 2014; 2015; Cinbis et al., 2016],
while limited work [Pang et al., 2016a; Chen et al., 2016] has
been reported on non-IID outlier detection. This work ex-
ploits the non-IID outlying behaviors to enable noise-resilient
outlier detection.

3 HOUR for Joint Outlier Detection and
Outlying Feature Selection

Given a set of data objects X = {x1,x2, · · · ,xN} with size
N , described by D features F = {f1, f2, · · · , fD}, Wrap-
perOD first defines an outlier scoring function φS to compute
object outlierness in a given feature subset S ⊆ F and then
sorts the objects based on their outlierness to obtain an outlier
ranking RφS . WrapperOD further defines an outlier ranking
evaluation function J to compute the quality of RφS and uses
this ranking quality as the relevance indicator of the subset
S . This means that the task of finding the best feature subset
is equivalent to finding the best outlier ranking. WrapperOD
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iteratively performs function φS and function J to obtain the
best feature subset S∗ and outlier ranking R∗φS∗ .

WrapperOD is fundamentally different from existing out-
lier detection and outlying feature selection frameworks in
that: WrapperOD unifies the two correlated tasks, outlier de-
tection and outlying feature selection, to simultaneously ob-
tain the optimal outlier ranking and feature subset, while ex-
isting solutions treat these two tasks independently and are
very sensitive to noisy features.

We further instantiate WrapperOD for categorical data by
proposing HOUR. HOUR specifies its three components by
a homophily coupling-based outlier scoring function φS , a
score margin-based outlier ranking evaluation function J , and
a heuristic feature subset search method:

max
S

J(RφS , k). (1)

3.1 Specifying φS with Homophily Couplings
The scoring function φS has to meet at least the two require-
ments: (i) being sufficiently resilient to noisy features, and it
may opt for noisy features other than relevant features oth-
erwise; and (ii) being very efficient as it will be repeatedly
performed to evaluate a large number of feature subsets. Un-
fortunately, most outlier detectors are sensitive to noisy fea-
tures and/or are computationally costly [Pang et al., 2016a].

HOUR exploits the homophily couplings between fea-
ture values to construct a fast and robust function φS . Let
dom(f) = {v1, v2, · · · } be the domain of a feature f ∈ S ,
which consists of a finite set of unordered feature values, and
V be the whole set of feature values in S: V = ∪f∈Sdom(f),
where dom(f) ∩ dom(f ′) = ∅, ∀f 6= f ′.
Definition 1 (Value Influence). The outlierness influence of
a feature value v ∈ V is defined as follows.

τ(v) =

∑
u∈Nv

δ(v)δ(u)∑
v∈V

∑
u∈Nv

δ(v)δ(u)
, (2)

where Nv denotes a set of values that co-occur with v and
δ(·) : V 7→ (0, 1) is an initial outlierness influence estimation
of a value based on intra-feature frequency distribution.

We use δ(v) = 1
2

(
freq(m)−freq(v)

freq(m) + 1
freq(m)

)
, ∀v ∈

dom(f), m is a value that occurs most frequently in f (i.e.,
the mode) and freq(·) is a frequency counting function. Such
mode absolute deviation helps δ(·) address features with im-
balanced frequency distributions.

Essentially, δ estimates the value outlierness influence in-
dependently from the values of other features. τ further uti-
lizes the homophily couplings between values from differ-
ent features to have a better estimation of value influence.
This value influence is then used to infer the value outlierness
based on the coupling strength between feature values.
Definition 2 (Value Outlierness). The outlierness of a feature
value v ∈ V is defined as follows.

ψ(v) =
∑
u∈Nv

ρ(u, v)τ(u), (3)

where ρ(u, v) = log p(u,v)
p(u)p(v) is pointwise mutual information

to measure the coupling strength between two values.

We further define the outlierness of an object below.
Definition 3 (Object Outlierness). The outlierness of an ob-
ject x is defined as a weighted product of value outlierness.

φS(x) = 1−
∏
f∈S

[1− ψ(xf )]ω(f), (4)

where xf is the value contained by x in feature f and ω(f) =
1−

∏
v∈dom(f)[1− ψ(v)] computes the weight of f .

Section 4.1 will discuss how this outlier scoring models the
homophily couplings and why it is fast and noise-resilient.

3.2 Specifying J with Average Score Margin
The function J requires an internal evaluation measure for a
given outlier ranking, i.e., evaluating outlier rankings without
class labels. Internal evaluation measure has been extensively
studied for clustering tasks, while very little work has been on
outlier detection [Marques et al., 2015]. One related work is
[Marques et al., 2015], which uses pseudo binary classifica-
tion to evaluate the ranking quality. However, this method
has O(N3) time complexity, which is computationally pro-
hibitive to be used here. Below we introduce a linear-time
outlier ranking evaluation measure based on the distribution
of object outlierness:

J(RφS , k) =
∆S
|S|

=
1

k|S|
∑
x∈O

[φS(x)− φS(x′)], (5)

where O is a set of top-ranked k objects and φS(x′) is
the median outlierness in the remaining objects. ∆S =
1
k

∑
x∈O[φS(x) − φS(x′)] is the average score margin be-

tween the top-k objects and the center of the other objects,
which also indicates the relevance of feature subset S . So
maximizing J finds an outlier ranking that jointly maximizes
the object outlierness margin and the feature subset relevance.

3.3 Recursive Search of Feature Subset S
Feature subset search methods includes complete search, se-
quential search, and random search [Li et al., 2016]. Al-
though complete search outputs an optimal subset, it has ex-
ponential time complexity. Sequential search and random
search may produce a suboptimal subset, but they are more
practical than complete search as they run substantially faster.

A sequential search method, namely Recursive Backward
Elimination (RBE), is used with the functions φS and J to
search for an approximately best subset. RBE recursively
eliminates one feature at a time until no feature remains, and
only retains the feature subset that results in the largest J .
RBE is used because it can guarantee a 2-approximate J to
the optimal one (see Section 4.2).

3.4 The Algorithm and Its Time Complexity
Algorithm 1 presents the procedure of HOUR. Steps (1-3)
evaluates the outlier ranking in the full feature set, followed
by the evaluation of outlier rankings in feature subsets gener-
ated by RBE in Steps (4-14).

Steps (1-2) require one database scan to perform ψ and
φS respectively, which is linear w.r.t. N . Step (3) needs to
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Algorithm 1 HOUR(X , k)
Input: X - data objects, k - the number of targeted outliers
Output: R - an outlier ranking of objects, S - a feature subset
1: ψ(v)←

∑
u∈Nv

ρ(u, v)τ(u), ∀v ∈ V
2: Compute φF (x), ∀x ∈ X
3: r ← J(RφF , k)
4: while |F| > 0 do
5: for i = 1 to |F| do
6: Compute φF\fi(x), ∀x ∈ X
7: Compute Ji(R′

φF , k)
8: end for
9: Find feature fi with the largest Ji(R′

φF , k)
10: F ← F \ fi and update ψ(v) for all v contained in F
11: if Ji(R′

φF , k) ≥ r then
12: R← R′, S ← F and r ← Ji(R

′
φF , k)

13: end if
14: end while
15: return R and S

rank X , which has O(N logN) in the worst case, and thus
they have O(N logN). The two loops in Steps (4-14) re-
sult in O(D2) in the worst case, and the core computation
within the loops performs outlier scoring and ranking, which
has the same time complexity as the first three steps. Hence,
the worst time complexity of HOUR is O(D2N logN).

4 Theoretical Analysis
4.1 Robustness w.r.t. Noisy Features
We analyze the robustness of HOUR from the value level to
the feature level. At the value level, per definition of outliers,
outlying values are infrequent values contained by outliers,
while noisy values are also infrequent but contained by nor-
mal objects. In contrast, normal values are frequent values
contained by both outliers and normal objects. Below we dis-
cuss how the outlier scoring function in HOUR can efficiently
distinguish outlying values from normal and noisy values.
Theorem 1 (Homophily Coupling Modeling). The value
influence estimation τ(v) in Eqn.(1) is equivalent to the
stationary probability of visiting v in random walks on a
strongly connected undirected value-value graph G =<
V, E , η(·, ·) >, where a feature value v represents a graph
node, e(u, v) ∈ E denotes an edge between two nodes u and
v, and η(u, v) = δ(u)I(u, v)δ(v) (I(u, v) = 1 if u and v
have occurrences, and I(u, v) = 0 otherwise) is the weight
of edge e(u, v), ∀u, v ∈ V .

Proof. Let π∗(v) be the stationary probability, P (u, v) be the
transition probability from u to v, d(v) =

∑
u∈Nv

η(v, u)
be the weighted degree of v and vol(G) =

∑
v∈V d(v) =∑

v∈V
∑
u∈Nv

δ(v)δ(u) be the graph volume. Then we have:

π∗(v) =
∑
u∈V

π∗(u)P (u, v) =
∑
u∈V

d(u)

vol(G)

δ(u)I(u, v)δ(v)

d(u)
,

and we obtain:

π∗(v) =

∑
u∈Nv

δ(v)δ(u)∑
v∈V

∑
u∈Nv

δ(v)δ(u)
= τ(v),

which completes the proof.

Theorem 1 indicates that given ∀u, v ∈ V , if value u
has lower frequency and stronger couplings with other infre-
quent values compared to value v, i.e., d(u) > d(v), then
τ(u) > τ(v). This essentially models the homophily cou-
plings between outlying values. However, this homophily
coupling modeling does not take account of the coupling
strength between values. We further enhance the modeling
by adding pointwise mutual information in Eqn. (3). There
exist other ways to model homophily couplings. We use such
a two-stage modeling because it has a closed-form solution
which guarantees the efficiency of outlier scoring.

Outlying Values vs. Noisy Values. Noisy values have sim-
ilarly low frequencies as outlying values, but they are sup-
posed to co-occur randomly or follow a Gaussian distribu-
tion. Their homophily couplings are therefore weaker than
that of outlying values. As a result, HOUR assigns smaller
outlierness ψ to noisy values than outlying values.

Outlying Values vs. Normal Values. Normal values have
much lower δ and τ than outlying values due to their high
occurrence frequencies. Their high frequencies also result in
weak couplings with infrequent values. As a result, they ob-
tain substantially smaller outlierness ψ than outlying values.

At the feature level, HOUR prefers features that contain
values of higher outlierness to maximize its objective func-
tion. Since outlying values have higher outlierness than nor-
mal or noisy values, the features HOUR iteratively eliminates
are those containing normal and/or noisy values, resulting in
a cleaned feature subset for its outlier scoring function.

4.2 Theoretical Bound
This section shows that HOUR is guaranteed to obtain an out-
lier ranking with the margin of at least half of the optimum
value, provided that features are dependent on each other as
in the homophily coupling modeling.

Theorem 2 (2-Approximation). Let R and S be the outlier
ranking and feature subset returned by HOUR. Assume Θf be
the contribution of feature f ∈ S to the outlier ranking R by
integrating its conjunctive functions with other features θ(f ∧
f ′), i.e., Θf =

∑
f ′∈S θ(f ∧ f ′), and ∆S = 1

2

∑
f∈S Θf .

Then we have J(RφS , k) ≥ 1
2Jopt , where Jopt is the optimum

value of J .

Proof. Since Jopt is the optimum value of J , we have

Jopt =
∆S∗

|S∗|
≥ ∆S∗ −Θf

|S∗| − 1
, ∀f ∈ S∗.

We obtain Θf ≥ Jopt after some replacements. Let f ∈ S∗
be the feature that HOUR removes first among those con-
tained in S∗ during the iteration of RBE and T be the
feature set before f is removed, i.e., S∗ ⊂ T . Since
HOUR removes the least contributive feature at a time, we
have Θf ′ ≥ Θf , ∀f ′ ∈ T when HOUR chooses to re-
move f , and thus Θf ′ ≥ Jopt . As a result, we obtain∑
f ′∈T Θf ′ ≥ Jopt |T |, and thus 2∆T ≥ Jopt |T |, result-

ing in J(R′φT , k) = ∆T
|T | ≥

Jopt

2 . Since HOUR retains S that
results in the largest J and T is one of the candidates, we
finally obtain J(RφS , k) ≥ J(R′φT , k) ≥ Jopt

2 .
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5 Experiments and Evaluation
5.1 Competitors and Parameter Settings
HOUR is evaluated against three representative outlier detec-
tors for categorical data: FPOF [He et al., 2005], COMP
[Akoglu et al., 2012] and CBRW [Pang et al., 2016a].
FPOF is chosen because it is the most popular pattern-based
method. COMP is a state-of-the-art subspace method that
captures arbitrary-length outlying behaviors. CBRW is a
closely related value outlierness-based method. k in HOUR is
set to the number of outliers by default. COMP is parameter-
free. FPOF and CBRW are used with their default settings.

We also compare HOUR to the combination of outlier de-
tectors with two of the most recently proposed outlying fea-
ture selection methods, CBFS [Pang et al., 2016a] and DSFS
[Pang et al., 2016b]. CBFS returns a feature ranking. DSFS
outputs a feature subset without any parameters. To have a
fair comparison, CBFS selects the top-ranked |S| features so
that CBFS and HOUR select the same number of features.

All methods are in Java in WEKA [Hall et al., 2009] except
COMP which is in MATLAB. All these methods are executed
on a node in a 3.4GHz Phoenix Cluster with 32GB memory.

5.2 Performance Evaluation Method
Two of the most popular evaluation methods, the area under
ROC curve (AUC) and precision at n, i.e., P@n (where we
set n as the number of outliers in a data set), are used. All the
outlier detectors produce an ascending ranking based on out-
lier scores. AUC evaluates the global ranking quality, while
P@n considers the detection precision in the top n positions.
Higher AUC or P@n indicates better performance.

Two data indicators, feature noise level (fnl ) and outlier
separability (sep), are defined to evaluate data complexity
before and after applying feature selection. fnl is defined by
[Pang et al., 2016a; 2016b] as the percentage of individual
noisy features. Inspired by the indicator feature efficiency in
[Ho and Basu, 2002; Leyva et al., 2015], sep is defined as the
maximum feature efficiency per data, in which the efficiency
of a feature is quantified by the AUC performance of using
frequency histogram to detect outliers on the single feature.

5.3 Data Sets
Fifteen publicly available real-world data sets with a range of
feature noise levels are used, which cover diverse domains,
e.g., image object recognition, intrusion detection and molec-
ular screening, as shown in Table 1. These data sets are
transformed from extremely imbalanced data, where the rare
classes are treated as outliers versus the rest of classes as nor-
mal class [Lazarevic and Kumar, 2005; Pang et al., 2016a].

5.4 Findings and Analysis
1) Obtaining Significantly Better Global or Top-n Outlier
Ranking Than Other Outlier Detectors: We compare HOUR
with CBRW, COMP and FPOF in terms of AUC and P@n
in Table 1. In terms of AUC, HOUR obtains the best perfor-
mance on 11 data sets; and on average, it obtains about 2%,
7% and 21% improvement over CBRW, COMP and FPOF, re-
spectively. HOUR significantly outperforms FPOF in AUC.
In terms of P@n, HOUR performs significantly better than

CBRW and COMP and obtains more than 30%, 37% and 90%
improvements over CBRW, COMP and FPOF, respectively.

Table 1: AUC and P@n Performance on 15 Data Sets. O = (|F| −
|S|)/|F| indicates feature reduction rate of HOUR. FPOF runs out
of memory in four high-dimensional data.

AUC P@n
Data O HOUR CBRW COMP FPOF HOUR CBRW COMP FPOF
SylvaA 91% 0.9829 0.9353 0.8855 NA 0.7483 0.5914 0.3770 NA
BM 50% 0.6939 0.6287 0.6267 0.5466 0.3265 0.2474 0.2565 0.1369
AID362 93% 0.5147 0.6640 0.6480 NA 0.0833 0.0500 0.0167 NA
APAS 80% 0.9065 0.8190 0.6554 NA 0.0000 0.0000 0.0000 NA
SylvaP 83% 0.9725 0.9715 0.9537 NA 0.6907 0.6151 0.5700 NA
Census 91% 0.4867 0.6678 0.6352 0.6148 0.0616 0.0677 0.0675 0.0637
CelebA 69% 0.8879 0.8462 0.7572 0.7380 0.2085 0.1748 0.1533 0.1256
CUP14 57% 0.9833 0.9420 0.9398 0.6041 0.6730 0.2671 0.2671 0.0000
Alcohol 91% 0.9365 0.9254 0.8919 0.5468 0.3889 0.3333 0.3889 0.0556
CMC 50% 0.6647 0.6339 0.5669 0.5614 0.0345 0.0345 0.0345 0.1034
CT 93% 0.9688 0.9703 0.9772 0.9770 0.0499 0.0386 0.0688 0.0644
Chess 50% 0.8507 0.7897 0.6387 0.6160 0.0000 0.0000 0.0000 0.0000
Turkiye 34% 0.5256 0.5116 0.5101 0.4746 0.0776 0.0746 0.0687 0.0597
Credit 33% 0.7204 0.5804 0.6543 0.6428 0.4875 0.2215 0.3502 0.3333
Probe 67% 0.9661 0.9906 0.9790 0.9867 0.8440 0.8579 0.7928 0.8548
Average 69% 0.8041 0.7918 0.7546 0.6644 0.3116 0.2383 0.2275 0.1634

p-value - 0.1876 0.0730 0.0322 - 0.0068 0.0068 0.1055

Using outlier scoring results to guide outlying feature se-
lection enables HOUR to remove most, if not all, of the noisy
features while having little or no loss in outlier separability
on most data sets, i.e., the 11 data sets on which HOUR ob-
tains the best AUC performance (see the fnl and sep results
of HOUR in Table 2). Hence, although HOUR works with
69% less features than its competitors, it performs substan-
tially better as it works on much cleaner data. Also, maximiz-
ing the margin of the top-k objects from the others helps rank
more outliers in the top, resulting in significant improvement
in P@n. On the other hand, HOUR opts for strongly relevant
features that help rank outliers in the top, so it may remove
weakly relevant features that distinguish outliers from normal
objects in other positions. As a result, HOUR may obtain
worse AUC performance while comparable P@n compared
to its competitors, e.g., the results on AID362 and Census.

2) Defeating the Combination of Outlier Detectors with
Outlying Feature Selection Methods: HOUR is compared
with the combination of CBRW and COMP with outlying
feature selection methods CBFS and DSFS in Table 2 1. Al-
though the two feature selection methods largely improve
CBRW and COMP in terms of AUC and/or P@n, HOUR
remains as the best performer on most data sets. HOUR ob-
tains significantly better performance than the combination
of CBRW and COMP with CBFS in AUC and significantly
outperforms all the four different combinations in P@n.

The superiority of HOUR is because the wrapper-based
feature selection scheme enables HOUR to remove substan-
tially more noisy features than the filter-based methods CBFS
and DSFS. This is verified by the fnl and sep differences
between the full feature set and feature subsets selected by
HOUR, CBFS and DSFS shown in Table 2. On average,
HOUR removes over 50% of the noisy features, which out-
performs CBFS (12%) and DSFS (22%) by a factor of more

1The combination of FPOF with CBFS or DSFS underperforms
that of CBRW and COMP and is omitted due to space limits.
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Table 2: AUC and P@n Performance Comparison between HOUR and the Combination of CBRW and COMP with CBFS and DSFS, and
Data Complexity Evaluation Results on F , S, S† and S‡. The results obtained using CBFS and DSFS are denoted by † and ‡, respectively.

AUC P@n Feature Noise Level (fnl ) Outlier Separability (sep)
Data HOUR CBRW† CBRW‡ COMP† COMP‡ HOUR CBRW† CBRW‡ COMP† COMP‡ F S S† S‡ F S S† S‡

SylvaA 0.9829 0.8793 0.9381 0.8726 0.8858 0.7483 0.5327 0.5948 0.4831 0.3781 91% 13% 75% 91% 0.78 0.78 0.78 0.78
BM 0.6939 0.6104 0.6114 0.6239 0.6239 0.3265 0.2259 0.2269 0.2567 0.2575 90% 80% 80% 75% 0.63 0.63 0.63 0.63
AID362 0.5147 0.4659 0.6518 0.4982 0.6342 0.0833 0.0000 0.0500 0.0000 0.0167 86% 100% 100% 85% 0.60 0.49 0.47 0.60
APAS 0.9065 0.6621 0.8807 0.6532 0.8771 0.0000 0.0000 0.0000 0.0000 0.0000 81% 38% 85% 50% 0.87 0.87 0.72 0.87
SylvaP 0.9725 0.9582 0.9707 0.9307 0.9628 0.6907 0.5553 0.5609 0.6140 0.5892 78% 0% 53% 71% 0.78 0.78 0.78 0.78
Census 0.4867 0.4844 0.6999 0.4841 0.7135 0.0616 0.0604 0.0732 0.0635 0.0991 58% 100% 100% 50% 0.76 0.49 0.49 0.76
CelebA 0.8879 0.8865 0.8502 0.8855 0.7594 0.2085 0.2098 0.1698 0.2142 0.1482 49% 0% 0% 50% 0.80 0.78 0.78 0.80
CUP14 0.9833 0.9821 0.9358 0.9821 0.9618 0.6730 0.6686 0.2671 0.6686 0.3224 43% 0% 33% 50% 0.92 0.92 0.92 0.92
Alcohol 0.9365 0.9264 0.9294 0.8919 0.8595 0.3889 0.3889 0.4444 0.3889 0.0556 38% 0% 0% 18% 0.91 0.91 0.91 0.91
CMC 0.6647 0.6366 0.6444 0.6475 0.6586 0.0345 0.0345 0.0345 0.0345 0.0345 38% 0% 0% 0% 0.66 0.66 0.66 0.66
CT 0.9688 0.9192 0.9673 0.9187 0.9670 0.0499 0.0000 0.0386 0.0000 0.0386 34% 0% 67% 0% 0.97 0.97 0.97 0.97
Chess 0.8507 0.7268 0.7649 0.7529 0.6305 0.0000 0.0000 0.0000 0.0000 0.0000 33% 33% 6% 25% 0.74 0.59 0.74 0.74
Turkiye 0.5256 0.5161 0.5108 0.5145 0.5119 0.0776 0.0716 0.0716 0.0746 0.0776 25% 14% 14% 21% 0.58 0.55 0.55 0.55
Credit 0.7204 0.5712 0.5712 0.6566 0.6566 0.4875 0.2131 0.2131 0.3531 0.3531 11% 0% 0% 0% 0.70 0.70 0.70 0.70
Probe 0.9661 0.9591 0.9591 0.9794 0.9794 0.8440 0.8397 0.8397 0.7672 0.7672 0% 0% 0% 0% 0.94 0.94 0.94 0.94
Average 0.8041 0.7456 0.7924 0.7528 0.7788 0.3116 0.2533 0.2390 0.2612 0.2092 50% 25% 44% 39% 0.78 0.74 0.74 0.77
p-value - 0.0001 0.0730 0.0006 0.1070 - 0.0029 0.0269 0.0098 0.0029

than four and two, respectively; while at the same time, it ob-
tains a very comparable outlier separability. In addition, we
observe that filter-based methods like DSFS generally retain
many more features than HOUR. These extra features contain
noisy features as well as relevant features. This is why DSFS
obtains a smaller noise reduction level but a better outlier sep-
arability than HOUR in Table 2. The extra relevant features
retained by DSFS enable CBRW and COMP to outperform
HOUR in data sets where HOUR makes very aggressive fea-
ture reduction, e.g., on AID362 and Census.
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Figure 2: Representative AUC Performance of HOUR w.r.t. k. The
dashed line shows HOUR’s performance with k = outlier%.

3) Good Stability w.r.t. the Parameter k: We examine the
stability of HOUR w.r.t. k in Figure 2. HOUR shows stable
performance in most of the 15 data sets. Here we illustrate
representative and interesting trends in its AUC performance
w.r.t. a wide range of k on four data sets due to space limits.
HOUR performs very stably on CelebA and CUP14. It is very
challenging to rank outliers in the top-k positions in data sets
which contain only a very small proportion of outliers but
have many noisy features (e.g., CT), as the outliers are easily
masked as normal objects in those data. Due to these false
negatives, HOUR requires a large k (e.g., 0.5%) to perform
well on CT. On the other hand, HOUR can identify outliers
more accurately using a smaller k in Census which contains a
larger proportion of outliers, as the use of a large k might lead

to false positives. A general guideline is to set k = 0.5%×N
to leverage the effect of false negatives and false positives.

4) Good Scalability w.r.t. Data Size and Dimensionality:
The scale-up test results are presented in Figure 3. HOUR
is linear w.r.t. data size and quadratic w.r.t. dimensionality.
HOUR runs comparably fast to CBRW and FPOF w.r.t. dif-
ferent data sizes. In the right panel, HOUR runs five orders of
magnitude faster than FPOF, while the iterative optimization
process makes HOUR run considerably slower than CBRW.
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Figure 3: Scale-up Test w.r.t. Data Size and Dimensionality. FPOF
runs out of memory when dimensionality reaches 80.

6 Conclusions and Future work
A wrapper-based outlier detection framework WrapperOD
and its instance HOUR are introduced to handle data with
noisy features. HOUR is more plausible than its competitors:
(i) it guarantees the margin between the top-k outliers and the
other objects is a 2-approximation to the optimum value; (ii)
it performs significantly better in global and/or local outlier
ranking; and (iii) it obtains stable performance w.r.t. k and
good scalability. The capability of returning the top k outliers
with superior P@n performance makes HOUR a good candi-
date for real-world applications, since investigation resources
are often only sufficient for limited suspicious objects.
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