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Abstract
This paper tackles a rarely explored but critical problem within

learning to hash, i.e., to learn hash codes that effectively discrimi-

nate hard similar and dissimilar examples, to empower large-scale

image retrieval. Hard similar examples refer to image pairs from

the same semantic class that demonstrate some shared appearance

but have different fine-grained appearance. Hard dissimilar exam-
ples are image pairs that come from different semantic classes but

exhibit similar appearance. These hard examples generally have a

small distance due to the shared appearance. Therefore, effective

encoding of the hard examples can well discriminate the relevant

images within a small Hamming distance, enabling more accurate

retrieval in the top-ranked returned images. However, most ex-

isting hashing methods cannot capture this key information as

their optimization is dominated by easy examples, i.e., distant simi-

lar/dissimilar pairs that share no or limited appearance. To address

this problem, we introduce a novel Gamma distribution-enabled

and symmetric Kullback-Leibler divergence-based loss, which is

dubbed dual hinge loss because it works similarly as imposing two

smoothed hinge losses on the respective similar and dissimilar pairs.

Specifically, the loss enforces exponentially variant penalization

on the hard similar (dissimilar) examples to emphasize and learn

their fine-grained difference. It meanwhile imposes a bounding

penalization on easy similar (dissimilar) examples to prevent the

dominance of the easy examples in the optimization while preserv-

ing the high-level similarity (dissimilarity). This enables our model

to well encode the key information carried by both easy and hard

examples. Extensive empirical results on three widely-used image

retrieval datasets show that (i) our method consistently and substan-

tially outperforms state-of-the-art competing methods using hash

codes of the same length and (ii) our method can use significantly

(e.g., 50%-75%) shorter hash codes to perform substantially better

than, or comparably well to, the competing methods.
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Hamming Space

Figure 1: Exemplar hard examples (image pairs linked by red
lines) in the COCO data. The hard dissimilar example is the
image pairs that come from different semantic classes, per-
son and stop sign, but exhibit similar appearance. The hard
similar example is the image pairs from the same seman-
tic class, stop sign, which demonstrate some shared appear-
ance but have different fine-grained appearance. By con-
trast, easy examples are distant image pairs (linked by green
lines) that share no or limited appearance.
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1 Introduction
Nearest neighbor (NN) search has been widely adopted in computer vision

and machine learning. However, the time complexity of NN methods on a

dataset of sizen isO (n), making the exact NN search infeasible in real-world

large-scale retrieval applications. To address this problem, approximate

nearest neighbor (ANN) techniques have been proposed. The idea is to

locate approximate nearest neighbors rather than the exact neighbors. Due

to its low storage cost and fast retrieval speed, hashing has been widely used

as a solution to ANN problems [2, 3, 10, 11, 23, 28, 30–34, 36, 37, 41, 42].

The goal of hashing is to construct hash functions to map each data

point from the original data space into a Hamming space with associated

binary codes so that visually similar samples are mapped into similar binary

codes (as measured in terms of Hamming distance). By using the binary

code-based data representations, both the storage cost and time complexity

for search are dramatically reduced. In fact, the NN search can be achieved

within a constant or sub-linear time complexity. Numerous hashing meth-

ods have been introduced [8, 13, 23–25, 27, 36–39, 43]. Among all these

methods, deep learning to hash methods [1, 5, 6, 8, 22, 24, 25, 27, 43] have
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achieved remarkable success in image retrieval and gained substantially

better performance than traditional hashing methods due to their end-to-

end learning frameworks, in which convolutional neural networks-based

feature learning and hash coding functions can be well unified to encode

any nonlinear hash function.

Most of these existing methods [5, 8, 24, 25, 27, 43] focus on learning

hash codes using the high-level pairwise similar/dissimilar information,

without considering the importance of different image pairs. However, some

image pairs inherently convey much more critical information than the oth-

ers. For example, learning hash codes to effectively distinguish a dissimilar

image pair with one image containing a cat and another containing a tiger

generally facilitates a more discriminative power than a dissimilar pair of

images containing a cat and an elephant respectively. Therefore, substan-

tially more expressive hash codes can be learned by well leveraging these

important image pairs. However, on the other hand, since those important

image pairs have only fine-grained difference, they are often within a small

Hamming distance, which makes them very difficult to be properly learned

and exploited in the current popular pairwise-based hashing techniques.

To address this issue, we introduce a rarely explored but critical problem

within learning to hash, i.e., to learn hash codes that effectively discrimi-

nate hard similar and dissimilar examples, to empower large-scale image

retrieval. Hard similar examples refer to image pairs from the same semantic

class that demonstrate some shared appearance but have different fine-

grained appearance. Hard dissimilar examples are image pairs that come

from different semantic classes but exhibit similar appearance. Accordingly,

easy examples are distant similar/dissimilar pairs that share no or limited

appearance. Some exemplar hard and easy examples are given in Figure

1. The hardness is originally due to the difficulty to effectively encode the

fine-grained appearance in these close image pairs. Therefore, effective

discrimination of the hard examples enables accurate ANN search of truly

relevant images within a small Hamming distance.

We further tackle this problem with a novel deep hashing method, which

explicitly discriminates the hard examples to learn their fine-grained dif-

ference, in addition to preserving the similarity or dissimilarity of easy

examples. This objective is achieved by a novel Gamma distribution-enabled

and symmetric Kullback-Leibler divergence-based loss. The loss is dubbed

dual hinge loss (DHL for short) because it works similarly as imposing

two smoothed hinge losses on the respective similar and dissimilar pairs.

The first analogous hinge loss exerts on similar pairs: it enforces exponen-

tially variant penalization on the hard similar examples and equally large

bounding penalization on easy similar examples. This enables the model to

emphasize and learn the fine-grained difference of hard similar examples

while also preserving the high-level similarity information. The second

analogous hinge loss exerts on dissimilar pairs: it exponentially increases

the penalization with decreasing distance of the hard dissimilar examples

and prunes the loss of easy dissimilar examples. This helps preventing the

dominance of the easy examples in the optimization while also preserving

the high-level dissimilarity.

An early exploration of a similar problem was done in [5], which learns

hash codes to concentrate on similar images to be within a small Hamming

distance. It achieves this goal by imposing significantly large penalization on

similar image pairs with Hamming distance larger than a given Hamming

radius threshold. This is similar to enforcing large penalization on the easy

examples so as to highlight the importance of the hard similar examples in

our case. However, their penalization on the easy examples increases rapidly

with the increasing Hamming distance. As a result, the optimization may

be still dominated by the easy examples and the hard examples are often

ignored during training. By contrast, our loss function can well discriminate

the hard examples while at the same time effectively prevent the dominance

of the easy examples by bounding penalization on both similar and dissimilar

easy examples.

In summary, this paper makes the following major contributions.

• We introduce a rarely explored but critical problem within learning

to hash, i.e., to learn hash codes that can effectively discriminate

hard examples while preserving the proximity information of easy

examples.

• We further propose a novel loss, called dual hinge loss (DHL), to

tackle this problem. This loss enables our deep hashing model to

not only preserve the similarity or dissimilarity of the distant image

pairs (i.e., easy examples) but also effectively learn the fine-grained

difference of the close image pairs (i.e., hard examples).

• We also present a novel Gamma quantization loss function to mini-

mize the loss of converting prediction probabilities into hash codes.

Comprehensive experiments on threewidely used image retrieval datasets,

NUS-WIDE, MS-COCO and CIFAR-10, show that (i) the proposed method

outperforms the best performer among eight state-of-the-art competing

methods by a significant margin of 3.8%-8.7% and (ii) our method is able to

use significantly (e.g., 50%-75%) shorter hash codes to perform substantially

better than, or comparably well to, the competing methods.

1.1 Related Work
Existing supervised hash methods [5, 8, 15, 25, 27, 29, 35] take full advantage

of the semantic information, e.g. pairwise similarity or relevance feedback,

which normally achieve better accuracy than unsupervised methods. Re-

cently, deep learning based hashing methods [5, 8, 15, 24, 25, 27, 43, 44] have

shown superior performance over traditional hashing methods in which

joint learning methods have been proposed [24, 43] to unify the two steps

to learn more lossless encoding.

To further improve performance, cross-entropy [5, 8, 17, 25] has been

adopted to preserve the pairwise similarity of the data in the Hamming space.

To this end, different types of loss functions have been proposed [4, 7, 8, 17,

43]. However, the resulting hash codes often fail to discriminate the hard

and easy examples. This is because they enforce significant penalization

on the easy examples with a very large Hamming distance and treat the

hard examples and the other easy examples equally. As a result, they are

ineffective in properly encoding the image pairs within small Hamming

distance. Cauchy distribution is incorporated into the loss function in [5]

to address this problem, but its penalization on the easy examples increases

quickly with increasing Hamming distance. As a result, the optimization is

often dominated by easy examples with large Hamming distance, leading

to less discriminative binary encoding.

Additionally, some previous methods [4, 5, 8] attempt to explicitly assign

different weights to image pairs to highlight important examples. These

methods treat image pairs from small classes as more important examples

than that from the large classes, and incorporate the class proportion as

sample weights into their loss function. Unlike these methods that consider

the sample importance from the class imbalance aspect, we address a fun-

damentally different problem, which defines the example importance based

on the hardness of correctly distinguishing the image pairs.

2 The Proposed Method
2.1 Problem Statement
In a retrieval system, X = {xi }Ni=1 be a set of N training samples, S be

the pairwise similarity label set for M pairs of samples xi and x j , where
for each si j ∈ S we have si j = 1 if xi and x j are similar pairs rand

si j = 0 otherwise, then a general deep learning to hash problem is to

learn a nonlinear hash function ϕ : X 7→ H which maps the original data

points X to a Hamming space H of the hash codes with k bit hash codes,

i.e., H ∈ {−1, 1}k . The hash function hi = ϕ(xi ) is designed to preserve

the proximity information of X in the Hamming space H with S as the

supervision information. Given a query sample xq , the retrieval system first

obtains its hashing representation hq = ϕ(xq ) and then returns a set of

samples that are close to hq = ϕ(xq ) in H. Thus, faithful hashing is the key

to the success of an ANN-based retrieval system. Particularly, the similarity

between xq and xi is evaluated by the Hamming distance using their hash

codes hq and hi , so it only requiresO (1) time to search all neighbors within

a certain Hamming radius by hash table lookup instead of a linear scan. One

main issue here is that the problem is too general. Many detailed knowledge

embedded in X may therefore be ignored, leading to ineffective retrieval

performance.

We introduce a critical subproblem within the above general hashing

problem to address this issue, which aims to effectively learn the fine-grained

difference of hard examples while also preserving the high-level proximity

information. Specifically, the set of hard examples can be formally defined

as D, where (xdi , xdj ) ∈ D is a close similar/dissimilar pair within a

small Hamming distance r ; while the set of easy examples is accordingly

defined as E, where (xei , xej ) ∈ E is a distant similar/dissimilar pair with

a Hamming distance larger than r . Then, the new problem is to learn a hash

function ϕ : D ∪ E 7→ H in a way that ϕ puts more focus on D while also

effectively encodes the information carried by E. This problem is critical

for a retrieval system, because effective encoding of fine-grained difference

is prominent for the system to achieve its ultimate goal, i.e., to return the

truly relevant results from a set of highly similar results w.r.t. a given query.

However, this problem is specially challenging because (i) D, E and r are
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Figure 2: An overview of the proposed deep hashing method. It is an end-to-end deep hashing approach with three modules,
including deep convolutional network-based feature learning, dual hinge loss-based hashing learning and Gamma quantiza-
tion loss. The feature learning starts with a deep convolutional neural network, followed by a k-dimensional fully connected
layer and a hyperbolic tangent function. The second module uses the proposed dual hinge loss to learn the fine-grained dif-
ference of hard examples and high-level proximity of easy examples in Hamming space. The last module defines a Gamma
quantization loss to reduce the quantization error.

often unknown in practice and (ii) it is very difficult to define different loss

functions to effectively learn the information in both D and E.
This paper introduces a novel loss called dual hinge loss to well address

the twomain challenges of this new problem. This loss performs analogously

to a dual hinge loss to incorporate the key information in both D and E into

our learned hash codes. Also, the parameter r is automatically determined

by the hyper-parameters of the loss, facilitating an easy and effective way

of setting r .

2.2 Our Framework
The proposed method is an end-to-end hashing learning framework that

aims to well discriminate the hard examples in D for a more lossless map-

ping from raw image data into the Hamming space. As shown in Figure 2,

the method consists of three main modules, including deep convolutional

network-based feature learning, dual hinge loss-based hashing learning

and Gamma quantization loss. Specifically, it first uses a convolutional neu-

ral network for feature learning of each inputs, which can be any deep

structure with convolutional neural layers such as AlexNet [20] or ResNet

[16], followed by a k-dimensional fully-connected layer. The hyperbolic

tangent function is used in the fully-connected layer to control the scale

of feature within the interval [−1, 1], which helps reduce the gap between

real-value feature and hash codes. Our method then leverages the proposed

dual hinge loss to learn the fine-grained difference of hard examples and

high-level proximity of easy examples in Hamming space. Lastly, it defines a

novel Gamma quantization loss to reduce the quantization error for further

assurance of the quality of hash codes. Below we introduce the last two

modules.

2.3 Dual Hinge Loss
The dual hinge loss is a synthesis of a novel symmetric KL divergence-based

loss and a Gamma distribution-based distance-to-probability function. The

loss enforces exponential penalization on hard examples and bounding pe-

nalization on easy examples, which enables us to learn both the fine-grained

difference of the hard examples and the high-level proximity information

carried by easy examples.

2.3.1 Symmetric KL DivergenceWe introduce a symmetric KL divergence

based loss to maintain the distribution of data points by jointly preserving

the similarity of pairwise data points for deep hashing. The general Kullback-

Leibler(KL) divergence is defined as

∑
i pi log

pi
qi

, which is equivalent to the

cross-entropy minus the entropy. A larger KL divergence indicates a greater

difference between two different distributions. However, KL divergence is

inherently asymmetric, so it is commonly used in an extended version for

hashing learning [14, 18, 40], defined as:

KL(P ∥Q ) = θeKL(P ∥Q ) + (1 − θe )KL(Q ∥P )

=
∑

(xi ,xj )∈S

[
θepi j log

pi j
qi j
+ (1 − θe )qi j log

qi j
pi j

]
, (1)

where θe is a parameter to balance the two terms. In general, θe = 0.5
is used because it becomes a distance metric only when θe = 0.5, and
KL(P ∥Q ) , KL(Q ∥P ) otherwise. Furthermore, KL does not have a finite

upper bound, which makes it difficult to accurately measure the difference

between distributions.

To address this issue, we propose a novel symmetric KL divergence based

loss, namely SKL, which is defined as follows:

SKL(P ∥Q ) =
∑

(xi ,xj )∈S

pi j log
θpi j

(θ − 1)pi j + qi j

+
∑

(xi ,xj )∈S

qi j log
θqi j

(θ − 1)qi j + pi j
,

(2)

where θ ≥ 1 is a parameter to control the scale of SKL(P ∥Q ). Two desired
properties of SKL are that: (i) it is a symmetric metric since we always

have SKL(P ∥Q ) = SKL(Q ∥P ) and (ii) it has a θ -dependent upper bound.
Additionally, SKL is a generalized loss of the symmetric KL loss in Eqn. (1)

with θe = 0.5, since it is a specific form of SKL with θ = 1.

Suppose that the pairwise semantic relationship S follows a distribution

Q while the corresponding hash code-based relationship follows a distri-

bution P , then SKL can be used to learn the hash codes. Specifically, the

distributionQ is fixed since the supervised information S is known a priori,
so our aim is to learn the distribution P and force it to be as similar as

possible as Q by Eqn. (2). For each p , if p is close to 1, the distance between

the hash codes of two data points is small in Hamming space; and if p is

close to 0, the distance is large. To well control the sensitivity to the distance,

we adopt the well-known Gamma distribution as a probability function φ
of p , which is elaborated in the next subsection.
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2.3.2 Gamma Probability-enabled symmetric KL-based LossThe distribu-
tions of distances between hash codes needs to be transformed into a prob-

ability distribution for subsequent encoding. In principle any probability

function φ can be used to instantiate our model. Previous state-of-the-art

deep learning to hash methods usually adopt an adaptive Sigmoid function

φ = 1

1+e−λx
[4, 8, 43] which is controlled by parameter λ. However, the

probability of the Sigmoid function is still too high when the Hamming

distance becomes large, as shown in Figure 3. In [5] this issue is handled

by using the Cauchy distribution
1/λ

1/λ+x , which helps put more focus on

the hard examples. However, its penalization on the easy examples is not

bounded, and its loss on the hard examples is still not sufficiently sensitive.

Hamming distance
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Figure 3: The value of (a) probability and (b) our SKL loss
w.r.t. Hamming distance between the hash codes of simi-
lar pairs. One desired property of the Gamma distribution
based probability is that its probability is exponentially sen-
sitive to changes within a small Hamming radius and be-
come insensitive to large Hamming distance. We shift each
line in (b) so they start with the same point for better visibil-
ity. Accordingly, our Gamma distribution-enabled SKL loss
significantly penalizes similar pairs within small Hamming
distance and flattens out for large Hamming distance.

To enable greater sensitivity to distance, we propose a novel probability

function based on Gamma distribution:

pi j = c d (hi , hj )γ −1e−λd (hi ,hj ), (3)

where γ and λ are hyper-parameters, d (hi , hj ) is the distance between

the hash codes hi and hj , and c is a constant. pi j in Eqn. (3) is monotone

decreasing when d (hi , hj ) > 0 and γ <= 1. In practice, we add a tiny

constant c0 to d(hi , hj ), i.e., d(hi , hj ) = d (hi , hj ) + c0, in order to satisfy

the condition of d (hi , hj ) = 0, and set c = c1−γ
0

eλc so that the function can
well complete the distance-to-probability transformation. In Eqn. (3), the

larger the Hamming distance, the smaller the conditional probability pi j ,
and vice versa. Its sensitivity to distance can be controlled by parameters λ
and γ .

As shown in Figure 3, our Gamma probability function significantly

penalizes similar image pairs within a small Hamming distance i.e. hard

similar examples. Particularly, the probability/loss is more sensitive at the

beginning, since the value of Eqn. (3) changes exponentially, leading to

greater sensitivity than both of the Sigmoid function and the Cauchy func-

tion. The exponential function is a special case of our Gamma function with

γ = 1 and we can change its parameters to obtain different rate of change.

Combining Eqns. (2) and (3), we obtain the dual hinge loss as:

Ldhl =
∑

(xi ,xj )∈S

cdγ −1i j e−λdi j log
θcdγ −1i j e−λdi j

(θ − 1)cdγ −1i j e−λdi j + si j

+
∑

(xi ,xj )∈S

si j log
θ si j

(θ − 1)si j + cd
γ −1
i j e−λdi j

.

(4)

Below we have some theoretical and empirical analysis of the key prop-

erties of this loss.

Theorem 2.1 (Key Properties of Dual Hinge Loss). In Ldhl , the loss
for dissimilar pairs monotonically and exponentially decreases with increasing
Hamming distance, with a bounding loss of 0. By contrast, the loss for similar
pairs monotonically and exponentially increases with increasing Hamming
distance, with a bounding loss of log θ

(θ−1) , where θ is a hyper-parameter of
the SKL loss in Eqn. (2).

Proof. Since we have q ∈ {0, 1} in Eqn. (2) based on the pairwise

similarity information, Eqn. (2) becomes p log
θ

(θ−1) when q = 0, which

is a monotonically and exponentially increasing function. When q = 1,

Eqn. (2) becomes p log
θp

(θ−1)p+1 + log
θ

(θ−1)+p , which is a monotonically

and exponentially decreasing function.

When the Hamming distance of each pair increases, p decreases to 0.

According to Eqn. (3), for q = 0 we obtain a lower bound for p log
θ

(θ−1) as

lim

p→0

p log

θ
(θ − 1)

= 0. (5)

Accordingly, for q = 1 we obtain an upper bound of the loss as

lim

p→0

p log

θp
(θ − 1)p + 1

+ log
θ

(θ − 1) + p
= log

θ
(θ − 1)

. (6)

□

This theorem states that our loss essentially imposes a loss function

which is analogous to a exponentially smoothed hinge loss to the dissimilar

pairs, and applies a loss function which is analogous to an inverse exponen-
tially smoothed hinge loss to the similar pairs. Such a dual smoothed hinge

loss effectively bounds the penalization on easy examples while significantly

penalizes hard examples. Moreover, this loss well unifies the determination

of hard and easy examples and its hyper-parameters, so they can be easily

tuned via cross-validation.

As illustrated in Figure 4, for dissimilar pairs on the left panel, our loss

function bounds the loss for easy and well-distinguished examples (e.g., with

Hamming distance greater than 5) and puts more focus on hard dissimilar

examples having small distance, e.g., Hamming distance smaller than 5.

This way enables the model to faithfully preserve the original dissimilarity

while preventing the dominance of the easy examples in the optimization.

For similar pairs on the right panel, our loss function enforces equally large

penalization on distant similar image pairs and significantly punishes close

similar image pairs to learn their fine-grained difference. Compared with

previous methods [4, 5, 7, 8, 17, 43], our dual hinge loss is more effective

for discriminating the hard examples while also preserving the proximity

of the easy examples.

2.4 Relaxation and Gamma Quantization Loss
Since optimizing the sign function is difficult due to its ill-posed gradient,

it is necessary to replace the Hamming distance with an appropriate ap-

proximation on continuous codes. In our method, we adopt the normalized

Euclidean distance to approximate the Hamming distance for a pair of

binary hash codes hi and hj , which is defined as:

d(hi , hj ) =
k
4

 fi
∥fi ∥

−
fj
∥fj ∥

2
2

=
k
2

(1 − cos(fi , fj )).

(7)

where k is the code length, fi is the feature of xi from the fully-connected

layer, hi = siдn(fi ) and cos(fi , fj ) =
fi ·fj

∥fi ∥∥fj ∥
is the cosine of two vectors

fi and fj . We can see that Eqn. (7) can preserve the angle of two data points

to a certain extent after relaxation.

We further introduce a Gamma quantization loss as follows:

LQ =
N∑
i=1

eλd (|hi |,1)

d ( |hi |, 1)γ −1
, (8)

where d ( |hi |, 1) can be taken to be either the Hamming distance between

the hash codes or the Euclidean distance between the continuous codes. LQ
is used to achieve a lossless quantization, and so we can use continuous

values for the hash codes during training. For testing, we can directly obtain

the binary hash codes by using sign function siдn(hi ) to obtain k -bit binary
codes for each sample.
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Figure 4: The value of the loss w.r.t. Hamming distance for
(a) dissimilar pairs and (b) similar pairs. On the left, with
parameter θ > 0, our loss function DHL reduces the loss
for distant image pairs with Hamming distance larger than
5 (i.e., easy examples) to be close to zero, and puts more
focus on hard dissimilar examples. Similarly, on the right
panel, it enforces equally large penalization on easy similar
examples and exponentially variant penalization on hard
similar examples to learn the fined-grained difference. By
contrast, current state-of-the-art losses, such as HashNet [8]
and Cauchy [5], do not have such properties. Note that KL is
ill-posed when s = 0.

We then obtain our final loss function:

L = Ldhl + αLQ (9)

where Ldhl and LQ are from Eq. 4 and Eq. 8, α is a parameter to balance the

two losses.

3 Experiments
3.1 Datasets and Evaluation Measures
OurDual Hinge Loss basedHashing (DHLH) was evaluated on three widely-

used publicly available datasets, including NUS-WIDE [9], MS-COCO [26],

and CIFAR-10 [19].

NUS-WIDE contains 269, 648 images from Flickr with each image hav-

ing some of the 81 ground truth concepts. Following [5, 8], we randomly

sampled 5, 000 images as the query samples, with the remaining images used

as the database. We randomly sampled 10, 000 images from the database as

the training samples.

MS-COCO contains 82, 783 training images and 40, 504 validation im-

ages, where each image is labeled with some of the 80 semantic concepts.

Following the protocol in [8], we combined the training and validation

sets to obtain a collection of 123, 287 images. We randomly sampled 5, 000
images as the query samples. The rest images were used as the database, in

which 10, 000 images were sampled for training.

CIFAR-10 contains 60, 000 images in 10 classes. Following the protocol

in [5, 43], we randomly selected 100 images per class as the query set and

500 images per class as the training set, with the rest of other images as the

database for retrieval.

Following the standard protocol in [5, 8, 43], the pairwise similarity infor-

mation is constructed from image labels for hash learning and performance

evaluation. If two images xi and x j share at least one common label, they

are a similar pair, i.e., si j = 1; and they are a dissimilar pair otherwise, with

si j = 0.

To have a comprehensive performance evaluation, four different evalua-

tion metrics were used, including Mean Average Precision (MAP), Precision-

Recall (PR) curves, Precision curves within Hamming distance 2 (P@Hr ≤
2), and Precision curves w.r.t. the number of top returned samples (P@N ).

For fair comparison, all methods used exactly the same training and test

sets.

3.2 Competing Methods and Their Settings
The retrieval performance of DHLH is compared with both traditional

shallow and recently emerging deep learning-based methods. Since the per-

formance of all shallow methods such as ITQ-CCA [12], BRE [21], KSH [29]

and SDH [35] are significantly less effective than deep learning-based meth-

ods, we only report the results of SDH and KSH which have relatively

better performance than the other two methods. Six state-of-the-art deep

hashing methods are chosen, including DNNH [22], DHN [43], DPSH [24],

HashNet [8], DCH [5], and HashGAN [4].

The shallow hashing methods were built upon feature representations

extracted using AlexNet [20]. All deep learning based hashing methods

take raw images as inputs and use the same network architecture, AlexNet

with last layer replaced by a k-dimensional fully-connected layer using a

hyperbolic tangent function as their feature representation learner.

In terms of optimization, the AlexNet model was pre-trained on Ima-

geNet, and then our method DHLH trained the last layer and fine-tuned all

the layers through back-propagation. Since the last layer was trained from

scratch, its learning rate was set to be 10 times larger than that of the lower

layers. The mini-batch size was set to 128. We used mini-batch stochastic

gradient descent with 0.9 momentum and the weight decay parameter set

to 10
−4
. The learning rate was cross-validated from 10

−5
to 10

−1
with a

multiplicative step

√
10. The competing deep methods were optimized in

the same way or as recommended as their authors. The model parameters of

DHLH and the parameters of each method under comparison were selected

by cross-validation.

3.3 Results
3.3.1 Overall Retrieval PerformanceThe MAP results for our DHLHmethod

and the eight competing methods on the three datasets are reported in

Table 1. We evaluated all methods with four different lengths of hash codes.

DHLH consistently and substantially outperforms all the eight competing

methods across four different code lengths. Particularly, DHLH achieves sig-

nificant improvements over the best performance of the competing methods

by 6.2%-8.7% (16 bits), 3.8%-5.1% (32 bits), 4.2%-4.6% (48 bits) and 4.3%-4.8%

(64 bits). Also, DHLH can use significantly shorter hash codes (i.e., 16 or 32

bits) to perform substantially better than, or comparably well to, the best

competing methods such as HashNet, DCH and HashGAN using 64-bit hash

codes. The superior performance of our model is mainly due to its strong

capability to effectively encode the key information carried by both easy and

hard examples. As expected, the performance of the deep learning-based

methods is much better than the traditional methods.

3.3.2 Performance of Hamming Space RetrievalSince the Hamming space

retrieval only requires O(1) time for each query, the performance in terms

of Precision within Hamming radius 2 (P@Hr = 2) is very important for

efficient retrieval with binary hash codes. The P@Hr = 2 performance

w.r.t. different code lengths of all the methods is shown in Figure 5. DHLH is

clearly the best performer on all three datasets. In particular, the P@Hr = 2

performance of DHLH with 16 bits is much better than the competing

methods. This reinforces the importance of DHLH to leverage the hard

examples to learn the fine-grained difference of relevant images within a

small Hamming distance, which is the main driving force of learning more

discriminative hash codes. Most hashing methods achieve the best accuracy

with moderate code lengths. This is because when using longer codes, the

Hamming space would become sparse and few data points fall within the

Hamming ball with radius 2.

3.3.3 Top-N Precision PerformanceThe retrieval performance in terms of

Precision-Recall curves (PR) and Precision curves w.r.t. different numbers of

top returned samples (P@N ) on three datasets are shown in Figure 6 and

Figure 7 respectively. It can be seen that our DHLH method outperforms all

the competing methods. Impressively, compared to the competing methods,

DHLH achieves much higher precision at low recall, as shown in Figure 6.

More importantly, as shown in Figure 7, DHLH performs substantially better

in the top-ranked returned results . This is a desired capability for many

precision-first retrieval systems. Note that the retrieval task on CIFAR-10

is relatively easier than on the other two datasets, so the top performers

DHLH, HashGAN and DCH have very comparable performance in the PR

curves in Figure 6.

3.4 Analysis of the Proposed Method
3.4.1 Ablation StudyDHLH is compared with its five variants to examine

the contribution of the two key components of dual hinge loss and the

network architecture. (i) DHLH-O is a DHLH variant replacing the sym-

metric KL loss with original KL divergence loss; (ii) DHLH-M is a DHLH

variant replacing the symmetric KL loss with maximum a posteriori [5, 8];

(iii) DHLH-S is a DHLH variant replacing the Gamma distribution based

probability with a adaptive Sigmoid function used in [8, 24]; (iv) DHLH-C is
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Table 1: MAP of different methods on image retrieval task. The best performance per column is boldfaced.

Methods NUS-WIDE MS-COCO CIFAR-10
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

KSH 0.550 0.580 0.613 0.635 0.520 0.533 0.534 0.535 0.521 0.553 0.560 0.565

SDH 0.587 0.612 0.633 0.670 0.556 0.563 0.574 0.579 0.460 0.518 0.551 0.569

DNNH 0.598 0.617 0.633 0.639 0.587 0.596 0.603 0.611 0.556 0.560 0.576 0.583

DHN 0.635 0.666 0.670 0.671 0.678 0.683 0.688 0.691 0.572 0.598 0.621 0.633

DPSH 0.601 0.616 0.623 0.680 0.699 0.713 0.728 0.740 0.713 0.726 0.743 0.751

HashNet 0.662 0.698 0.711 0.716 0.685 0.712 0.728 0.734 0.643 0.667 0.673 0.685

DCH 0.712 0.735 0.739 0.743 0.703 0.716 0.733 0.740 0.681 0.730 0.734 0.742

HashGAN 0.714 0.738 0.744 0.749 0.697 0.725 0.741 0.744 0.667 0.731 0.737 0.749

DHLH 0.761 0.767 0.778 0.785 0.745 0.762 0.773 0.780 0.725 0.759 0.768 0.781
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Figure 5: The Precision curves within Hamming Radius 2 of DHLH and competing methods on the three benchmark datasets.
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Figure 6: The Precision-Recall curve @64 bits of DHLH and competing methods on the three benchmark datasets.
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Figure 7: Precision curve w.r.t. top-N @64 bits of DHLH and competing methods on the three benchmark datasets.

a DHLH variant replacing the Gamma distribution based probability with a

Cauchy function [5]; (v) DHLH-R is a DHLH variant replacing the AlexNet

structure with ResNet-50 [16].

Importance of SKL loss. The MAP results w.r.t. different code lengths

on the three datasets are reported in Table 2. DHLH achieves respectively

11.4%-15.8% and 2.1%-4.1% average improvements over DHLH-O and DHLH-

M on the three datasets using four different code lengths. This demonstrates
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Table 2: MAP of different DHLH variants on image retrieval task. The best performance per column is boldfaced.

Methods NUS-WIDE MS-COCO CIFAR-10
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

DHLH 0.761 0.767 0.778 0.785 0.745 0.762 0.773 0.780 0.725 0.759 0.768 0.781

DHLH-O 0.655 0.663 0.672 0.680 0.668 0.683 0.696 0.701 0.633 0.648 0.665 0.686

DHLH-M 0.724 0.741 0.748 0.756 0.724 0.737 0.751 0.760 0.705 0.743 0.755 0.770

DHLH-S 0.713 0.739 0.749 0.753 0.705 0.725 0.743 0.754 0.700 0.725 0.745 0.756

DHLH-C 0.725 0.748 0.762 0.766 0.709 0.741 0.756 0.765 0.707 0.738 0.751 0.759

DHLH-R 0.790 0.801 0.808 0.811 0.773 0.776 0.785 0.796 0.779 0.796 0.807 0.813

the effectiveness of using our SKL loss to enforce a bounding penalization

on easy examples to prevent the dominance of the easy examples in the

optimization.

Importance of Gamma distribution-based probability. On average,
DHLH also substantially outperforms DHLH-S by a large margin of respec-

tive 6.5%, 5.7% and 4.7% on NUS-WIDE, MS-COCO and CIFAR-10, and

outperforms DHLH-C with respective 5.0%, 5.1% and 2.9%. This underlines

the large improvement of using the Gamma distribution based probabil-

ity function. The improvement is due to its exponential sensitivity to the

pairwise Hamming distance within a small Hamming radius.

Feature learning architecture. In terms of feature learning, we find

that replacing AlexNet with ResNet-50 results in remarkable improvements

on all three datasets. This demonstrates the capability of DHLH in enhancing

its performance by using more advanced network architectures.

3.4.2 Parameter Sensitivity AnalysisWe examined the sensitivity of four

hyper-parameters θ , α , γ and λ, which were respectively set to 1.1, 0.001,
0.9, 1 by default. We varied one of them with the other three fixed for each

experiment. θ was searched in the range of [1.001, 2]. Similarly, α was

examined in [10−5, 10−1], γ was examined in [0.01, 1], and λ was examined

in [0.05, 2]. The results are shown in Figure 8.
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Figure 8: The MAP results w.r.t. θ , α , γ and λ using 16 and 64
bits hash codes on three datasets.

As shown in Figure 8 (a), the MAP performance of DHLH first increases

steadily and then drops quickly. This is because the parameter θ deter-

mines the upper bounding loss of easy similar examples. Small θ leads

to insufficient penalization on the easy examples, while large θ leads to

too large penalization on these easy examples, and as a result, the easy

examples dominate the optimization. Therefore, DHLH performs best with

a medium θ value. α is the parameter to balance the symmetric KL loss and

the quantization loss. From Figure 8 (b) we can see that, the importance of

pairwise supervision relationship is significantly reduced with a large α ,
leading to decreased performance. γ and λ control the sensitivity of the

distance-to-probability function. As shown in Figures 8 (c) and (d), DHLH

generally favors large γ and λ, because the magnitude of the exponential

penalization is much larger in such cases, which helps to discriminate the

fine-grained difference of the hard examples. On the other hand, too large

γ or λ may lead to overfitting.

4 Conclusion
This paper introduces a novel deep hashing method, called dual hinge

loss-based hashing (DHLH), for large-scale image retrieval. DHLH is an

end-to-end deep hashing framework which well preserves the original

data distribution in the Hamming space by the proposed dual hinge loss.

The key idea underlying our method is that close similar/dissimilar image

pairs, namely hard examples, conveys some critical information, e.g., their

fine-grained difference, to be leveraged for more discriminative hashing.

However, current hashing methods fail to effectively capture this informa-

tion as their loss on easy examples (i.e., distant image pairs) often does not

have finite upper bound, leading to the dominance of the easy examples

in the optimization. The innovation our dual hinge loss contributes is its

flexibility of effectively bounding penalization on the easy examples while at

the same time having exponential penalization on the hard examples. This

enables our method to learn not only the fine-grained difference of the hard

examples but also the high-level proximity of the easy examples, resulting

in very expressive hash codes. The effectiveness of our method is confirmed

by its remarkable performance: (i) DHLH outperforms the best performer

among eight state-of-the-art competing methods by a significant margin of

3.8%-8.7% in MAP, (ii) DHLH is able to use significantly shorter hash codes

(i.e., 16 or 32 bits) to perform substantially better than, or comparably well

to, the competing methods using 64-bit hash codes, and (iii) DHLH also

achieves substantially better precision in the top-ranked returned results.

We plan to extend the dual hinge loss idea to unsupervised deep hashing in

our future work.
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