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CURE: Flexible Categorical Data Representation

by Hierarchical Coupling Learning

Songlei Jian , Guansong Pang, Longbing Cao , Senior Member, IEEE, Kai Lu, and Hang Gao

Abstract—The representation of categorical data with hierarchical value coupling relationships (i.e., various value-to-value cluster

interactions) is very critical yet challenging for capturing complex data characteristics in learning tasks. This paper proposes a novel

and flexible coupled unsupervised categorical data representation (CURE) framework, which not only captures the hierarchical

couplings but is also flexible enough to be instantiated for contrastive learning tasks. CURE first learns the value clusters of different

granularities based on multiple value coupling functions and then learns the value representation from the couplings between the

obtained value clusters. With two complementary value coupling functions, CURE is instantiated into two models: coupled data

embedding (CDE) for clustering and coupled outlier scoring of high-dimensional data (COSH) for outlier detection. These show that

CURE is flexible for value clustering and coupling learning between value clusters for different learning tasks. CDE embeds categorical

data into a new space in which features are independent and semantics are rich. COSH represents data w.r.t. an outlying vector to

capture complex outlying behaviors of objects in high-dimensional data. Substantial experiments show that CDE significantly

outperforms three popular unsupervised encoding methods and three state-of-the-art similarity measures, and COSH performs

significantly better than five state-of-the-art outlier detection methods on high-dimensional data. CDE and COSH are scalable and

stable, linear to data size and quadratic to the number of features, and are insensitive to their parameters.

Index Terms—Categorical data representation, unsupervised learning, coupling learning, non-IID learning, clustering, outlier detection

Ç

1 INTRODUCTION

CATEGORICAL non-IID data [1] with finite unordered
feature values is ubiquitous in real-world applica-

tions and has received increasing recent attention for
representation and learning [2], [3], [4]. Unlike numerical
data, categorical data cannot be directly manipulated per
algebraic operations; hence many popular numerical
learning algorithms are not directly applicable. Further,
learning non-IID data involves the learning of sophisti-
cated coupling relationships (referring to various types
and levels of explicit and implicit interactions, couplings
for short) [5], [6], highly challenging in categorical data.
In this work, we focus on learning an expressive numeri-
cal representation of categorical data with hierarchical
value couplings.

1.1 Motivation

In general, a good representation should effectively capture
the intrinsic data characteristics [7]. However, this is challeng-
ing for non-IID categorical data [1], in which a key data char-
acteristic is the following hierarchical couplings embedded in
feature values. (1) On the low level, there exist strong cou-
plings between feature values, demonstrating the natural
clustering of values. Taking census data as an example, it may
be clear that the value PhD of feature Education is highly cou-
pled with the values Scientist and Professor of feature Occupa-
tion; and these values form a semantic value cluster that
characterizes one type of strong relations between education
and occupation. In addition, different value clusters exist
on different granularities and with different semantics [8];
e.g., all values belong to one super cluster at the coarsest gran-
ularity while each value is a cluster at the finest granularity.
(2) On the high level, the clusters of feature values are further
coupled with each other. Couplings exist between clusters
of the same granularity and between clusters of different
granularities.

Representing the above couplings in categorical data has
been rarely studied, since couplings in complex data could
be presented o different entities and in sophisticated forms
and granularities [5], [6], forming an important feature and
challenge of non-IID learning [1]. It is even more difficult
for unsupervised learning of such coupled data, while exist-
ing representation learning mainly focuses on supervised
learning of typically IID or partially related data. This work
thus addresses this issue, and develops a flexible represen-
tation to handle two contrastive unsupervised learning
tasks: clustering and outlier detection. Clustering assigns
objects to different clusters and its clustering performance is
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mainly affected by the majority of data objects; while outlier
detector identifies abnormal objects which are rare or incon-
sistent with the majority of objects, hence its performance is
mainly affected by the minority of objects.

For clustering, the more relevant the information the
representation captures, the more reliable the clustering is,
especially for complex data where there are hierarchical cou-
plings. However, existing embedding and similarity-based
representation methods for clustering can capture only a part
or none of these feature value couplings. Typical embedding-
based representation methods transform categorical data to
numerical data by encoding schemes, e.g., one-hot encoding
and Inverse Document Frequency (IDF) encoding [9]. These
methods do not capture the couplings between feature values
since they usually treat features independently. Some recent
similarity-based representation methods, e.g., in [2], [10],
[11], [12], incorporate feature relations into similarity or
kernel matrices. However, they do not capture the couplings
from value-to-value clusters or the couplings between value
clusters, leading to insufficient representation power in han-
dling datawith such hierarchical value couplings.

For outlier detection, the representation capturing more
relevant information, however, does not guarantee better per-
formance. The captured information also needs to be outlier-
discriminative. Most encoding or similarity-based methods
[2], [10], [11] are majority objects-based representation, which
does not capture the abnormal aspects of data. Different from
these methods, most existing outlier detection methods for
categorical data [13], [14], [15], [16] use pattern-based repre-
sentation (i.e., the data is represented by a set of outlying/
normal patterns) to disclose the characteristics of outliers.
However, patterns are normally a subset of compactly prede-
fined value combinations and can only capture partial cou-
plings between values. This may result in less expressive
representation power in data with sophisticated value cou-
plings, in particular high-dimensional data, in which there
exists a complex mixture of relevant and irrelevant features.
A very recent method called CBRW [17] models the full value
couplings to generate value-based representation for categori-
cal outlier detection, which shows value-based representation
ismore fine-grained and flexible than pattern-basedmethods.
However, CBRW captures only pairwise value couplings but
not the high-order couplings between values.

1.2 Contributions
This work captures the hierarchical value-to-value cluster
couplings, which reflect some intrinsic data characteristics
and complexities. Such value cluster couplings need to be
properly captured in data representations for different
learning tasks and application scenarios. However, this is
not trivial, and to our best knowledge, no work reported
properly handles this. Accordingly, this paper proposes a
flexible framework which captures the hierarchical value
couplings and can be instantiated to solve two contrastive
learning problems. The main contributions are as follows.

� A framework for Coupled Unsupervised categorical
data REpresentation (CURE for short) is proposed,
which has a hierarchical learning structure and is flexi-
ble enough to be instantiated. CURE defines multiple
value coupling functions for clustering values with
different granularities to capture the low-level com-
plex couplings between values. CURE further learns

the couplings between the multi-granularity value
clusters to incorporate high-order couplings between
values into our value-based data representation. This
enables CURE to capture the intrinsic data characteris-
tics and produce an effective numerical representation
for categorical datawith sophisticated couplings.

� CURE can handle contrastive unsupervised learning
tasks: clustering and outlier detection. For clustering,
we instantiate CURE into a Coupled Data Embed-
ding (CDE for short) model to capture hierarchical
value couplings between values of majority frequen-
cies. CDE utilizes the couplings to embed categorical
data into a new space with independent dimensions
and rich semantics. This creates a meaningful euclid-
ean space for the subsequent object clustering.

� For outlier detection, CURE is instantiated into a
model for the Coupled Outlier Scoring of High-
dimensional data (COSH for short) to capture minor-
ity-based hierarchical value couplings. COSH uses
the multi-granularity value clusters to compute the
most outlying aspect of values, which enables it to
obtain reliable outlier scores in data sets with many
irrelevant and noisy features.

Substantial experiments show that (1) CDE significantly
outperforms three popular encodingmethods: one-hot encod-
ing (noted as 0-1), one-hot encoding with PCA (0-1P), and
inverse document frequency embedding, with a maximum
F-score improvement of 19%. It also gains a maximum 8%
F-score improvement over three state-of-the-art similarity
measures for clustering: COS [2], DILCA [11] and ALGO [10]
on 10 real-world data sets with different value coupling com-
plexities; (2) COSH significantly outperforms (by a maximum
67 percent AUC improvement) five state-of-the-art outlier
detection methods: CBRW [17], ZERO [18], iForest [19],
ABOD [20] and LOF [21] on 10 high-dimensional data sets; (3)
CDE andCOSH obtain good scalability: they are linear to data
size and quadratic to the number of features; and (4) CDE and
COSHperform stably and are insensitive to their parameters.

The rest of this paper is organized as follows. We discuss
the related work in Section 2. The CURE framework is detai-
led in Section 3. Two complementary value coupling func-
tions are presented in Section 4. Two instances of CURE, CDE
and COSH, are introduced in Section 5. Experimental results
for clustering and outlier detection are provided in Sections 6
and 7, respectively. A discussion of instantiating CURE is
given in Section 8. The conclusion is drawn in Section 9.

2 RELATED WORK

2.1 Representation for Clustering
Encoding methods are most widely used for categorical
data representation [22]. One popular method is one-hot
encoding which encodes each feature with a zero-one
matrix. Feature fi is encoded with jVij-dimensional vectors,
where each vector has a value ‘1’ corresponding to one
value, and all the rest of the entries are 0s. Although one-
hot coding is reversible to its original data, it assumes that
all values are independent and equal which often does not
conform to data characteristics. Also, one-hot encoding
results in very high dimensions if the original data has a
large number of values, and consequently, it may lead to
the curse of the dimensionality issue [23]. Dimension reduc-
tion methods, like principal component analysis (PCA) [24],
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are often conducted on a one-hot encoding matrix to allevi-
ate this issue. Another well-known method is IDF encoding
[9] which represents each value as the logarithm of its
inverse frequency. IDF captures the value couplings from
the occurrence perspective. Although these encoding meth-
ods are easy to implement and have good efficiency, they
cannot capture the complex value couplings in data.

Several effective embedding methods are available for
textual data, such as latent semantic indexing (LSI) [25],
latent Dirichlet allocation (LDA) [26], skip-gram [27] and
their variants [28], [29], [30]. However, categorical data has
an explicit feature structure, which is very different from
unstructured textual data. These methods cannot be directly
applied to categorical data which is the focus of this work.

Similarity learning represents categorical data with an
object-object similarity matrix. Various similarity measures
have been designed to capture value couplings in data: ALGO
[10] uses the conditional probability of two feature values to
describe the value couplings; DILCA [11] and DM [12] incor-
porate feature selection and feature weighting into capturing
feature couplings respectively; and COS [2] takes inter- and
intra-feature couplings into object similarity. These similarity
measures focus on capturing the pairwise value couplings.
They therefore fail to capture the couplings among multiple
values and higher order couplings, which instead can be cap-
tured by CDEw.r.t. the couplings between value clusters.

In addition, there are some embedding methods, e.g., in
[31], [32], which optimize the embedding on the similarity
matrix, but their results heavily rely on the underlying simi-
larity measures. Other embedding methods (e.g., [33], [34])
require class labels to learn distance, and thus they are inap-
plicable for unsupervised tasks.

2.2 Representation for Outlier Detection
Most existing outlier detectionmethods [13], [14], [15], [16] for
categorical data unify the two successive tasks—data repre-
sentation and outlier identification. These methods often aim
to identify a set of outlying/normal patterns to represent data
objects. Such outlier detection-oriented methods use scoring-
based representation,which is very different fromembedding
or similarity measures. They separate model learning from
data representation learning and focus on how to effectively
transform the original data into a meaningful space to well
enable outlier detection. However, these methods involve
costly pattern discovery. As a result, their computational time
is prohibitive in high-dimensional data. Also, these methods
become ineffective in handling data with many irrelevant/
noisy features [17].

There have been some methods (e.g., in [17], [18], [35])
which are scalable for high-dimensional data. The method
CBRW [17]models the intra- and inter-feature value couplings
to estimate the outlierness of values and uses value outlierness
to represent the objects. CBRW is closely related to COSH as
it also attempts to use value outlierness to represent data.
CBRW avoids a costly pattern search and has good scalability
w.r.t. data dimensionality. However, CBRW only captures
pairwise value couplings and may fail to work in data with
higher-order value couplings, e.g., high-dimensional data.
The method ZERO++ [18] can efficiently handle high-
dimensional data by working on a random set of feature sub-
spaces, but the random subspace generation may include
many irrelevant features and downgrade its performance on
those data. The method ITB [35] identifies a set of outliers so
that the removal of these outliers from the datamostly reduces

entropy-based data uncertainty. However, it uses the full
feature set to compute uncertainty and is largely affected by
irrelevant features, thus it becomes less effective in high-
dimensional datawhere outliers aremanifested in a small sub-
set of features.

Some methods like ABOD [20] and iForest [19] for high-
dimensional numeric data may also be extended to handle
categorical data by working on its embedding or similarity-
based numeric representation, but their performance is
heavily dependent on the effectiveness of the data represen-
tation methods.

More importantly, all the above methods estimate the
outlier scores based on single-granularity outlierness repre-
sentation, i.e., outlierness estimation operates with the same
granularity. Our method COSH captures the outlierness
with a wide range of granularities. Our outlierness estima-
tion is therefore less likely to be biased by the overwhelming
irrelevant features in high-dimensional data.

3 THE CURE FRAMEWORK FOR CATEGORICAL

DATA REPRESENTATION

In this section, we introduce the CURE framework to model
hierarchical couplings between values and value clusters so
as to learn a numerical representation of categorical data. As
shown in Fig. 1, CURE first learns the low-level couplings
between values by several coupling functions. It then learns
value clusters with different granularities by clustering on
multiple value coupling matrices with different granularity
settings. CURE further learns the couplings between value
clusters to obtain the value representation and the object
representation.

Let X ¼ fx1; x2; :::; xNg be a set of data objects with size

N , described by a set of D categorical features F ¼ ff1;
:::; fDg. Each feature f (f 2 F ) has a value domain Vf ¼ fv1;
v2; :::gwhich consists of a finite set of possible feature values
(at least two values). The value domains of different fea-
tures are distinct, i.e., Vfi \ Vfj ¼ ;; 8i 6¼ j. The whole value
set of features is the union of all the value domains:
V ¼ [f2FVf , and the size of V is denoted as L.

The problem targeted in this work can then be stated as
follows. Given a set of data objects X , we aim to learn the
object numerical representation O of X . Following the
CURE framework, we first construct the value coupling set

Fig. 1. The CURE framework: F, h, Q, and D can be customized accord-
ing to different tasks. By changing the dashed line boxed part, we instan-
tiate the framework into two instances: CDE and COSH.
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FðXÞ by learning value couplings. Second, we learn the
value clusters in the value clustering process Vh. Third, the
couplings between value clusters are learned in the cou-
pling learning process Q. Finally, the object representation
are learned by D. The four components of CURE: F, Vh, Q
and D are introduced in detail in the following sections.

3.1 Learning Value Couplings
Value couplings refer to the explicit and implicit interac-
tions between feature values which may include the interac-
tions between values from the same feature and the
interactions between values from different features. Such
value couplings reflect the low-level interactions between
values. The more value couplings are learned will be of
more benefit to the following value clusters. The definition
of the value coupling set is given as follows.

Definition 1 (Value Coupling Set). The value coupling set
FðXÞ is defined as a set of multiple value coupling functions
with size of n to capture the low level pairwise value couplings:

FðXÞ ¼ ffiðXÞ; i ¼ 1; 2; ::; ng; (1)

where fið�Þ : X 7! Mi 2 RL�L is one kind of value coupling
functions to capture the value couplings from one specific per-
spective. The output of fi is a value coupling matrix Mi which
consists of couplings between each value pair.

These value coupling matrices are decided by the value
coupling functions and reflect the low-level data chara-
cteristics. The value coupling functions can be specified
from several aspects [1], [6], e.g., occurrence-based and co-
occurrence-based functions, set theory-based functions
(such as intersection of value sets), value neighbourhood-
based functions, and/or non co-occurrence-based functions.
Good value coupling functions should capture different
kinds of couplings.

3.2 Learning Value Clusters
A value cluster refers to the value set which consists of multi-
ple similar values. The value clusters reflect the couplings
among multiple values instead of pairwise value coupling,
e.g., all values belong to one super value cluster at the coars-
est granularity while each value is a cluster at the finest
granularity. The definition of the value clustering process is
given as follows.

Definition 2 (Value Clustering Process). The value cluster-
ing process w.r.t. value coupling matrix M consists of multiple
clustering on value coupling matrices at different granularities,
which is defined as follows:

Vh ¼ fhiðMi; s
i
jÞ; j ¼ 1; 2; :::; qig; (2)

where hi is the one clustering process on the value coupling
matrix Mi, and sij is the clustering parameter which decides
the granularity of clusters. The output of hi is a value cluster
matrix Ci 2 RL�qi .

The value clustering process can be done by various clus-
tering methods, e.g., centroid-based clustering algorithm,
hierarchical clustering algorithms, distribution-based cluster-
ing, and density-based clustering algorithms. The granular-
ities of value clusters can be decided by the pre-defined
algorithm parameters, e.g., the cluster number, and the den-
sity range parameter. Different clustering algorithms prefer

different kinds of clusters. For example, centroid-based clus-
tering algorithms capture the convex shape of clusters, while
density-based clustering algorithms are able to capture the
manifold shape of clusters. We can conduct different cluster-
ing algorithms on different value coupling matrices or apply
only one clustering algorithm on all coupling matrices with
different parameters. The choice of clustering process is
decided by the cluster characteristics captured by the cluster-
ing algorithm and its efficiency.

3.3 Learning Couplings between Value Clusters
The value clusters learned by clustering may contain cou-
plings and redundancy. By learning the complex couplings
between value clusters, CURE learns the meaningful value
representation. The definition of coupling learning between
value clusters is defined as follows.

Definition 3 (Coupling Learning Between Value Clus-
ters). The coupling learning process Q between value clusters
is defined as follows:

V ¼ QfC1; :::;Cng; (3)

where Ci is one value cluster matrix and V 2 R
L�

Pn

i¼1
qi is

the value representation matrix.

The coupling learning process between value clusters
aims to learn the couplings between different value clusters
and tries to eliminate the redundancy information among
value clusters. Accordingly, Q can be implemented by a
dimensionality reduction process, a relation learning pro-
cess, or an embedding model, e.g., PCA, LDA, matrix factor-
ization, or a neural network. The choice of Q depends on the
data characteristics and the subsequent learning tasks.

3.4 Learning Object Representation
With the value representation, we further model the object
representation.

Definition 4 (Object Representation Learning Function).
The representation of an object x (x 2 X ) is modelled by an
object representation function w.r.t. value representationsV:

Ox ¼ DðVx
1 ; :::;V

x
DÞ; (4)

where Vx
i is the value representation of object x from feature fi.

The function Dð�Þ utilizes value representations to assign
each object a numerical vector for object representation.
The function can be specified according to learning applica-
tions and purpose, e.g., by concatenation, weighted sum, or
maximum.

4 COMPLEMENTARY VALUE COUPLINGS

In this paper, we instantiate the CURE framework into two
models: CDE for clustering and COSH for outlier detection
to address contrastive learning goals. Both CDE and COSH
are based on the same value coupling functions, which is
the base for further learning value clusters. In this section,
we introduce the two value coupling functions and prove
their complementary discriminative ability.

4.1 Two Value Coupling Functions
To learn value couplings, we construct two value influence
matrices to capture the value couplings from two basic
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perspectives: occurrence and co-occurrence, whose comple-
mentary discriminative ability is proved in Section 4.2. Before
introducing the value influence matrices, we introduce some
preliminaries.

The value from feature f of object x is denoted by vfx and
the feature to which the value vi belongs is denoted as fi.
We assume that the probability pðvÞ of a value can be com-
puted by its frequency. The joint probability of two values

vi and vj is pðvi; vjÞ ¼ jfvfix ¼vi\v
fj
x ¼vj;x2Xgj
N .

We define the normalized mutual information [36] c to
reflect the relation between two features as follows:

cðfa; fbÞ ¼
2
P

vi2Vfa

P
vj2Vfb

pðvi; vjÞlog pðvi;vjÞ
pðviÞpðvjÞ

hðfaÞ þ hðfbÞ ; (5)

where hðfaÞ ¼ �P
vi2Vfa

pðviÞlogðpðviÞÞ.
Definition 5 (Occurrence-based Value InfluenceMatrix).

The occurrence-based value influence matrix Mo is defined as
follows:

Mo ¼
foðv1; v1Þ . . . foðv1; vLÞ

..

. . .
. ..

.

foðvL; v1Þ . . . foðvL; vLÞ

2
64

3
75; (6)

where the coupling function foðvi; vjÞ ¼ cðfi; fjÞ � pðvjÞ
pðviÞ, indi-

cating the occurrence influence on value vi from value vj.

The occurrence (or marginal) probability is the basic uni-
variate property of values, which can be used to differenti-
ate values. Instead of using a symmetric distance measure
between the marginal probabilities of two values, we use an
asymmetric ratio to quantify the influence on one value
from another so that Mo captures more information. Fur-
thermore, we incorporate mutual information c as the
weight of value couplings since marginal probabilities can-
not differentiate features.

Definition 6 (Co-occurrence-based Value Influence
Matrix). The co-occurrence-based value influence matrix Mc

is defined as follows:

Mc ¼
fcðv1; v1Þ . . . fcðv1; vLÞ

..

. . .
. ..

.

fcðvL; v1Þ . . . fcðvL; vLÞ

2
64

3
75; (7)

where the coupling function fcðvi; vjÞ ¼ pðvi;vjÞ
pðviÞ indicates the

co-occurrence influence of value vj on value vi.

The co-occurrence (or joint) probability reflects the basic
bivariate couplings between two values. We use asymmetric
conditional probability to define the influence on one value
from another value since the same joint probability may have
a different influence on values with different marginal proba-
bilities. The fc value of two values from the same feature
always equals 0 since they never co-occur in the same object.

4.2 Complementary Discriminative Ability
The two coupling functions are complementary and discrimi-
native for the values, which can be verified by the distance of
Mo and Mc. As we illustrate CDE and COSH to learn value
clusters by k-means clustering,we thus take the euclidean dis-
tance as an example to show the complementary discrimina-
tive ability of these two value coupling functions.

The distance matrix in k-means clustering determines the
quality of value clusters. By proving the complementary
discriminative ability of the two distance matrices, we can
observe that the two value couplings have a complementary
discriminative ability.

The occurrence distance between values vi and vj is
defined as follows:

doðvi; vjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
h¼1

ðfoðvi; vhÞ � foðvj; vhÞÞ2
vuut ; (8)

where foðvi; vhÞ is the occurrence coupling function defined
in Definition 5, and L is the number of values.

The co-occurrence distance between values vi and vj is
defined as follows:

dcðvi; vjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
h¼1

ðfcðvi; vhÞ � fcðvj; vhÞÞ2
vuut ; (9)

where fcðvi; vhÞ is the co-occurrence coupling function
defined in Definition 6. If any two distinct values can be dis-
tinguished by do or dc, then do and dc are complementary.

Theorem 1 (Distance Complementarity). For any two val-
ues vi 6¼ vj, doðvi; vjÞ 6¼ 0 or dcðvi; vjÞ 6¼ 0.

Proof. To prove the above theorem, we prove that vi 6¼ vj
and doðvi; vjÞ ¼ 0 satisfy dcðvi; vjÞ 6¼ 0 for all cases and vi 6¼
vj and dcðvi; vjÞ ¼ 0 satisfy dcðvi; vjÞ 6¼ 0 for all cases.

We first prove that vi 6¼ vj and doðvi; vjÞ ¼ 0 satisfy

dcðvi; vjÞ 6¼ 0 for all cases. If dcðvi; vjÞ ¼ 0, then 8vh 2 V;
fcðvi; vhÞ ¼ fcðvj; vhÞ. To prove dcðvi; vjÞ 6¼ 0, we only need

to prove 9vh 2 V; fcðvi; vhÞ 6¼ fcðvj; vhÞ. We consider the

proof for the following cases.
(1) If vi and vj belong to the same feature which means

cðfi; fhÞ ¼ cðfj; fhÞ, then doðvi; vjÞ ¼ 0 if and only if pðviÞ ¼
pðvjÞ. Let vh ¼ vi, then fcðvi; vhÞ ¼ 1 and fcðvj; vhÞ ¼ 0
since vi; vj belong to the same feature. Hence, dcðvi; vjÞ 6¼ 0
when vi and vj belong to the same feature.

(2) If vi and vj belong to different features, and doðvi;
vjÞ ¼ 0 which means 8vh 2 V;cðfi; fhÞ pðvhÞpðviÞ ¼ cðfj; fhÞ pðvhÞpðvjÞ ;
When cðfi; fhÞ 6¼ cðfj; fhÞ and pðviÞ 6¼ pðvjÞ (suppose pðviÞ <

pðvjÞ), then pðvi; vjÞ < pðvjÞ. Let vh ¼ vi, then fcðvi; vhÞ ¼ 1

and fcðvj; vhÞ > 0. Accordingly, dcðvi; vjÞ 6¼ 0when pðviÞ 6¼
pðvjÞ. When cðfi; fhÞ ¼ cðfj; fhÞ and pðviÞ ¼ pðvjÞ, 9vh in

feature fi and pðvj; vhÞ > 0, but pðvi; vhÞ ¼ 0, then fcðvj;
vhÞ 6¼ fcðvi; vhÞ. Therefore, dcðvi; vjÞ 6¼ 0 when vi and vj
belong to different features.

Further, we prove vi 6¼ vj and dcðvi; vjÞ ¼ 0 satisfy doðvi;
vjÞ 6¼ 0 for all cases. We consider the proof for the follow-
ing cases.

(1) If vi and vj belong to the same feature, thenwe can let

vh ¼ vi so that fcðvi; vhÞ ¼ 1 and fcðvi; vhÞ ¼ 0. Thenwe can

prove that doðvi; vjÞ 6¼ 0.
(2) If vi and vj belong to different features, then we can

consider pðviÞ ¼ pðvjÞ or pðviÞ 6¼ pðvjÞ. If pðviÞ ¼ pðvjÞ and
dcðvi; vjÞ ¼ 0, thencðfi; fhÞ ¼ 1which is impossible for dif-

ferent features. Otherwise, we let vh ¼ vi (suppose pðviÞ <

pðvjÞ) then fcðvi; vhÞ ¼ 1 and fcðvj; vhÞ < 0, and dcðvi; vjÞ
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cannot be 0. So if dcðvi; vjÞ ¼ 0, then vi and vj must belong

to the same feature. tu
The above theorem shows that the two value couplings

are able to distinguish any two different values. For clus-
tering, the theorem says that at least one clustering process
is able to differentiate any two values in an extreme case
where each value belongs to one cluster. For outlier detec-
tion, the theorem states that the outlier detector could dif-
ferentiate the outlying behaviors between any two values.
For different applications, we can enhance the discrimina-
tive ability from a specific aspect by utilizing different
information of value clusters. The following section dem-
onstrates how to utilize the value couplings to learn the
value clusters and the couplings between the value clusters
for different goals.

5 TWO CONTRASTIVE CURE INSTANCES

In this section, we show two instances of CURE: CDE
for clustering and COSH for outlier detection in high-
dimensional data. CDE and COSH use the above value cou-
plings, but they use different methods to learn the value
clusters and the couplings between the value clusters.

5.1 CDE: A CURE Instance for Clustering
We instantiate CURE as CDE for clustering. CDE aims to cap-
ture the couplings among values with majority frequencies
based on the above value couplings. CDE learns the value
clusters with different granularities bymultiple k-means clus-
terings with different cluster numbers k. By filtering the value
clusterswhich have less discriminative information formajor-
ity values, CDE differentiates values according to the value-
to-value cluster affiliation. Based on the information in the
filtered value clusters, CDE learns the couplings between the
value clusterswith PCA. The object embedding is the concate-
nation of value representation.

5.1.1 Learning Value Clusters for Clustering

Based on the two value influence matrices, we can learn the
value clusters with different granularities which represent
different semantics and well reflect the data characteristics.
To learn the value clusters with different granularities, here
we conduct clustering on the value matrices with different
cluster numbers.

We conduct k-means clustering onMo with different k, i.e.,

fk1; k2; :::; knog, and onMc with fk1; k2; :::; kncg. The clustering
results are represented by a cluster membership indicator
matrixCI, which is defined as follows:

CIði; jÞ ¼ 1 if vi is in cluster j;
0 if vi is not in cluster j:

�
(10)

For themajority values, the value clusterwith a small num-
ber of values has less discriminative information since CDE
aims to generate the value clusters which can differentiate
more values. Accordingly, we remove the small value clusters
which only have one value. k is also decided by the removed
small clusterswhichwill be discussed in Section 5.1.3.We fur-
ther concatenate the two indicator matrices derived from the
two value influence matrices and get a large indicator matrix
to represent each value whose dimensionality is nomore than

ðPno
i¼1 ki þ

Pnc
j¼1 kjÞ.

k-means clustering is chosen for twomajor reasons: (1) The
value influence matrices are numerical and the euclidean dis-
tance fed to the k-means clustering captures the global rela-
tions between values. (2) k-means clustering is linearw.r.t. the
size of the inputmatrix,which enables CDE to efficiently learn
value clusters with different sizes.

5.1.2 Learning Linear Couplings between

Value Clusters

The indicator matrix CI conveys rich couplings between the
value clusters with different granularities based on two value
influence matrices. For simplicity, we here consider a simple
type of couplings between value clusters—linear correlations
and apply PCA on the indicator matrix to eliminate the linear
correlations between value clusters to obtain a vector embed-
ding for each value. PCA is chosen because (1) it reduces the
data complexitywith little loss of information by converting a
matrix with linearly correlated variables to a newmatrix with
linearly uncorrelated components, and (2) it substantially
reduces the dimensionality of the value embedding, which
enables us to represent an object in a considerably lower-
dimensional embedding space.

We first calculate the centralized matrix Z of the indicator
matrix CI by subtracting the mean of each column and fur-
ther derive a covariance matrix S from Z. The value embed-
ding V is obtained by the following matrix decomposition:

V ¼ ZYT ; (11)

where Y is the principal component matrix derived from the
singular value decomposition results of S, i.e., S ¼ USY.

After the PCA transformation, the dimensions of value
embedding V are independent of each other so that the alge-
braic operations in the euclidean space can be used on the
embeddedmatrix.

5.1.3 The CDE Algorithm

Algorithm 1 presents the main procedures of CDE. The first
step generates the value influence matrices Mo and Mc

according to Definitions (5) and (6) by scanning the original
data matrix. Specifically, we scan the data matrix by rows.
For each row, we scan it by columns two times, and then we
get the co-occurrences of any two values. After scanning all
the rows, we calculate the frequency of any value. Then we
calculate the coupling functions.

k is the clustering parameter which decides the granularity
of value clusters. Instead of setting k to a fixed value, we use
another proportion factor a to decide the maximum cluster
number, as shown in Steps (6-10) of Algorithm 1. The clusters
that only have one value are meaningless to value cluster.
Therefore, we remove these small clusterswith only one value
by controlling the proportion of small clusters through a.
With the increasing of k more small clusters are generated.

Until the proportion of small clusters, i.e., lengthðCsÞk , exceeds a,

we stop increasing k whose initial value is 2. The final CI is
the concatenation of all clustering results with different k
fromMo andMc.

After conducting PCA on the indicator matrix to learn
the correlations between value clusters, we treat V as the
original representation of values where each column repre-
sents a dimension. Since the distance between two values is
the sum of the distance on each dimension, the columns

858 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 5, MAY 2019



with a small range make less contribution to the final dis-
tance. We remove those columns whose range (maximum
element minus minimum element) is less than b from origi-
nal representation V. In this way, we control the dimension
of the representation in a flexible data-dependent way.
Finally, we calculate the object embedding O by concatenat-
ing the embedding vectors of its values from V.

Algorithm 1. CDE (D, a, b)

Input: D - data set, a - proportion factor, b - dimension reduc-
ing factor
Output: O - the numerical representation of objects
1: GenerateMo andMc

2: Initialize CI ¼ ;
3: for M 2 fMo;Mcg do
4: Initialize k ¼ 2
5: Cs ¼ ;
6: repeat
7: CI ¼ ½CI; kmeansðM; kÞ�
8: Store the clusters with one value in Cs
9: Remove the clusters with one value from CI

10: kþ ¼ 1

11: until lengthðCsÞ
k � a

12: end for
13: Z ¼ CI �meanðCIÞ
14: [U, S, Y] = SVD (S), S is the covariance matrix of Z
15: V ¼ ZYT

16: Remove the columns whose range (maximum element
minus minimum element) is less than b from V.

17: GenerateO by the concatenation of V
18: return O

We generateMo andMc through the value frequency vec-
tor and co-occurrence matrix. Scanning the data set and
counting the frequency of all values and co-occurrences of all
value pairs incur the complexity of OðND2Þ. Generating Mo

and Mc based on the frequency vector and co-occurrence
matrix incurs the complexity of OðL2Þ. The total number of
clustering times is ðkmax � 1Þ due to that kmax increases from 2.
Then clustering on the value matrix has complexityOðkmaxLÞ
since k-means clustering has linear complexity w.r.t. the size
of the input matrix. The number of value clusters is propor-
tional to k2max and then PCA has Oðk6maxÞ. With the numerical

representation of values, generating the embedding matrix of

objects has OðNDÞ. The computational complexity of CDE is

OðND2 þ L2 þ k6maxÞ. Since kmax does not increase w.r.t. D

and N and kmax is a relatively small constant, k6max is much
smaller than ND2. And in real datasets, the average number
of values per feature is often small, so L2 is similar to D2.
Approximately, the time complexity of CDE isOðND2Þ.

5.2 COSH: A CURE Instance for Outlier Detection
in High-Dimensional Data

Here we further instantiate CURE to another instance COSH
for outlier detection in high-dimensional data which contains
complex value couplings and has been insufficiently explored.
COSHuses the same clusteringmethods, i.e., k-means, to learn
multi-granularity value clusters. Different from CDE that
abandons small value clusters, COSH retains them as they
may reflect the outlying behaviors of values. Unlike CDE
which uses binary cluster membership to represent the value

clusters, COSH represents themwith continuous dissimilarity
between values and cluster centers to better quantify the out-
lying behaviors of values. Based on the dissimilarity of value
clusters, COSH learns couplings between value clusters. The
object representation is the vector with outlying score of each
value.

5.2.1 Learning Value Clusters for Outlier

In COSH, we also conduct k-means clustering on the two
value coupling matrices. In addition to the reasons explained
in Section 5.1.1, the sensitivity of k-means clustering is an
important reason of using it to learn value clusters for outlier
detection.

Instead of indicator matrix, we use the value-cluster dis-
similarity matrix to represent the clustering result for each
clustering process. The definition of value-cluster dissimi-
larity matrix Ck w.r.t. cluster number k is below:

Ck ¼
disðv1; c1Þ . . . disðv1; ckÞ

..

. . .
. ..

.

disðvL; c1Þ . . . disðvL; ckÞ

2
64

3
75; (12)

where v is a row of a value coupling matrix M, c is the cen-
troid vector of one cluster. dis is defined as follows:

dðv; cÞ ¼ 0 , i fv and care in different clusters
maxð0;PL

i¼1 cðiÞ � vðiÞÞ, otherwise.
�

(13)

The use of the above asymmetry dissimilarity measure
instead of distance measures, e.g., euclidean distance, is
decided by the semantic meaning of Mo and Mc. There is a
basic assumption that outlying values are infrequent among
all values. The value coupling matrices Mo and Mc are cor-
related with value frequency. Hence, a smaller value from
Mo and Mc indicates the greater likelihood that it could be
an outlying value. Further, a value smaller than the centroid
has a larger chance of being an outlier than a value larger
than the centroid.

5.2.2 Learning Outlying Couplings between

Value Clusters

We consider two properties of the outlying value and the
outlying value cluster: (1) The outlying value is quite different
from the centroid. (2) The outlier cluster is quite different
from the other clusters. The value cluster matrixCk defined in
Section 5.2.1 has considered the difference between a value
and the centroid. We use another cluster-cluster matrix to
incorporate the outlying couplings of value clusters, which is
defined as follows:

Dk ¼
disðc1; c1Þ . . . disðc1; ckÞ

..

. . .
. ..

.

disðck; c1Þ . . . disðck; ckÞ

2
64

3
75; (14)

where disð�Þ is the dissimilarity defined in Equation 13.
Based on these two properties, we learn the value outlier

scores w.r.t. to the value cluster difference matrix Ck and
cluster-cluster matrixDk as follows:

V ¼ maxefCk1Dk11k1 ;C
k2Dk21k2 ; :::g; (15)

where 1k is a vector with size k of ones, maxe chooses the
element-wise maximum value across different vectors. Each
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entry in V is the outlier score for one value. Large entry val-
ues indicate higher outlierness.

The outlier object representationO for object x 2 X is ½Vx
1 ;

:::;Vx
D�. The outlier score of object x is the summation of the

value outlying scores, which is outlierðxÞ ¼ PD
j Vx

j .

Algorithm 2. COSH (D, a)

Input: D - data set, a - proportion factor
Output: O - the outlier scores of all objects
1: GenerateMo andMc

2: Initialize i ¼ 0
3: for M 2 fMo;Mcg do
4: Initialize k ¼ ; and j ¼ 2
5: Cs ¼ ;
6: repeat
7: kðiÞ ¼ j
8: Ci ¼ kmeansðM;kðiÞÞ
9: CalculateDi

10: Store the clusters with one value in Cs
11: jþ ¼ 1 and iþ ¼ 1

12: until lengthðCsÞ
kðiÞ � a

13: end for
14: V ¼ maxefCqDq1kðqÞ; q ¼ 1; 2; :::; ig;
15: for each x 2 X do
16: Ox ¼ ½Vx

1 ; :::;V
x
D�

17: end for
18: return O

5.2.3 The COSH Method

Algorithm 2 presents the main procedures of COSH, which
is similar to CDE. Different from CDE, COSH represents a
value cluster with Ci and computes the dissimilarity
between the value clusters in Steps (8-9); COSH uses differ-
ent methods to represent values as shown in Steps (14-16).

As shown in Section 5.1.3, generatingMo andMc takes the
complexity of OðND2 þ L2Þ and clustering on the matrices

has complexity OðkmaxLÞ. Computing the outlier scores of
values has complexity OðLk2maxÞ, where kmax is the number of

times for clustering on one value matrix which is much less

thanL.With the outlier scores of values, generating the outlier

scores of objects hasOðNDÞ. In real datasets, the average num-

ber of values per feature is often small, so L2 is similar toD2.

Correspondingly, the time complexity of COSH isOðND2Þ.

5.3 Contrastive Analysis of CDE and COSH
CDE and COSH are both instantiated from CURE which is
based on hierarchical value coupling learning. The shared
base between CDE and COSH is the two value coupling
functions which are shown to be complementary and
discriminative in Section 4.2. However, the other parts, i.e.,
value cluster learning and coupling learning between value
clusters, are customized according to the different goals of
CDE and COSH. In this section, we compare these compo-
nents and analyze the intrinsic motivation of these instances.

5.3.1 Contrastive Value Clustering

The value clusters contain abundant information so that value
clusters can be customized flexibly according to different
applications. In the following section, we analyze why CDE
and COSH use different value cluster learning strategies to
achieve different goals.

When generating value clusters, CDE removes the small
value clusters because the small value clusters have less dis-
criminative ability for majority values and contribute less to
the final clustering process. Meanwhile, COSH keeps all the
small value clusters or prefers small value clusters since
small clusters have a higher discriminative ability for outly-
ing values and contribute more to outlier detection.

When representing value clusters, CDE uses the cluster
membership indicator matrix CI which keeps consensus
information and differentiates values from different value
clusters. Further, by multiple clustering with different clus-
ter numbers, the value clusters group values from different
granularities and keep different levels of consensus infor-
mation which is helpful to distinguish similar values. Dif-
ferent from CDE, COSH uses the value-cluster dissimilarity
matrix Ck to represent value clusters which is able to differ-
entiate two values within or across value clusters. Ck keeps
the most distinguishable information for each value, so that
COSH can use it to give each value an outlying score and
differentiate the outlier values from normal values.

5.3.2 Contrastive Value Cluster Coupling Learning

Since CDE and COSH use different learning strategies to
learn the value clusters, the couplings between value clus-
ters are different. In the following section, we analyze why
CDE and COSH learn different couplings between value
clusters and use different representations.

CDE uses the concatenation of multiple cluster member-
shipmatrices to represent values, and one dimension of value
representation corresponds to one value cluster. Since value
clusters are generated by the same clustering methods, there
are redundancy and correlations in value representation. It is
better for CDE to keep all the useful discriminative informa-
tion in addition to redundancy since it is designed for cluster-
ing. Meanwhile, we expect that the dimensions of new
representation are independent and uncorrelated so that the
algebraic operations can be applied for the further learning
tasks. Therefore, we use PCAwhich does not cause any infor-
mation loss to eliminate the redundancy and learn linear cor-
relative couplings inCI.

COSH is designed for outlier detection which empha-
sizes the outlying behaviors of values and value clusters.
Accordingly, COSH uses the dissimilarity matrix Dk to
quantify the outlying couplings between value clusters. The
value cluster which is far from the other value clusters
could be regarded as the outlying value cluster in which the
values have greater likelihood of being outlying values.
Each value cluster produces one outlying score for each
value which is concise and is enough to distinguish the nor-
mal values and outliers. Furthermore, the maximum opera-
tion across all the outlying scores from different value
clusters ensure that COSH cannot miss any outlying value.

6 EXPERIMENTS FOR CLUSTERING

6.1 Experimental Settings

6.1.1 Data Representation Methods and

Parameter Settings

To test the embedding performance, CDE is compared with
three commonly-used encoding methods for categorical data:
0-1, 0-1P, and IDF. The 0-1 representation keeps themost com-
plete information in the original data. The 0-1P incorporates
feature correlations into the representation. IDF differentiates
valuesw.r.t. frequency.
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To the best of our knowledge, no existing embedding
methods capture the value couplings in categorical data as in
CDE. To test the CDE-based learning performance, we com-
pute the Gaussian similarity based on CDE (denoted by
CDEG) and compare itwith three typical andwell-performing
similarity measures which involve feature relations: COS [2],
DILCA [11] andALGO [10].

In Table 2, jCj is the number of ground-truth classes in
data, which is used for the clustering evaluation. We set
parameter a ¼ 10 in CDE and parameter b ¼ 10�10 in PCA
used by CDE and 0-1P. In COS, DILCA and ALGO, we use
the default parameters in their original papers.

6.1.2 Data Representation Evaluation Methods

We apply CDE and other representation methods to K-means
clustering to evaluate their performance. These representation
methods transform categorical data into numerical data,
hence k-means clustering can cluster objects without comput-
ing the pairwise object similarity matrix. Spectral clustering is
used to evaluate the performance of this object similarity
matrix against other object similarity matrices obtained by
CDEG, COS, DILCA andALGO.

F-score andNMI [37] are two popular evaluationmethods.
Since we fix the cluster number to the number of classes in
each data set for evaluation, NMI performs similarly to
F-score. Here we only report the results of F-score. A higher
F-score indicates better clustering accuracy driven by a better
representation method. The p-value results are based on the
paired two-tailed t-test using the null hypothesis as the clus-
tering results of CDE and other methods come from distribu-
tions with equal means. For each data set, the F-score is the
average over 50 validations of clustering with distinct starting
points.

CDE and other comparison methods are implemented
in MATLAB and clustering experiments are performed at
3.4 GHz Titan Cluster with 96 GB memory.

6.1.3 Data Indicators for Clustering

We use ten real-world UCI data sets from different domains
for the experiments.1 The basic data information consists of
data size (denoted by jXj), the number of features (denoted
by jF j), the number of feature values (denoted by jVj), and
the number of classes (denoted by jCj) for clustering, as
demonstrated in Tables 1 and 2.

Various data indicators are used to measure the underly-
ing characteristics of data sets, which are associated with
the learning performance of representation methods. Two
key data indicators and their quantization are defined
below, and the results are reported in Tables 1 and 2.

� The feature correlation index (FCI) measures the aver-
age correlation strength between features:

FCI ¼ 2

DðD� 1Þ
XD�1

i¼1

XD
j¼i

SUðfi; fjÞ (16)

SU measures the correlation between features fi and
fj by the symmetric uncertainty [38]. A larger FCI
indicates a stronger correlation between features.

� The value cluster index (VCI) is the average of the
maximum non-overlapping ratio between value sets
contained in different classes for each feature:

VCI ¼ 1

D

XD
h¼1

maxi;j 1�
jVh

Ci

TVh
Cj
j

jVh
Ci

S Vh
Cj
j

( )
(17)

where Vh
Ci

is the value set in class Ci for feature fh.
Larger VCI indicates the higher discriminative abil-
ity of the value sets.

6.2 Evaluation Results
CDE is first compared with three encoding methods, fol-
lowed by a comparison with three similarity measures. We
then conduct the scalability and sensitivity test of CDE.

6.2.1 Comparison with Three Encoding Methods

The F-scores of CDE, compared with 0-1, 0-1P and IDF, are
shown in Table 1. CDE obtains the best F-score performance
on seven data sets, which are significantly better than the
other encoding methods. On average, it demonstrates an
approximate 9%, 5% and 19% improvement over 0-1, 0-1P
and IDF, respectively. The significance test results show
that CDE significantly outperforms these three encoding
methods at the 95% confidence level.

According to the data indicator FCI, the F-score perfor-
mance of CDE, 0-1 and 0-1P has a downward trend with the
decrease of FCI. CDE outperforms all the other encoding
methods. This is because CDE is able to capture more
sophisticated pairwise feature correlation than the other
methods, which is illustrated by the performance on data
sets with higher FCI, e.g., Wisconsin, Soybeansmall, Mammo-
graphic, Zoo, Dermatology. This also explains the improve-
ment of 0-1P over 0-1. In addition to the couplings between
features, CDE also captures the couplings across the values
clusters, which means CDE performs well on data sets with
high-order feature correlation, e.g., Adult and Primarytumor
which have lower FCI but may have high-order feature cor-
relation. IDF is only sensitive to value frequency couplings,
i.e., fo, while CDE is based on fo and fc which capture two
complementary discriminative couplings. This explains
why IDF can only obtain good results on the data sets where
objects are discriminative in terms of value frequency, e.g.,
Lymphography.

TABLE 1
F-score Results of CDE versus Three Encoding Methods by

k-means Clustering on 10 Data Sets

Basic Data Info. & Data Indicator F-score

Data jXj jVj FCI CDE 0-1 0-1P IDF

Wisconsin 683 89 0.212 0.967 0.946 0.946 0.943
Soybeansmall 47 58 0.180 0.915 0.829 0.854 0.763
Mushroom 5644 97 0.148 0.731 0.709 0.694 0.506
Mammographic 830 20 0.116 0.809 0.793 0.815 0.517
Zoo 101 30 0.110 0.647 0.596 0.607 0.537
Dermatology 366 129 0.089 0.670 0.598 0.606 0.616
Hepatitis 155 36 0.085 0.680 0.681 0.667 0.535
Adult 30162 98 0.060 0.654 0.585 0.588 0.479
Lymphography 148 59 0.057 0.418 0.381 0.379 0.561
Primarytumor 339 42 0.020 0.240 0.230 0.238 0.190

Average 0.673 0.635 0.640 0.565
p-value 0.003 0.003 0.020

The best performance for each data set is boldfaced. The datasets are sorted in
descending order of FCI.

1. https://archive.ics.uci.edu/ml/datasets.html
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6.2.2 Comparison with Three Similarity Measures

CDEG is compared with three well-performing feature rela-
tion-based similarity measures: COS, DILCA and ALGO. As
shown in Table 2, although COS and DILCA obtain the best
performance on two data sets, CDEG remains the best per-
former on half of the data sets. CDEG obtains about 8, 3 and 5
percent improvement over COS, DILCA and ALGO respec-
tively in terms of F-score. The significance test results show
that CDEG significantly outperforms the other similarity
measures at the 90 percent confidence level. It is noted that
tests on COS, DILCA and ALGO on data set Adult run out of
memory since the computation of object similarity needs a
large amount ofmemory.

CDEG achieves better performance than the other similarity
measures, especially on data sets with larger VCI and larger
jCj, e.g., Primarytumor, Zoo, Soybeansmall, and Lymphograph.
This is because CDEG learns the value clusters with different
granularities and considers the couplings between these value
clusters, which enables CDEG to obtain more faithful value
similarities than the other similaritymeasures that do not con-
sider such couplings. Also, compared to the performance of 0-
1, 0-1P and IDF shown in Table 1, the performance of similar-
ity measures is better on the data sets with higher FCI, e.g.,
Wisconsin, Soybeansmall, Mushroom, andMammographic accord-
ing to Table 2. This is because CDEG, COS, DILCA and ALGO
are able to capture the pairwise relations between features.

6.2.3 Scalability Test

We use five subsets of the largest data set Adult to test the
scalability w.r.t. data size. All these subsets contain eight
features. The execution time excludes the running time of
clustering. In terms of scalability w.r.t the number of fea-
tures, we generate five synthetic data sets with the smallest
dimension of 25 and the largest dimension of 400. Each fea-
ture has two values which are randomly distributed. All the
synthetic data sets have 10,000 objects.

The left panel of Fig. 2 shows that, CDE runs significantly
faster than COS, DILCA and ALGO and one order magni-
tude slower than 0-1, 0-1P and IDF encoding. This is
because CDE is linear to the data size (N), while DILCA has

OðN2D2logDÞ, COS has OðN2D3R3Þ, and ALGO has

OðN2D2 þD2R3Þ, where R denotes the maximum number

of distinct values for each feature. The right panel of Fig. 2
shows that CDE has a similar runtime with COS and
DILCA, and they run considerably slower than ALGO
because ALGO is quadratic to the number of features (D)
according to the computational complexity. All coupled
methods run much slower than the encoding methods, i.e.,
0-1, 0-1P and IDF, since modeling complex value couplings
and/or feature correlations is costly.

6.2.4 Sensitivity Test

There are two parameters in CDE: a controls the dimension
of value embedding before PCA and b controls the dimen-
sion of value embedding after PCA. Since the results on all
data sets have a similar trend, we demonstrate the results of
four data sets: Adult, Dermatology, Wisconsin, Primarytumor,
which have the largest jOj, largest jV j, largest FCI and larg-
est VCI, respectively.

Fig. 3 shows the dimension of value embedding before
PCA and the clustering performance with different a which
directly influences the value of k in Algorithm 1. k deter-
mines the granularity of value clusters which constitutes
the original value embedding. Since we only drop the clus-
ters with only one value, the clustering performance is sta-
ble with parameter a. According to Fig. 3, the dimension is
stable when a � 10.

Fig. 4 shows the dimension of the final value embedding
and the clustering performance w.r.t. bwhich influences the
dimension of the embedding matrix during the PCA pro-
cess. The smaller the b value, the higher the dimension of
the value embedding vector. This shows that the perfor-
mance of the clustering is stable w.r.t. b. When b � 10�15,
the dimension of the value embedding vectors decreases
with the increase of b on all data sets.

As shown in Figs. 3 and 4, the clustering performance is
not sensitive to parameters a and b. The dimension is stable
when a � 10 and b � 10�15.

TABLE 2
F-score Results of CDE-G versus Three Similarity
Measures by Spectral Clustering on 10 Data Sets

Basic Data Info. & Data Indicator F-score

Data jF j jCj VCI CDEG COS DILCA ALGO

Wisconsin 9 2 0.237 0.962 0.973 0.921 0.971
Soybeansmall 21 4 0.712 1.000 0.893 0.910 0.911
Mushroom 21 2 0.310 0.828 0.825 0.826 0.826
Mammographic 4 2 0.071 0.817 0.828 0.826 0.818
Zoo 15 7 0.733 0.644 0.538 0.583 0.547
Dermatology 33 6 0.664 0.784 0.730 0.808 0.710
Hepatitis 13 2 0.141 0.667 0.463 0.679 0.662
Adult 8 2 0.032 0.676 NA NA NA
Lymphography 18 4 0.699 0.397 0.395 0.353 0.366
Primarytumor 17 21 0.873 0.242 0.196 0.224 0.209

Average 0.704 0.649 0.681 0.669
p-value 0.050 0.100 0.032

COS, DILCA and ALGO run out of memory onAdult. The average values are
computed according to the data sets except Adult.

Fig. 2. Scalability test results.

Fig. 3. Sensitivity test of parameter a on the four data sets in terms of
dimensionality and F-score.
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7 EXPERIMENTS FOR OUTLIER DETECTION

7.1 Experimental Settings

7.1.1 Outlier Detectors and Their Parameter Settings

COSH represents a categorical data object with an outlying
vector, so it can be applied to detecting outliers directly. To
evaluate the effectiveness of COSH, we compare COSH with
two scoring-based representations and three other outlier
detectors on ten real-world high-dimensional data sets. Simi-
lar to COSH, CBRW [17] and ZERO++ [18] (denoted by
ZERO) unify data representation and outlier detection as one
learning task. CBRW is the state-of-the-art outlier detector for
categorical data and is also a coupled method since it learns
the low-level value couplings to estimate the outlier score of
values. ZERO is a recently proposed subspace method for
handling high-dimensional data.

The other three outlier detectors work on embedding-
based representation (i.e., iForest [19]) or similarity-based
representation (i.e., ABOD [39] and LOF [21]). iForest handles
high-dimensional data by working on the feature subspace.
ABOD is an angle-based method which is designed for high-
dimensional data. LOF is one of the most popular methods
which works on the full dimension. To keep the most com-
plete information in the original data sets and to avoid intro-
ducing noisy information for outlier detectors, we transform
the categorical data into numerical space with one-hot encod-
ing to enable iForest, ABOD and LOF to work on categorical
data. Another reason for using one-hot encoding instead of
similarity measures is that there is no consistently effective
similarity for different data sets [40] and one-hot encoding
performs comparably well to other embedding- or similarity-
based representationwhile it ismuchmore efficient [18], [40].

COSH uses k-means, so its result is not deterministic.
ZERO and iForest are also non-deterministic methods, so the
results of these three methods are averaged from 10 runs. We
set parameter a ¼ 30 in COSH and parameter a ¼ 0:95 as rec-
ommended in CBRW [17]. We use t ¼ 50; n ¼ 256 in iForest
and t ¼ 50; n ¼ 8 in ZERO. LOF is parameter free. Since a
small k is suggested in [21], we use k ¼ 5 in LOF.

7.1.2 Evaluation Methods for Outlier Detection

COSH is implemented in MATLAB and the other five out-
lier detectors are implemented in JAVA. All the COSH
related experiments were performed on a node 3.4 GHz
Titan Cluster with 96 GB memory.

All the outlier detectors also produce a ranking based on
the outlier scores. As shown in [41], the quality of ranking
can be estimated by the area under the ROC curve (AUC)
which is computed by the Mann-Whitney-Wilcoxon test.
AUC is one of the most popular performance evaluation

methods and it takes class imbalance into consideration. A
higher AUC indicates better outlier detection accuracy.

7.1.3 Data Sets and Data Indicators for

Outlier Detection

Ten publicly available real-world data sets2 are used, which
cover diverse domains, e.g., Internet advertising, image
object recognition, web page classification, and text classifi-
cation. The basic data information is shown in Table 3. Six
of the data sets are directly transformed from highly imbal-
anced classification data, where the smallest class is treated
as outliers and the largest class is regarded as a normal
class. We transform the other four data sets (PC, BASE, web,
RELA) by randomly sampling a small subset of the smallest
class as outliers to ensure the data sets contain 2 percent
outliers. The performance of these downsampled data sets
is averaged over 10 times of sampling.

We use two data indicators to quantify the value separa-
bility and the couplings between outlier values. We define
two data indicators value separability index (VSI) and outlier
coupling index (OCI) below and the quantization results are
shown in Table 3.

� VSI is quantified by the value overlapping in normal
objects and outlier objects, defined as follows:

VSI ¼ min
jfxjx 2 Xn \ vxj 2 VXo

j gj
jXnj ; j 2 F

( )
; (18)

where Xn is the set of normal objects and X o is the
set of outlier objects, and vxj denotes the value of
object x in feature j. A larger VSI indicates a weaker
separability of values.

� The OCI is quantified by the pointwise mutual infor-
mation between outlier values and normal values,
which is defined as follows:

OCI ¼ pmiðvo; v0oÞ
pmiðvo; v0oÞ þ pmiðvo; vnÞ ; (19)

where pmiðvo; v0oÞ is the averaged pointwise mutual

information within outlier values, which is calculated

by pmiðvo; v0oÞ ¼ averagef pðvo;v0oÞ
pðvoÞpðv0oÞ ; vo; v

0
o 2 Vog.OCI > 0:5

indicates that the couplings within outlier values are

stronger than the couplings between outlier values

and normal values.

7.2 Evaluation Results

7.2.1 Outlier Detection Effectiveness

The AUC performance of COSH and its five competitors:
CBRW, ZERO, iForest, ABOD and LOF is reported in Table 3.
COSH performs better than its five competitors on seven data
sets, and significantly outperforms them at the 95% confi-
dence level. On average, COSH obtains more than 17, 27, 39,
29 and 44 percent improvement over CBRW, ZERO, iForest,
ABOD and LOF, respectively. Of all the outlier detection
methods, COSH, CBRW and ZERO are scoring-based

Fig. 4. Sensitivity test of parameter b on the four data sets in terms of
dimensionality and F-score.

2. The used data sets are available at http://featureselection.asu.
edu, https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/, http://
mmlab.ie.cuhk.edu.hk/projects/CelebA.html, and http://tunedit.org/
repo/Data
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representation since they integrate model learning and data
representation into representation, while iForest, ABOD and
LOF are outlier detectors based on embedding representation.
From Table 3, the performance of scoring-based representa-
tion is much better than pure outlier detectors that rely on
data conversion.

In Table 3, the data sets are sorted in the descending order
of VSI. The data indicator VSI describes the separability of
values from a single feature according to the overlapping val-
ues of outlier objects and normal objects. COSH obtains the
best performance on all the data sets with higher VSI (e.g.,
VSI > 60%), and it achieves, on average, substantial AUC
improvement over its five competitors CBRW, ZERO, iForest,
ABOD and LOF by more than 28, 46, 67, 50 and 30 percent,
respectively. VSI quantifies the separability of a single
feature, while some outliers could be identified by multiple
features. COSH captures high-order couplings through
value-cluster couplings, which helps to detect outliers in data
sets without strongly coupled features (i.e., lowVSI).

OCI captures the couplings between outliers and normal
values across two features. The largerOCI is, the stronger the
couplings which exist within outliers and the weaker the cou-
plings between outliers and normal objects. In the data sets
with the highest OCI, i.e., w7a, COSH achieves much better
performance than the others, whereas COSH does not show
its superiority in the data sets with the lowestOCI, i.e.,Cal28.

7.2.2 Scalability Test

COSH is implemented in MATLAB while the other meth-
ods are implemented in JAVA, so the absolute time is not
comparable. We demonstrate the ratio of the execution time
to the base time which is from the smallest data set. We use
six subsets of the largest data set CelebA to test the scalability
w.r.t. data size. All these data sets contain the same number
of features, i.e., 39. The execution time on the smallest data
set is: 26.6s for COSH, 0.344s for CBRW, 3.416s for ZERO,
0.299s for iForest, 3685.467s for ABOD, and 2.439s for LOF.

In terms of scalability w.r.t. the number of features,
seven subsets of the data sets with the largest number of fea-
tures, R8 are used. All these seven data sets contain the
same number of objects, i.e., 3,974. The execution time on
the smallest data set is: 88.21s for COSH, 1.657s for CBRW,
7.244s for ZERO, 0.182s for iForest, 84.345s for ABOD, and
0.581s for LOF.

The computational complexities of CBRW, ZERO, iFor-
est, ABOD and LOF are OðND2Þ, OðNDÞ, OðNDÞ, OðN3DÞ
and OðN2DÞ respectively. As shown in the right panel of
Fig. 5, COSH is one of the most efficient methods compared
with other state-of-the-art outlier detection methods w.r.t.
the number of objects, since COSH is linear to the data size
and quadratic to the number of features. In the left panel of
Fig. 5, COSH and CBRW have similar runtime and they run
considerably slower than the other four detectors, since
both COSH and CBRW capture complex value couplings
while the other methods ignore them. Although COSH and
CBRW run slower, they obtain significantly better AUC per-
formance than their competitors, as shown in Table 3.

7.2.3 Sensitivity Test

We investigate the sensitivity test of COSH w.r.t. its only
parameter a on all the 10 data sets using a wide range of a,
i.e., f10; 20; 30; 40; 50; 60g. The sensitivity test results of
COSH are shown in Fig. 6. COSH performs stably w.r.t. a
on all data sets. The larger a means the less number of clus-
tering times and a smaller number of value clusters.

8 DISCUSSIONS

CURE is a hierarchical framework which can be customized
from multiple levels. We instantiate CURE by customizing
the value cluster learning and coupling learning between
value clusters according to different applications based on the
same coupling functions. More instances may be derived by
capturing other forms or levels of couplings [6] for specific
applications.

The two complementary coupling functions used by
CDE and COSH capture only pairwise couplings. Instantiat-
ing CURE by incorporating arbitrary length patterns and
their couplings may improve the discriminative ability of
the low-level value coupling functions, and further improve
the representation quality.

One important CURE component is the value cluster learn-
ing, which is instantiated by k-means clustering in CDE and
COSH. Although k-means has multiple advantages, it has
some limitations for detecting the special shape of clusters
and overlapping clusters. Learning arbitrary shapes of value
clusters with different clustering methods may enrich the
information of value clusters. However, various kinds of

TABLE 3
AUC Results of COSH versus Five Outlier Detectors on 10 Data Sets

Data Info. Data Indicator AUC Performance

Data jXj jF j VSI OCI COSH CBRW ZERO iForest ABOD LOF

w7a 49749 300 0.950 0.589 0.835 0.646 0.538 0.404 NA 0.500
CelebA 202599 39 0.845 0.501 0.716 0.646 0.538 0.404 NA 0.500
WebKB 1658 6601 0.814 0.551 0.753 NA 0.698 0.678 0.670 0.825
RELATHE 794 4080 0.788 0.501 0.896 0.701 0.605 0.556 0.569 0.743
BASEHOCK 1019 4320 0.706 0.513 0.909 0.618 0.529 0.471 0.488 0.664
PCMAC 1002 3039 0.698 0.536 0.890 0.633 0.528 0.476 0.490 0.620
Reuters8 3974 9467 0.260 0.552 0.872 NA 0.883 0.839 0.786 0.892
Caltech-28 829 727 0.088 0.500 0.943 0.960 0.954 0.934 0.927 0.439
Caltech-16 829 253 0.054 0.510 0.996 0.993 0.988 0.972 0.977 0.388
wap.wc 346 4229 0.038 0.534 0.975 0.790 0.657 0.579 0.524 0.516

Average 0.879 0.748 0.692 0.631 0.679 0.609
p-value 0.023 0.020 0.002 0.008 0.010

Note: CBRW runs out of memory on high-dimensional dataWebKB and Reuters8. ABOD runs out-of-memory on large dataw7a and CelebA.
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value clusters may induce more heterogeneous couplings or
noises. Therefore, more advanced methods may be required
to capture couplings between value clusters in this case.

Another important part of CURE is the coupling learning
between value clusters, which is highly related to the proper-
ties of value clusters. Theremay be various forms of couplings
between value clusters, which are also hard to capture and
interpret. Incorporating more sophisticated methods to learn
explicit and implicit complex value couplings, e.g., by deep
models, may be explored to improve the utility of each value
cluster.

9 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel unsupervised representation
framework for categorical data which models hierarchical
value couplings in terms of feature value couplings and value
cluster couplings. Instantiating CURE, CDE and COSH are
respectively introduced for clustering and outlier detection,
which are based on two complementary and discriminative
value couplings. A contrastive analysis of CDE and COSH
explains the contrasting instantiation capability of CURE.

Different from existing encoding-based embedding and
feature correlation-based similarity measures, CDE learns the
data embedding from value clusters w.r.t. couplings within
and between value clusters. Extensive experiments show
that (1) CDE significantly outperforms typical embedding
methods and similarity measures for clustering; (2) two data
indicators can facilitate the explanation of clustering perfor-
mance on complex data sets; (3) CDE has good scalability and
is more efficient than similarity-based representation; and
(4) CDEperformance is insensitive to the two parameters.

Different from existing single-granular outlier detection
methods, COSH observes hierarchical outlying behaviors
from value-to-value clusters with different granularities.
Extensive experiments show that (1) COSH significantly
outperforms five state-of-the-art outlier detection methods.
(2) Two data indicators can facilitate the explanation of out-
lier detection on complex data sets. (3) COSH has a good
scalability which suits high-dimensional data sets. (4) There
is only one parameter in COSH and it has little influence on
the outlier detection performance.

As discussed, there are great opportunities to further
expand CURE for different learning tasks and scenarios
with complex coupling relationships.
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