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Abstract. DRAM failure prediction is a vital task in AIOps, which is
crucial to maintain the reliability and sustainable service of large-scale
data centers. However, limited work has been done on DRAM failure pre-
diction mainly due to the lack of public available datasets. This paper
presents a comprehensive empirical evaluation of diverse machine learn-
ing techniques for DRAM failure prediction using a large-scale multi-
source dataset, including more than three millions of records of kernel,
address, and mcelog data, provided by Alibaba Cloud through PAKDD
2021 competition. Particularly, we first formulate the problem as a multi-
class classification task and exhaustively evaluate seven popular/state-
of-the-art classifiers on both the individual and multiple data sources. We
then formulate the problem as an unsupervised anomaly detection task
and evaluate three state-of-the-art anomaly detectors. Further, based on
the empirical results and our experience of attending this competition,
we discuss major challenges and present future research opportunities in
this task.

Keywords: DRAM failure prediction · Data center reliability · Cloud
services

1 Introduction

The past decade has witnessed great development of cloud services [20]. Large-
scale data center is infrastructure of cloud computing, which provides essential
support to upper cloud applications. In production data centers, cloud providers
suffer from frequent occurrence of hardware failures, in which Dynamic Random
Access Memory (DRAM) failure is one of the main causes of hardware failures
[19]. These failures may cause severe outages, which leads to large economic
costs and violates the business agreements with the users. Therefore, both of
the academic and industry communities show increasing interests in exploring
techniques to ensure the reliability of large-scale data centers.

http://arxiv.org/abs/2104.15052v2
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Limited work has been done on predicting DRAM failures due to the lack of
public available datasets. Literature [8,18] provides analytical studies on DRAM
errors and their characteristics, but they do not show how to predict DRAM
errors. In recent years, a number of methods [1–4, 13, 17] are proposed to pre-
dict DRAM failures. However, to the best of our knowledge, no public available
dataset is released for the task, as the DRAM failure data is highly sensitive.
This significantly hinders the development and evaluation of machine learning
techniques to address the DRAM failure prediction problem.

To promote the development of this research line, Alibaba Cloud holds a
PAKDD 2021 competition on DRAM failure prediction using large-scale multi-
source data extracted from its own production data centers1. We submit a solu-
tion to this competition. Up to now, our solution obtains 32.64 score online in
the second round of the competition. This paper is based on our exploration on
the six-month data of DRAM failures of large-scale data centers in this competi-
tion. The dataset contains more than three millions of records of kernel, address,
and mcelog data.

Particularly, this paper presents a comprehensive empirical evaluation of di-
verse machine learning techniques for DRAM failure prediction using the large-
scale multi-source dataset described above. We first formulate the problem as
a multi-class classification task and exhaustively evaluate seven popular/state-
of-the-art classifiers on both the individual and multiple data sources. We then
formulate the problem as an unsupervised anomaly detection task and evaluate
three state-of-the-art anomaly detectors. Further, based on the empirical results
and our experience of attending this competition, we discuss major challenges
and present future research opportunities in this task.

2 Related Work

In large-scale data centers, a single job may execute for days on thousands of
nodes. All CPU can waste for long time if DRAM failure occurs at any of these
nodes [2]. Additionally, the advancing densities in DRAM may lead to more
failures. It is highly demanding to reduce the costs due to hardware replacement
and service disruption by accurately predicting DRAM failures.

There have been a few recent studies on addressing this problem. [4] uses
ensemble learning techniques to predict uncorrectable errors weeks in advance.
A spatial analysis framework [17] is developed to visualize the failures. Based
on the historical memory failure data, an online learning method [3] is proposed
to perform the prediction by modeling some implicit patterns. Three machine
learning models (SVM, KNN, and Random Forest) are used to predict DRAM
failure in a single server in [13].

Cost-benefit calculation is used in [2, 9] to yield new metrics apart from
commonly-used classification evaluation methods (e.g., Precision, Recall, and
F1-Score). These new metrics are more suitable to determine whether prediction
is useful in practice.

1 https://tianchi.aliyun.com/competition/entrance/531874/
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Due to the imbalance nature of positive and negative samples, data noise,
and other uncertainties, the above methods may fail to obtain desired results in
large-scale production data centers.

3 Empirical Evaluation

3.1 Experimental Setups

Datasets We first pre-process the raw data, perform feature engineering, and
then use a labeling method based on the given failure table to yield class labels.
Our source code will be released after the competition.

Specifically, we generate features from three given tables and yield three new
datasets. Table 1 reports basic characteristics of datasets generated from the
competition raw data. We show the number of generated features, the number
of records, and the number of positive/negative records. As we set three different
positive classes according to their time interval to real server failures, the number
of three different classes is also reported.

These tables can be further merged by the collected time of records to further
generate new combined datasets. In our solution, two combined tables are used,
i.e., Address Mce and Kernel Address. Please note that the number of records
in Kernel Address is large than the Kernel table. This is because some records
in the Kernel table correspond to multiple records in the Address table.

Table 1. Basic Characteristics of Datasets.

Data #features #records #negatives #positives #positive classes

Kernel 55 650,323 649,074 1,294 455/286/508
Address 19 1,451,013 1,449,687 1,326 370/321/635
Mce 82 1,483,197 1,481,869 1,328 370/321/637

Address Mce 99 1,451,013 1,449,687 1,326 370/321/635
Kernel Address 72 650,653 649,403 1,250 455/287/508

Evaluation Measures As we have a training set spanning six months, we use a
six-fold cross-validation method to train and validate the performance of testing
classifiers. Specifically, the full training set is partitioned into 6 subsets w.r.t.
the collected month of these records. One subset is treated as validation set,
and the union of the remaining five subsets is used as training set. This process
is repeated six times (the folds). Models can be validated in the data of each
month. The six results can then be combined to produce the final estimation. All
the data in the full training set can be employed for both training and validation.

DRAM prediction results are aggregated by serial number of servers, and only
the first prediction result of each server every seven days is used. We compute
Precision (P ), recall (R), and F1-score (F1) of failure servers to evaluate the
performance of DRAM failure prediction. In terms of results of unsupervised
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Table 2. Six-fold Cross-validation Results (P/R/F1) of Different Classifiers on Five
Datasets. The classifier that obtains the best F1 per dataset per fold is boldfaced.

Jan-Fold Feb-Fold Mar-Fold Apr-Fold May-Fold Jul-Fold

Kernel

SVM 65.8/27.8/39.1 74.5/22.2/34.1 70.0/21.5/32.9 76.5/16.0/26.5 65.2/17.3/27.4 52.0/21.8/30.8
LR 67.2/23.9/35.2 72.7/20.3/31.7 69.6/19.6/30.6 75.9/13.6/23.0 60.4/18.5/28.3 25.6/17.6/20.9
RF 34.1/33.3/33.7 43.6/36.7/39.9 46.4/35.6/40.3 37.9/29.0/32.9 32.1/26.0/28.8 26.7/32.8/29.4
DT 17.5/40.6/24.5 21.5/46.2/29.4 22.3/48.5/30.5 18.0/40.7/25.0 18.7/42.2/25.9 11.8/42.9/18.4

GBDT 60.9/31.1/41.2 63.2/30.4/41.0 50.6/25.2/33.6 59.6/19.1/29.0 51.5/20.2/29.0 45.3/24.4/31.7
XGB 42.1/32.8/36.9 47.0/39.9/43.2 48.9/39.3/43.5 41.3/30.9/35.3 37.1/30.1/33.2 27.3/35.3/30.8
LGBM 50.0/33.3/40.0 50.0/34.2/40.6 55.0/37.4/44.5 50.0/33.3/40.0 39.4/30.1/34.1 29.7/34.5/31.9

Address

SVM 25.0/0.22/0.41 42.1/0.51/0.90 52.4/0.67/12.0 75.0/0.37/0.71 45.5/0.58/10.3 34.4/0.92/14.6
LR 33.3/0.06/0.11 0.00/0.00/0.00 33.3/0.12/0.24 0.00/0.00/0.00 0.00/0.00/0.00 42.9/0.25/0.48
RF 30.0/15.0/20.0 35.0/17.7/23.5 37.6/21.5/27.3 35.4/21.6/26.8 35.3/17.3/23.3 20.2/16.8/18.3
DT 16.1/36.7/22.3 14.9/38.0/21.4 18.8/45.4/26.6 17.1/43.8/24.7 15.0/37.0/21.4 0.81/32.8/13.0

GBDT 23.5/17.8/20.3 30.0/22.8/25.9 38.8/16.0/22.6 35.1/16.7/22.6 32.8/23.7/27.5 20.4/16.0/17.9
XGB 33.9/21.1/26.0 34.0/20.3/25.4 35.1/20.9/26.2 35.9/22.8/27.9 31.3/20.8/25.0 17.8/17.6/17.7
LGBM 20.4/28.9/23.9 28.9/27.8/28.4 28.7/28.8/28.7 26.3/25.3/25.8 27.9/37.0/31.8 16.1/26.1/19.9

Mce

SVM 62.5/0.28/0.53 66.7/0.51/0.94 71.4/0.61/11.3 77.8/0.43/0.82 40.0/0.35/0.64 60.0/0.76/13.4
LR 25.0/0.17/0.31 0.00/0.00/0.00 50.0/0.12/0.24 22.2/0.12/0.23 16.7/0.06/0.11 25.0/0.17/0.31
RF 18.0/21.7/19.6 18.7/29.7/22.9 22.1/34.4/26.9 17.4/28.4/21.6 16.6/28.9/21.1 12.4/24.4/16.5
DT 15.4/32.8/20.9 16.4/36.1/22.5 16.8/40.5/23.7 14.9/35.2/21.0 13.5/35.8/19.6 10.9/31.1/16.2

GBDT 28.2/11.1/15.9 25.7/11.4/15.8 37.5/14.7/21.1 31.5/10.5/15.7 21.8/11.0/14.6 29.3/14.3/19.2
XGB 22.1/15.0/17.9 27.8/23.4/25.4 31.2/23.9/27.1 29.8/22.8/25.9 26.7/23.1/24.8 18.0/19.3/18.6
LGBM 22.3/19.4/20.8 24.7/29.7/27.0 28.5/28.8/28.7 25.2/25.3/25.2 25.0/25.4/25.2 18.2/26.1/21.5

Address Mce

SVM 0.91/0.06/0.10 69.2/0.57/10.5 64.7/0.67/12.2 60.0/0.37/0.70 41.2/0.40/0.74 41.4/10.1/16.2
LR 12.5/0.17/0.29 0.62/0.06/0.11 38.9/0.43/0.77 2.08/0.31/0.54 0.67/0.06/0.11 16.0/0.34/0.56
RF 38.2/11.7/17.9 54.1/20.9/30.1 52.5/19.0/27.9 52.1/22.8/31.8 45.6/17.9/25.7 35.9/11.8/17.7
DT 17.3/38.9/23.9 19.2/43.0/26.6 23.3/48.5/31.5 20.1/45.7/27.9 18.4/42.2/25.7 10.6/31.9/16.0

GBDT 26.1/28.9/27.4 30.3/27.8/29.0 38.9/30.1/33.9 33.6/24.7/28.5 31.3/27.2/29.1 25.3/21.0/22.9
XGB 34.5/22.8/27.4 41.2/26.6/32.3 50.0/27.6/35.6 41.8/31.5/35.9 47.3/30.6/37.2 32.1/22.7/26.6
LGBM 27.1/32.8/29.6 30.2/38.6/33.9 40.1/39.9/40.0 31.2/38.9/34.6 31.4/40.5/35.4 20.9/27.7/23.8

Kernel Address

SVM 63.5/26.1/37.0 69.4/21.5/32.9 67.9/23.3/34.7 77.4/14.8/24.9 62.7/18.5/28.6 61.1/18.5/28.4
LR 64.7/24.4/35.5 70.6/22.8/34.4 53.2/20.2/29.3 56.5/16.0/25.0 53.8/16.2/24.9 25.3/18.5/21.4
RF 57.0/33.9/42.5 60.9/35.4/44.8 57.0/32.5/41.4 48.2/25.3/33.2 54.0/27.2/36.2 41.8/27.7/33.3
DT 22.6/42.2/29.4 25.9/48.7/33.8 24.7/50.3/33.1 21.9/47.5/30.0 21.4/44.5/28.9 12.3/44.5/19.2

GBDT 53.6/33.3/41.1 55.6/31.6/40.3 57.1/29.4/38.9 57.8/22.8/32.7 54.4/24.9/34.1 38.1/26.9/31.5
XGB 58.0/36.1/44.5 55.8/42.4/48.2 58.9/40.5/48.0 58.5/34.0/43.0 48.8/34.7/40.5 37.6/34.5/36.0
LGBM 53.5/37.8/44.3 54.9/42.4/47.9 56.8/38.7/46.0 52.3/35.8/42.5 42.5/31.2/36.0 29.9/29.4/29.7

anomaly detectors, since the returned result is an anomaly ranking rather than
class labels, the area under the ROC curve (AUC) is commonly used in the
literature [5, 10–12, 14, 15, 23, 24]. Following those prior work, AUC is used in
evaluating the anomaly detection performance.

3.2 Performance of Classifiers

This experiment investigates the performance of seven commonly-used classifiers,
including SVM with a RBF kernel (SVM), logistic regression (LR), random
forest (RF), decision tree (DT), gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost), and light gradient boosting machine (LGBM), on
the DRAM failure prediction datasets. The implementations of all these methods
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are taken from sklearn package, xgboost package, and lightgbm package. All
of these classifiers are performed with their default settings. As original datasets
are highly imbalanced, these classifiers are trained on the datasets pre-processed
by a combination of over-sampling and under-sampling.

The precision, recall, and F1-score of different classifiers on these datasets are
reported in Table 2. LGBM and XGB obtains more superior results than other
classifier in most datasets. All classifiers perform poorly on the Address and
Mce datasets, which indicates that more advanced models are required on those
datasets. A hybrid of over-sampling and under-sampling is used to overcome the
issue of data imbalance, but more effective preprocessing methods, e.g., heuristic
sampling or data augmentation, may be used for these datasets to yield more
promising results. These classifiers can gain better F1-score in the two combined
datasets – Address Mce and Kernel Address – than in single datasets. This may
be because there are some important latent relationships between the features
across these datasets.

3.3 Performance of Anomaly Detectors

As the whole data volume is very large, we test three representative fast anomaly
detectors, including iForest [12], HBOS [5], and COPOD [11], in this experiment.

Table 3. Six-fold Cross-Validation Results (AUC) of Different Anomaly Detectors on
Five Datasets.

Jan-Fold Feb-Fold Mar-Fold Apr-Fold May-Fold Jul-Fold

Kernel

iForest 68.8 68.1 71.1 72.0 77.9 77.1
HBOS 75.1 75.5 77.4 87.1 82.6 79.5
COPOD 71.3 68.6 70.1 68.2 73.0 76.8

Address

iForest 80.4 78.7 80.9 75.9 78.9 78.2
HBOS 79.6 77.8 77.5 81.9 80.0 77.8
COPOD 81.0 80.8 81.6 79.0 81.2 78.4

Mce

iForest 71.2 68.7 71.9 64.9 70.7 77.6
HBOS 77.7 76.6 77.2 81.4 79.9 78.9
COPOD 35.0 40.9 40.1 42.0 38.9 54.3

Address Mce

iForest 79.3 76.7 79.0 72.5 77.6 79.3
HBOS 79.8 78.1 79.2 82.0 80.6 79.8
COPOD 80.5 79.7 80.5 77.6 80.0 79.7

Kernel Address

iForest 67.1 65.5 71.6 70.2 76.3 76.0
HBOS 75.5 76.4 78.3 86.0 82.7 79.9
COPOD 72.7 73.6 78.0 76.6 79.9 76.6

The AUC results of three anomaly detectors are reported in Table 3. HBOS
is the best performer in most cases, while iForest is relatively less effective than
the other two detectors. Specifically, HBOS outperforms iForest and COPOD in
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Kernel, Mce, and Kernel Address. By contrast, COPOD obtains the best results
in Address and Address Mce.

Large-scale data centers may use DRAMs from various manufactures and
vendors. It is therefore hard to guarantee that all types of installed DRAMs
have labeled training data for supervised learning. Further, there can be un-
known types of failures occurred in new DRAM models, to which classification
methods fail to generalize. From these perspectives, unsupervised anomaly detec-
tion methods are more suitable than classification methods, as they are effective
in detecting any DRAM failures, especially unknown failures, without requiring
manually labeled data.

4 Challenges and Opportunities

4.1 Feature Engineering

The provided dataset only contains raw features. Raw data is transferred to
structured feature vectors via feature engineering so that machine learning al-
gorithms can work on these feature vectors. Thus, how to effectively perform
feature engineering becomes one of the key factors to success in this competi-
tion. High-quality features can bring significant improvement of failure prediction
performance.

In other words, the success of the failure prediction solution depends mostly
on the data representation rather than model selection and/or tuning. In many
winning solutions of Kaggle and KDD Cup competitions, feature engineering
also plays an important role, as shown in [6]. An extreme situation is that even
the simplest algorithm can obtain good results with the help of high-efficacy
constructed features that are highly relevant to the expected prediction targets.

In our feature engineering, we set a fixed time window (1 hour) and collect
the summation and the number of past records in this time window as new
features. It is also possible to use multiple time granularity to further enhance the
performance. For example, the distribution of records in the past time windows
can also be properly described in some new features.

Some relevant studies in the area of anomaly detection create new features
from the data itself. Hees et al. [7] proposes a generic data preprocessing ap-
proach to generate additional features. For each original feature, a regressor is
trained based on other features, and a new reconstruction error column is created
based on the predicted value and the real value of each feature. This is similar
to Zhao and Hryniewicki [25] that uses anomaly scores derived by unsupervised
anomaly detectors as new features. In this competition, Such new features can
also be generated to better describe the data.

Instead of manually designing features, we can also achieve auto feature en-
gineering by harnessing the strong representation power of deep learning. The
usage of proper deep learning techniques can automatically generate dense low-
dimensional and compressed representations. Although it is hard to know the
semantic meaning of each dimension, this representation space is embedded with
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high-level semantics related to the task. Underlying relationships of the data
records are encoded into this representation space. In this competition, there
are still potential possibilities of using deep learning to capture more accurate
and more informative temporal representation. For example, deep anomaly de-
tection with Recurrent Neural Network (RNN), LSTM and GRU networks [16]
may be applied to further enhance the performance.

4.2 Categorical Features

In the provided dataset, all the three tables contain categorical features. For ex-
ample, Kernel table contains 24 binary features indicating whether the kernel log
meets the given failure templates. The Mce table has “mce id” and “transaction”
features. The Address table includes the discretized failure location.

Feature values of these categorical features do not present explicit distance
or similarity relationship. How to handle categorical data has been a challenging
problem. Most of the notions like distance metrics, density, or projection that
are popularly used in numerical space cannot directly applied in categorical
space [22]. Although one-hot encoding can transform categorical features into
numerical data, the dimensionality of the transformed data increases to a large
extent, and the transformed data is considerably sparse. These factors may pose
significant challenges to these methods that are originally designed for common
numerical data.

There remains many opportunities of employing techniques that are specially
designed for categorical data on the DRAM failure dataset. A number of cat-
egorical data-oriented methods are proposed for several tasks in data science,
e.g., representation learning [10], anomaly detection [14, 24], and feature selec-
tion [15, 23]. These techniques may be utilized to preprocess the DRAM failure
datasets to obtain more expressive representations of their categorical features.

We present some possible methods of processing these categorical features
here. Assume a dataset X be composed of N data objects X = {x1,x2, · · · ,xN}
described by a set of categorical features F = {f1, f2, · · · , fD}. The value of
feature f in data object x is denoted as vxf .

Some notions in probability theory can be used to capture the abnormality
of each individual feature value, and it is also possible to describe interactions
and relationships between these categorical feature or feature values. We present
marginal probability, joint probability, and Ochiai coefficient below.

Marginal probability of categorical feature value v can be computed as:

P (v) =
|{x ∈ X|vxf = v}|

N
. (1)

Joint probability of feature value vi and vj is:

P (vi, vj) =
|{x ∈ X|vxfi = vi ∩ vxfj = vj}|

N
. (2)
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Value similarity can be measured by using Ochiai coefficient:

s(vi, vj) =
P (vi, vj)

√

P (vi)P (v + j)
. (3)

Further, some notions in information theory, e.g., entropy and mutual infor-
mation, can be derived. Entropy is defined as:

H(F) =

D
∑

i=1

H(fi|fi−1, · · · , f1), (4)

while mutual information is defined as:

I(fi; fj) = H(fi)−H(fi|fj). (5)

These notions can describe feature-level information. For example, entropy in-
dicates uncertainty relative to a random variable. A subset of DRAM records
are abnormal if their removal from the whole dataset causes significant decrease
of the entropy of the dataset [21]. These notions are also relevant to assess the
abnormality.

4.3 Tree-based Methods vs. Neural Networks

As practice shows, XGBoost and other gradient boosting models work better on
these data mining competitions. However, this is not due to an inherent weakness
of deep learning.

Theoretically, a neural network can be constructed to achieve the same per-
formance as tree-based methods, but it is too hard to realize in practice for
problems in data mining competitions because of limits of time and device. On
one hand, deep learning achieves great performance with a appropriate struc-
ture of neural network, but the network architecture is hard to design for a given
dataset in a short period of time. On the other hand, deep neural networks often
require large-scale labeled data and extensive hyper-parameter (manual) tun-
ing. By contrast, tree-based methods are relatively much easier to achieve better
performance.

Data characteristics also determine the choice of approach. Neural network
can perform better on the data that has homogeneous features, e.g., pixels in
an image and frames in a video. However, data generated from feature engineer-
ing often contain heterogeneous columns in data mining competitions. In this
competition, normalization methods is performed to scale each feature so that
neural networks can work. By contrast, tree-based methods treat features inde-
pendently, and they are able to build rules based on single features as well as
the combinations of multiple features. Thus, tree-based methods are naturally
more suitable for data with heterogeneous features.
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5 Conclusions

In this paper, we discussed DRAM failure prediction from multiple aspects.
In combination with our attempts in PAKDD 2021 Alibaba AIOps Competi-
tion, we conducted empirical evaluation to investigate the performance of seven
commonly-used classifiers in the data of DRAM failures of large-scale data cen-
ters provided by Alibaba Cloud. Besides, three anomaly detectors are also used
to explore the effect of unsupervised anomaly detection in this area. We also an-
alyzed challenges and opportunities of the DRAM failure prediction task. This
may foster future research on DRAM failure prediction techniques that can be
used in AIOps of large-scale data centers.
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