
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2020 

Security analysis of permission re-delegation vulnerabilities in Security analysis of permission re-delegation vulnerabilities in 

Android apps Android apps 

Biniam Fisseha DEMISSIE 

Mariano CECCATO 

Lwin Khin SHAR 
Singapore Management University, lkshar@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
DEMISSIE, Biniam Fisseha; CECCATO, Mariano; and SHAR, Lwin Khin. Security analysis of permission re-
delegation vulnerabilities in Android apps. (2020). Empirical Software Engineering. 25, (6), 5084-5136. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7133 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


https://doi.org/10.1007/s10664-020-09879-8

Security analysis of permission re-delegation
vulnerabilities in Android apps

Biniam Fisseha Demissie1 ·Mariano Ceccato2 · Lwin Khin Shar3

© The Author(s) 2020

Abstract
The Android platform facilitates reuse of app functionalities by allowing an app to request
an action from another app through inter-process communication mechanism. This feature
is one of the reasons for the popularity of Android, but it also poses security risks to the
end users because malicious, unprivileged apps could exploit this feature to make privi-
leged apps perform privileged actions on behalf of them. In this paper, we investigate the
hybrid use of program analysis, genetic algorithm based test generation, natural language
processing, machine learning techniques for precise detection of permission re-delegation
vulnerabilities in Android apps. Our approach first groups a large set of benign and non-
vulnerable apps into different clusters, based on their similarities in terms of functional
descriptions. It then generates permission re-delegation model for each cluster, which char-
acterizes common permission re-delegation behaviors of the apps in the cluster. Given an
app under test, our approach checks whether it has permission re-delegation behaviors that
deviate from the model of the cluster it belongs to. If that is the case, it generates test
cases to detect the vulnerabilities. We evaluated the vulnerability detection capability of
our approach based on 1,258 official apps and 20 mutated apps. Our approach achieved
81.8% recall and 100% precision. We also compared our approach with two static analysis-
based approaches — Covert and IccTA — based on 595 open source apps. Our approach
detected 30 vulnerable apps whereas Covert detected one of them and IccTA did not detect
any. Executable proof-of-concept attacks generated by our approach were reported to the
corresponding app developers.

Keywords Permission re-delegation · Android · Program analysis · Genetic algorithm ·
Test generation · Natural language processing · Outlier detection

1 Introduction

Nowadays, applications for smart phones (hereafter, apps) play an important role in our
daily activities, from communication, social networking, shopping, fitness, media and

Communicated by: Eric Bodden

� Mariano Ceccato
mariano.ceccato@univr.it

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:5084–5136

Published online: 15 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09879-8&domain=pdf
http://orcid.org/0000-0001-7325-0316
mailto: mariano.ceccato@univr.it


entertainment, to business and banking. These apps tend to process sensitive user infor-
mation and also perform privileged actions, such as making phone calls and accessing
privacy data (e.g., location). Hence, protecting sensitive user information and privileges is
an essential security and privacy requirement for such apps. However, app markets are very
competitive, often providing several apps with similar functionalities. Therefore, when a
new idea becomes apparent, an app developer needs to rush before similar apps become
available on the market by competitors. Since the first apps that appear on the market usually
get accepted by the users and are rated better, posting an app early can help the developer
gain market share. As a result, developers are usually under pressure to develop their apps
as quickly as possible. They spend more time on providing rich functionalities and usability,
often overlooking the security and privacy requirements of the app (Enck et al. 2011).

To prevent security and privacy issues, the Android operating system grants apps mini-
mal privileges by default. The apps have to explicitly request additional permissions (that
the end user has to acknowledge) to perform privileged actions, such as reading the GPS
position, making phone calls or sending SMS. Hence, to avoid suspicion, malicious apps
typically request for few (or no) privileges. On the other hand, Android apps can collaborate
and delegate tasks among each other, by exchanging inter-process communication (IPC)
messages. The possibility to request an action from insecurely-developed apps, gives rise to
the threat of permission re-delegation vulnerabilities.

Permission re-delegation vulnerability is a type of privilege escalation problems. It may
occur when a privileged app performs privileged actions upon request by a less privileged
(possibly malicious) app (Felt et al. 2011). According to the top 10 mobile security risks
reported by OWASP (2015), privilege escalation is among the most dangerous and common
type of vulnerabilities in mobile apps.

In our previous work (Demissie et al. 2016), we applied static and dynamic taint analy-
sis with the objective of detecting permission re-delegation vulnerabilities. However, taint
analysis typically detects data dependencies between data from other apps’ requests and
data used in privileged actions. As a cornerstone feature in Android, requesting an action
from another app may not always lead to a vulnerability. To limit false alarms, an accurate
analysis approach should distinguish between intended permission re-delegation and actual
permission re-delegation vulnerabilities.

For example, apps that need to initiate a phone call usually do not implement this feature
because they assume this feature to be already available in the smart phone. They simply
send a request for this action to the Phone app that processes such incoming requests by
initiating the phone call (a privileged action). This is one typical privileged feature exposed
by telephony apps to other apps. It is an intended feature and is neither a programming
mistake nor a permission re-delegation vulnerability. However, a vulnerable version of the
Phone app1 also exposed another feature that could be used by other apps to wipe out phone
data and perform factory reset. This second scenario is very uncommon among telephony
apps and it represents a permission re-delegation vulnerability.

Taint analysis based approaches detect both of these permission re-delegation scenar-
ios as potentially problematic, because they both involve a privileged action (phone dialing
and data wiping) and inter-app action request. To accurately report only actual security
problems, cases of permission re-delegation vulnerabilities must be distinguished from
legitimate cases of permission re-delegation.

1Vulnerability in the Samsung TouchWiz phone dialer http://www.androidauthority.com/touchwiz-
vulnerability-data-wipe-117800/
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In this paper we propose a novel Permission RE-delegation Vulnerability detection
(PREV) framework, which seamlessly combines static analysis, natural language process-
ing (NLP), machine learning, and genetic algorithm-based test generation techniques for
precise detection of permission re-delegation vulnerabilities in Android apps.

More specifically, given a large training set of benign and non-vulnerable (denoted as
safe) apps, we first apply NLP on their app descriptions and use clustering to create clusters
of highly similar apps. Then, for each cluster, we apply static analysis to infer permission
re-delegation behaviors of the apps in the cluster, i.e., privileged actions that may be per-
formed upon receiving incoming requests. Based on this information, we build permission
re-delegation model of the cluster, which characterizes common permission re-delegation
behaviors of the apps in that cluster. Given an app under test (AUT for short), we first deter-
mine the cluster it belongs to, based on its app description (similar declared features); we
then check whether the AUT has one or more permission re-delegation behaviors that devi-
ate from the model of the cluster. If that is the case, each anomalous behavior is reported as a
candidate permission re-delegation vulnerability. We then apply genetic algorithm to gener-
ate proof-of-concept attacks that exploit candidate vulnerabilities and confirm whether the
AUT is indeed vulnerable and exploitable.

In our empirical assessment, we built permission re-delegation models based on the top
11,796 “safe” apps downloaded from the official Android app store (Google Play). We
evaluated our approach based on 20 mutated apps and 1,258 real world apps (not from those
top 11,796 apps) that are also available on Google Play store. Our approach achieved 81.8%
recall and 100% precision. We also compared our approach with two static analysis-based
approaches, Covert (Bagheri et al. 2015) and IccTA (Li et al. 2015), which can be used to
detect permission re-delegation vulnerabilities in Android apps, based on 595 open source
apps. PREV detected 30 vulnerable apps whereas Covert detected one of them and IccTA
did not detect any. We reported our findings to the app developers.

To summarize, the main contributions of the paper are:

– PREV, a fully automated framework for detecting permission re-delegation vulnerabil-
ities in Android apps, based on static analysis, natural language processing, machine
learning, and genetic algorithm.

– A publicly-available implementation of PREVand dataset.2

– A large-scale empirical assessment, in which 11,796 apps were analyzed for learning
the permission re-delegation models, and 1,258 real world apps were analyzed to detect
permission re-delegation vulnerabilities.

– A comprehensive comparison with static analysis tools in terms of precision and recall.

The paper is structured as follows. Section 2 covers the background on Android and
on genetic algorithms. Section 3 presents our attack model with a motivating example.
Section 4 provides the overview of our approach, that is later presented in details. In partic-
ular, Section 5 describes the process to learn the permission re-delegation models, Section 6
explains how we detect anomalies with respect to this model and Section 7 details the test
case generation step. Section 8 evaluates our approach. Section 9 discusses related work.
Section 10 concludes the paper.

2https://biniamf.github.io/PREV/
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2 Background

In this section, we present some background concepts used in the rest of the paper. More
specifically, we first provide a short overview of how Android apps work (Section 2.1) and
we then present the genetic algorithm (Section 2.2).

2.1 Android Design

Many apps are available on the official Android app store (called Google Play). However,
apps are provided by various developers with different levels of trust. The Android frame-
work has been designed with the two-fold objectives of (i) allowing the integration and
collaboration of apps from different vendors but still (ii) guaranteeing a certain level of sep-
aration to enforce security. Separation among apps is achieved by modeling distinct apps
as distinct principals, and each principal is assigned with its own privileges, adopting a
permission system to regulate access to sensitive resources.

Apps are isolated from system resources. In order to access sensitive resources such as
camera, GPS position, contact lists, apps have to explicitly request for permissions that must
be authorized by the end users at installation time or later at runtime. The list of autho-
rizations requested by an app is specified in its manifest file. Figure 1 shows a fragment
of the manifest file of our running example app. In this example, the app requests for the
permission CALL PHONE to initiate phone calls.

The Android framework assigns apps with distinct Unix User IDs, so they run in their
own private user space and memory. Best practices suggest to implement communication
among apps through the IPC mechanism mediated by the Android framework.

Through IPC, apps can collaborate, integrate and complement each other. For instance,
an app that is able to make a phone call can accept action requests so that other apps do
not need to re-implement this feature. An app can delegate a specific task to another app,
without actually knowing which apps are available in the current device to accomplish that
task. Different users might have different installed apps that are able to make phone calls,
but the requester app does not need to know which one to contact. For the requester, it is
enough that the delegated app is able to make phone calls. The requester app just needs to
specify what should be done (and with what data), and the framework will identify an app
that is able to accomplish it. To request an action, apps use IPC messages called intents.
Intents are messages that contain the description (in a specific syntax) of the operation that
the requester needs to perform. An app may specify the services it intends to expose to other
apps by means of the intent filters of the XML manifest file. The framework relies on this
file to decide which app to delegate.

Fig. 1 Snippet of AndroidManifest XML file
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Figure 1 shows a snippet of the manifest file of an Android dialer app that can be
used to make phone calls. This app defines an activity (tag <activity>) — with
an intent filter (tag <intent-filter>). Activity DialerActivity can be requested by
other apps to initiate a phone call, for example, when a link with phone number (e.g.,
href="tel:+1234") is clicked within a web page, the browser sends an intent contain-
ing the DIAL action, the DEFAULT category and phone number to this app.

Intents can be either implicit or explicit. Implicit intents just specify the action to be
performed. The Android framework checks the intent content to decide the most appropriate
destination app(s). That is, it checks the content of an intent against the intent filters (i.e.,
with the service definitions) that are specified in the manifest files of the apps installed in
the device.

For example, when the user clicks on a phone number link in a web page, the browser
generates an implicit intent with DIAL as the action and the scheme and number to call
as the data, e.g., tel:+39.0461.314.577. As this intent matches the intent-filter in
Fig. 1, the request is dispatched to the corresponding DialerActivity activity. This activity in
our running example app becomes active and is displayed on the screen to initiate the phone
call.

In explicit intents, the requester app specifies the receiver name as part of the intent. That
is, the requester knows exactly which app to request the action from. Different Android
users, however, may have a wide diversity of installed apps, therefore a specific app
may not be available. Implicit intents, instead, work on the wide heterogeneity of device
configurations.

2.2 Genetic Algorithm

Genetic algorithm is a population-based meta-heuristics technique proposed for solving
optimization problems. An example of optimization problems is generating test inputs that
are likely to expose specific program behaviors of interest. The genetic algorithm is inspired
by natural evolution from biology (Holland 1975). It searches for an optimal solution by
gradually evolving an initial population of random solutions through generations. Individ-
uals more near to the final solution are rewarded with a higher probability of transmitting
their chromosomes to future generations. Fittest solutions are combined together with the
hope of generating fitter ones, until the optimal solution is found. The pseudocode of the
abstract genetic algorithm is shown in Fig. 2. Initially, the algorithm generates random indi-
viduals (candidate solutions). Then, the algorithm loops through three main steps until the
termination conditions (optimal solution found or timeout) are met. The steps are:

1. AssessFitness: this step computes the fitness of each individual solution and selects a
set of fittest individuals (i.e., candidate solutions that are likely to generate the optimal
solution).

Fig. 2 The abstract genetic algorithm
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2. Crossover: this step first pairs the individuals selected in the previous step. Then, it
generates offspring from the pairs by swapping portions of their chromosomes.

3. Mutate: this step mutates the offspring generated in the previous step by applying cer-
tain mutation operators (such as flipping the bits). This breeds the next population for
the next iteration.

Variants of the genetic algorithm are discussed in literature, with different implementa-
tions of these steps.

3 Motivating Example

In this section, we discuss permission re-delegation vulnerability with a motivation example.
Figure 3 shows the intended behavior of the Dialer app. When an intent is sent from

the Dial-Pad Activity within the Dialer app or other apps such as the browser, a phone call
is initiated and the end-user should confirm it. The Dialer app also allows the user to use
the Dial-Pad Activity (an internal Activity) to change or read phone configurations such as
device serial number (e.g., by typing *#06# to read the phone serial number). In this second
case, since the request comes from the Dial-Pad (a component of the Dialer app), the Dialer
app assumes that the end-user typed it and no further end-user confirmation is asked.

3.1 Attack Scenario

Apps that are granted with privileges should not contain permission re-delegation vulner-
abilities; otherwise privileges could be the target of attacks. Less privileged apps could
exploit such vulnerabilities by crafting malicious intent messages intended to make a vul-
nerable app misuse its permissions to leak sensitive data (e.g., GPS position or contacts),
modify sensitive information (such as contacts or app private data) or perform costly
operations (calls or SMS to premium numbers).

Figure 4 shows an example of attack scenario in which a permission re-delegation vul-
nerability in an app is exploited by a less privileged app to execute a privileged operation or
API.

In this paper, we define a privileged API as an Android API that requires a special
permission to be executed.

The scenario includes two apps: a benign but vulnerable Dialer app D and an attacker
app A. Let us assume that D specifies the manifest file in Fig. 1. Among others, D is

Fig. 3 Intended behavior of the Dialer app
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Fig. 4 An example of attack scenario

granted with the special permission CALL PHONE for initiating phone call. An intent-filter
is defined to allow other apps to request a phone call via this app. When A sends an intent
message to D, D extracts the destination phone number from the message and requests a
confirmation from the end-user. After the end-user confirms to call the destination number,
the app initiates a call.

We define a public entry point of D, a method in the code of D that is executed by the
Android framework when an intent is sent to D, e.g., the onCreate method in Fig. 5.
Figure 5 shows the intent handling snippet of the Dialer app. The code starts by getting the
intent sent to the app (Line 1). If the action in the intent is DIAL, the app extracts the data
from the intent (Lines 2-4). The data contains the scheme and the phone number. If the
scheme is “tel”, the Dialer app then extracts the number associated to this scheme (Lines
7-8). Then depending on the number, that is, if the number starts with * or #, the app directly
performs a configuration related task (e.g., getting serial number of the phone if the number
is *#06#) without asking for end-user confirmation; otherwise the app initiates a phone call.

In this example, the Dialer app has permission re-delegation vulnerability — the app
makes configuration changes influenced by the data that comes from other apps. This fea-
ture is supposed to be internal, i.e., it should only be performed if the number is entered by
the user using the internal dial-pad component, and no confirmation is requested from the

Fig. 5 Code snippet showing intent handling in Dialer app
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end-user. However, by mistake, the developer exposed this capability to change configura-
tions to other apps. As shown in Fig. 4, malicious apps could exploit this vulnerability, for
example, by sending the code that wipes out the phone data.3

For example, when A sends an intent message to D with action DIAL and data
tel:*#060#, D performs the specified task without the user interaction. In essence, D

performed a privileged operation on behalf of A based on the data controlled by A without
any user interaction.

Even if the attacker app A is not fully trusted, users may still install A since it requests
no permission and can be assumed harmless. Even though Android treats distinct apps as
distinct principals to provide separation among apps, security cannot be guaranteed when
D contains such a permission re-delegation vulnerability. Exploiting this vulnerability in
D, A is able to change phone state (e.g., wipe out the data from the phone or get the device
serial number) without the required MODIFY PHONE STATE or READ PHONE STATE
permission.

3.2 Vulnerability Preconditions

Based on the attack scenario explained above, we identify two preconditions that should be
met in order to classify a case as a real permission re-delegation vulnerability.

Privileged APIs can be executed only by apps that are granted with the permission to
access the sensitive resources. An attacker app that lacks the permission to access sensitive
resources needs to resort to an app that holds the required access right. It needs to make the
app execute privileged APIs on its behalf without the intervention of the user. Thus, the first
precondition of this vulnerability is the following:

Precondition PR1: Privileged API call. While performing an action requested by
an intent message, the app executes a privileged API without user intervention.

Using the example of Figs. 1 and 4, this corresponds to an app that, after receiving an
intent from an attacker app, for example, formats the device by invoking the privileged API
DevicePolicyManager.wipeData(0), which requires the BIND DEVICE ADMIN
permission.

This is a case of permission re-delegation, as described by Felt et al. (2011), because an
app performs a privileged action on behalf of another app that lacks the required permission.

However, as also acknowledged by Felt et al., permission re-delegations are not always
vulnerabilities; they can also be legitimate cases. Permission re-delegation is legitimate
when it is an intention of the developer. In fact, in Android, inter-app communication is a
cornerstone feature for app integration that involves permission re-delegation. In our run-
ning example, initiating a phone call (the method invocation makePhoneCall()) when
requested by other app is an intended behavior of the Dialer app.

An accurate vulnerability detection approach should go beyond the mere detection
of permission re-delegation and it should distinguish between legitimate permission re-
delegations and permission re-delegation vulnerabilities.

Hence, going beyond Felt et al.’s threat model, we pose an additional precondition to
distinguish these two cases. To consider a permission re-delegation behavior as legitimate
(as intended by the developer), it should be similar to what can be observed on many similar
apps. Conversely, to consider a permission re-delegation behavior as vulnerable, it should

3https://www.computerworld.com/article/2489707/malware-vulnerabilities/
android-bug-lets-apps-make-rogue-phone-calls.html
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represent an anomaly, i.e., something uncommon among similar apps. Thus, the following
precondition is defined:

Precondition PR2: Anomalous permission re-delegation. It is uncommon for
other similar apps to execute that privileged API upon receiving an intentmessage.

We consider an app that satisfies both of the above preconditions as vulnerable to permis-
sion re-delegation attacks. In the following sections, we propose and assess an automated
approach to detect apps containing such permission re-delegation vulnerabilities.

4 Overview of the Approach

The PREV framework is a fully-automated approach for detecting permission re-delegation
vulnerabilities in Android apps. It takes as input the Android package kit (apk for short) file
and the app description. As output, it generates a vulnerability report that states if the app is
vulnerable or not and provides test execution scenarios with proof-of-concept attacks so as
to document the security issues and help the developer in fixing the vulnerabilities.

As shown in Fig. 6, the proposed approach consists of three major steps:

1. Model inference: this step takes a large training set of safe apps as input and produces
permission re-delegation models as output. It contains three sub-steps:

(a) The first sub-step applies topic modeling and clustering techniques to group those
safe apps into clusters based on their similarities in terms of functional descriptions.

(b) In the second sub-step, for each app in each cluster, static analysis is used to gen-
erate the call graph and identify the privileged APIs that can be reached from
public entry-points. This provides the permission re-delegation behaviors, i.e., the
privileged operations that may be performed by the apps upon receiving incoming
requests via public entry points.

(c) In the third sub-step, among the reachable privileged APIs of the apps in each
cluster, we determine the common APIs and the uncommon ones. Based on this
information, we learn the permission re-delegation model for each cluster, which
characterizes the permission re-delegation behaviors of the safe apps in the cluster.

Fig. 6 Architecture of PREV framework
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This step is performed only once before testing a given set of new apps; however, the
models may need to be updated at times, for example, when new versions of safe apps
become available.

2. Outlier detection: this step takes the clusters and the associated permission re-
delegation models obtained in the first step and the app under test (AUT) as input. It
reports anomalies as output. It contains three sub-steps:

(a) First, it classifies the AUT into one of the clusters by using the same topic modeling
technique used in the previous step and a classification technique.

(b) Then, it proceeds to the second sub-step which applies the same API reachability
analysis used in the previous step and extracts the reachable, privileged APIs in the
AUT. If there is no reachable, privileged API, the procedure terminates reporting
that the AUT is not vulnerable.

(c) The third sub-step applies a classification method to identify the anomalies, which
are reachable privileged APIs that are anomalous according to the permission re-
delegation model. The AUT is flagged as an outlier; the anomalies are reported
as candidate permission re-delegation vulnerabilities. If the AUT does not contain
any anomaly, the procedure terminates.

3. Test case generation: this step takes the outlier AUT, the list of candidate vulnerabilities,
and the call graph produced in the previous step as input. It produces proof-of-concept
attacks as output. It contains two sub-steps:

(a) It applies static analysis to extract target paths from the call graph — paths from
public entry points to the calls to anomalous privileged APIs corresponding to
candidate vulnerabilities.

(b) Next, it applies genetic algorithm-based technique to generate test cases that
exercise the target paths. This confirms that the AUT is indeed vulnerable and
exploitable. It generates a detail vulnerability report containing the anomalous
privileged APIs used and the exploited target paths.

These steps are described in detail in the next sections.

5 Model Inference

5.1 Clustering

In the first step of our approach, we cluster apps that can be considered benign and non-
vulnerable (safe apps) based on the similarity of their app descriptions. The intuition behind
is that safe apps that are similar in terms of their descriptions should exhibit common
permission re-delegation behaviors, which can be considered as legitimate.

For example, it might be common for communication-related apps to send SMS mes-
sages. However, it might be very uncommon for safe communication-related apps to send
SMS messages when servicing requests coming from other apps (without involving user
interaction). Essentially, while this feature is largely used internally, it is rarely exposed
as a service to other apps. Thus, we can establish that sending SMS on behalf of the
requesting app is not a common behavior for communication-related apps. Whenever a
new communication-related app is found to exhibit such behavior, it can be classified as an
outlier.
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Fig. 7 App description processing (underline indicates what will be affected in the next step)

The “safe” apps that we use are those apps that (i) come from official app store (therefore,
they are scrutinized and checked by the store maintainer); and (ii) are very popular (as such,
their quality is acknowledged by a large group of users). We chose Google Play as the
official app store. At the time we crawled the Google Play store, it provided 30 different app
categories. From each category, we downloaded, on average, the top 500 apps together with
their descriptions. We then discarded apps with non-English description and those with short
descriptions (less than 10 words). We are then left with 11,796 apps for clusters preparation.

The fact that top apps are suggested and endorsed by the official store makes us assume
that the apps are of high quality and do not contain many security problems. However,
it is important to note that our approach does not absolutely assume that all the “safe”
apps which are used for learning the model are completely benign and non-vulnerable. In
fact, our model is robust with respect to the inclusion of a small number of malicious or
vulnerable apps in the training set, because we classify a permission re-delegation behavior
as vulnerable when it deviates from the cluster norm. Therefore, as long as the majority of
the apps exhibit legitimate permission re-delegation behaviors, the cluster norm will only
reflect those legitimate behaviors (see Section 6). On the other hand, our approach does rely
on the majority of them being truly benign and non-vulnerable. In our empirical evaluation,
we will quantify how much majority is required (see Section 8).

Our clustering step is inspired by the approach proposed by Gorla et al. (2014), with some
differences in topic classification and clustering algorithm used. Specifically, we addition-
ally apply a NLP technique called lemmatization for better topic classification and we use a
probability-based clustering algorithm based on Expectation Maximization (EM) algorithm
and cross validation method for clustering so that the number of clusters does not need to be
defined a priori. This step takes safe apps as input and produces clusters of safe apps as out-
put. It consists of three sub-steps: 1) App descriptions preprocessing; 2) Topics discovery;
and 3) Apps clustering.

App Descriptions Preprocessing Our approach applies filtering, lemmatization and stem-
ming (standard NLP techniques) to preprocess the app descriptions. The process is
summarized with an example in Fig. 7. First, it filters out non-English descriptions using
Google’s Compact Language Detector,4 because having one single language is necessary
for clustering similar descriptions.

Second, the approach filters stopwords that do not contribute to topic discovery (Fig. 7a),
such as “a”, “after”, “is”, “in”, “as”, “very”, etc.5 Third, it applies lemmatization technique

4https://github.com/CLD2Owners/cld2
5see the list of common English stopwords at www.ranks.nl/stopwords
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(Fig. 7b) using the Stanford CoreNLP lemmatizer6 to abstract the words having similar
meanings in the descriptions so that they can be analyzed as a single item. For instance,
the words “car”, “truck”, “motorcycle” appearing in the descriptions can be lemmatized as
“vehicle”. Last, it applies stemming (Fig. 7c) technique (Porter 1997) to transform the dif-
ferent forms of a word such as “travel”, “traveling”, “travels”, and “traveler” into a common
base form such as “travel”.

Topics Discovery After the original app descriptions are preprocessed, the approach applies
a topic modeling technique called Latent Dirichlet allocation (LDA) (Blei et al. 2003) to dis-
cover the topics in the descriptions. LDA is a generative statistical model that represents a
collection of text as a mixture of topics with certain probabilities, where each word appear-
ing in the text is attributable to one of the topics. For instance, given a preprocessed app
description “travel Italy group tour include dinner lunch pizza pasta restaurant”, LDA gen-
erates the following topics with probabilities:7 “Travel (20%)”, “Food (37%)”, “Restaurant
(30%)”, “Italy (13%)”. We use the Mallet framework (McCallum 2002) to perform this step.
The framework allows us to choose the number of topics to be identified by LDA. Follow-
ing Gorla et al. (2014), we chose 30, the number of Google Play Store categories covered
by our training and test apps.8

Apps Clustering After the topics are discovered, a probability-based clustering algorithm
described in Witten et al. (2011) and implemented in the Weka tool (Hall et al. 2009), is
used to group together apps based on common topics. This algorithm applies expectation
maximization algorithm (Dempster et al. 1977) and cross validation method. It is as follows:

1. The number of clusters is set to 1.
2. The dataset is split randomly into 10 folds.
3. Expectation maximization is performed 10 times (in an attempt to escape local

maximum).
4. The log-likelihood is averaged over all 10 results (log-likelihood is a measure of the

“goodness” of the clustering).
5. If the log-likelihood has increased, increase the number of clusters by one and continues

at step 2.

Expectation maximization is performed as follows: it starts with an initial guess of the
cluster parameters (e.g., means and standard deviations of the clusters). It computes the
probabilities for assignments of each instance to a cluster using the current parameters
(expectation step). Then, using these cluster probabilities, it re-estimates the parameters
(maximization step), and repeat the two steps again until the cluster parameters and cluster
assignments stabilize.

The advantage of using this clustering algorithm is that it not only clusters data but
also estimates the adequate number of clusters, for given data. Hence, we do not need to
predefine the number of clusters. The clustering resulted in 30 clusters of similar sizes, each
cluster containing between 3% and 4% of total apps. We manually sampled a few apps from
a few clusters and verified that apps from the same clusters are indeed similar in terms of
their functional descriptions.

6http://stanfordnlp.github.io/CoreNLP/
7To simplify the example, topics are represented by meaningful labels, which is not available in LDA.
8We acknowledge that choosing a different number of topics may result in different clusters. Investigating
the impact of different numbers of topics is out of our scope.
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We did not consider using Google Play categories as clusters. Some security analysis
approaches such as Sadeghi et al. (2014) use them to avoid clustering effort. But prior
result (Al-Subaihin et al. 2016) reported that clustering by common topics produces more
cohesive clusters than clustering by Google Play categories because, while an app belongs to
one Google Play category, an app’s functional description may in fact incorporate multiple
topics at once, which is a much richer information for clustering. Based on own experi-
ence (Demissie et al. 2018) and related work (Gorla et al. 2014; Avdiienko et al. 2015),
categories based on topic analysis of app descriptions are more adequate than app-store
categories for our security analysis purpose.

5.2 API Reachability Analysis

This step takes an app as input and produces a list of privileged APIs reachable from pub-
lic entry points as output. A public entry point is an interface through which other apps,
including malicious ones, can request an action via IPC. Privileged APIs are those Android
APIs that require special permissions. A privileged API reachable from public entry point
is a path in the call graph of the app that originates from a public entry point and that leads
to a call to a privileged API.

To identify these APIs, we carry out the following tasks:

Public Entry Points Identification Public entry points are defined by intent-filters or the
exported boolean attribute associated to components in the app manifest file, as described
in Section 2.1. We model Activities, Broadcast Receivers and Services9 as possible pub-
lic interfaces and their corresponding lifecycle starting methods (e.g., onCreate() for
Activities and onReceive() for Broadcast Receivers) as entry points. The sample man-
ifest in Fig. 1 defines a single public interface — DialerActivity, because it defines the tag
<intent-filter> without specifying the exported attribute (if a component specifies
an intent-filter, by default the exported attribute is set to true). Our approach parses the
manifest file using XOM,10 an open source library to parse XML files. Intent-filters are
extracted using XPath queries.

Privileged APIs Identification The list of privileged APIs is predefined in our configura-
tion, which is provided in the literature (Au et al. 2012). To identify uses of these APIs in
an app, we use Soot11 to convert the Dalvik bytecode of an app into an intermediate repre-
sentation called Jimple. The Jimple code is traversed to identify invoke statements to those
APIs that match our predefined list.

Reachable Privileged APIs Identification We use FlowDroid (Arzt et al. 2014), which
extends Soot, to generate the call graph of the app. We then run a reachability analysis algo-
rithm (Reps et al. 1995) on the call graph to identify the privileged APIs that are reachable
from public entry points.

9Dynamically registered broadcast receivers are not supported by our tool currently; so they are not part of
our model. This represents a limitation of our current implementation.
10http://www.xom.nu
11https://sable.github.io/soot/
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5.3 Learning theModel

Once the safe apps are clustered and the permission re-delegation behaviors are identified
(reachable, privileged APIs), we need to learn the permission re-delegation model of each
cluster.

The permission re-delegation model characterizes the permission re-delegation behaviors
of the apps in the cluster, i.e., which privileged APIs are (and are not) commonly called
when servicing action requests. Information about reachable APIs is stored as the matrix
M , as shown in Fig. 8, with apps as rows and privileged APIs as columns. A cell in M is
assigned to value 1 when the app in the row exposes the privileged API in the column when
servicing action requests; otherwise it is assigned to value 0.

A column with many cells set to 1 represents a reachable API that is commonly used
by many safe apps when servicing action requests; so it can be considered as a legitimate
permission re-delegation behavior. Conversely, a column with many cells set to 0 represents
a reachable API that is uncommon; so it should be considered as an anomalous behavior.

The notion of common/uncommon reachable APIs is captured by the frequency vector
m̃ that reflects the mean of the columns in M . Each element j of m̃ is the mean of the j -th
column of matrix M:

m̃j = 1

n

n
∑

i=1

Mi,j

Note that the lengths of frequency vectors vary across clusters. On average, m̃ has 218
elements.

For example, regarding the matrix shown in Fig. 8, we have: m̃ = [1, 0.75, 0.25, 0.25].
The first and second elements of m̃ corresponding to the APIs openConnection() and
connect() have the value 1 or the value close to 1 since the APIs are frequently used
while the third and the fourth elements corresponding to the APIs sendTextMessage()
and setWifiEnabled() are close to the value 0 because the APIs are uncommon.

We compute a threshold called tcomApi to define what is common (and what is not). It is
computed as the median of the values in the frequency vector, tcomApi = median(m̃). APIs
whose frequency is greater than tcomApi are considered as common and vice versa.

In our example, tcomApi = 0.5. The frequency of openConnection() is 1 and
of connect() is 0.75; so the use of these APIs when servicing action requests is
common and thus, considered as legitimate. On the other hand, the frequency of both
sendTextMessage() and SetWifiEnabled() is 0.25, which is less than tcomApi ;
so they are considered as APIs uncommonly subject to permission re-delegation.

To simplify the approach, we could have set tcomApi = 0. In this way, we would identify
APIs that are never used when servicing action requests in the given cluster as anomalous.

Fig. 8 a Matrix M that stores information about API usage for each app in a given cluster (1=the app exposes
the API, 0=otherwise), and b frequency vector m̃ for M
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However, for our approach to be robust with the inclusion of a few non-safe apps in the
training set, we need a threshold larger than zero. We therefore consider those APIs that
are rarely used when servicing action requests as uncommon by computing the threshold as
explained above. In practice, even if tcomApi is not zero, it should still be close to zero.

Next, we compute the dispersion around the frequency vector m̃ to understand how much
an app should be far from this vector to be considered as an outlier. As suggested by litera-
ture (Hodge and Austin 2004), dispersion is evaluated with respect to the Euclidean distance
between an app appi and m̃ with the following equation:

d(appi, m̃) =
√

√

√

√

n
∑

j=1

(m̃[j ] − M[i, j ])2

Figure 9 shows the dispersion of the distance. The upper part shows the histogram of the
dispersion and the interpolating Gaussian curve. The lower part shows the boxplot.

As shown in the figure, in this example, apps have a median distance of 0.42 from m̃,
with very few cases with a distance larger than 0.64.

We resort to the boxplot approach proposed by Laurikkala et al. (2000) to detect outliers.
The threshold called toutlier is computed in the same way as drawing outlier dots in boxplots:

toutlier = Q3 + step

step = 1.5(Q3 − Q1)

First we compute the difference between the upper quartile (75th percentile, Q3 = 0.64
in the example) and the lower quartile (25th percentile, Q1 = 0.12 in the example). In
the example of Fig. 9, this difference is 0.52. The step is computed by multiplying this
difference by 1.5, i.e., in the example is step = 0.78. Eventually, toutlier is computed as
the sum of the upper quartile Q3 and the step. Therefore, the threshold for the example is
toutlier = 1.42.

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0
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5

0.0 0.5 1.0 1.5
d(appi, m~)

Fig. 9 Dispersion of the distance of apps from the frequency vector m̃
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Any app with the distance from the frequency vector m̃ larger than toutlier is considered
an outlier. For instance, the app with distance = 1.54 is an outlier in Fig. 9, because
1.54 > toutlier = 1.42 and hence it is represented as a dot. The frequency vector m̃ and the
thresholds tcomApi and toutlier represent the permission re-delegation model of this cluster.

The above process is performed for each cluster, producing a corresponding permission
re-delegation model. This whole model inference step is performed only once.

The advantage of using boxplot approach is that it allows us to detect outliers in both
large- and small-size clusters. Alternatively, a classification-based approach could be used
to detect outliers, but classifiers typically require relatively larger data size (than a small-size
cluster) to learn a robust model.

6 Outlier Detection

The second step of our approach takes as inputs the clusters and the permission re-delegation
models obtained in the previous step, and the AUT. It then reports whether the AUT contains
anomalous permission re-delegation behaviors. It contains three sub-steps: cluster assign-
ment, API reachability analysis, and anomalies identification, which are explained in the
following subsections.

6.1 Cluster Assignment

First of all we need to determine which permission re-delegation model to use among those
available to compare the AUT against similar apps. That is, among the clusters we gen-
erated in Section 5, we need to identify the cluster the AUT belongs to. To achieve this
objective, the description of the AUT is subject to the same sub-steps — app descriptions
preprocessing and topics discovery — discussed in Section 5.1.

When topics and topic probabilities are computed, we use a simple, efficient classi-
fication algorithm called Naive Bayes (available in Weka (Hall et al. 2009)) to learn a
classification model and assign the right cluster. The classifier is trained on the same “safe”
11,796 training apps we used for inferring the permission re-delegation models, using
the topic probabilities of the apps as features and their clusters as labels. This classifica-
tion model is then applied to the AUT, to identify the cluster with the most similar topic
probabilities.

Figure 10 shows an example of the classification procedure. Figure 10a shows the train-
ing data, each line representing a different “safe” training app from the official store. There
is a column for each topic. The value in each cell corresponds to the probability of the topic
in the column given the description of the app in the row. For instance, the description of
T rainingApp1 is assigned to the topic “communication” with probability 0.34, the topic
“health&fitness” with probability 0.09 and “games” with probability 0.52. The last column
reports the cluster number assigned to this app.

Figure 10b shows the topic probabilities for the description of the AUT and the missing
cluster label. Later, the Naive Bayes classifier learnt on the training data shown in Fig. 10a
is used to label the AUT with the cluster whose member apps have the most similar topic
probabilities with respect to the AUT.

It should be noted that clustering and training of Naive Bayes classifier is performed only
once at learning time, and then it is available for classifying each AUT. Clustering and clas-
sifier training is not repeated for each AUT, so cluster assignment is expected to be fast. For
cluster assignment of the AUT, we do not use the clustering algorithm used in Section 5.1
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Fig. 10 Classification model used for cluster assignment. a Topic probabilities with cluster labels, and b
Topic probabilities for the AUT and missing cluster label

because classification would be more efficient since the group labels are already available
after clustering of safe apps. Given the topic probabilities of the AUT, we simply need to
classify the group it belongs to, based on the existing group labels and their associated
topic probabilities. Regarding classification, we also evaluated more sophisticated classi-
fication algorithms such as Logistic Regression and Random Forest; but since the results
were similar, we opted to use a simple classifier, which is Naive Bayes.

6.2 API Reachability Analysis

Like in Section 5.2, API reachability analysis is performed on the call graph, in order to
identify privileged APIs that are reachable from public entry point(s). If no public entry
point is found or no privileged API is reachable from public entry points, our analysis ter-
minates here and it reports that there is no permission re-delegation vulnerability in this
AUT (because permission re-delegation vulnerability arises only when an AUT executes a
reachable privileged API).

6.3 Anomalies Identification

We first generate a vector xaut storing the information of reachable privileged APIs in the
AUT. Two examples of this vector are shown in Fig. 11, first and second line, respectively
for two apps AUTa and AUTb. That is, the i−th element of a vector is set to 1 if APIi is
reachable, the element is 0 otherwise. For instance, the first and second elements of xaut,a

are set to 1 because calls to APIs openConnection and connect are reachable from
public entry points in the code of AUTa . Similarly, the third and fourth elements of xaut,b are
set to 1 because calls to APIs sendTextMessage and setWifiEnabled are reachable

Fig. 11 Anomalies identification by comparing the reachable privileged APIs of the apps against those in
the frequency vector
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in the app code. This corresponds to computing new rows of the matrix M as discussed in
Section 5.3 (see Fig. 8).

To evaluate how different AUTa is from the cluster norm, we compute the Euclidean
distance da between xaut,a and the frequency vector m̃ (Fig. 11). It is computed as da =
d(m̃, xaut,a) = 0.43. We then compare da with the dispersion of permission re-delegation
behaviors observed in the apps of the cluster (Fig. 9). That is, we compare da = 0.43 and
the threshold toutlier = 1.42. Since da < toutlier , it is concluded that the permission re-
delegation behavior of AUTa is similar to those behaviors observed in the cluster and the
AUTa is flagged as normal.

Likewise, for AUTb, we can compute db = d(m̃, xaut,b) = 1.48. Since db > toutlier , it
is concluded that the permission re-delegation behavior of AUTb is substantially different
from those behaviors observed in the cluster, which is a case of anomalous permission
re-delegation, flagging the AUTb as an outlier.

When the AUT is flagged as an outlier (as in the case of AUTb), there could be two cases
of anomaly: 1) the AUT does not expose an API that is commonly exposed in the cluster;
or 2) the AUT does expose an API that is not commonly exposed in the cluster. Clearly,
we are only interested in the second case. An outlier app might expose several privileged
APIs, and the anomaly could be limited to a subset of them. Therefore, we still need to
identify which privileged APIs are the anomalous ones. An API i is not commonly used for
permission re-delegation in the cluster when its frequency is below the threshold tcomApi ,
i.e., m̃[i] ≤ tcomApi .

Therefore, the conditions for detecting anomalous permission re-delegation in the AUT
with respect to APIi are:

1. d(m̃, xaut ) > toutlier : It means that the AUT shows a permission re-delegation profile
that is substantially different than the permission re-delegation profile observed on apps
with similar features. So the AUT is flagged as an outlier. More conditions are required
to determine what is the problematic API.

2. m̃[i] ≤ tcomApi : It means that the APIi is a privileged API that is not commonly
executed by the apps in this cluster when servicing action requests.

3. xaut [i] = 1: It means that the AUT executes APIi when servicing action requests
coming from other apps (public entry points). In other words, the AUT exposes this
privileged feature as a service to other (potentially malicious) apps.

In our running example above, AUTb is an outlier because db > toutlier . The privileged
APIs sendTextMessage and setWifiEnabled are not commonly executed in its
cluster because tcomApi = 0.5 and m̃[3] = 0.25 and m̃[4] = 0.25 (Fig. 11). Therefore, the
sendTextMessage and setWifiEnabled APIs satisfy the second condition. These
two APIs are exposed by our outlier app AUTb. As shown in Fig. 11, xaut,b[3] = xaut,b[4] =
1. Therefore, they also satisfy the third condition and are reported as anomalous privileged
APIs.

Note that it is possible that vectors Xaut and m̃ have different lengths. Xaut would have
shorter length than m̃ when the permission delegation model has APIs not observed in the
AUT. In this case, we extend Xaut to m̃’s length by adding zeros in the positions that corre-
spond to the missing APIs. And we apply the same technique above to flag the anomalous
APIs. On the other hand, when an AUT uses APIs that are never observed in the model, we
flag it as an outlier and report those APIs as anomalous. We also use the above conditions 2
and 3 to flag the privileged APIs observed in the AUT but rarely observed in the model as
anomalous.
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7 Test Case Generation

The last step of our approach takes the outlier AUT and the list of anomalous privileged
APIs as input. The objective is to generate security test cases, in the form of action requests,
that execute those anomalous privileged APIs. Such test cases represent proof-of-concept
attacks for permission re-delegation vulnerabilities — executable scenarios that demonstrate
the presence of security defects and that document them. It contains two sub-steps: path
extraction and genetic algorithm, which are explained in the following subsections.

7.1 Path Extraction

For each anomalous privileged API, the call graph of the AUT is analyzed to identify the
paths from public entry points to the calls of that privileged API. Let j be a call of the
anomalous privileged API. The call graph is then traversed backward in depth-first search
manner starting from node j until a public entry point node is reached. During the visits,
each node is marked as visited so that loops in the graph are iterated at most once. As a
result, regarding each API, we obtain a list of paths.

We then filter those paths that involve an UI event. The inclusion of an UI event in a path
indicates that there is a user intervention (acknowledgment) before the privileged action
is taken; hence it violates our first precondition for permission re-delegation vulnerability
(Section 3.2). To identify UI events, we predefine a list of UI-related callback functions
such as onClick(), onTouch() and Android Material Design Library functions (UI-
related functions). Our tool detects paths that include a call to a function from this list and
discards them. The remaining paths (denoted as target paths) are subject to testing next.

7.2 Genetic Algorithm

This sub-step generates security test inputs that execute the targets. The security test inputs
we aim to generate are in the form of intent (action request) message, which is serviced by
the AUT. Our goal is to generate at least one intent message that exercises a given target
path. For any anomalous privileged API that we identified above, if there is at least one
target path that has been exercised, our tool reports the corresponding AUT as vulnerable.
We encode the intent message generation problem as an optimization problem, to be solved
by a genetic algorithm. The genetic algorithm searches for an optimal solution (serviced
intent message) by gradually evolving an initial population of random individuals through
generations. Individuals nearer to the final solution are rewarded with a higher probability
of transmitting their genes to next generations. Fitnesses of solutions are computed using a
fitness function and fittest solutions are combined together with the hope of generating fitter
ones, until the optimum solution is found.

Individuals (also called solutions) are analogous to chromosomes in genetics. In the
following, we will use the term ‘chromosome’ to refer to both individual and solution.

A chromosome is encoded as a JSON-like data structure, which contains a set of fields
and their values. A chromosome contains all necessary information for generating a con-
crete intent message. Table 1 shows the possible fields12 and their example values of a
chromosome. Chromosomes are evolved through crossover and mutation.

12None of the fields is compulsory in an intent message.
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Table 1 Fields of an intent message

Field Description Example

$action a string representing the action to
be performed

SMS, CALL, VIEW, EDIT, ...

$category additional information about the
action to perform

DEFAULT, BROWSABLE

$extra a (possibly empty) set of key-value
pairs (not specified in the manifest
file)

“wifi state”→“1”, “ volume” →10

$scheme a value that expresses the format of
the next $data field

http or tel

$data URI that references the data http://se.fbk.eu:80/people/pro-

to be used; e.g., the file to be file/ceccato

opened, the number to dial or the
contact to access. Depending on the
$scheme, this field is composed of
different subfields

tel:+39.0461.314.577

If $scheme is http, $data represents a URL with these subfields:

$scheme the prefix of the URI http, https, ftp, sftp, file,

$host the string corresponding to host name content se.fbk.eu

$port the (optional) number correspond-
ing to the port to use

80

$path The path part of a URI to locate the
corresponding resource

people/profile/ceccato

$pathPattern Regular expression that the path
should match

/specialdirctory.*/

If $scheme is telephony-related, $data represents a number to call/text with these subfields:

$scheme the prefix of the URL tel, sms, smsto, voicemail, mms,

mmsto

$uri the number/code to dial or to text to +39.0461.314.577

The test case generation work-flow for a given target path is summarized in Fig. 12.
Firstly, the static analysis component analyzes the Apk files of the AUT to extract the pos-
sible fields and values of intent messages that may exercise the target path, which are to be
used as seeds for generating chromosomes (explained in the following).

Static analysis first identifies the app component that contains the target path. It then
analyzes the intent-filter associated with that component in the manifest file and the compo-
nent code to extract the possible fields of the intent messages that may be serviced by the
component. For example, in our running example in Fig. 1, by analyzing the manifest file,
we can identify that an intent message requires $action, $category, and $data fields so as
to be serviced by the DialerActivity component. Note that additional fields may be identi-
fied by analyzing the component code since not all the fields are necessarily specified in the
manifest file. From the component code, we also extract the string constants through sim-
plified constant propagation and code scanning. Simplified constant propagation is applied
to extract the values of string constants used as parameters in functions related to intents
(e.g., getIntent().getAction().equals(ACTION)) in the corresponding com-
ponent code. The technique is simplified because, for scalability reasons, we do not track the
propagation of string constants through string operations such as substring(). Code

Empirical Software Engineering (2020) 25:5084–5136 5103



Fig. 12 Work-flow of the test case generation process

scanning is applied to extract the string constants (such as static strings) from the component
code.

The following explains how the seed values for these fields are extracted:
$action field: its seed values are extracted from the action values specified in

the manifest file (e.g. DIAL in Fig. 1). If no action is specified in the manifest
file, its seed values are assigned with the string constants extracted from the cor-
responding component code (as explained above for example from getIntent().
getAction().equals(ACTION)). Eventually, if this strategy also fails, seed values
are taken from the set of all the constant strings that are statically available in the compo-
nent,13 in the hope of choosing a string value that is (possibly indirectly) compared to the
Action when processing an Intent.

$category field: its seed values are extracted from the category values specified
in the manifest file and also from the component code relevant to checking the
category in intent messages (e.g., the value “Browsable” found in getIntent().
hasCategory("Browsable")). If no such value is available, similarly to the
$action field, string values from the constant pool of the current component are used
as seed values. For instance, we used values from declarations like String value =
"Browsable";.

$extra field: this field requires a list of key-value pairs. Since the manifest file does not
specify extras, its seed values are extracted through static analysis of the component code.
More specifically, static analysis is used to identify method calls that access $extra fields
of intents and extract the keys (e.g., in getIntent().getIntExtra("id"), id is
extracted as a key). Simplified constant propagation is used if the key parameter in the
method call is a constant. The data type of the value is identified based on method signature
(e.g., integer for getIntExtra). Default values for those keys are sometimes available as
parameters, e.g., in getIntent().getIntExtra("id", -1), -1 is a default value
for id. If a default value is available, it is extracted as a seed value for the corresponding
key. If no default value is found after static analysis of the component code, the seed values

13In Java, constant strings are available in the constant pool.
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for a given key are assigned with the constants of the same data type extracted through
scanning of the component code. The key is also annotated with its data type.

$scheme field: its seed value (typically only one value) is determined from the man-
ifest file (e.g., tel in Fig. 1). The value of this field defines the format of $data field
(explained next). We support 15 different $schemes that are grouped into two classes: for
resources such as network and contacts (e.g., "http", "file", "content") and for
telephony (e.g., "tel","sms","mms"). Custom $schemes (e.g., "fb" for Facebook)
are also supported, when they are specified in the manifest file.

$data field: this field specifies data to be used to perform the requested task. It has sub-
fields depending on the $scheme in use, such as $host, $port, $path, $uri. Similar to the
above cases, the seed values of these sub-fields are also extracted through analysis of the
manifest file and the component code. The $data field is generated only when it is specified
in the intent filter of the component.

$pathPattern field: this sub-field is usually specified in the manifest file as a regular
expression (regex) consisting of the wildcards, asterisk (*) and a period followed by an
asterisk (.*). The Android framework uses PatternMatcher, a simple pattern matcher that
is safe to use on untrusted data and does not provide full regex support. According to
the documentation,14 an asterisk (*) matches a sequence of 0 to many occurrences of the
immediately preceding character, while a period followed by an asterisk (.*) matches any
sequence of 0 to many characters. The seed value for this field is, thus, generated as the
shortest string accepted by the regex. For example, given a pathPattern “/movies.*/”,
a string “/movies/” is generated which will be later concatenated to a URL (e.g.,
https://example.com/movies/).

For each of the field, we also include NULL value in its seed values. All the extracted
fields and their seed values are then stored in a Database to be later used by the GA
component to generate the chromosomes.

The instrumenter component in Fig. 12 instruments the AUT bytecode (based on Soot)
to insert hooks at method/API invocations to trace which methods and APIs are invoked at
runtime. The instrumented app is then run (in our case in the Android emulator) to process
the intent messages generated by the GA component. The execution traces are logged.

The following explains how the genetic algorithm (GA) component works:

Initialize Population of Random Chromosomes the GA generates a population of 150
chromosomes. For each chromosome, the algorithm starts with initializing all the possi-
ble fields identified above. For the $action and $category fields, their values are randomly
selected with uniform probability from their seed values extracted above. Notice that a null
value may also be selected.

For the $extra field, we need to generate keys and values. Keys are selected randomly
with uniform distribution from the ones extracted above. The value for each selected key is
picked from its seed values with 70% probability or generated randomly with 30% probabil-
ity. The randomly generated value is of the same data type annotated at the key. To generate
a value of string data type, we give a high probability of generating a random string of up
to 10 characters, based on our experience. If it is of numeric data type, we give a high prob-
ability of generating a random value close to the default value if available (i.e., added or
subtracted a small value from the default value).

14https://developer.android.com/guide/topics/manifest/data-element
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A similar algorithm is used to generate values for other fields. For example, for $host
field, a value is picked from its seed values with 70% probability or randomly generated
with 30% probability.

The same process is repeated to generate a random number of chromosomes. For each
generated chromosome, a corresponding security test case in the form of an intent message
that can be executed in the Android emulator is generated.

Figure 13a shows a chromosome for the running example in Fig. 1 with its $action and
$category fields set to, respectively, CALL and DEFAULT. The field $extra contains the
key count with the integer value 0. The field $scheme is set to tel and the subsequent
$uri field contains the phone number. Figure 13b shows another chromosome containing
the same set of fields but with different values for some of the fields.

Figure 14 shows an ADB command that generates a concrete intent message correspond-
ing to a chromosome.

Assess Fitness of Chromosomes this step computes the fitness of each chromosome. The
objective of a security test case is to exercise the target path, from a public entry point to the

(a) (b)

(c) (d)

Fig. 13 Examples of chromosomes
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Fig. 14 Example ADB command that sends an intent message

anomalous privileged API. Based on the execution traces logged by the instrumented code
(Instrumenter component), the GA component determines the actual path exercised by a
given test case and then uses a fitness function to compute the fitness of its corresponding
chromosome.

The fitness function we use is similar to the approach-level introduced in Wegener et al.
(2001) for the Daimler Evolutionary Testing System. However, instead of evaluating how
many nodes are executed to see how far we are from the target, we compute the percentage
of call edge executed. The fitness function is defined in (1). It computes the overlap between
the execution that we want to achieve and the actual execution realized by the test cases
as number of edges in the intersection between the executed call edges Eexecuted and the
call edges in the target path Etarget . This value is then normalized in the interval [0, 1] by
dividing it by the total number of the edges in the target path Etarget .

f itness =
∣

∣Eexecuted ∩ Etarget

∣

∣

∣

∣Etarget

∣

∣

(1)

The larger the overlap between the target and the actual execution, the larger the f itness

value. When the test case executes all the edges in the target path, the f itness value is one.
A smaller value is obtained otherwise.

Crossover From the population of chromosomes, we use Binary Tournament algorithm
to select two chromosomes based on their fitness values. The two chromosomes reaching
the final of the tournament are removed from the population and subject to crossover. We
pose the constraint of performing crossover only between chromosomes having the same
$scheme. That is, if the two selected chromosomes have different $schemes, they are put
back into the population and the tournament is restarted.

This constraint is meant to combine only intents with compatible fields. Different
schemes may imply different sub-fields of the subsequent $data fields. For instance, the
tel scheme requires the $data field to contain only a phone number, while the http
scheme requires the $data field to be composed of $host, $port and $path (see Table 1).
Intents with the same $scheme ensures that $data are composed of compatible sub-fields,
and thus can be exchanged.

We adopt a structured crossover operator that operates field-wise by crossing over fields
of the same type. This is to preserve syntactic validity during evolution.

When two chromosomes A and B are selected to crossover, two new chromosomes
(offspring) C and D are generated as follows:

1. chromosome A is cloned as chromosome C;
2. chromosome B is cloned as chromosome D;
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Table 2 Examples of seed values
for the mutation operators Field Seed values

$scheme http, https, ftp

$extra (key=wifi state) 1, 0

$host se.fbk.eu, univr.it

$port 80, 443

$path people/ceccato, item/pen

3. one or more fields of chromosome C are randomly selected, i.e., the fields and
the number of fields selected for crossover could be different for different pairs of
chromosomes;

4. the values of those selected fields are exchanged between chromosome C and D.15

To illustrate the crossover process, let us assume that Chromosome A and Chromosome
B shown in Fig. 13a and b, respectively, are selected for crossover. They have the same
$scheme, i.e., “tel”; therefore, crossover is allowed. Firstly, Chromosome C and Chromo-
some D are cloned from Chromosome A and Chromosome B, respectively. Then, assuming
that the field $uri is randomly selected, the $uri values of Chromosome C and Chromosome
D are swapped, resulting in two new chromosomes as shown in Fig. 13c and d.

The same process is repeated to select pairs of chromosomes from the population and
crossover. This results in a new population of chromosomes, having roughly the same size
as the original one (last remaining chromosomes with different $schemes are discarded).

Mutation Given a new chromosome generated through crossover, the values of its fields
are subject to mutation with a probability of 30%, i.e., they have 70% probability of not
being mutated. Depending on the field, a different mutation operator is used, to ensure that
the generated intent messages are well-formed and accepted by the app. The list of mutation
operators with some examples is reported in Table 3. In these examples, we refer to the seed
values shown in Table 2.

• The values of the $scheme field is mutated (with 30% probability) by the operator
SwitchScheme that swaps the original value of this field with one of the seed values,
selected with uniform probability. In the example of Table 3, the scheme http is replaced
by the scheme ftp (available as seed in Table 2) to change the URL as shown in the
corresponding line.

• The value of the $action, $category and $pathPattern fields are not mutated.
• For the $extra field, the keys are not mutated. The values of the extra are mutated with

30% probability. The mutation is performed as follows:

– With 15% probability, the SwitchExtraValue operator is used to change the
value of the $extra field with a seed value. In the example, the value of
wifi state is changed from 1 to 0, by peeking the new value from the pool
of seed values for this key (see second line in Table 2);

– With 15% probability, a AlterExrtra*Value operator is selected to arbitrar-
ily change the value of the $extra value. AlterExrtraIntValue or AlterExr-
traStringValue are used, depending on the type of the extra. This operator does

15in the case that a selected field is not present in chromosome D, it is ignored.
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Table 3 Examples of mutation operators

Operator Original Mutated

SwitchScheme http://se.fbk.eu:80/people/ceccato ftp://se.fbk.eu:80/people/ceccato

SwitchExtraValue wifi state→1 wifi state→0

AlterExtraIntValue wifi state→1 wifi state→5

AlterExtraStringValue preferred ssid→“myhome” preferred ssid→“myhom”

preferred ssid→“myhome” preferred ssid→“myhomeX”

preferred ssid→“myhome” preferred ssid→“myWome”

SwitchHost http://se.fbk.eu:80/people/ceccato http://univr.it:80/people/ceccato

AlterHost http://se.fbk.eu:80/people/ceccato http://fbk.eu:80/people/ceccato

SwitchPort http://se.fbk.eu:80/people/ceccato http://se.fbk.eu:443/people/ceccato

AlterPort http://se.fbk.eu:80/people/ceccato http://se.fbk.eu:85/people/ceccato

SwitchPath http://se.fbk.eu:80/people/ceccato http://se.fbk.eu:80/item/pen

AlterPath http://se.fbk.eu:80/people/ceccato http://se.fbk.eu:80/people/ceccato\X

not use seed values. If the type is numeric, AlterExrtraIntValue mutates the
value by adding or subtracting an offset. Small offsets are chosen with higher
probability and the probability of larger offsets decreases exponentially. In the
example the value of wifi state is changed from 1 to 5, the value added
as offset (i.e., 4) is not a seed value.

In case the type of the extra is string, the operator AlterExrtraString-
Value is used instead. The extra value is mutated by deleting, inserting or
replacing a character in the string with a random character. In the exam-
ple the preferred ssid is changed from ‘‘myhome’’, respectively, to
‘‘myhom’’, ‘‘myhomeX’’ and ‘‘myWome’’.

• For fields $host, $port and $path, the mutation operators are similar to previous cases.
That is, the mutation is performed with 30% probability. With 15% probability, the
field is replaced with a seed value (operators SwitchHost, SwitchPort and SwitchPath),
and with 15% probability the value is changed regardless the available seeds (operators
AlterHost, AlterPort and AlterPath), as shown in the corresponding examples.

Timeout The stopping criteria of the GA is set as 500 generations.
Note that the tuning parameters — the population size, the mutation probabilities, the

value selection probabilities, and the stopping criteria — we used above are decided based
on our preliminary assessment of the test generation algorithm, which we ran on a set of ran-
domly selected apps. We found that higher probabilities of mutating a chromosome (>30%)
and lower probabilities of selecting a value from seeded ones for mutation (<50%) usually
results in the loss of good solutions. On the other hand, the test generation was not very
effective when we used much lower probabilities of mutating a chromosome (e.g., 10%)
and much higher probabilities of selecting seeded values (e.g., 90%). Some of the fields in
intent messages, such as $action, $category $pathPattern, and $key are not mutated at all
because it would only result in ill-formed intent messages that would be rejected by the
AUT. Overall, this ensures that the population is evolved towards better generations.
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8 Evaluation

In this section we evaluate PREV and compare with two state-of-the-art static analysis-
based techniques — Covert and IccTA — which can detect permission re-delegation
vulnerabilities.16

Our goal is to detect as many vulnerabilities as possible at an affordable cost. Therefore,
our main evaluation criteria are precision and cost. In addition, we also investigate the recall
and report the results.

More specifically, the following research questions are investigated:

– RQ1 (Precision): Is PREV precise at detecting permission re-delegation vulnerabilities
in Android apps?

– RQ2 (Cost): Is the cost (in terms of analysis time) of using our approach affordable in
practice?

– RQ3 (Recall): Does PREV miss permission re-delegation vulnerabilities?
– RQ4 (Comparison): Does PREV perform better than other tools that can be used to

detect permission re-delegation vulnerabilities?
– RQ5 (Robustnesses): Is PREV robust against the inclusion of anomalies in the training

set?
– RQ6 (Threshold): What is the impact of other threshold values on vulnerability

detection accuracy of PREV?

Our evaluation was conducted on a machine equipped with an Intel Core i7 2.4 GHz
processor, 16 GB RAM, running Apple Mac OS X 10.11. Our tool is instrumented to log
the analysis time.

8.1 Subject Apps

Our subject apps include a total of 1,258 real world apps from the official Google Play
store.17 Since our approach works on compiled apps, the availability of source code is not a
requirement. Nevertheless, 595 of our subject apps are open source projects, which offer us
the possibility to inspect the source code, determine the correctness of vulnerability reports
generated by the tools, and analyze the causes of vulnerabilities. The following explains our
selection process of subject apps:

First, we obtained a list of app names from the directory of AndroZoo,18 an app crawling
research project that lists app names from many official and unofficial app repositories.
We then randomly sampled the names from this list. Additional app names are also taken
from a repository that collects open source Android apps, namely F-Droid.19 Among those
sampled apps, we picked those that are also available on the Google Play store, to ensure
that our subject apps are real world apps.

We then filtered out those apps that are too popular (more than 1 million downloads),
to increase the chance of selecting apps that are interesting for our experiment, i.e., apps

16We did not compare with test generation-based approaches because we could not find an adequate or
available tool that might be suitable for detecting permission re-delegation vulnerabilities.
17Note that our tool PREV was trained on 11,796 official apps (see Section 5). Those apps are not considered
in the selection of subject apps.
18https://androzoo.uni.lu/
19http://f-droid.org/
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with a good chance of containing vulnerabilities. Popular apps, distributed by well-reputed
companies, are probably already subject to intensive security review.

To be able to apply our analysis, we additionally require that app description is in
English, that contains at least 10 words so that natural language processing and topic
discovery can be performed.

Eventually, there remained 1,258 apps — 663 closed source and 595 open source — from
the official app store together with their descriptions. For open source apps, we acquired
source code to conduct manual verification later.

The list of training apps and subject apps along with the implementation of PREV is
publicly available.20

8.2 Metrics

To answer our research questions, we report results in terms of these metrics:

– Number of true positives (TP): Number of real vulnerable apps correctly reported as
vulnerable;

– Number of false positives (FP): Number of vulnerable apps incorrectly reported as
vulnerable (false alarms);

– Number of false negatives (FN): Number of vulnerable apps that are missed (not
reported by the tool);

– Analysis time: The time (measured in minutes) taken by the tool to analyze a subject
app;

– Number of contaminated apps: Number of training apps that contain permission re-
delegation vulnerabilities;

– Threshold: the value used to flag outlier apps

To answer RQ1 and RQ4, we quantify the precision of the tool based on true positives
and false positives (Precision=TP/(TP+FP)). More specifically, when a tool reports a vul-
nerability, when source code is available, we manually inspect the part associated with the
reported vulnerability. When source code is not available, we resort to the test case gener-
ated by the tool and observe the actual runtime behavior exercised by the test case. We then
determine if the report is a true positive or a false positive. Note that since Covert and IccTA
do not generate test cases, we evaluated them only based on open source apps so that we
can verify their vulnerability reports. We answer RQ2 by using the analysis time to quantify
the cost of using the tool. To answer RQ3 and RQ4, we measure the recall of the tool based
on true positives and false negatives (Recall=TP/(TP+FN)).

The challenge here is to establish the false negatives, we would need to thoroughly
inspect the source code of the subject apps, and determine if they are vulnerable or abso-
lutely safe. This would require an overwhelming effort. Therefore, instead of conducting a
security review of all the subject apps to label them as safe/vulnerable, we conduct a con-
trolled experiment in which we apply two mutation operators to inject security faults that
reflect realistic permission re-delegation vulnerabilities into a set of randomly selected apps.
This provides us a benchmark for evaluating the recall, where all the apps in this benchmark
are vulnerable by construction.

We answer RQ5 by including a set of contaminated apps in the training set and evaluating
whether PREV can still detect the same permission re-delegation vulnerabilities as before.

20https://biniamf.github.io/PREV/
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We answer RQ6 by evaluating the impact of different threshold values on the number of
vulnerabilities detected.

8.3 RQ1: Precision

We ran our tool on the 1,258 subject apps. Each app under test (AUT) was subject to outlier
detection and test case generation steps shown in Fig. 6.

Given the available clusters (Section 5), we map each AUT to the cluster with most
similar app descriptions. We then obtain the permission re-delegation model inferred on the
corresponding cluster. Next, we ran API reachability analysis on the AUT, to identify those
privileged APIs that are reachable from public entry points. Out of all the 1,258 apps, 401
apps contain reachable privileged APIs.

We then performed anomalies identification, which basically checks if the identified
reachable privileged APIs are common or anomalous according to the permission re-
delegation model. PREV detected that in 324 apps, the reachable privileged APIs are
common according to the permission re-delegation model and therefore, they were classi-
fied as safe. The remaining 77 apps were classified as candidate vulnerable apps because
the reachable APIs in those apps are anomalous. These candidate vulnerable apps were
then subject to the test case generation phase of PREV, to automatically generate proof-of-
concept attacks. PREV successfully generated attacks for 30 of these apps. (Note: we also
used open source apps from those 77 apps to evaluate recall in Section 8.5.)

We then face the challenge of manually analyzing the apps for which a test case is gener-
ated, to label the analysis results as true positive (real vulnerability) or false positive (false
alarm). To classify a reported app as vulnerable, first we check that permission re-delegation
has occurred, i.e. that a test case makes the app execute a privileged API. Then we verify
whether this case of permission re-delegation is a vulnerability. To limit subjectivity in ver-
ifying this second condition we adopt these guidelines (explained in more detail later when
we discuss the results):

– Custom protocol: the vulnerability can be triggered only with a particular message that
follows an application-specific invocation protocol;

– System intents: the vulnerable component subscribed for system-generated events, but
it fails to check whether the notified event is actually generated by the system;

– Misuse of libraries: the vulnerable app performs an insecure use of a library that deals
with sensitive data;

– App description: a permission re-delegation causes the vulnerable app to perform a
privileged task that is not explicitly specified as a feature in the app description.

Table 4 shows the results. The first column shows the open source apps followed by
the closed source apps that are reported as vulnerable by PREV. The two columns (‘TP’
and ‘FP’) indicate whether the reported vulnerable app is a true positive or a false posi-
tive, respectively, based on our manual verification. Moreover, for each ‘TP’ case, the table
reports what guideline has been followed to manually classify it as a real vulnerability.

Analyzing the 1,258 subject apps, PREV reported 30 vulnerable apps — 7 open source
apps and 23 closed source apps. Manual inspection on the reported vulnerabilities revealed
that, for all of them, the test cases generated by PREV actually reached a privileged API.
Moreover, all the cases represent permission re-delegation vulnerabilities according to our
guidelines. In the following we discuss some of those cases in detail to highlight the reason
for their classifications.
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Table 4 Vulnerability report of PREV on open source and closed source apps

App TP FP Guideline

com.mendhak.gpslogger ✓ App Description

com.seafile.seadroid2 ✓ App Description

org.ligi.ajsha ✓ App Description

org.linphone ✓ App Description

org.tigase.messenger.phone.pro ✓ App Description

org.totschnig.myexpenses ✓ App Description

org.ttrssreader ✓ App Description

bestvalleygames.turningvalley ✓ App Description

com.akgun.uknews ✓ Custom Protocol

com.appportunity.androidpreviewer ✓ App Description

com.appreka.mycoop ✓ Misuse of Library

com.appsdv.smsmefitr ✓ Misuse of Library

com.aurorasi.aurorasfa ✓ Misuse of Library

com.bimandika.Congratulationsmalonepost ✓ System Intents

com.braingen.devanagarinotepad ✓ App Description

com.dinosaur.dinosaur vs zombie ✓ App Description

com.fmplural.radio ✓ App Description

com.innogang.kollywoodNews ✓ App Description

com.javirurro.games.spaceshipzigzag ✓ App Description

com.josejoaquin.traductor ✓ App Description

com.magmamobile.game.SpiderSolitaire2 ✓ Custom Protocol

com.netdania ✓ Custom Protocol

com.npes87184.s2tdroid ✓ App Description

com.rbsoftware.pfm.personalfinancemanager ✓ Misuse of Library

com.reverbnation.artistapp.i739749 ✓ System Intents

com.softdx.qrscanner ✓ App Description

com.superfanu.bryantbulldogrewards ✓ System Intents

com.vent ✓ Misuse of Library

lv.delfi.ru ✓ Custom Protocol

piproduction.frankthejew ✓ Custom Protocol

Custom protocol app components may use custom invocation protocols such as private
actions only known to the app (e.g., not specified in the intent-filter) or use specific val-
ues in custom extra parameters. Private action is an action that is private to the AUT,
because (i) the action name is not mentioned in the app intent-filter, where the call pro-
tocol is exposed to other apps; and (ii) the action name has the same prefix as the app
package name, e.g., the action com.example.TestApp.TEST ACTION for the app
com.example.TestApp; it is not from an included library or from the Android frame-
work. Therefore, this action is likely for internal use, i.e., only for components of the AUT or
only for apps developed by the same developers who know the internal details of the app. It
is highly unlikely that this component intends to accept action requests from other external
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apps. Therefore, when there is a permission re-delegation scenario in which intent mes-
sages can invoke such components, we believe that this is a developer’s mistake or she/he
adopts a security-by-obscurity approach. This is a vulnerability because it can be uncovered
by an approach like ours. This guideline was applied to classify 5 vulnerable apps such as
com.netdania and piproduction.frankthejew.

System Intents apps may subscribe for notification of system events via intent filters —
events that Android platform generates. For example, the app com.superfanu.
bryantbulldogrewards subscribed to be notified when the boot is complete, i.e., it has regis-
tered an intent-filter to receive an intent with ACTION BOOT COMPLETED action, which
Android platform generates on completing the boot. However, the component of this app
does not validate that this notification was actually sent by the system. It blindly assumes
that any intent sent to this component is from the system and processes as such. Therefore,
when the intent filter specifies a system action but the app code does not validate intent
data, we assume that it is a programming mistake and we classify the case as a permission
re-delegation vulnerability. This guideline was applied to classify 3 vulnerable apps.

Misuse of Libraries apps may be granted with special permissions to use libraries
that deal with sensitive data; but they are expected to adhere to the security policies
specified in the library documentations. Therefore, when an app uses a special library in
a way that violates the library security policies, we assume that it is a programming mis-
take and classify the case as a permission re-delegation vulnerability. For instance, the
apps com.appsdv.smsmefitr and com.aurorasi.aurorasfa use the OneSignal and Google Ana-
lytics libraries, respectively. However, the app components using those libraries process
broadcasts without verifying that the intent, specified with the protected broadcast action

ACTION MY PACKAGE REPLACED, is actually sent by the PackageManager (the sys-
tem). System actions such as ACTION MY PACKAGE REPLACED are actions that can only
be set by the system when sending an Intent. If an app registers to receive a broadcast
Intent with such actions, the Android system guarantees that the Intent is sent only by the
system. However, apps still have to verify if the Intent they receive is actually sent by the
system by checking if the action matches exactly the one that they registered to receive. If
an app fails to verify and simply assumes that the Intent came from the system, then the
app is potentially vulnerable. This is because a malicious app may send an Intent directly to
the vulnerable app component with an arbitrary action and trick the app into performing a
privileged action. This guideline was applied to classify 5 vulnerable apps.

App Description if none of the previous consideration applies, we resort to the features
described in the app descriptions to understand if permission re-delegation is intentional.
From the descriptions, one can find out about the primary features of an app (e.g., accessing
the camera by a photography app). It might be the intention of the developer to expose these
primary features to other apps (and let other apps request this app to take pictures on their
behalves). However, when features that require privileged permission but not described in
the description are exposed to other apps, we assume that it is not the developer’s inten-
tion and classify the case as a permission re-delegation vulnerability. For instance the app
com.appportunity.androidpreviewer is described as a gallery of apps, to help developers
keep track of their apps. However, the app exposes camera features to other apps, without
mentioning it in the description. This guideline was applied to classify 17 vulnerable apps.
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In some cases, multiple guidelines apply. For example, com.bimandika.
Congratulationsmalonepost misuses a library without checking for permission and it does
not validate the sender for system intents.

Based on these results, we formulate the subsequent answer to RQ1:

Analyzing 1,258 apps, PREV reported 30 vulnerable apps without any false alarm
(Precision=100%). The implication is that security analysts could use PREV to
precisely identify vulnerabilities without any false alarm.

8.4 RQ2: Cost

We investigate the cost of PREV in terms of analysis time. First we discuss the cost of
learning permission re-delegation models:

Before testing any given AUT, the permission re-delegation models were learnt by run-
ning our tool on 11,796 apps, as described in Section 5. PREV took 250 hours of CPU time
to learn the models from 11,796 training apps. The bottleneck was static analysis. Most of
the time was spent on extracting reachable APIs (approximately 1.275 minutes per app).
Natural language processing, clustering, and model inference was quite fast (a magnitude
of minutes in total). Since Android is always evolving (e.g., change of permission mech-
anism), the models should be updated whenever newer set (or versions) of reference apps
become available. But, first of all, this training step does not have any real-time require-
ment. For testing a given set of apps under test, this step needs to be conducted only once.
Model update can also be done incrementally, by analyzing a new app or a new version as
soon as it is posted on the app store. It is not necessary to conduct static analysis on the
whole training set. This would reduce the training time to significantly less than 250 hours.
Moreover, in this experiment, we used a personal computer; however in actual industrial
settings the cloud could be used instead and the analysis of distinct apps can be scheduled as
independent jobs on distinct cloud hosts. Hence, we consider this training cost as affordable.

Next, we discuss the cost of analyzing a given AUT:
Outlier detection was performed on all the 1,258 apps; test case generation occurred only

on the 77 apps that were reported as potentially vulnerable by the outlier detection phase
of PREV. The time taken to perform outlier detection analysis is displayed in the boxplot
in Fig. 15. As shown in the boxplot, on average, it took less than one minute and a half to
complete the analysis. Only a few apps took a longer time (represented as outlier dots in the
boxplot) and this was due to the use of complex libraries in the AUT.

Time taken to perform test case generation is shown in Fig. 16. Test case generation took
longer than outlier detection; on average it takes less than 25 minutes per app. This is due to
the genetic algorithm exploring the search space when trying to find an executable scenario
that represents proof of concept attack. This duration depends on the timeout setting in the
experimental configuration.

Considering these results we formulate the subsequent answer to RQ2:

Outlier detection phase took 1.275minutes on average. Test case generation phase
took 25 minutes on average, but it is performed only for apps reported by outlier
detection. It will take longer to use PREV when themodels need to be updated. But
this is typically an offline activity with no real-time requirement. Therefore, in gen-
eral it would only take a magnitude ofminutes to determine if an app is vulnerable.
Overall we consider that the cost of using PREV is affordable in practice.
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Fig. 15 Time (in minutes) taken
for outlier analysis (above) and
descriptive statistics (below)
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8.5 RQ3: Recall

To answer RQ3, we evaluate if PREV misses any vulnerabilities. We use two sets of known
vulnerable apps. The first set of apps consists of 20 mutated apps which were subject to
mutation. The second set of apps are 35 apps that were used earlier in Section 8.3.

Mutation tools are available to inject artificial faults in Java code, such as Major (Just
2014), Pit (Coles et al. 2016), muJava (Ma et al. 2005), JavaLanche (Fraser and Zeller 2011)
and Mdroid+ (Moran et al. 2018). They would represent valuable resources to construct an
independent benchmark to investigate RQ3. However, we found that these mutation tools
are not compatible with our experimental settings. Most of them are not specific to Android
and they produce programming errors when mutating arithmetic expressions, boolean con-
ditions in decision points, types and references. Mdroid+ (Moran et al. 2018) is the only
Android specific mutation tool. It supports a set of mutation operators for producing realis-
tic faults in Android apps. However, we found that those faults do not relate to permission
re-delegation vulnerabilities.

Thus, we had to develop our own mutation tool. We defined two mutation operators
for generating permission re-delegation vulnerabilities that reflect real-world vulnerabilities
reported by Felt et al. (2011). We built a tool that applies these two mutation operators
to inject permission re-delegation vulnerabilities in Android apps. Mutated apps are then
subject to analysis using PREV. Since defining these operators and generating mutants is
out of the scope here, we leave the details of this process in Appendix A.

Regarding the first set of apps, we started by a random sample of apps, consisting of 50
apps from the official store and 80 apps from open-source repository. We apply mutations
to these apps to inject permission re-delegation vulnerabilities. Since an app might contain
multiple components and multiple privileged APIs, the same operator might create several
distinct mutated versions for the same app.
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for test case generation (above)
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However, due to implementation limitations, our mutation operators sometimes fail in
generating a working vulnerability in the following cases:

– The mutated app crashes;
– The privileged API call is in a path that is not realizable from public entry points, due

to certain path conditions in place;
– A path involves a UI event, such as a click event;
– A mutated component only accepts intents sent by the system.

We manually checked the mutants and discarded such cases.
Finally, our first set of apps consists of 20 mutants vulnerable by construction — 11 from

closed source apps and 9 from open source apps — generated from 14 different original
apps. Each mutant contains one injected vulnerability; some mutants are generated from the
same original app but injected with different vulnerabilities.

The results of PREV on this benchmark is shown in Table 5. The top part shows the
results corresponding to the mutants of closed source apps and the bottom part shows the
results corresponding to the mutants from open source apps. The mutant name (first column)
is a concatenation of the original app name, the mutation operator, and the unique-id of the
component subject to mutation. As shown in Table 5, three distinct mutants were generated
from the same app com.nextcloud.client. A tick-mark “✓” is present in the second column
(TP) when PREV generated a test case for the corresponding mutant. Conversely an x-mark
“✗” is reported in the third column (FN) when no test case was generated.

As shown in Table 5, among the mutated closed source apps, PREV detected 7 out of 11
vulnerable apps but missed four. Among the mutated open source apps, PREV detected 8
out of 9 vulnerable apps but missed one. In the following we discuss those missed cases.

PREV failed in generating a successful test case for lwcr46lion.lwp exposed
360 because the app expects a media URL (e.g., a URL pointing to .mp4 file) with an

advertisement to display. When apps are expecting an intent $data field with a URI that
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Table 5 Vulnerability report of PREV for mutated apps

Mutant TP FN

com.colortime.mandala exposed 99 ✓

com.compasskeyboards.skullkeyboards exposed 63 ✓

com.khampat.damdawi.in exposed 63 ✓

com.khampat.damdawi.in exposed 158 ✗

com.khampat.damdawi.in exposed 165 ✓

com.kisstakoala.vehiclesfree direct 1 ✓

com.mademin.avoidthecircles direct 1 ✓

com.mademin.avoidthecircles exposed 47 ✗

com.mfoundry.mb.android.mb 252070299 exposed 331 ✓

com.tdelphiblog.LazyShaker exposed 33 ✗

lwcr46lion.lwp exposed 360 ✗

com.futurice.android.reservator 17 exposed 2 ✓

com.junjunguo.pocketmaps 8 exposed 22 ✓

com.newsblur 138 direct 1 ✓

com.newsblur 138 direct 5 ✓

com.nextcloud.client 10040299 exposed 13 ✗

com.nextcloud.client 10040299 exposed 81 ✓

com.nextcloud.client 10040299 exposed 108 ✓

net.mypapit.mobile.myposition 12 direct 1 ✓

org.ligi.gobandroid hd 258 exposed 35 ✓

meets some conditions, these conditions are usually specified in the intent-filter. As dis-
cussed in Section 7.2, the test case generation phase relies on intent-filters in order to seed
the $data field. However, this component does not specify an intent-filter at all (only the
attribute exported is set to true). While the test case generation can seed other intent
fields, such as $action and $extra, from the component’s code even if they are not
specified in the manifest file, the $data field is seeded either from the intent-filter or the
component code only when the specification exists in the manifest file. As this component
does not specify an intent-filter, our approach failed in generating the $data field that
was essential to test this app. Similarly, the remaining 4 apps require inputs of specific data
structures that could not be generated automatically and therefore, are missed.

Regarding the second set of vulnerable apps, we first looked at the 77 apps, used in
Section 8.3, that were reported by our outlier detection phase. PREV correctly reported 30
apps as vulnerable (as discussed in Section 8.3). The remaining 47 apps were not reported as
vulnerable because our final test generation phase was unable to generate proof-of-concept
test cases. Out of these 47 apps, 16 are open source apps and thus, we were able to manually
inspect the source code of these 16 apps. Manual investigation revealed the following:

– Five apps are actually vulnerable but missed by our tool. The reason is because our test
generator was unable to generate the intent messages as required by those apps due to
the similar problems explained above (missing intent-filter specifications);

– Four apps are not exploitable as the components are protected by custom permissions;
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– Seven apps involve UI event-based paths that include user interactions (such as
touches). Hence, they are not considered vulnerable (see Precondition PR1 in
Section 3.2).

In summary, the first set of apps contains 20 vulnerable apps. PREV detected 15 of them
and missed five vulnerable apps. The second set of apps contains 35 vulnerable apps. PREV
detected 30 of them and missed five vulnerable apps. Considering these results we formulate
the subsequent answer to RQ3:

PREV detected 45 out of 55 vulnerable apps (Recall=81.8%). The implication
is that security analysts can use PREV to detect 81.8% of the apps containing
permission re-delegation vulnerabilities.

8.6 RQ4: Comparison

To investigate RQ4, we compare PREV with Covert (Bagheri et al. 2015) and IccTA (Li
et al. 2015).

We chose to compare our approach with Covert because it is designed to detect privilege
escalation and permission re-delegation is a type of privilege escalation. It is a compositional
analysis tool where a set of apps is analyzed together to see if there is a potential composite
ICC vulnerability.

IccTA is not specifically designed to detect permission re-delegation vulnerabilities. It is,
however, a widely-used generic tool built for various program analysis purposes for Android
apps. It uses static taint analysis, a mainstream technique for various security analyses
such as data leaks and privilege escalation. In principle, when configured with appropri-
ate sources and sinks, it can be used to detect permission re-delegation vulnerabilities.
IccTA implements static taint analysis approach that analyze inter-component communica-
tion (ICC). It is built on top of FlowDroid (Arzt et al. 2014) and IC3 (Octeau et al. 2015).
IC3 is used to resolve targets in ICC, while FlowDroid is used to perform static taint analy-
sis. In IccTA, we configured the ICC APIs (e.g., getIntent()) as sources and configured
all the APIs that require special permission as sinks (listed in Pscout (Au et al. 2012)). If
there is a data flow from a source (i.e., data sent from another app or another component) to
a sink (i.e., performing privileged action), it is a case of permission re-delegation. We con-
figured IccTA to report such cases. We note that such permission re-delegation cases are not
necessarily vulnerabilities. Some of these cases could be the intended features of the app
and thus, safe cases. ICC is a feature of Android framework. On the other hand, this in fact
motivates the need of an approach like ours, for more precise vulnerability detection. In the
following, we compare the results by discussing what cases are genuine vulnerabilities and
what cases are safe cases.

We ran Covert and IccTA on the open source apps (595 open source apps that we used
in Section 8.3 and the 20 mutated apps that we used in Section 8.5). We ran these tools on
the closed source apps as well but we shall only discuss their results based on the analysis
of open source apps. This is because these tools reported a large number of vulnerabilities
in the closed source apps and it was difficult to verify them as we cannot inspect the source
code and the tools do not generate proof-of-concept test cases. For each vulnerability report
generated by these tools, we manually inspected the source code to establish the ground
truth, i.e.,classify the report as a real vulnerability or as a safe case.
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Table 6 Vulnerability report of Covert on open source apps

App Vulnerable Intentional Intra-comp. Private System

Behaviour Intent Components Intent

be.brunoparmentier.openbikesharing.app ✗

com.briankhuu.nfcmessageboard ✗

com.duckduckgo.mobile.android ✗

com.hectorone.multismssender ✗

com.mschlauch.comfortreader ✗

com.newsblur ✗

com.seafile.seadroid2 ✗

com.xperia64.timidityae ✗

de.hirtenstrasse.michael.lnkshortener ✗

de.jkliemann.parkendd ✗

de.syss.MifareClassicTool ✗

de.yazo games.mensaguthaben ✗

net.kervala.comicsreader ✗

org.glucosio.android ✗

org.marcus905.wifi.ace ✗

org.nerdcircus.android.klaxon ✗

org.tigase.messenger.phone.pro ✓

se.anyro.nfc reader ✗

Results of Covert The results of Covert on the open source apps is shown in Table 6. The
first column shows the apps reported as vulnerable by Covert. The second column shows
whether the reported vulnerable app is actually vulnerable. The remaining columns show
whether the report is a safe case categorized as “Intentional Behaviour”, “ Intra-comp.
Intent”, “Private Components” or “System Intent”. From our manual analyses, we observed
that safe cases are cases of app’s intentional behaviour, cases that can be activated only with
an intra-component intent, cases that involve only private components, or cases that can be
activated only with system intent.

Covert reported hundreds of vulnerabilities in the open source apps. However, only 18
of them are related to permission re-delegation. Out of these 18 vulnerabilities, only one is
a real vulnerability and the rest are all safe cases. We manually verified and determined the
safe cases as follows:

– Intentional behavior: some reported apps receive data from other apps (compo-
nents) and use privileged APIs. These are cases of permission re-delegations.
However, our inspection found that those cases actually implement app features
declared in app’s descriptions (intended features). For example, com.newsblur,
com.mschlauch.comfortreader, com.duckduckgo.mobile.android
and se.anyro.nfc reader are browser, NFC reader and news/document reader
apps, respectively; and browsing and data reading features are clearly declared in their
Play Store descriptions. Therefore, those reports are actually safe cases of permission
re-delegation. Most reports fall under this category.

– Intra-component intent: for some reported apps, the intent can only come from a
component within the same app (i.e., result of startActivityForResult call).
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Hence, those reports are actually safe cases, because the intent originates from the same
app.

– Private components: for the reported app com.briankhuu.nfcmessageboard,
the components in question are not exported. Therefore, they are only accessible within
the same app and thus, not exploitable.

– System intent: for the reported app be.brunoparmentier.openbikesharing.
app, the intent returned from the system component, AccountManager, is reported
to be potentially dangerous. Since the intent actually comes from the Android system,
we consider this as safe.

Regarding the 20 mutated apps, Covert did not report any of them as vulnerable. Thus, it
missed all the vulnerabilities.

Results of IccTA Table 7 presents the results of running IccTA on our open source apps
dataset. IccTA produced several reports for most apps. After manually investigating each
report, we found that all the reports are not cases of permission re-delegation vulnerabili-
ties. Those reports are cases of app’s intentional behaviour, cases that involve only private
components, cases that involve user interaction, or cases of overtainting. The first two types
of cases are the same as Covert’s. In the following, we explain the other two types of cases.

– User interaction: some reported apps such as com.newsblur and com.ringdroid
require the user to interact. If a user is involved, it is either an intended behavior or
an action that can be aborted by the user. Therefore, we do not consider this as a
vulnerability (See Precondition PR1 in Section 3.2).

– Overtainting: for some reported apps such as de.syss.MifareClassicTool, the
result of IccTA is affected by overtainting. For example, an activity instance containing
an untrusted field is tainted. This instance is then used in a callback function but the

Table 7 Vulnerability report of IccTA on open source apps

App Vulnerable Intentional Private User Overtainting

Behaviour Components Interaction

com.alfray.timeriffic ✗

com.commonsware.android.arXiv ✗ ✗

com.newsblur ✗

com.mschlauch.comfortreader ✗

com.ringdroid ✗

cz.romario.opensudoku ✗

de.jkliemann.parkendd ✗

de.syss.MifareClassicTool ✗

mobi.boilr.boilr ✗

moe.minori.pgpclipper ✗

org.jfet.batsHIIT ✗

org.sixgun.ponyexpress ✗

org.smc.inputmethod.indic ✗

se.anyro.nfc reader ✗ ✗

sk.halmi.fbeditplus ✗
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field does not actually influence the invocation of any privileged API; hence this is a
safe case.

As shown in Table 7, some reported cases correspond to more than one category of safe
cases. Regarding the 20 mutated apps, IccTA did not report any of them as vulnerable. Thus,
it missed all the vulnerabilities.

Table 8 shows the summary of results among PREV, Covert, and IccTA. Column
‘Detected’ refers to the number of real permission re-delegation vulnerabilities that are
detected; Column ‘Safe’ refers to the number of cases that are reported as permission re-
delegation vulnerabilities, but are considered safe according to our safe-cases rationale
described above; Column ‘Missed’ refers to the number of vulnerabilities in mutated apps
that are missed.

Considering these results we formulate the subsequent answer to RQ4:

PREV significantly outperforms Covert and IccTA in detecting permission re-
delegation vulnerabilities because, according to our definition of permission
re-delegation vulnerability, those tools missed the vulnerabilities detected by
PREV, except the one vulnerability detected by Covert.

8.7 RQ5: Robustness

PREV detects vulnerable apps based on the permission re-delegation models that are learned
on a large number of “safe” (benign and non-vulnerable) training apps. The detection accu-
racy might degrade when the quality of training apps degrades. Even though we carefully
selected the “safe” apps (see Section 5), there is still a risk that some apps with security
defects are included in the training set. In this case, our models may characterize these
defects and PREV would not detect them as anomalies according to these models.

However, since PREV adopts a threshold-based algorithm, we made the assumption that
it is robust against the inclusion of a small number of non-safe apps in the training set. Here
we validate this assumption and quantify the robustness against the presence of non-safe
apps in the training set.

Given vulnerability v, occurring in the app a that was assigned the cluster c, we define
robustness(v) as the number of occurrences of vulnerability v that need to be included in the
training set (in cluster c) to cause PREV not able to detect v.

To this aim, we gradually degrade the training set by replacing the safe apps with con-
taminated apps — apps that contain the same vulnerable permission re-delegation behaviors
as those apps PREV correctly detected as vulnerable in Section 8.3. Learning is repeated

Table 8 Summary of comparison between PREV, Covert, and IccTA

Open source apps Mutated apps

Tool Detected Safe Detected Missed

PREV 7 0 15 5

Covert 1 17 0 20

IccTA 0 15 0 20
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on this new, degraded training set and the same experiment as in Section 8.3 is repeated, to
assess if PREV is still able to detect the same vulnerabilities despite the contaminated train-
ing set. If PREV can still detect the same vulnerabilities, more and more contaminated apps
are added to the training set and the process is iterated, until PREV can no longer detect the
vulnerabilities; the number of contaminated apps at the last iteration gives us a robustness
measure with respect to vulnerability v and cluster c.

More specifically, we consider the API frequency matrix M that was originally con-
structed at model inference step for a given cluster (see Section 5.3). An example of this
matrix is shown in Fig. 17a. Rows represent apps in the training set and columns repre-
sent privileged APIs; a cell contains the value 1 when the API in the column is exposed
(reachable from a public entry point) and the value 0 if the API is not exposed/used in the
app.

Camera.open() in Fig. 17 is a privileged API associated with a permission re-
delegation vulnerability that PREV detected on the subject app com.appportun-
ity.androidpreviewer. PREV detected the vulnerability based on the permis-
sion re-delegation model learnt on the training apps of the cluster to which the subject
app belongs (cluster 20). Now, we degrade this training set by modifying the API
Camera.open() as reachable in TrainingApp2, a training app from the same cluster as
com.appportunity.androidpreviewer. This in fact corresponds to changing a
value from 0 to 1 in the third column of the matrix. The change is highlighted in bold-
face in Fig. 17b. In this way, we contaminate the training set, by making the privileged but
uncommon API Camera.open() more frequent and, thus, less likely anomalous.

In this experiment, PREV still detected the vulnerability due to the reachable API Cam-
era.open() when the original training set is degraded with one contaminated app; but it was
not able to detect the vulnerability anymore when it is degraded with two contaminated
apps.

The experimental results are shown in Table 9. We can observe that our approach can
still detect the same vulnerable apps (as using the original training set) even if the training
set includes a few contaminated apps, ranging from 2-7 apps depending on the cluster. The
table also shows the sizes of the clusters to which the vulnerable apps belongs.

These data are also shown as histogram in Fig. 18. It displays the distribution of robust-
ness for the different vulnerabilities that PREV detected in official apps. For the majority
of the vulnerabilities — 13 apps corresponding to the highest bar in Fig. 18 — PREV has
robustness of five. The lowest robustness is two, which is observed for 4 apps. The highest
robustness is seven, which is observed for 4 apps.

Fig. 17 API frequency matrix M . 1=the app exposes the API, 0=otherwise. a Original training set. b
Contaminated training set
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Table 9 Numbers of contaminated apps in training set that cause PREV fail to detect vulnerabilities

App Number of Contaminated Apps Cluster size

bestvalleygames.turningvalley 5 443

com.akgun.uknews 7 337

com.appportunity.androidpreviewer 2 438

com.appreka.mycoop 5 537

com.appsdv.smsmefitr 3 410

com.aurorasi.aurorasfa 5 537

com.bimandika.Congratulationsmalonepost 3 410

com.braingen.devanagarinotepad 5 469

com.dinosaur.dinosaur vs zombie 5 443

com.fmplural.radio 3 293

com.innogang.kollywoodNews 7 337

com.javirurro.games.spaceshipzigzag 3 410

com.josejoaquin.traductor 3 311

com.magmamobile.game.SpiderSolitaire2 3 410

com.netdania 5 537

com.npes87184.s2tdroid 7 337

com.rbsoftware.pfm.personalfinancemanager 5 537

com.reverbnation.artistapp.i739749 7 337

com.softdx.qrscanner 5 537

com.superfanu.bryantbulldogrewards 3 410

com.vent 5 537

lv.delfi.ru 5 469

piproduction.frankthejew 3 410

com.mendhak.gpslogger 4 380

com.seafile.seadroid2 2 537

org.ligi.ajsha 2 537

org.linphone 2 380

org.tigase.messenger.phone.pro 5 453

org.totschnig.myexpenses 5 537

org.ttrssreader 5 410

From Table 9, we can compute that the median value for the number of contaminated
apps is 5 and the median cluster size is 424. It means that most of the vulnerable apps can
still be detected if there are less than 1.18% of apps in each training cluster, which have the
same vulnerabilities (based on the median values).

Considering these results we formulate the subsequent answer to RQ5:

PREV is robust against the inclusion of non-safe apps in the training set to a cer-
tain extent. To bypass PREV, there must be a few apps (1.18% of apps in the
cluster) that have the same vulnerability as the AUT (i.e., the same re-delegated
API is used) and that fall into the same cluster as the AUT.
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Fig. 18 Histogram showing the
levels of training set
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8.8 RQ6: Threshold

The vulnerability detection algorithm is based on the boxplot approach, and a case is classi-
fied as an outlier when its distance d is larger than the threshold toutlier . We are interested in
studying the impact of different thresholds on the vulnerability detection capability of our
approach.

To investigate this research question, we consider the list of apps correctly detected as
vulnerable in Section 8.3. It consists of 30 apps (either open source and closed source),
which have been classified as vulnerable by PREV and have been manually verified.

The experiment consists of changing the threshold value and verifying how many of these
apps can still be detected as vulnerable. We expect that the larger the threshold we use, the
fewer vulnerable apps would be detected.

To compute new threshold values, we add a multiplication factor α in the definition of
threshold from Section 5.3. The threshold definition is updated as follows:

toutlier = Q3 + α1.5(Q3 − Q1)

If α = 1, we have our original definition of threshold. New threshold values are obtained
by using different values of α, and are used to repeat the classification procedure.

Figure 19 shows the results of this experiment. It shows the true positives against the
increasing values of α. The number of true positives is the same until α ≤ 1.33. It then drops
significantly and reaches 17 (nearly half of the initial value of 30) at α = 1.6. Eventually,
no vulnerability can be detected at α ≥ 2.

Considering these results, we can answer to RQ6 in this way:

PREV is sensitive to the threshold used to detect outliers. In particular, the number
of detected vulnerabilities drops to almost half when increasing the threshold by a
30% factor, and no app is classified as vulnerable with a threshold increased by a
100% factor.
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Fig. 19 Impact of different thresholds on vulnerability detection

8.9 Limitation and Discussion

Despite the positive results obtained, our current approach may be affected by some
limitations that we discuss here:

Learning from Training Apps If the training apps we use are not sufficient or representa-
tive of real world, safe apps, the inferred models would be incomplete. Consequently, our
approach may be imprecise. Incomplete training set could miss some cases of legitimate
permission re-delegation. Training apps in the same clusters having the same vulnerable
permission re-delegation behaviors would limit the capability of our tool to detect vulner-
abilities. This could be the case when developers copy-paste the same piece of vulnerable
code from unreliable sources or when they include vulnerable libraries in their apps.

Our counter argument is that, as we motivated in Section 1, apps re-delegating and exe-
cuting privileged tasks is generally a feature itself. It could be a false alarm if an app is
flagged as vulnerable just because the app performs such an action. As such, learning legit-
imate permission re-delegation behaviors from reference apps is one major design of our
approach to avoid many false alarms, despite the trade-off of false negatives. Our current
best effort to mitigate this trade-off is using only apps from top, most-downloaded apps
from well-reputed companies as the reference apps; since the learning requires tens of thou-
sands of apps, it is impractical to manually inspect all of them and make sure they are all
actually “safe”. In our future work, we plan to mitigate the problem of apps with vulnera-
ble libraries by incorporating recent vulnerable library detection approaches (Backes et al.
2016; Ma et al. 2016) and by excluding them from training.

AppDescriptions Our approach is based on the apps descriptions available in the App Store
for learning the permission re-delegation models. An app description typically describes
about the features offered by the app. Our approach relies on this information to group
apps with similar features. However we do not assume that app description describes much
about permission re-delegation behaviors, because they may be implicit. Our assumption
here is that, for training apps, their apps descriptions are consistent with their permission re-
delegation behaviors, i.e., reference apps with similar features implement similar permission
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re-delegation behaviors. It could result in false positives and false negatives when a group
of training apps with a similar description implements different permission re-delegation
behaviors.

Evasion Our approach requires that the app under test contains a description that is (i) in
English and (ii) with a minimum length of 10 words. When its description is not informa-
tive or not detailed enough to assign it to the correct cluster, a sub-optimal cluster might
be identified for the app, leading to incorrect classification of its behavior. Hence, a mali-
cious app may evade our analysis by negating either of these requirements. To satisfy the
first requirement, automatic translation tools could be used to obtain corresponding English
text for a given app description in a different language. When an app evades the second
requirement, e.g., by publishing the app with no description, it would be suspicious and is
unlikely to gain trust from end-users. Furthermore, when an app store is interested in using
our approach, the app store could enforce these two requirements and reject apps that do not
meet them. Honest app developers may also be willing to scan her/his app for vulnerabili-
ties before publishing the app and thus, they would have an incentive to provide appropriate
app descriptions.

Static Analysis Like many other static analysis-based approaches, our static analysis suffers
from its inherent weaknesses. Call graphs generated by our underlying static analysis tool
(FlowDroid) may not be sound and complete. The tool may miss call edges in the presence
of complex code such as obfuscated code, native code and reflection and dynamic code
loading. This could result in false negatives when the missing edges are those from public
entry points to a privileged API. It may also generate spurious additional edges for code
such as Thread runnables. In this case, it may result in false positives.

Our approach does not perform taint analysis or consider data sanitization functions that
sanitize input data from other apps or discard them when the data violates security policies.
It only analyzes control dependencies and reachability in the call graph, according to the
threat model we consider (Section 3). Our approach reports a privileged API call as a vul-
nerability even if it may not use the data controlled by the attacker. This is intentional and
designed to avoid false negatives, because permission re-delegation vulnerabilities do not
necessarily result from data flows and data usage. A false positive could happen when the
privileged action is performed using the input data only after they have been sanitized. How-
ever, our empirical result of zero false positive suggests that our anomaly detection phase
helps mitigate such false positives, by learning those safe cases from the training apps.

Test Generation Like any other test generation-based approach, the code coverage of our
test generator is also limited. Although we apply genetic algorithm, a state-of-the-art tech-
nique for test generation, it may still not be able to generate proof-of-concepts for some of
the target paths, possibly resulting in false negatives. Our test generator can be improved if
seed values can be more accurately identified. This can be done by modeling string oper-
ations and solving constraints on string values. In future work, we plan to combine our
genetic algorithm-based test generator with a string constraint solving technique such as
Thome et al. (2020) for more effective test generation.

Supported Components Our approach analyzes Activities, Broadcast Receivers and Ser-
vices. But it does not analyze Content Providers. Content Providers manage access to app
data and are more subject to data leak issues. However, our approach focuses on permis-
sion re-delegation issues that leak capabilities/privileges. Detecting data leaks from Content
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Providers is out of our scope. Due to the incompleteness problem of the underlying static
analysis tool highlighted above, our current implementation cannot handle dynamically
registered Broadcast receivers as well. But this is rather a limitation of the tool not the
approach.

Dynamic Permissions In recent versions of Android, even if permissions are still required
to be declared in the manifest, they can be granted and revoked by the user during runtime.
Our approach does not model this dynamic revocation possibility. Instead, our approach
assumes the most dangerous scenario of an end-user who is not security aware, where all
the permissions requested are always granted and, thus, if they are exposed, a permission
re-delegation vulnerability is reported.

To summarize, our approach is neither sound nor complete due to various practical limi-
tations of program analysis and machine learning. However, based on our empirical results,
we can argue that our tool resulting from such an approach can automatically detect many
permission re-delegation vulnerabilities with a very low false alarm rate (zero false alarm in
our experiments) in a matter of minutes. Hence, the implication is that while our approach is
neither sound nor complete, it has practical benefits since the detected vulnerabilities come
at almost zero cost. As we make our tool and dataset publicly available, researchers can
replicate and/or repeat the experiments to validate or refute our claims.

9 RelatedWork

Our work is related to the work that deals with permission re-delegation problems or
information leaks (closely-related vulnerabilities) on smart phones.

Natural Language Processing and Machine Learning The approaches proposed in Mud-
flow (Avdiienko et al. 2015), Chabada (Gorla et al. 2014), and Anflo (Demissie et al. 2018)
are closely related to ours. Mudflow (Avdiienko et al. 2015) uses static data flow analysis
to learn data-flow patterns of apps. The main difference with our approach is that Mudflow
learns data-flow patterns from all available benign apps and compares the patterns of the
given app under test against all those learnt patterns, whereas our approach compares them
only based on similar apps. We apply similar techniques as Chabada (Gorla et al. 2014) in
terms of natural language processing of apps descriptions and clustering of apps. But the
goals differ. The goal of their approach is to find anomalous apps among the apps in the wild.
Ours specifically targets at detecting permission re-delegation vulnerabilities in a given app.
Chabada reports anomalies based on the presence of privileged API calls only, whereas, we
consider execution paths from public entry points to privileged API calls related to permis-
sion re-delegation. Anflo (Demissie et al. 2018) relies on apps descriptions to group similar
apps together. However, Anflo uses only the dominant topic to group together similar apps
whereas PREV considers all topics probabilities to improve clustering. The major differ-
ence with Anflo and PREV is that Anflo uses the information-flow model to find anomalous
information flows, whereas PREV uses permission re-delegation model to find anomalous
permission re-delegations. All the above-mentioned approaches do not incorporate dynamic
analysis and test case generation, which is used by our approach to reduce false positives.

Permission Re-Delegation Another closely related work is the work by Felt et al. (2011),
which first introduced the permission re-delegation problem. Chin et al. (2011), Lu et al.
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(2012), and Zhong et al. (2012) also presented similar approaches. These approaches iden-
tify all possible entry points of an app and then perform data-flow analysis starting from an
entry point until a privileged API is reached. However, Felt et al. and Chin et al. acknowl-
edged that such approaches detect permission re-delegation cases but cannot distinguish
between intended cases and vulnerable ones, and thus, possibly produce many false alarms.
In our previous work (Avancini and Ceccato 2013) we also proposed two preliminary
solutions for detecting permission re-delegation using either static or dynamic analysis.
However, this work was incomplete because it could not distinguish between vulnerabil-
ities and safe cases of permission re-delegation. Our new approach presents an extension
of this threat model by imposing an additional precondition. It concludes the existence of
permission re-delegation vulnerability in an app only when permission re-delegation in the
app is inconsistent with permission re-delegation observed among similar apps. Empiri-
cal evidence suggests that our approach was accurate in detecting permission re-delegation
vulnerabilities without producing false alarms.

Static Analysis Several static taint analysis-based approaches (Wei et al. 2014; Gordon
et al. 2015; Sbı̂rlea et al. 2013; Octeau et al. 2013; Octeau et al. 2015; Tsutano et al. 2017;
Mann and Starostin 2012; Li et al. 2015; Klieber et al. 2014; Au et al. 2012; Junaid et al.
2016; Bagheri et al. 2015; Xu et al. 2017; Bosu et al. 2017; Lu et al. 2015) have been pro-
posed to detect information or privacy leaks in mobile apps. These approaches are related
since they can be adapted to address the permission re-delegation problem. Tainted sources
are system calls that access private data (e.g., global position, contacts entries), while sinks
are all the possible ways that make data leave the system (e.g., network transmissions). An
issue is detected when sensitive information from tainted sources could potentially leave the
app through one of the sinks. In the following, we discuss some of the recent approaches
and explain the major differences.

Droidsafe (Gordon et al. 2015) is a static information flow analysis tool that can detect
potential information leaks in Android apps. Amandroid (Wei et al. 2014) detects privacy
data leaks due to inter-component communication (ICC) in Android apps. Epicc (Octeau
et al. 2013) identifies ICC connection points by using inter-procedural data-flow and points-
to analysis. IC3 (Octeau et al. 2015) improves Epicc by using complex techniques to resolve
targets and values used in ICC. Similar to Epicc, Tsutano et al. (2017) also analyzes inter-
acting apps. However, instead of combining apps for analysis, it uses a static class loader
that enables analysis of a large number of interacting apps. IccTA (Li et al. 2015) attempts
to improve static taint analysis of Android apps in ICC by modeling the life-cycle and call-
back methods by instrumenting the code of the app. DidFail (Klieber et al. 2014) detects
data leaks between activities through implicit intents. But it does not consider other compo-
nents and explicit intents. Grace et al. (2012) perform static analysis in stock Android apps
released by different vendors, to check the presence of any information leak. Since ven-
dors modify or introduce their own apps, they might also introduce new vulnerabilities. The
work, however, is limited to stock apps on specific vendor devices. Dexteroid (Junaid et al.
2016) reverse engineers life cycle models of Android components and detect privacy data
leaks. AAPL (Lu et al. 2015) performs multiple specialized static analyses such as condi-
tional flow identification and joint flow tracking for more accurate detection of privacy data
leaks. It additionally employs a technique called peer voting to filter out legitimate privacy
leaks. Peers are determined based on Google’s app recommendation system.

All the above-mentioned approaches apply static analysis techniques on mobile code
similarly to ours so as to detect information sources and sinks. Apart from the difference in
the threat model, the major difference of our approach from the above-mentioned techniques
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is providing execution scenarios. We are particularly interested in accurately detecting per-
mission re-delegation vulnerabilities. Therefore, for accuracy, we propose an approach that
seamlessly incorporates machine learning and test case generation into static analysis.

Dynamic Analysis and Runtime Monitoring TaintDroid (Enck et al. 2010) is a tool for
performing dynamic taint analysis. It relies on a modified Android installation that tracks
tainted data at run-time. The implementation showed minimal size and computational over-
head, and was effective in analyzing many real Android apps. ARF (Gorski and Enck 2019)
detects permission re-delegation vulnerabilities in system services of the Android frame-
work. Their approach detects when a system service that requires no or low permission to
be called, acts as deputy and calls a second system service with high privilege. Instead of
analyzing the Android framework, our approach applies to apps that are installed and run
in user space. Zhang and Yin (2014) proposed Appsealer, a runtime patch to mitigate per-
mission re-delegation problem. It performs static data-flow analysis to determine sensitive
data-flows from sources to sinks and apply the patch before the invocation of a privi-
leged API such that the app alerts the user of a potential permission re-delegation attack
and requests the user’s authorization to continue. This is an alternative way of distinguish-
ing legitimate and anomalous permission re-delegation by relying on the user. Lee et al.
(2017) proposed Sealant, which is similar to Appsealer; it additionally extends the Android
framework to monitor vulnerable inter-app communication at run-time and prevents attacks.
Roppdroid (Dai et al. 2017) mitigates permission re-delegation problems via resource vir-
tualization and modified ICC mechanism. Bugiel et al. (2012) proposed a system-centric
(rather than application-dependent) solution that conducts policy-driven runtime monitoring
of communications between apps at middleware IPC layer and at kernel layer. This requires
modification of Android framework. In contrast to these approaches, our approach applies
machine learning across similar apps to infer anomalous permission re-delegation automat-
ically. It does not rely on the end user, does not modify Android framework, and does not
involve runtime monitoring.

Colluding Apps Covert (Bagheri et al. 2015) uses static analysis and formal verification to
verify the collusive data leaks and privilege escalation problems that arise from the inter-
action of multiple apps (known as colluding apps). It infers the security properties from
individual apps and reasons about the security of the phone device as a whole; that is, it
checks whether apps installed in a device can collude with each other to generate attacks.
The major difference between Covert and PREV is that Covert’s formal verification process
relies on predefined security policies that describe what is normal and what is abnormal.
Similar to Covert, AppHolmes (Xu et al. 2017) also uses static analysis and predefined
security policies to detect collusive data leaks. DIALDroid (Bosu et al. 2017) addressed the
complexity problem of performing pairwise program analysis of apps to detect collusive
data leaks by incorporating optimized, efficient data storage and fast query processing tech-
niques into static analysis of ICC data-flows. The major difference with these approaches is
that, instead of relying on predefined security policies, we compare the security properties
of the app against functionally similar apps to detect abnormal/malicious behavior.

Test Case Generation FuzzDroid (Rasthofer et al. 2017) generates executable test cases
using an evolutionary algorithm, with the aim of covering a given target location (e.g. priv-
ileged API call) to expose malicious behaviors of a given app. EvoSuite (Fraser and Arcuri
2011) is a general purpose test generator based on genetic algorithm, which can also be
applied to generate executable scenarios for Android apps. App graphical user interface
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(GUI) testing approaches (Hu and Neamtiu 2011; Amalfitano et al. 2012; Amalfitano et al.
2011; Mahmood et al. 2012) have been proposed to detect events and event sequences that
make the apps crash and identify abnormalities of apps. EvoDroid (Mahmood et al. 2014)
and Sapienz (Mao et al. 2016) apply search-based testing techniques to systematically test
Android apps. EvoDroid uses a model generated based on static data collected from mani-
fest file and layout XMLs to guide the search process. Similar to these approaches, we also
apply a search-based algorithm to systematically explore app behaviors. The main differ-
ence is that they generate test cases mainly to detect abnormalities in apps such as crashes,
exceptions, and violations of access permissions; our approach, instead, generates security
test cases that expose permission re-delegation vulnerabilities in Android apps.

10 Conclusion

Smart phone apps are often developed under a high time-to-market pressure. As a result,
they are often delivered with defects or vulnerabilities that may threaten the security and pri-
vacy of end users. In particular, apps that are granted with special permissions could expose
privileged services to unprivileged apps, which may then exploit this to perform malicious
actions without user knowledge. Automated support to detect such problems would be
beneficial to security analysts and app developers.

In this paper, we present a novel approach to accurately detect and test permission
re-delegation vulnerabilities by combining static analysis, natural language processing,
machine learning, and genetic algorithm-based test generation techniques. Our approach
detects vulnerable apps that abnormally expose privileged actions to other (potentially mali-
cious) apps and distinguishes them from legitimate permission re-delegation cases. It also
generates proof-of-concept attacks to prove the vulnerabilities and security reports to doc-
ument them. We evaluated our approach on 1,258 real world apps from the official Google
Play store. Our approach automatically detected 30 apps that are vulnerable to permission
re-delegation attacks without any false alarm, significantly outperforming recent approaches
— Covert and IccTA — that can detect permission re-delegation problems. The analysis
was done in a matter of minutes.

In future work, we plan to improve both our static analysis and test generation phases,
e.g., by handling string operations, for more effective vulnerability detection.
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Appendix A: Mutation Operators

In the following we explain the two mutation operators that we used in our controlled
experiment (Section 8.5).

A.1 Mutation Operatorμ1: Expose API

To provide its services, an app may be granted with special permissions to perform privi-
leged operations (APIs). If these operations are security-sensitive, the app developer may
limit these operations among its internal components only and may not intend to accept
action requests of these operations from external apps.

Mutation μ1 is used to inject a security defect by contradicting the developer’s intention
of limiting the exposure of a privileged API to action requests. The precondition to apply
this mutation operator is:

– There is an exposed component that can be called by other apps to request an action
from this app;

– the app contains a call to a privileged API;
– but this privileged API is not exposed to action requests (i.e., the call to this API is not

reachable from public entry points).

If this precondition is met by a given app, we apply μ1 by exposing the privileged API to
action requests via the exposed component. Hence, the postcondition after applying μ1 is:

– The privileged API is now exposed (i.e., reachable from at least one public entry point)
and thus, the app is vulnerable to permission re-delegation attacks.

For example, in Fig. 20, the left-hand side shows the original code of an app; onCreate
is an exposed component; the method m contains a call to sendSMS, but m is not reachable
from any public entry point. The right-hand side shows the mutated code, which exposes a
privileged API by adding a call to the method m in the exposed component.

A.2 Mutation Operatorμ2: Expose Component

Similarly to μ1, μ2 is used to inject a security defect by contradicting the developer intention
of limiting the exposure of a privileged operation. However, in this case, the mutation is on
the component visibility to other apps.

Fig. 20 Applying mutation operator μ1: Expose API
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Fig. 21 Mutation operator μ2: Expose component

The precondition to apply this operator is:

– A component is not exposed; so it cannot be called by other apps;
– the component contains a call to a privileged API;
– but the call to this API is not reachable from public entry points.

If this precondition is met by a given app, we apply μ2 by changing the visibility of the
component in the manifest file of the app. Hence, the postcondition after applying μ2 is:

– The component is now exposed; so the privileged API call is now reachable from at
least one public entry point.

For example, in Fig. 21, the left-hand side shows the original code; the method onCreate
in the activity A is not exposed and it contains a call to a privileged API sendSMS, which is
also not reachable from any public entry point. The right-hand side shows the mutated code,
which specifies in the manifest file that activity A is publicly callable.
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