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HeartQuake: Accurate Low-Cost Non-Invasive ECG Monitoring
Using Bed-Mounted Geophones

JAEYEON PARK, School of Integrated Technology, Yonsei University, South Korea
HYEON CHO, Department of Computer Engineering, Ajou University, South Korea
RAJESH KRISHNA BALAN, School of Information Systems, Singapore Management University, Singapore
JEONGGIL KO∗, School of Integrated Technology, Yonsei University, South Korea

This work presents HeartQuake, a low cost, accurate, non-intrusive, geophone-based sensing system for extracting accurate
electrocardiogram (ECG) patterns using heartbeat vibrations that penetrate through a bed mattress. In HeartQuake, cardiac
activity-originated vibration patterns are captured on a geophone and sent to a server, where the data is filtered to remove
the sensor’s internal noise and passed on to a bidirectional long short term memory (Bi-LSTM) deep learning model for ECG
waveform estimation. To the best of our knowledge, this is the first solution that can non-intrusively provide accurate ECG
waveform characteristics instead of more basic abstract features such as the heart rate using bed-mounted geophone sensors.
Our extensive experimental results with a baseline dataset collected from 21 study participants and a longitudinal dataset
from 15 study participants suggest that HeartQuake, even when using a general non-personalized model, can detect all five
ECG peaks (e.g., P, Q, R, S, T) with an average error of 13 msec when participants are stationary on the bed. Furthermore,
clinically used ECG metrics such as the RR interval and QRS segment width can be estimated with errors 3 msec and 10 msec,
respectively. When additional noise factors are present (e.g., external vibration and various sleeping habits), the estimation
error increases, but can be mitigated by using a personalized model. Finally, a qualitative study with 11 physicians on the
clinically perceived quality of HeartQuake-generated ECG signals suggests that HeartQuake can effectively serve as a screening
tool for detecting and diagnosing abnormal cardiovascular conditions. In addition, HeartQuake’s low-cost and non-intrusive
nature allow it to be deployed in larger scales compared to current ECG monitoring solutions.
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1 INTRODUCTION
Statistically, a significant fraction (over 48%) of the U.S. population above the age of 18 will develop some
heart-related condition ranging from arrhythmia to life threatening myocardial infarction (i.e., heart attack),
etc. [16, 17, 52, 61, 97]. These conditions could cause major quality of life issues that include loss of mobility,
loss of speech, and even loss of life. The cost, both in terms of personal welfare and healthcare expense, due to
cardiac disorders is estimated to be in the trillions [9, 17, 31]. Thus, it is vital to detect these conditions as early
as possible to improve the chances of recovery. However, these heart conditions could be either intermittent (e.g.,
arrhythmia) or instantaneous (e.g., heart attack) and any sensing techniques used must be both accurate and
continuous enough to detect both cases.
There are numerous smartwatches and other wearable devices that can measure the heart rate (in beats per

minute) of an individual in fairly unobtrusive ways [11, 13, 24, 28, 66, 77, 91]. However, the heart rate, alone, is
insufficient for detecting many serious heart conditions, which include various forms of arrhythmia and heart
block [48, 62, 80, 82, 83]. To accurately diagnose and detect such emergencies, electrocardiogram (ECG) signals
are widely used, as they contain detailed temporal information about the workings of the heart.
To emphasize this point, Table 1 shows nine commonly occurring abnormal cardiovascular conditions along

with the sensing modality needed to reliably detect each condition. In particular, notice that much more than
simple heart rate information is needed to detect these conditions. Even more advanced heart rate variability
(HRV) measurements are insufficient for the majority of the ailments. Hence, having continuous and reliable
ECG sensing is important to detect heart conditions and can be a true life saver in many situations.

However, deploying ECG sensors among the general population is not easy for two primary reasons: (1) clinical
grade ECG sensors are very expensive. For example, ECG monitoring devices used in hospital intensive care
units (ICUs) cost between USD$10,000 to 30,000 [18, 72]. This makes clinical grade sensors much too expensive
to widely deploy. (2) Mass market ECG sensors [41, 76, 87, 114] require either a tight band to be wrapped around
the chest or electrodes to be stuck at specific places on the body. Neither option is easy nor comfortable enough
to be used constantly – especially while sleeping.

In this paper, we focus on detecting ECG signals continuously, accurately, and non-intrusively while a person
is sleeping, and propose a solution, called HeartQuake, that overcomes the limitations of current approaches
designed to be used while sleeping. Specifically, HeartQuake does not involve any body-attached sensors and
exploits a geophone sensor attached to the bed’s mattress to detect cardiac activity patterns of the bed’s occupant.
We focus on sleep sensing as this is a particularly crucial sensing period for many reasons; (1) the person is
unaware when issues occur and thus may go untreated for hours, (2) most people spend up to 7 or 8 hours
sleeping – a significant fraction of their time, and (3) existing more invasive sensing methods, such as chest
straps etc., that may be suitable while awake will not work well while sleeping (due to the discomfort).

There have been previous approaches that use bed-attached geophone sensors to implicitly understand cardiac
activities. However, they can only detect the heart rate [46, 47] (in beats per minute). As stated earlier, this is
insufficient for detecting many common heart ailments. As far as we know,HeartQuake is the first geophone-based
solution that can capture all five core ECG peaks (P, Q, R, S, and T-peaks), making it a much more accurate
solution for diagnosing various heart conditions.
HeartQuake achieves this by exploiting the fact that the geophone attached to the bed is essentially a seis-

mography sensor – i.e., it can detect the intensity, direction, and duration of anything that makes the bed move
(even minute motions). Thus, it can be used to capture vibrations that the bed occupant’s heart pulse generates,
similar to a seismocardiography (SCG) signal. From prior work [89], we know that ECG and SCG signals are
loosely correlated. Therefore, we construct an inference model that uses the vibration signal to estimate the
corresponding ECG waveforms. This work is the first work to estimate accurate ECG patterns using a geophone
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Table 1. Types of abnormal cardiovascular conditions with their prevalence, and detection feasibility using heart rate, heart
rate variability and ECG. Note: “Screening Only” for HRV indicates that HRV cannot be used to concretely diagnose the
condition, but can be used for initial screening.

Abnormal Condition
Prevalence per 100,000
persons (age range)

Heart Rate
(HR)

Heart Rate
Variability (HRV)

Electrocardiogram
(ECG)

Factors needed from
ECG signal for detection

PPG-based
smart watch HeartQuake

Arrhythmia -
Ventricular Fibrillation [9] 127 (≥18) ✓ ✓ ✓ R peak ✓ ✓

Arrhythmia -
Atrial fibrillation [50] 965 (≥65) ✓

(Screening Only) ✓
RR interval, QRS complex,

P and T peaks
✓

(Screening Only) ✓

Arrhythmia -
Bradyarrhythmia [50] 286 (≥65) ✓

(Screening Only) ✓
RR interval, PR interval,
PR segment, P peak

✓
(Screening Only) ✓

Arrhythmia -
Atrial flutter [9] 36 (≥60) ✓

(Screening Only) ✓
RR interval, QRS complex,

P peak
✓

(Screening Only) ✓

Arrhythmia -
Supraventricular tachycardia [9] 616 (≥65) ✓

RR interval, QRS complex
P peak ✓

Arrhythmia -
Ventricular tachycardia [50] 157 (≥65) ✓

RR interval, QRS complex,
PQ interval ✓

Heart Block -
Atrioventricular node block [9] 56 (≥40) ✓

RR interval, QRS complex
PR segment ✓

Ectopic Heart Beat - Premature
ventricular contraction [9] 0.011% of all beats (≥65) ✓

RR interval, QRS complex,
P peak ✓

Ectopic Heart Beat - Premature
atrial contraction [23] 8.2% of all beats (≥50) ✓

RR interval, QRS complex,
P peak ✓
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(a) Raw vibration captured from a bed-attached geophone
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(b) Vibration signals after filtering - containing heart pulse vibrations
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(c) Estimated ECG using HeartQuake

Fig. 1. Waveforms used and generated in HeartQuake.

sensor on the bed. While previous works successfully extract abstract forms of cardiac activity [46, 47, 105],
estimating accurate ECG features require a much more complex system design.

In particular, HeartQuake uses a bidirectional long short-term memory (Bi-LSTM)-based deep learning model
for converting vibration signals into ECG feature estimations. Figure 1 shows an example of how HeartQuake
works, and plots the raw vibrations from the bed (Fig. 1 (a)), the filtered vibration signal (Fig. 1 (b)) and the
estimated ECG from HeartQuake (Fig. 1 (c)).

For designing and evaluating HeartQuake, we constructed a baseline dataset by collecting geophone vibration
patterns and ground truth ECG samples from 21 participants through an IRB approved study. Our evaluations
showed that the average timestamp estimation accuracy of all five ECG peaks is 13.26 msec with a general model
and 9.37 msec with a personalized model, with the R-peak estimation showing only 6.66 msec of error compared
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93:4 • Park et al.

to a ground-truth ECG (from an FDA-approved Zephyr Bioharness chest strap sensor). Moreover, when observing
the performance of HeartQuake using clinically used ECG features, HeartQuake shows an RR interval estimation
error of <3 msec, and the QRS complex width estimation error of <10 msec. We also evaluated HeartQuake with
a longitudinal study, in which we gathered bed vibration and ECG ground truth data from 15 participants for at
least 2 hours each while they are sleeping, summing up to a total of 71 hours of data. Results from this dataset
also showed low average peak estimations errors of 15.83 msec with a general model and 8.50 msec with model
personalization. Furthermore, we present detailed micro benchmarks (e.g., varying sensor locations, external
vibrations, motion and posture, different mattress types) showing the robustness of HeartQuake under practical
usage scenarios.
Finally, we also performed a qualitative study with 11 clinical doctors (avg. 10+ years of practice; currently

practicing at six different university hospitals) to compare the quality of authentic and HeartQuake-generated
ECG waveforms. Results from this study indicates that doctors could properly identify abnormalities from
HeartQuake-generated ECG waveforms, and that these signals were difficult to distinguish from ECG waveforms
collected from body-attached medical-grade sensors. Overall, our extensive evaluations reveal that HeartQuake is
accurate enough to serve as a first-level screening tool that triggers detailed clinical examinations when needed.

Specifically, this paper makes the following contributions.
• We show that the vibration signals of a person lying by a mattress can be captured by a geophone attached
to the mattress and transformed into vibration patterns similar to SCG signals. We then show that these
waveforms can be used to accurately estimate ECG patterns and that producing an accurate ECG signal is
a much more complicated task than just detecting the heart rate of a person.

• We present HeartQuake, a low-cost (∼$100) system that can accurately estimate a person’s ECG patterns
using just a mattress-attached geophone sensor (no sensors attached to the person at all) by combining a
filtering process on the vibration data with a Bi-LSTM-based deep learning model. HeartQuake is, to the
best of our knowledge, the first solution to translate heart-generated vibration data into accurate ECG
signals.

• We show, using both open datasets and an IRB-approved study with 36 participants (21 in a baseline study
and 15 in a longitudinal study), that HeartQuake can accurately estimate the most important ECG waveform
components (i.e. the ones used for clinical diagnosis).

• Finally, we show, via a qualitative study with 11 medical specialists who use ECG data daily (4 cardiologists,
2 emergency medicine specialists, 3 infectious disease specialists, and 2 traumatologists), that HeartQuake
produces results that are (a) indistinguishable from medical grade ECG data, and (b) useful for diagnosis
purposes.

2 BACKGROUND AND MOTIVATION

2.1 Measuring Cardiac Activity
Clinical staff try to understand a patient’s cardiac activity status using various sensing methodologies. Specifically,
the following four types of body-attached sensors are widely used – electrical, seismic, acoustic, and optical.
1. Electrical signals - Electrocardiography (ECG): ECG measurements offer five important peak infor-

mation along with other clinically crucial metrics that can be used to understand cardiac activity via electrical
signals generated from the heart [19]. The ECG peak data, namely the P, Q, R, S, and T-peaks, form the basis of
understanding how cardiac activities take place and can be used to capture various cardiac disorders such as
myocardial infarction and arrhythmia [57] (full details in Table 1).
2. Seismic signals - Seismocardiography (SCG): The SCG captures vibrations generated from heart motions

and blood flow [112] measured through body-attached seismic sensors to allow for a better understanding of
the cardiac mechanics [99]. SCG measurements are made via sensors such as accelerometers, gyroscopes or
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geophones attached to the body, but are sensitive to the installation orientation; thus, are not typically used alone
for diagnosis. Nevertheless, SCG measurements are often used to assist ECG measurements in quantifying their
reliability [85, 110].
3. Acoustic signals - Phonocardiography (PCG): PCG is a signal captured using a transducer that converts

vibration into acoustic signals. In particular, this sensor is used to identify abnormalities in the cardiac valves
and understand cardiac valve activity [27]. PCG measurements provide more in-depth acoustic data generated
from the heart compared to a stethoscope, which includes cardiac murmurs for a better understanding of cardiac
functional activities.
4. Optical characteristics - Photoplethysmography (PPG): When using PPG, different wavelengths of

light emitted from light emitting diodes (LEDs) illuminate the phosphor parts of the body to detect changes in
light reflections as blood passes through the veins. PPG measurements are used to measure the heart rate via
minimally invasive sensor attachments [7]. This sensor is commonly used on smartwatches and finger tip sensors
due to its small form factor. However, external lighting conditions and motion artifacts make it challenging to
accurately capture PPG measurements. In order to solve such problems, non-contact (remote) PPG schemes
have recently been proposed to monitor heart rate variability (HRV) using webcams [53, 56, 73, 115], or the
smartphone’s front camera [39, 54].

These different signals each characterize cardiac activities in different dimensions to offer a comprehensive view
for diagnosis. Among these, the most detailed measurements commonly used by cardiologists are ECG signals.
Unlike simple heart rate measurements, which can be captured from easily accessible wearable platforms, ECGs
allow for a much deeper understanding of various cardiac abnormalities [8, 43, 113]. For this reason, cardiologists
use the ECG signal patterns along with their P, Q, R, S, and T peak information to make various diagnosis related
to cardiac activities [42]. However, capturing ECG is a cumbersome process as it involves attaching a number of
sensors to the human body. Thus, a system that captures accurate ECG signals non-intrusively can be very useful
for many clinical applications.

2.2 Motivating Scenarios
All of the aforementioned metrics, especially ECG, provide important information for clinical decision making.
However, they all require special sensors to be attached to the human body. While these sensors are installed
near each bed in urgent care units (e.g., ICUs), general wards, where most patients are treated, do not have such
devices persistently installed. There are many reasons for this with the dominant reason being the high cost of
the sensing devices. A clinical-grade ECG monitor used at major hospitals can cost from $10,000-$30,000 or even
more. Having such a device at each bed, given that large hospitals host thousands of bed units, can significantly
increase healthcare costs. In addition, these monitors use multiple body attached sensors and are uncomfortable
to use if not absolutely needed. Thus, for the majority of general ward patients, due to cost and comfort reasons,
physiological signal monitoring only occurs a few times a day and is done manually by nurses during their
rounds. To make things worse, there is no monitoring during the night in many cases as the concern is that taking
measurements can interfere with the patients’ sleeping patterns. Unfortunately, there is a need for monitoring,
even at night, as there are enough reports of patients, in general wards, who experience sudden deterioration in
cardiac conditions overnight [22, 67, 68, 81].
In addition, similar issues arise for patients that were discharged from the hospitals and transferred as out-

patients or even for regular individuals who may be at risk of cardiac issues. As they sleep at home, instantaneous
health deterioration cannot be monitored (nor self-reported) due to the lack of monitoring infrastructure. While
Holter monitors can offer continuous ECG monitoring [59], providing each patient with a Holter monitor is
not considered effective, due to price (e.g., Philips DigiTrak ($2,700) [29], GE healthcare SEER 1000 ($2,000) [1],
Medtronic LINQ ($4,000) [63], etc.) and usability limitations (i.e., multiple wired leads need to be continuously
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Fig. 2. A sample relationship between ECG and SCG for the b013 record from the CEBS dataset.

attached to the body). Mass market ECG sensing platforms, typically in the form of chest strap devices (e.g.,
Qardio QardioCore ($400) [76], Zephyr Bioharness ($600) [2], etc.), can be alternatives to Holter monitors, but
they also cause cumbersomeness, leading to usability issues when attached continuously to a person’s body.
Finally, smartwatch or similar type devices cannot continuously sense ECG signals; instead they just provide
heart rate information which is insufficient for detecting many cardiac conditions (Table 1).
These scenarios motivate the need for monitoring a person’s ECG in a cost-effective and non-intrusive way.

Specifically, a low-cost platform that can (at the very least) act as a screening tool to identify urgent patients that
need immediate attention or further examination can enable a number of life-saving applications.

2.3 Capturing ECG from Vibration
This work presents a solution to non-intrusively capture the ECG of a bed’s occupant using vibrations generated
from heart activities. With filters applied to the vibrations, we extract signals that share similar characteristics
with an SCG, which then is “translated” to ECG signals. This section discusses how such a translation between
the two heterogeneous signals can be possible.

We note once more that, fundamentally, the SCG is in the form of vibration signals generated from the heart.
Thus, we try to understand how cardiac vibrations can be translated to ECG using SCG signals as an example.

Both SCG and ECG are time-series traces collected from a person’s heart: SCG represents the seismic vibrations
caused by periodic cardiac motion and blood flow, while ECG shows the corresponding electric signals. From this
observation, the two are (potentially) closely correlated, since, from a clinical stand-point, electrical activities
cause periodic de-polarization and re-polarization of the heart, resulting in periodic cardiac muscle contraction,
relaxation, and blood flow. Figure 2 shows an example of how cardiac activities impact the two different signals.

From the Figure 2, we observe that the P, Q, R, S, and T peaks1 of the ECG signals are generated by the electrical
activity of the heart, and are temporally-correlated with four core heart sounds 𝑆1, 𝑆2, 𝑆3, and 𝑆4 in Figure 2,
which are also captured in the SCG. In detail, the core heart sounds consist of the first heart sound 𝑆1 (mitral
1P and T regions are often denoted as “slopes” or “waves” in the literature, but we use the term “peaks” to indicate the highest point on each
slope.
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valve closing sound, a valve between the left atrium and left ventricle), the second heart sound 𝑆2 (aortic valve
closing sound, a half-moon valve connecting the ventricles and the large blood vessels), the third heart sound
𝑆3 (adventitious sound caused by rapid filling), and the fourth heart sound 𝑆4 (gallop rhythm in the process of
arterial presystole). These sounds are caused by the electrical activity (ECG) of the heart.

In addition to the core sounds, there is also heart murmur, the noise generated inside and outside of the heart,
including both physiological and pathological sounds from the obstruction of blood flow due to the stenosis and
valve failures. These activities generate vibration and are comprehensively mixed and reflected in SCG signals.
The potential correlation between the two signals is the core observation we exploit when designing our system,
HeartQuake, using externally collected vibration signals (which embed the SCG waveform with other noise
factors) to recover the ECG waveform.
It is important, however, to note that while Figure 2 presents a nice example of SCG to ECG correlation,

the different noise artifacts included in an SCG signal and also the complexity of the signal itself, makes the
formulation of a direct one-to-one mapping of the two difficult. While there have been many studies to correlate
these signals accurately, a precise time-scale correlation between the two is still unknown, even in the clinical
research domain [49, 58, 102]. Thus, HeartQuake is, to the best of our knowledge, a novel solution to translate
heart-issued vibration data into accurate ECG signals.

3 HEARTQUAKE
HeartQuake is designed to satisfy the requirements stated in the earlier sections; namely to accurately estimate
a person’s ECG waveform using a cheap non-intrusive geophone sensor installed under the mattress of the
bed. Specifically, the geophone sensor captures the vibration patterns that a person’s heart injects through the
mattress and our system uses a band-pass filter to eliminate the internal noise that the sensor itself introduces.
Next, from the observation that there is some relationship between the heart’s vibration and ECG signals, we
train a deep learning model with vibration and ECG signal pairs to implement a system capable of estimating a
person’s true ECG waveform from bed-collected vibration signals.
Specifically, the design goals of HeartQuake are as follows:

• The system should involve no sensor attachments directly to the human body for capturing ECG signals.
• The system should be able to provide sufficiently accurate ECG waveforms and not just simple heart rate
information to be effective enough for use as a screening tool prior to detailed clinical examinations.

• The cost of system installation should be kept low to enable large-scale hospital and at-home deployments.

Overall, the goal of HeartQuake is to build a fully non-intrusive, cheap, yet effective system for capturing ECG
signals from a bed’s occupant. We first provide an overview of HeartQuake’s core components: the hardware, the
signal filter, and the ECG estimation module, and also present how these components are integrated to form a
full working prototype system.

3.1 Hardware Components
HeartQuake relies on a geophone sensor attached to the bed’s mattress on which the observation subject lies.
The geophone, which usually consists of a coil, magnet, and two springs at the top and bottom, measures the
amount of vibration in the environment using the inertial mass suspended from the springs [37]. Specifically,
in HeartQuake we use the SM-24 geophone sensor, which is a widely used sensor for environmental seismic
sensing [5, 6, 70]. The sensor offers a sensitivity of 28.8 V/m/s and captures reliable measurements for the 0.5 to
50 𝐻𝑧 frequency range at a low-cost [4, 94]. The geophone is attached to a mattress’ top panel while avoiding
interference with sleep habits but capturing the most heart vibrations of the sleeping user. It produces 10 𝑘𝐻𝑧
raw analog sensor signals that are first amplified through its own amplifier circuit with an amplification gain
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Fig. 3. Overall operational flow of HeartQuake.

of 90 𝑑𝐵 and digitalized by a Raspberry Pi 3 B+ [78] to obtain fine-grain measurements of the sleeping user’s
vibration patterns. Note that in this work even for different mattress, these configurations were kept the same.

Based on hardware components, the estimated cost for this platform is less than $100. This makes HeartQuake
affordable for large-scale deployments in hospitals and at homes for patients that require remote monitoring.
Note: current clinical-grade ECG monitoring solutions for hospitals cost more than $10,000 [18, 72] or more and
require invasive probes connected directly to the body and accurate chest strap-based wearables cost more than
$400 [41, 76, 87, 114].

3.2 Signal Filtering
While the geophone sensor is sensitive enough to capture the heartbeat-generated vibrations from the bed,
unfortunately, due to physical limitations of the sensor itself, the sensor introduces a noticeable amount of
internal noise. Thus, there is a need to understand the internal noise patterns of the sensor and eliminate as much
of this noise as possible to leave only the human-generated patterns in the vibration. We explain in Section 4 how
we implemented a band-pass filter that suppresses such frequency domains in which noise patterns are dominant.
Figure 3 presents an operational overview of HeartQuake’s workflow including this noise filtering process.

3.3 ECG Waveform Estimation
HeartQuake uses the filtered vibration data to estimate the corresponding ECG signals. However, as there
is no simple way to transform heart-generated vibration signals into ECG [100], applying signal processing
methods to directly translate the filtered vibration signals to ECG signals is not possible. Instead, we exploit the
underlying features inherent in the vibration signals [85] to train a deep learning model with simultaneously
collected vibration and ECG data such that vibration signals used as inputs will output an ECG waveform that
matches the input signal. Given that the vibration signals generated from a person’s heart shows a complex
signal pattern (i.e., more than clinically-meaningful 20 feature points embedded in the signals [98, 100]) the
main challenge in designing a deep learning model for predicting ECG from these vibrations is caused from
the variations of the signals’ morphology due to natural cardiovascular vibrations and inter-subject variations.
Even in the clinical domain, mapping the ECG signal with heart-generated vibrations is still an area of on-going
research [38, 90, 106, 107, 111].

When designing the deep learningmodel for this purpose, we use the fact that both the input and output datasets
used in HeartQuake are time-series data which naturally fits a recurrent neural network (RNN) architecture.
RNNs, a class of artificial neural networks for learning the temporal sequence of a data by processing a sequence
of inputs using its internal states consisting of cells, are widely used in applications with sequential input
data [10, 35, 86]. Among various RNN options, HeartQuake applies the bi-directional long short term memory
(Bi-LSTM) architecture, which combines a forward LSTM and a backward LSTM to further emphasize on the
sequential characteristics of the vibration and ECG data [88]. In detail, while LSTMs are capable of learning the
long time dependencies [33, 35], baseline LSTMs cannot fully utilize the future input information in a sequence,
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Fig. 4. Internal noise patterns observed from four SM-24 sensors in idle environments.

which usually also contains meaningful information. To overcome this fundamental limitation of baseline LSTMs,
we select to use Bi-LSTMs that can leverage both past and future information within a frame’s sequence. Thus,
considering that the filtered vibration data consists of at least two or more signals, we train our model to learn
the sequence of the data points within each signal as well as the sequence of the patterns among the signals.
From this inference model, the mattress-collected vibration signals can be used to estimate the corresponding
ECG patterns. We explain the detailed network architecture design and its specific parameters in Section 5.

3.4 Overall System Integration
Overall, the geophone used by HeartQuake is installed under the bed’s mattress. The bed can be located within
the hospital or at a person’s home and we assume that any bed deployment has a stable Internet connection
and a consistent power supply. Hence, we do not need to design a low-power low-bitrate solution, and the
vibration samples collected at the geophone are streamed to a backend server via WiFi where the samples to be
thoroughly analyzed. At the server, the vibration samples are filtered and provided as input to the ECG estimation
Bi-LSTM deep learning model, which outputs a estimated ECG pattern. HeartQuake outputs the ECG waveforms
themselves as well as different clinical metrics (e.g., timestamps for P, Q, R, S, T-peaks, RR interval, QRS segment
length, etc.) that can be extracted from the ECG.

4 GEOPHONE DATA FILTERING
When deploying a sensor system, one important aspect to consider is the internal noise introduced by the sensor.
This internal noise can impact all samples collected from the sensor, which in turn, can affect the quality of the
final ECG estimation from our model. Therefore, the primary purpose of this filter is to remove the persistent
internal noise that the sensor itself introduces.
To do so, we first start with an analysis of the internal noise patterns of our target geophone device. In this

work, we use the SM-24 device and in Figure 4 we present the Fast Fourier Transform (FFT) results obtained from
four of these devices located in different idle locations with no external motion/vibrations. Figure 4 suggests that
the samples from all four sensors show a similar pattern: with noticeable noise in the frequency range of 0-5
𝐻𝑧, smaller amounts of noise in the 10-20 𝐻𝑧 range, a high noise peak near 30 𝐻𝑧 and just minor noise scatters
beyond the 30 𝐻𝑧 range. Ideally, if these frequency ranges do not interfere with the vibrations generated by a
user’s heartbeat, we can use a set of band pass filters to de-noise the geophone’s output signals.
To understand whether and how this noise would impact our results, we used data from the CEBS dataset in

PhysioNet [15] that contains clinical grade time-correlated ECG and SCG data for 20 subjects, summing up to 1,200
minutes of data for each signal type. Using the dataset’s SCG samples (which again, are heart-generated vibration
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Fig. 5. FFT of SCG data for seven subjects with CDF of signal distribution over different frequencies.

signals themselves), we performed FFTs, shown in Figure 5(a), for seven subjects (the other 13 showed similar
patterns) to understand the distribution of frequencies embedded in these SCG waveforms. We observe that the
most prominent vibration frequency range is in the 5 to 30 𝐻𝑧 range, which agrees with similar observations
made in previous work [14, 45, 103]. Quantitatively, the CDFs for these frequencies are plotted in Figure 5(b) and
confirm that the frequency range between 5-30 𝐻𝑧 contains more than 80% [44] of the signal embedded in the
waveforms. Hence, we conclude that the core frequency band of SCG data, which needs to be extracted from
our raw vibration signals, is in the 5-30 𝐻𝑧 range. We emphasize that while a person’s typical heartbeat is in
the range of <5𝐻𝑧, in this work we focus on the different signal frequency characteristics that are embedded
within the SCG/vibration signal (e.g., heart valves, heart systole and diastole, blood filling and ejection, etc.)
which mostly generate signals in the 5-30 𝐻𝑧 range.

We thus pre-process the incoming vibrations (from the geophone) by passing the signals through a band-pass
filter that removes everything except the 5-30 𝐻𝑧 range. This removes the majority of the sensor’s internal noise
while preserving the vibration signal needed to identify the ECG. In addition, filtering signals below 5 𝐻𝑧 also
allows our filter to eliminate the patterns caused from respiration, which is, in all cases, an added factor to the
heart’s beating vibrations.

We note that this simple filter design holds two major limitations. First, the filter is designed only for a specific
sensor device. While we were able to validate that different SM-24 sensors have similar internal noise patterns,
when using a different geophone sensor, different noise characteristics may be observed. Nevertheless, this can
be addressed by understanding the characteristics of the new sensor through the same process as well. This
is a one-time process and we do not see this as a practical issue when platforms such as ours are deployed
operationally. The second limitation is that we cannot “perfectly” remove the internal sensor noise. As shown in
Figure 4, despite filtering out signals in the <5 and >30 𝐻𝑧 range, there is still some noise in the non-filtered
region as well (in the 10-20 𝐻𝑧 range). Fortunately, the relative amplitude of the noise is small compared to the
true signal; allowing our deep learning model, presented in the next section, to still perform well.

5 BI-LSTM FOR ECG ESTIMATION

5.1 Data for Designing the Neural Network
The data used to build our deep learning model comes from two datasets: (1) a self-collected baseline dataset of
mattress vibration data with ground truth ECG signals, and (2) the SCG and corresponding ECG data from the
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CEBS dataset [15]. As briefly mentioned, the CEBS dataset is collected from 20 subjects (12 male, 8 female; ages 20-
30), and contains SCG and time-synchronized ECG data collected using the clinical grade Biopac MP36 sensor [65]
for 60 minutes per subject. Given that this dataset contains SCG data and its corresponding ground-truth ECG
samples, it is a perfect fit for our purposes of estimating ECG from heart-generated vibration data.
For our self-collected dataset, we gathered mattress vibration patterns using the HeartQuake hardware and

filtered the data as described in Section 4. Our baseline dataset was collected from 21 subjects (18 male, 3 female;
ages 22-36) for 10 minutes per subject. All subjects were asked to lie down on a foldable couch-type bed during
data collection. While gathering vibration data, we also collected synchronized ground-truth ECG signals using an
FDA-approved Zephyr Bioharness 3 chestband [114]. We note that the data collection and experiments presented
in this work were IRB-approved.
For data collection, the geophone sensor was positioned at the participant’s left shoulder location below the

mattress’ top panel. This was to assure close proximity with the subject’s heart location. For this dataset, we
asked each participant to lay still while facing up. Even so, the vibration data still contains the sensor’s internal
noise and human-generated features such as the respiration patterns as noise, which, fortunately, can mostly be
removed during the filtering phase. We will show, in Section 6, how HeartQuake performs when the geophone is
placed at different mattress locations, when using different mattress types, and also under various measurement
conditions (e.g., different postures and motions).
Overall, the combined data (i.e., self-collected and CEBS data) used for model design and initial testing was

gathered from 41 subjects (∼1,400 minutes) containing both ECG and vibration data.

5.2 Deep Learning Model in HeartQuake
The deep learning model architecture in HeartQuake is designed using two-stacked Bi-LSTMs and three fully
connected layers as illustrated in Figure 6. We use Bi-LSTMs model to ensure that the importance of the input
sequence data is equally balanced among the early and late sequences. Simply using a basic LSTM could result in
the earlier sequences of the data being treated less importantly than the later as the input passes through multiple
cells in the network [36]. However, a Bi-LSTM performs one learning phase in one direction and another in the
other direction of the input [88]. This allows the input sequences to equally impact the model when training.

Note that our model should map the non-linear relationships between various vibration signal inputs with the
corresponding ECG signal as output. Thus, given that there are a large set of possible “next sequence” options
in the vibration wave sequence, our model should be able to select its next step from a wide range of possible
expressions. The work by LeCun et al. suggests that the use of a stacked Bi-LSTM architecture can be effective in
such scenarios [55]. Based on these previous observations and our empirical evaluations, HeartQuake incorporates
two sequentially stacked Bi-LSTMs.
The additional hidden layers and pipelines introduced by the stacked Bi-LSTM, when combined at a fully

connected layer, are reunited to present the learned expressions from the previous layer in abstract form [34, 71].
By connecting three of these fully connected layers in serial, we achieve an effective pipeline for extracting the
accurate ECG waveforms.
Finally, the inputs to our model in Figure 6 are vibration data with the size of 750 data points and the output

is the same length of estimated ECG data (𝑇=750). Since input vibration signals are sampled at 250 𝐻𝑧, we
concatenate three seconds of data to produce the model input. This is to ensure that all inputs contain at least
two full heart beat “cycles” so that a relationship between two (or more) ECG peaks consists of a single input
data sequence. This is important as some ECG-based clinical metrics, such as the RR interval, requires the time
relationship between two consecutive ECG cycles. The input and output amplitude are normalized to the [−1 : 1]
range, and to account for this, we use the hyperbolic tangent (tanh) activation function for our Bi-LSTM model.
All inputs of vibration/SCG and ECG are time synchronized in the training phase.
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Fig. 6. HeartQuake ECG estimation model in HeartQuake

For model training, we use the data from the CEBS dataset to initially train the Bi-LSTM model. This allows
the model to set the initial parameters, and we use a subset of our self-collected data (the training set) to perform
fine-tuning on the parameters so that the model better fits our usage scenario.

6 EVALUATION
We now evaluate HeartQuake under different practical scenarios. As performance metrics, we chose (1) the error
in estimated ECG peak timestamps compared to the ground truth, and (2) the percentage of detected ECG peaks.
We selected these metrics given that, as we will later discuss, capturing the exact time of when each peak occurs
is the basis of many clinical features that are extracted from the ECG signal (e.g., RR Interval, QRS segment
width).

For accurately identifying peaks from both the estimated and ground-truth ECG signals, we use the widely
adopted QRS detection algorithm proposed by Tompkins [69]. We point interested readers to [69] for detailed
information on this scheme. From the detected Q, R, and S peaks, we also compute the highest value from the
median RR interval of the subject to the Q-peak of the current ECG wave to identify the P-peak (the highest
point of the P wave), and compute the highest value from the median from the S-peak to detect the T-peak (the
highest point of the T wave). Note: all experiments were conducted on a foldable bed with a couch-type mattress
unless explicitly specified.

6.1 Evaluation with the Baseline Dataset
We begin evaluating HeartQuake using the baseline data collected in Section 5.1. For training data, we used all
of the data gathered from the CEBS dataset (procedure detailed in Section 5.2), and included two thirds of our
self-collected baseline dataset (i.e., 14 out of 21 subjects) for model fine-tuning. Thus, we performed three-fold
cross validation, in which we tested with different training and test data samples within the baseline dataset.
Table 2 presents HeartQuake’s peak detection rate, which is higher than 98% for all cases. The missing peaks

were distributed (i.e., HeartQuake did not produce multiple continuous seconds of missing peaks).
Figure 7 presents the peak estimation accuracy of HeartQuake. Note that we only report values for the

successfully identified peaks. Specifically, the R peak estimation showed the smallest error (∼10 msec) among the
five ECG peaks. Based on findings from the literature, this error is tolerable in computing various clinically useful
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Fig. 7. Peak timestamp detection error.

Table 2. Peak detection rate for baseline data samples.

ECG peak P Q R S T Avg.
Detect rate (%) 99.81 98.46 99.66 99.05 99.45 99.29
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Fig. 8. Peak timestamp estimation error observed for different sleeping posture/activities.

features from the ECG such as heart rate variation [60, 93], which can assist in the early detection of cardiac
disorders such as arrhythmia [79]. On the other hand, the estimation error of the P and Q peaks showed relatively
higher errors (∼17 msec) compared to the other peaks. We note that the P and Q peaks are known to show high
variations with respect to the lead attachments even when using clinical-grade devices [3, 32]. Therefore, a higher
peak detection error for P and Q is somewhat expected given that the ground truth measurements for these peaks
(using the BioHarness) can be affected by small variations on how the device is worn.

Overall, the average estimation error over all peaks was 13.26 msec for this experiment. Given a person with a
heart rate of 75 bpm, this error translates to only 1.10% on the time scale. Later in Section 7.1 we will evaluate the
performance of HeartQuake from the perspective of various clinically used temporal features.

6.2 Impact of Motion and Posture
While the results above suggest that HeartQuake can accurately estimate the ECG peak timestamps, the data sam-
ples used for that experiment were collected under the assumption that users are stationary (i.e., no unnecessary
movements) and always facing up on the bed. In reality, people can change between different postures and make
spontaneous motions while sleeping and this could affect HeartQuake as these movements introduce additional
varying noise and attenuation patterns to the vibrations generated at each heartbeat.

From video recordings of people’s sleeping patterns (using videos gathered from a longitudinal dataset as we
will discuss in Section 7.2), we were able to identify five different types of common motions and postures: (1)
touching or rubbing the face or body with hands, (2) curled up sleeping to right, (3) curled up sleeping to left, (4)
sleeping in a free-fall position - chest facing downwards, and (5) snoring. We designed a simple experiment to
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Table 3. Detection rates for experiment with different sleeping postures/motions.

ECG peak P Q R S T Avg.

Detect
rate (%)

Rub 99.27 97.74 98.82 98.82 98.83 98.92
Right curl 99.89 98.85 99.89 99.89 98.89 99.48
Left curl 97.83 98.75 99.95 98.75 98.21 98.70
Free fall 99.90 98.82 99.72 99.72 98.35 99.30
Snore 99.79 99.04 99.61 99.68 99.00 99.43
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Fig. 9. Errors observed with external vibrations.

collect samples of these five different types of motions and postures from five participants that also took part
in our baseline data collection. We ask the study participants to mimic the five different types of activities so
that we have a controlled data set with these postures and gestures. Overall, we gathered 27 minutes of data for
face/body rubbing, 80 for left curl, 80 minutes for right curled sleeping, 72 minutes for the free-fall posture, and
30 minutes of snoring data. Note that in these evaluations, we do not consider cases in which multiple postures
and motions are performed simultaneously.
Figure 8 presents the ECG peak estimation accuracy for the five different postures/motions, and Table 3

presents the peak detection rate for each case. Over all cases, the average peak estimation error is 21.46 msec. It is
interesting to note that the free-fall posture does not show the best performance despite having the heart being
in close proximity to the mattress. This is because the geophone has a fixed location on the mattress, and flipping
over in the free-fall posture lengthens the heart’s distance to the sensor, which reduces the vibration amplitude
and increases the error compared to the facing-up posture. Another interesting observation is that the left curl
posture shows a lower error than right curl as the left curl posture places the heart is closer to the mattress.
To summarize, the inclusion of various motion artifacts by the bed occupant increases the estimation error.

Especially for the face/body rubbing case, the error increases to up to ∼28 msec. Fortunately, these motions, such
as rubbing the face, do not typically occur persistently throughout the entire sleep cycle. Once the motion ends,
our system can elevate back to a higher estimation accuracy. Furthermore, as we will show later in Section 7.1,
typical ECG-related features used by doctors have error bounds that are larger than 40 to several hundreds of
milliseconds; thus, such increased ECG peak estimation errors of HeartQuake can still be considered acceptable.

6.3 Impact of External Vibrations
While a user’s surrounding environment is typically stable during the night, there can be cases where external
noise, such as people moving around the bed, can affect the geophone measurements. We need to consider these
cases as prior work has shown that geophones are sensitive enough to capture the vibrations generated by people
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Table 4. Peak detection with external vibrations.

ECG peak P Q R S T Avg.
Detect rate (%) 99.90 98.46 99.83 97.37 97.88 98.69
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Fig. 10. Peak estimation error for measurements taken at different sensor installation locations.

Table 5. Peak detection rate for different sensor installation locations.

ECG peak P Q R S T Avg.

Detect
rate (%)

Left head 98.66 97.99 99.35 97.39 99.30 98.54
Left shoulder 99.81 98.46 99.66 99.05 99.45 99.29

Left hip 97.96 99.70 99.60 99.52 98.80 99.12
Right head 98.33 98.47 99.43 98.47 97.00 98.34

Right shoulder 98.31 98.94 99.39 98.34 98.01 98.80
Right hip 99.48 98.66 99.51 98.66 97.76 98.81

walking near it [64]. To observe the robustness of HeartQuake under externally generated vibrations, we designed
a test in which we collected data similar to the baseline dataset, with no motions on the bed while facing up, but
with one person walking continuously near the bed (within a 2-3 meter range). This experiment was carried out
for five participants, each generating 10 minutes of data.
Figure 9 shows that compared to the case with no external vibrations, the peak estimation error increases

only slightly, to 18-21 msec. In Table 4 we also see a small drop in the peak detection rate compared to stable
environments – still 98.7% of the peaks are captured successfully.

6.4 Impact of Sensor Location
Next, we examine the impact of installing the geophone at different locations of the mattress. While all of our
experiments until now placed the sensor at the left shoulder position of the mattress, we installed the sensor
at five other locations: (1) right shoulder, (2) left hip, (3) right hip, (4) right head, and (5) left head, while the
participants were facing up. Five participants took part in the measurements and for each location, geophone
measurements were captured for 10 minutes per participant; totaling 50 minutes of data for each location.
Figure 10 plots the ECG peak estimation errors obtained for each sensor location and Table 5 presents the

respective peak detection rates. Overall, the mean peak detection error measurements are similar to the case
with different postures and show error values between 18-23 msec. Comparing these results with the case when
the sensor was installed near the heart in Figure 7, suggests that locating the sensor closer to the origin of the
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Table 6. Peak detection rate for different mattresses.

ECG peak P Q R S T Avg.

Detect rate (%)
Spring 99.68 98.80 99.11 98.81 99.35 99.15
Latex 98.18 98.37 99.35 97.07 98.23 98.24
Couch 99.81 98.46 99.66 99.05 99.45 99.29

heartbeat can help improve the accuracy but is not a crucial factor for operation. Nevertheless, this result still
implies that HeartQuake will perform at its best if the bed occupant’s sleep direction is predetermined. For general
wards in the hospital (and for most at-home deployments), this will not be a strong assumption to make. Including
additional geophone sensors on the bed can potentially help in identifying a vibration signal with the highest
signal-to-noise ratio (SNR) to achieve low estimation errors.

6.5 Performance on Different Mattresses
Finally, we examine how HeartQuake performs with different bed types. In addition to the couch-type foldable
bed used until now, we collected data from both a university hospital’s general ward bed consisting of a latex
mattress and a typical home-use spring mattress. In all cases, the geophone was attached to the mattress’ top
panel at the left shoulder position. We collected 30 minutes of data for each mattress type from three participants.
The results in Figure 11 presents the peak estimation error on the three bed types and Table 6 presents the

detection rates. Compared to a couch-type mattress, the results for the spring-type and latex-type beds show
an increase in peak prediction error (average 18.34 msec for spring-type and 21.61 msec for latex compared to
13.26 msec for couch type). The peak detection ratios for each mattress type also show similar patterns. We
believe this is due to our model training being done with data collected from a couch-type mattress. Thus, the
accuracy for patterns captured on other bed types dropped, and we conjecture that adding more diverse training
data on a per-mattress basis can mitigate this error.

6.6 General vs. Personalized Models
The experiments up to now were for a general model, where previously collected samples of a participant included
in the test set were not at all used for training purposes. We selected to do so because the goal of HeartQuake is
to design a globally-applicable system. Now we see how HeartQuake works when the model is personalized.

Using our twomotivating scenarios as a guide (Section 2.2), when used in general wards, additional personalized
training data for target patients, can be obtained from the physiological signal ground-truth measurements
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Fig. 12. Peak detection errors with and without external vibrations when using the personalized model.
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Fig. 13. Peak estimation error observed with personalized model for different postures and motions.

captured by the nursing staff during periodic rounds. Furthermore, when used at home, wearable ECG monitors
can be used to bootstrap HeartQuake with personalized measurements as well.

With this motivation, we train a “personalized model” that, in addition to using the original training set, also
includes a subset of data from all subjects from our baseline data collection (Sec. 5.1) for training. We leave out
20% (12 minutes) of data from each participant for testing. We also used data from the five participants that
took part in the experiments discussed in Sections 6.2 (motions and postures) and 6.3 (external vibration) as
testing data as well. These participants also took part in the baseline data collection phase; thus, we included
their initially collected data (i.e., data with no motions while facing up) for training the personalized model and
used the other data for testing only.
Figure 12(a) shows the peak estimation accuracy for the baseline data set (i.e., no motion; facing up) using

the personalized model. Compared to results in Figure 7, the error is noticeably lower for all peaks. Specifically,
the R peak error decreased from 9.83 msec to 6.66 msec. Overall, the average estimation error across all five
peaks dropped from 13.26 to 9.37 msec with an average peak detection rate of 99.64%. Figure 12(b) plots the
peak estimation errors for the dataset with external vibrations. Compared to Figure 9, we see a 9.17% decrease
in average estimation error from 19.71 to 17.90 msec. with 99.30% average peak detection rate. Furthermore,
when comparing the results for the personalized model using data collected for different motions and postures in
Figure 13 with the results from the general model in Figure 8, we observe that the original error of 19-28 msec is
reduced to 16-26 msec. For this data set, the average peak detection rate for all five peaks was 99.20%.

This suggests that using a personalized model can improve HeartQuake’s peak detection performance and as
we show later in Section 7.2 adding more personalized data can further improve the peak estimation performance.

6.7 Amplitude
Our results show that HeartQuake can make accurate estimations on the timestamp at which each of the five
core ECG peaks occur. However, to accurately estimate the final ECG waveform, we also need to confirm that the
proper amplitude for each peak is well-estimated. Clinically, peak time-based metrics convey a comprehensive set
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Fig. 14. Normalized estimation errors for each ECG peak’s amplitude for baseline dataset.

of information, but the amplitude of the signal is also considered important for diagnosing some types of disorders
(e.g., subendocardial ischemia [75], myocardial ischemia [26], etc.) and also in visualizing the morphology of an
ECG signal.

In Figure 14 we show the error in the observed amplitude for each peak using the baseline dataset for both the
general and personalized models. Given that we normalize the output ECG to the range of [−1 : 1], the errors we
observe in Figure 14 can be considered to be very low. On average, the absolute peak amplitude estimation error is
0.11 and 0.07 compared to the ground truth for the general and personalized models, respectively. This translates
to 11.89% and 7.23% error compared to the ground truth. According to a report published by the American
National Standards Institute, for routine visual ECG readings, the tolerated error for ECG amplitude is 10% or
less [51]. While the generalized model is insufficient to meet this tight requirement, the results suggest that with
a small amount of personal ECG data training, accurate amplitude estimation using HeartQuake is possible.

7 USING HEARTQUAKE FOR CLINICAL AND DAILY USE
As shown in the previous section, HeartQuake shows good performance in various situations and configurations.
However, the next question is how the system fares when used in clinical environments and when used daily
over a full sleep cycle. Validating this is especially important since these results can suggest the overall (potential)
usability of HeartQuake in real-world applications.

7.1 HeartQuake as a Clinical Tool
7.1.1 What Do the Numbers Say?: The main goal of HeartQuake is to estimate the ECG waveform and its peaks’
occurrence times as accurately as possible. Nevertheless, when clinical doctors observe the ECG, they look for
specific features that are computed from the signals. Heart rate is one of such features in which the average
number of R peaks is counted over a minute. As we mentioned earlier, a number of different factors, such as
the RR interval, QRS complex width, ST segment length, QT interval, PR segment length, and PR interval, are
needed to identify abnormal cardiovascular conditions such as various types of arrhythmia and heart block (c.f.,
Table 1). Figure 15 presents how these metrics can be computed using the ECG waveforms. We also show the
typical range used to determine the normal conditions of each feature.
In Figure 16, we show how HeartQuake estimates the five clinical metrics of our interest. Notice that for all

cases, the estimation error is lower than 30 msec. Especially for the RR interval when using the personalized
model, the error from the ground truth is <3 msec. This suggests that we can make very accurate measurements
on metrics that use intervals between multiple ECG R peaks. The error that we see in Figure 16 and throughout
the evaluations suggest that HeartQuake provides accurate enough samples to be used as references for clinical
purposes. We note that the standard grid used when plotting the ECG is represented by 0.04 sec columns [109]
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Fig. 15. Clinical features used in an ECG waveform with typical expectation ranges for normal condition diagnosis [21, 32,
104, 108, 109].
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Fig. 16. Estimation errors for ECG-based features.

and the range of determining abnormal patterns in the ECG is defined over timescales between 40 to multiple
hundreds of milliseconds [25, 84, 109].

7.1.2 What Do the Doctors Say?: Next, we took the body-attached sensor-collected and HeartQuake-generated
ECG data from five random subjects in our self-collected baseline and CEBS dataset, and conducted a qualitative
study with 11 clinical doctors practicing at six different university hospitals. Specifically, four cardiologists (one
assistant professor and three associate professors), three infectious disease physicians (two associate professors
and one full professor), two emergency medicine physicians (both assistant professors), and two traumatologists
(both full professors in which one is the department chair) with an average of 10.8 years of practice (stdev 7.26)
participated in our study. We presented the doctors with a total of 10 ECG patterns (10 seconds of data each;
five ECG waveforms from body-attached sensors and the corresponding HeartQuake-generated ECG waveform
pair) while not disclosing how the waveforms were paired. We randomly displayed the 10 ECG patterns to the
study participants to remove bias. Among the five pairs of ECG waveform samples, we selected two pairs (four
samples) that contain irregular heartbeats and one pair (two samples) with preliminary signs of ST-elevation.
We select such samples given that, irregular heartbeats are detected using precise peak occurrence times, and
ST-elevation requires accurate signal amplitude information to correctly diagnose. Note that these abnormal
samples were from the CEBS dataset (with HeartQuake generating ECG based on the corresponding SCG data) as
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Fig. 17. Peak detection errors for longitudinal study with general model.

all our test subjects in the self-collected dataset were healthy. The other two pairs of ECG patterns were from
patients with no known-cardiac disorders. Specifically, among the 10 samples, ECG samples #1, #4, #7 and #10
showed irregular heartbeat patterns (where [#1,#4] and [#7,#10] were “pairs”) and samples #3 and #6 were a pair
from a subject with mild ST-elevation. After presenting this data, we ask the study participating physicians the
following three questions.
(1) Please identify any clinical anomalies from the 10 ECG signals.
(2) The 10 ECG waveforms were collected from 5 participants, one waveform is from a medical-grade ECG

and the other is generated from HeartQuake based on the bed vibrations for the same time frame. Please
group the 10 waveforms into 5 sets – where each set contains the waveforms for a specific participant.
Note: we did not tell the doctors which waveforms were authentic and which were synthetically generated
from HeartQuake.

(3) Please try to identify which of the 10 waveforms are generated from HeartQuake and which are authentic
ECG signals. Briefly discuss why.

For question (1), we noticed that all 11 study participants successfully identified the four samples with irregular
heartbeat patterns, and 7 of the 11 participants (63.6%) noticed the ST-elevation in samples #3 and #6. This
suggests that the output ECG signal that HeartQuake produces has a good quality for clinical use and certainly
can serve as an effective screening tool for further analysis.
Furthermore, all study participants correctly mapped the ECG pairs collected from body-attached sensors

and HeartQuake (question (2)). This indicates that the similarity of ECG waveforms generated by HeartQuake
compared to medical grade body-attached sensors is high and clinical professionals can easily recognize that the
two waveforms are the same samples.
The responses for question (3) were interesting. All but one study participant failed in accurately guessing

which of the samples were HeartQuake-generated and which were not. In fact, 5 of the 11 participants noted
that they were not confident in distinguishing between the two types of signals. For the participants with valid
responses (i.e., that actually made a “guess”, either right or wrong), the average score of accurate guesses was
only 2.7 out of 5. This again suggests that the two types of signals are indistinguishable, even for experienced
specialists. This result along with the results from questions (1) and (2) comprehensively suggest that the quality
of ECG patterns that HeartQuake generates is accurate enough to make clinical diagnosis (at least good enough
as a screening tool) and they are not easily distinguishable from ECG signals collected from medical-grade
body-attached sensors.

7.2 Longitudinal Study
While the baseline dataset (and all other data used in Section 6) was collected for short durations, we now examine
the performance of HeartQuake in a more longer term “in-the-wild” setting via a longitudinal study. In this study,
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Table 7. Detection rates for different sleeping activities.

Posture Frequency Avg Error (msec) stdev Posture Frequency Avg Error (msec) stdev
Lying (face up) Still 63.84% 15.83 8.63 Rubbing 0.89% 25.01 14.66

Right Curl 16.65% 21.12 11.54 Left Curl 10.79% 18.73 10.05
Free Fall 1.12% 19.94 11.10 Snoring 6.71% 26.81 16.18
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Fig. 18. Peak detection errors for longitudinal study with personal model trained with different lengths of personal data.

we recruited 15 additional volunteers (different from the 21 from the baseline dataset; 12 male, 3 female; avg
age: 27.5 stdev: 2.69) to collect data for longer durations while the participants were sleeping. Specifically, we
configure a room environment with a couch-type bed in which the study participants can sleep and collect both
the geophone sensing (vibration) data and Bioharness 3-based ECG signals. Furthermore, to accurately identify
and label different motions during their sleep we video recorded their sleep. For the longitudinal study dataset,
we gathered a total of 71.7 hours of sleep activity (per participant average 4.77 hrs of sleep with stdev 1.72).

In Figure 17 we present the peak estimation errors for the longitudinal study dataset when applying a general
(non-personalized) model used in Section 6.6. We did not perform any addition training with the newly collected
data and used the entire dataset as test data only. Compared to the results in Figure 7, we can see that the
average peak estimation error increases for most peaks (16.46 to 16.66 msec for P, 9.83 to 14.42 msec for R, 10.26
to 16.63 msec for S, and 13.30 to 16.50 msec msec for T peaks), but only slightly, which should not affect any
application-level decision-making. For the Q-peak we actually see a decrease in error (from 16.42 to 14.94 msec),
but the difference with the baseline dataset is yet marginal. The overall slight increase in error can be explained
by the fact that when collecting the longitudinal dataset, we set no restrictions on participants’ motions when on
the bed. Thus, the dataset includes a mixture between different motions and idle postures. In Table 7 we present
the accuracy of HeartQuake with respect to different postures. The labeling of each motion was done manually
based on the video recordings of each participant’s sleep. Participants were facing up and lying still for 63.8% of
the entire period, and for these samples, the average accuracy of peak estimation is 15.83 msec. The next most
frequent posture was the right curl posture (16.7%) with an average peak estimation accuracy of 21.12 msec.
Together, the results reported in Figure 17 and Table 7 suggest that the results from the longitudinal study agree
with the results for the baseline dataset.

Next, we examine the impact of using a personalized model on the longitudinal dataset. Specifically, we
fine-tune the previously used general model with idle state data from each of the study participants. Specifically,
we train three models for each participant in which 3, 5 and 10 minutes of personal data was used for model
training (personalization), respectively. In Figure 18 we plot the average peak estimation error for each of the five
ECG peaks with varying training data lengths. We can make two main observations from these plots. First, by
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comparing with Figure 17 we can notice that, in-line with the results in Section 6.6, the use of a personalized
model can help improve the overall peak estimation performance. Quantitatively, compared to the general model
results in Figure 17, the overall average peak estimation latency is 10.13 msec when only 3 minutes of data
is used for model personalization compared to 15.83 msec when applying the general model. Second, another
interesting observation we can make when comparing the plots for the three different lengths of personal data
used for training, is that even a small amount of personal data (3 minutes) can help improve the peak estimation
performance, while adding more data for model personalization can effectively reduce the peak estimation
performance.

7.3 Summary of Results and Next Steps
Overall, our evaluations in Sections 6 and 7 show the effectiveness of using HeartQuake as a useful screening
tool for patient care. We were unable to report any results from real patients due to IRB and medical board
privacy and safety reasons. However, our tests indicate that HeartQuake will be effective at detecting a range
of heart-related conditions accurately, cheaply, and in a non-intrusive way. We are currently in the process of
deploying HeartQuake at the cardiology ward of a hospital for real field trial and also have interest from the
oncology ward of another hospital for a different pilot deployment study.

8 DISCUSSION
We have shown HeartQuake enables non-invasive ECG sensing using vibrations collected from a bed. The system
is still evolving and we now discuss limitations and future work.

• Estimation accuracy under seizures: In extreme situations where the bed’s occupants experience severe
seizures and violent motions (e.g., heart attack), their posture can continuously change and the assumption
of having the body on the bed surface may not hold. In these situations, the current design of HeartQuake
may fail in providing clear ECG signals. Fortunately, the geophone installed under the bed can identify the
unexpected motions and we plan to add a seizure detection model to HeartQuake to provide a comprehensive
emergency alert system for clinical staff.

• Distinguishing ECGs for multiple bed occupants: When a single bed is shared by multiple people,
HeartQuake will capture more than one heart-generated vibration pattern. Previous work by Jia et al. [47]
show promising potential indicating that distinguishing the heartbeat of more than one person is possible
using bed-attached geophones when using multiple geophones. As part of future work and deeper practicality
testing, we plan to apply similar techniques (e.g., amplitude modulation, spatial information extraction) to
separate multiple signals and capture the ECG for more than one bed occupant.

• Cost benefits: A key consideration of this research was to build a cost effective solution. As described earlier,
accurate monitors used in hospitals exceed $10,000 [72], and commercial Holter monitors cost $2,000 [1] to
$4,000 [63] per device. Wearable devices are cheaper ($400 [76] to $600 [2], but they are still cumbersome
to wear during sleep. Our solution costs about $100 in parts ($60 for the Geophone sensor [96], $30 for the
Raspberry Pi 3 [95], and $10 for misc. connectors). We expect the final cost of each device to be at most $200 to
$300 after factoring in further development, economies of scale, integration, testing, and certification costs for
commercialization. This is still an order of magnitude cheaper than existing solutions.

• Performance on different surfaces: While our evaluations show that the performance of HeartQuake
can hold for three different types of mattresses, due to practical limitations, we were not able to test the
performance on additional mattress form-factors. For example, memory foam or water mattresses will show
different vibration propagation patterns compared to the ones we tested in Section 6.5. While we were not
able to empirically validate HeartQuake’s effectiveness in such environments, we conjecture that the change of
mattress types will mostly impact the input signal amplitude, given that the frequency characteristics of the
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heart beats and noise patterns will mostly stay the same. There may, however, be changes to the hardware
configurations (e.g., sensor installation location, amplifier parameters) to adjust for the new environments. In
any case, we see this as an essential part of our future work prior to commercially applying HeartQuake to
diverse practical environments.

• Case-study – Arrhythmia Detection: The samples used for our evaluation were collected from participants
with no reported cardiac disorders. This was because collecting samples from real patients with heart problems
(asking them to be on our beds) was not possible through our study due to IRB and medical board safety
reasons. However, it is important that the system is also tested and validated for subject with abnormal cardiac
conditions prior to the large scale deployment in real-world settings. While not in scale, fortunately, we noticed
that patient record m004 of the CEBS dataset was collected from a patient with ectopic heart beats (premature
ventricular contraction). We use this data, which consists of 3,000 seconds of ECG and SCG data with 57
abnormal heartbeats, as input for HeartQuake to observe the capability of HeartQuake in identifying abnormal
cardiac conditions. Specifically, for this mini-test, we re-trained our model without using any data from patient
m004 and tested the accuracy of our Bi-LSTM-based ECG estimation model. Patient m004’s SCG data was used
as input and HeartQuake generated the corresponding ECG signals, and we compare this with the ground truth
ECG from the CEBS dataset. We note that 97.4% of ECG peaks were successfully captured using HeartQuake
and the average peak estimation error for five peaks was 16.4 msec (14.6 for P, 21.01 for Q, 15.80 for R, 12.11
for S, and 18.65 msec for T). While more studies are essential, out mini-test result with m004’s data can be a
preliminary indicator suggesting that HeartQuake can detect abnormal ECG patterns.

9 RELATED WORK
Recent development in various sensing technologies has enabled a number of novel systems for non-intrusive
cardiac activity monitoring. Zhao et al. presented a system for detecting heart beats and respiration by combining
deep learning models with features extracted from RF signals in a smart home environment [116]. In addition
to RF, there have also been efforts to implement heart rate monitoring systems with images or videos of target
subjects [40, 74, 93, 101].

Dinh et al. [30] and Siecinski et al. [92] proposed schemes to collect SCG data using a smartphone accelerometer
for capturing cardiac activity features. Similarly, Chao et al. [20] designed a small multi-sensor platform on a
flexible board for wireless tri-axial SCG, single-lead ECG, and single-point skin temperature monitoring and Jain
et al. [44] proposed a portable system that captures chest-attached SCG sensors for long-term SCG monitoring.

For systems using geophone sensors, Bonde et al. proposed a system using bed-installed geophones to capture
the RR interval from bed occupants [12] and Jia et al. presented a system to distinguish heartbeats of multiple
users on a bed [47]. These works effectively show the feasibility of exploiting heart-generated vibrations for
cardiac activity monitoring using abstract-level metrics.
These previously proposed schemes successfully capture a heart’s cardiac rhythms in abstract form (i.e.,

heart rate or heart rate variability) and show feasibility in applying non-intrusive sensing to continuous heart
monitoring applications. Essentially, our work shares similar goals in the fact that HeartQuake also enables cardiac
monitoring in previously difficult situations, but our work focuses on capturing accurate ECG waveforms
from non-intrusive sensing components, which is a much more complex task than simply measuring abstract
features such as the heart rate.

10 CONCLUSION
We present HeartQuake, a low-cost, accurate, non-intrusive system for capturing ECG signals of a person lying on
a bed. HeartQuake collects the vibration signals generated by the beating of the occupant’s heart and uses a filter
to eliminate noise introduced in the signal collection process. The filtered vibration signal is used as an input to a
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Bi-LSTM-based deep learning model to generate corresponding ECG signals. We evaluate the ECG estimation
performance of HeartQuake under various bed and user configurations using two different self-collected datasets
and show that the accuracy of peak estimation is good enough to capture various clinically used ECG-related
metrics. Furthermore, a qualitative study with 11 physicians suggests that HeartQuake generates ECG signals
that are suitable for diagnosing abnormal cardiovascular conditions, and are difficult to distinguish from ECG
waveforms collected from medical-grade ECG devices.
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