
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2022

Exploiting reuse for GPU subgraph enumeration Exploiting reuse for GPU subgraph enumeration

Wentiao GUO
National University of Singapore

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Kian-Lee TAN
National University of Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
GUO, Wentiao; LI, Yuchen; and TAN, Kian-Lee. Exploiting reuse for GPU subgraph enumeration. (2022).
IEEE Transactions on Knowledge and Data Engineering. 34, (9), 4231-4244.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7130

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

1

Exploiting Reuse for GPU Subgraph
Enumeration

Wentian Guo, Yuchen Li, Member, IEEE, Kian-Lee Tan, Senior Member, IEEE

Abstract—Subgraph enumeration is important for many applications such as network motif discovery, community detection, and
frequent subgraph mining. To accelerate the execution, recent works utilize graphics processing units (GPUs) to parallelize subgraph
enumeration. The performances of these parallel schemes are dominated by the set intersection operations which account for up to
95% of the total processing time. (Un)surprisingly, a significant portion (as high as 99%) of these operations is actually redundant, i.e.,
the same set of vertices is repeatedly encountered and evaluated. Therefore, in this paper, we seek to salvage and recycle the results
of such operations to avoid repeated computation. Our solution consists of two phases. In the first phase, we generate a reusable plan
that determines the opportunity for reuse. The plan is based on a novel reuse discovery mechanism that can identify available results
to prevent redundant computation. In the second phase, the plan is executed to produce the subgraph enumeration results. This
processing is based on a newly designed reusable parallel search strategy that can efficiently maintain and retrieve the results of set
intersection operations. Our implementation on GPUs shows that our approach can achieve up to 5 times speedups compared with the
state-of-the-art GPU solutions.

Index Terms—Subgraph enumeration, GPU, reuse

F

1 INTRODUCTION

G Iven a pattern graph P and a data graph G, subgraph
enumeration is to find all subgraphs in G that are

isomorphic to P . We refer to the matched subgraph as the
instance. We also call the subgraph of G that matches a
subgraph of P as the partial instance. Finding instances of
a pattern is important in various domains, such as network
motif discovery [1], [2], community detection [3], [4], and
frequent subgraph mining [5], [6].

1.1 The Case of Reuse

Due to its great importance, subgraph enumeration has been
extensively researched. While some works have targeted
at the sequential setting [2], [7], [8], [9], [10], others have
focused on parallel solutions [11], [12], [13], [14], [15], [16],
[17]. More recently, there have been interests [18], [19] in
utilizing graphics processing units (GPU) to accelerate sub-
graph enumeration. These GPU-based solutions [18], [19]
iteratively extend partial instances to match one vertex of
P at a time until the instances are found. In each iteration,
given the partial instances enumerated, we determine a set
of candidate vertices of G that match a vertex of P , which
is called the candidate set. To compute the candidate set, we
perform the set intersection operation on the adjacent lists
of the relevant vertices of the partial instances. Since the
candidate set is computed on the generation of each partial
instance, the set intersection operation becomes a bottleneck
and takes up most of the running time. Our preliminary
study reveals that a large portion of the set intersection
operations is redundant. This is because when we compute
the candidate set for different vertices of P , the same set
intersection operation may be executed on the same adjacent
lists. The following example illustrates these redundant set
intersection operations.

v1

v0

v2 v3

v4

v5

u1

u2

u0

u4

u3

u1<u3

u1

u2

u0
u4

u3

v1

v0

v2 v3

v4

v5

u1

u2

u0

u4

u3

u1<u3

u1

u2

u0
u4

u3

Fig. 1: An example pattern (left) and data graph (right).

Example 1. Figure 1 shows the pattern and data graph which
are used in our running example. Figure 2 illustrates
subgraph enumeration process using the state-of-the-art
approaches, i.e., GPSM and NEMO. Consider the compu-
tation for the candidate set of u2. There is a partial
instance f1 that maps {u0, u1} to {v0, v1}, denoted as
f1 = {(u0, v0), (u1, v1)}. Given f1, as u2 is adjacent to
u0 and u1, we compute the candidate set of u2 by inter-
secting the adjacent lists of v0 and v1. This computation
result is labeled as 1.1 in Figure 2a. Then we consider the
computation for the candidate set of u3. Given the partial
instance f2 = {(u0, v0), (u1, v1), (u2, v2)}, we compute
the candidate set of u3 by intersecting the adjacent lists
of v0 and v1 again. This result is labeled as 1.2. As shown
in Figure 2b, the results of 1.1 and 1.2 are actually the
same. The same redundant results can also be found in
1.3, 1.4, and 1.5 in Figure 2a.
Using the same logic, we can also observe the re-
dundant computation for the candidate set of u4
(with respect to u2). Given the partial instance f3 =
{(u0, v0), (u1, v3)}, the candidate set of u2 is computed
by intersecting the adjacent lists of v0 and v3. The re-
sult is labeled as 2.1. Given the partial instance f4 =
{(u0, v0), (u1, v1), (u2, v2), (u3, v3)}, the candidate set of
u4 is computed by intersecting the adjacent lists of v0

2

4N(v0)∩N(v5)1N(v0)∩N(v1)

v2 v3 v4 v5 v2 v3 v4 v5v2 v3 v4 v5v3 v4 v5v2

v1 v2 v3 v4 v5

v0 …

v2 v3 v4 v5 …

u0

u1

u2

u3

v1 v2 v4 v5 v1 v2 v3 v5 v1 v2 v3 v4

u4 v1 v2 v4 v5 v1 v2 v3 v5 v1 v2 v3 v4

2N(v0)∩N(v3)
3N(v0)∩N(v4)

v2 v3 v4 v5

v0

v1

v2 v3 v4 v5

v0

v3

v0

v1

v2

u0

u1

u2

u3

v1 v2 v4 v5

v0

v1

v2

v3
v1 v2 v4 v5u4

u0

u1

u2

u3

1.1 2.1 3.1 4.1

1.2 1.3 1.4 1.5

2.2 3.2 4.2

1.1

1.2

2.1

2.2

f1 f2

f3 f4

(a) An execution of GPSM and NEMO (Algorithm 1). Assume the order in which
the matching is performed (known as match order) is π = {u0, u1, u2, u3, u4}.
The set intersection result is labeled as X.Y in a circle. Those labeled with
the same X are the same set intersection results, e.g., 1.1 and 1.2. The cross
symbol above means the corresponding data vertex can cause duplicates and
cannot form a new partial instance (see Definition 7).

v0
v3

u0

u1

u2

u3

v1 v2 v4 v5

v0
v1
v2
v3

v1 v2 v4 v5 u4

2.1

2.2

f3 f4
u0

u1

u2

v2 v3 v4 v5

v0
v1

v2 v3 v4 v5

v0
v1
v2

u0

u1

u2

u31.1

1.2

f1 f2
u0

u1

u2

(b) Example reuse case 1©.

v0
v3

u0

u1

u2

u3

v1 v2 v4 v5

v0
v1
v2
v3

v1 v2 v4 v5 u4

2.1

2.2

f3 f4
u0

u1

u2

v2 v3 v4 v5

v0
v1

v2 v3 v4 v5

v0
v1
v2

u0

u1

u2

u31.1

1.2

f1 f2
u0

u1

u2

(c) Example reuse case 2©.

Fig. 2: The case of reuse using example graphs in Figure 1. In Figure 2b and 2c, the dashed lines between partial instances
indicate the transformation functions used by our scheme; in each example reuse case, the pattern subgraph on the right is
subgraph isomorphic to the pattern subgraph on the left.

and v3 again. This result is labeled as 2.2. As shown in
Figure 2c, the results of 2.1 and 2.2 are actually the same.

In Figure 2a, we also indicate other redundant set inter-
section operations, e..g, 3.1 and 3.2, 4.1 and 4.2.

The redundant set intersection operation is a significant
bottleneck for subgraph enumeration. Our profiling results
in Section 6.3 show that the set intersection operations can
take up to 95% of the total processing time for subgraph
enumeration (Figure 9), while the redundant set intersection
operations can be over 99% (Figure 10).

This excessive number of redundant set intersection op-
erations offers an opportunity to further optimize subgraph
enumeration. A natural idea is to cache the results of distinct
set intersection operations and reuse them to avoid repeated
computations. A naı̈ve solution is to implement a central-
ized key-value store (or any data structure) to maintain a
mapping from the relevant vertices v1, v2 · · · vn (as the key)
to the intersection result of their adjacent lists (as the value).
In this way, whenever we intersect the adjacent lists of the
same vertices v1, v2 · · · vn, we can query the key-value store
to retrieve the cached result directly. However, maintaining
a key-value store can incur large synchronization overhead
when the data structure is concurrently updated by parallel
threads [20], [21], [22], [23], [24]. For example, in Figure 2a,
a number of threads may concurrently store the results of
1.1, 2.1, 3.1, 4.1 into the centralized key-value store after
computing the candidate set of u2. This design may lead
to even worse performance than the case without exploiting
reuse (Figure 8)!

f

f*

Phase 1: reuse analysis framework

Phase 2: reusable parallel search

Reuse discovery

mechanism

Reusable plan

generation

Pattern graph

Reusable plan Z

Data graphPattern graph
Partial instances

via Z
f f*

f*f

Set intersection given f

Fig. 3: The two-phase approach to exploit reuse.

1.2 Our Contribution

In this paper, we propose a different solution to support
reuse. Our intuition is that each set intersection result is
generated for a specific partial instance, and thus the map-
ping from the partial instance to its corresponding result
is obtained “for free” as a by-product. If we know the
corresponding partial instance of a set intersection result,
we can utilize this mapping to reuse it without maintaining
an additional key-value store. However, this idea poses two
great challenges. First, given a partial instance f to compute
the candidate set, it is unclear how to find another partial
instance f∗ for which we have computed the set intersection
result in the past. Second, even if such a partial instance
f∗ exists, it is essential to search f∗ efficiently at runtime
to keep the overheads manageable in order to enjoy the

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

3

benefits of reuse. To address these challenges, we design
a two-phase scheme as shown in Figure 3.

In the first phase, we rely on the reuse analysis frame-
work to generate a reusable plan before execution. This plan
can guide the set intersection operation at runtime to iden-
tify the available partial instances that correspond to the
results for reuse. The crux of this phase is the reuse discov-
ery mechanism that can establish a transformation function
from an existing known partial instance f to another valid
partial instance f∗ . f∗ is guaranteed to correspond to an
available result that is helpful to compute the candidate
vertices for f . To establish the transformation function, an
important condition is that the pattern graph P ∗n matched
by f∗ and its set intersection result, is subgraph isomorphic
to the pattern graph Pn matched by f and its corresponding
candidate set. This condition assures the existence of f∗:
now that we are given f to comptue the candiate set by
following the constraints enforced by Pn, we must have
computed the set intersection result for f∗ before by follow-
ing the constraints by P ∗n . Take the reuse case in Figure 2c
as an example, given f4 to compute the result 2.2, the
transformation function indicated by the dashed lines will
convert f4 to f3 such that its corresponding result 2.1 can be
reused. In this case, the pattern graph P ∗n matched by f3 and
its corresponding result is a triangle formed by u0, u1, u2;
the pattern graph Pn matched by f4 and the candidate set
is a graph formed by u0, u1, u2, u3, u4. P ∗n is isomorphic to
the triangle counterpart of Pn formed by u0, u3, u4. For each
set intersection computaiton, more than one transformation
function may be established, as there could be multiple
partial instances with available results for reuse. Hence, our
reusable plan generation process will choose the best one(s)
for the computation of candidate sets.

In the second phase, we design a new parallel approach
for subgraph enumeration called reusable parallel search,
or RPS for short, which exploits reuse according to the
reusable plan to accelerate the execution. To maintain the
result of the set intersection operation, we simply store it
along with the partial instance on its generation. To retrieve
the result, we follow the reusable plan to generate a partial
instance f∗, traverse a light-weight tree structure to find f∗,
and then obtain the result stored along with f∗ for reuse. To
optimize the reuse scope and improve the performance, we
conduct the cost analysis to select a reuse-aware match order
for RPS. Although our discussion of RPS is mainly based on
GPUs, it is a general approach that can be deployed to other
parallel architectures such as multi-core CPUs.

We hereby summarize the contributions in this work.
• We devise the reuse analysis framework that facili-

tates the reuse for parallel subgraph enumeration. It
provides a mechanism to systematically discover the
cached results available for reuse. It considers all the
available reuse options and chooses an efficient execu-
tion plan to accelerate the computation.

• We propose the reusable parallel search that can exploit
the reuse in execution. RPS is designed to efficiently
maintain and retrieve the cached results for reuse. To
optimize the reuse scope, it chooses a reuse-aware
match order to improve the performance.

• We implement RPS on GPUs and open-source the code
at [25]. The experiments show that RPS can achieve up

to 5 times speedups over the state-of-the-art solutions
for GPUs.

The remaining part of this paper is organized as follows.
Section 2 introduces the background of subgraph enumera-
tion, and Section 3 reviews the related works. Section 4 pro-
poses the reuse analysis framework, while Section 5 presents
the RPS approach. Section 6 shows the experimental results.
Lastly, Section 7 concludes this paper.

2 PRELIMINARY

In this section, we first introduce the preliminary knowledge
for subgraph enumeration on GPUs.

2.1 Definitions and Notations

Subgraph enumeration is defined on the data graph G and
the pattern graph P that are both undirected, unlabeled and
connected graph. We call the vertices of G and P as the data
vertices and pattern vertices respectively; similarly, we call the
edges of G and P as the data edges and pattern edges.

For a graph g, the vertices and edges of g are denoted
as V (g) and E(g). For a vertex v, the adjacent list of v is
denoted as N(v). A graph g1 is a subgraph of g2 if V (g1) ⊂
V (g2) and E(g1) ⊂ E(g2). A graph g1 is an induced subgraph
of g2 on the vertex set U ⊂ V (g2) if g1 has the vertex set
V (g1) = U and the edge set E(g1) such that ∀v1, v2 ∈ U , if
(v1, v2) ∈ E(g2), then (v1, v2) ∈ E(g1).
Definition 1 (Subgraph Enumeration). A graph g is iso-

morphic to a pattern graph P , if there exists a bijective
mapping f : V (P)→ V (g), such that (u1, u2) ∈ E(P) if
and only if (f(u1), f(u2)) ∈ E(g). Given the data graph
G and pattern graph P , subgraph enumeration finds all
subgraphs of G that are isomorphic to P .

Definition 2 (Match order). Given a pattern graph P , the
match order π is a permutation of the pattern vertices
V (P) that reflects the order in which V (P) are matched.
π(i) is the i-th vertex in π. When 1 ≤ i ≤ j ≤ |V (P)|,
π[i : j] denotes the set of vertices {π(k)|i ≤ k ≤ j}.
Given π, if π(i) = u, the position of u on π is π−1(u) = i.

Definition 3 (Instance / Partial instance). An isomorphism
from P to the matched subgraph of G is called an
instance of P . Given P and π, the induced subgraph
of P on π[1 : i] is denoted as Pπi . An instance of Pπi is a
partial instance of P . The set of instances of P is denoted
as R(P), and the partial instances corresponding to Pπi
is denoted as R(Pπi).

For any partial instance f ∈ R(Pπi), it is an isomorphic
mapping V (Pπi)→ V (G). When a pattern vertex u ∈ V (P)
exists in the domain of f , we say u ∈ f . The projection of f
is defined as follows.
Definition 4 (Projection / Prefix / Extension). Given the

partial instance f ∈ R(Pπi), where 1 ≤ i ≤ |V (P)|,
and a set of pattern vertices U = {u|u ∈ V (P) ∧ u ∈
f}, the projection of f on U is the partial instance
f(U) = {(u, v)|u ∈ U, v = f(u)}. For any i and j with
1 ≤ j < i ≤ |V (P)|, given fi ∈ R(Pπi), we can have the
projection fj = fi(V (Pπj)). fj is called the prefix of fi,
while fi is the extension of fj .

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

4

TABLE 1: Frequently used notations.

Symbol Descriptions
P,G pattern graph and data graph

V (g), E(g) vertex set and edge set of g
N(v) adjacent list of v
R(P) the set of instances of P
π match order

Nπ
+(u)

backward neighbors of u given match
order π

Pπi
induced subgraph of P on the vertex
set π[1 : i]

f, f⊥ isomorphic mapping, empty mapping
f(u) the data vertex mapped to u
f(U) the projection of f on the vertex set U
C(u|f) candidate set for u given partial in-

stance f
C∗(u|f) result set for u given partial instance f

uj vπg ui
given π, ui constraint subsumes uj
with constraint subsume function g

T subsume transform function
Z = (Z1, Z2) reusable plan

Definition 5 (Backward neighbor). Given P and π, the
backward neighbors of u ∈ V (P) are the neighbors that
are matched before u. Formally, the backward neighbors
of u are Nπ

+(u) = {un|un ∈ N(u)∧ π−1(un) < π−1(u)}.

Definition 6 (Candidate set). Given P,G, π and the partial
instance f ∈ R(Pπi), the candidate set of u ∈ V (P) is
the set of data vertices C(u|f) = {v|v ∈ V (G) ∧ (∀un ∈
Nπ

+(u), (f(un), v) ∈ E(G))}. C(π(1)|f) = V (G).

Definition 7 (Result set). Given P,G, π, u = π(i), and the
partial instance f ∈ R(Pπi−1), the result set of u is the set
of data vertices C∗(u|f) = {v|v ∈ C(u|f) ∧ (∀un ∈ π[1 :
i− 1], v 6= f(un))}. C∗(π(1)|f) = V (G).

Given P and π, we specifically define Pπ0 as a graph
with V (Pπ0) = ∅ and E(Pπ0) = ∅. Let the empty isomorphic
mapping be f⊥ = ∅. We define R(Pπ0) = {f⊥} to indicate
that only f⊥ can be mapped to Pπ0 . Since π(1) has no
backward neighbors, given the empty mapping f⊥, we have
C(π(1)|f⊥) = C∗(π(1)|f⊥) = V (G).

For simplicity of illustration, we make the subscript of
ui the same as ui’s position on π, i.e., π(i) = ui where
1 ≤ i ≤ |V (P)|. Like previous works [8], [16], [18], [26]
we use a connected match order, since it usually achieves
better performance than any unconnected match order. This
means that Pπi is a connected graph for i ∈ [1, |V (P)|] and
Nπ

+(ui) 6= ∅ for i ∈ (1, |V (P)|]. Throughput the paper, we
consider storing the data graph in the compressed sparse
row format (CSR) [27], [28], which is a widely used storage
format for efficient graph processing.
Example 2. In Figure 1, a match order for the pat-

tern graph P is π = (u0, u1, u2, u3, u4). The back-
ward neighbors for each pattern vertex are as follows.
Nπ

+(u0) = ∅. Nπ
+(u1) = {u0}. Nπ

+(u2) = {u0, u1}.
Nπ

+(u3) = {u0, u1}. Nπ
+(u4) = {u0, u3}. One of the

instances matched to P is {(u0, v0), (u1, v1), (u2, v2),
(u3, v3), (u4, v4)}. One of the partial instances matched
to Pπ3 is f = {(u0, v0), (u1, v1), (u2, v2)}. Given f to
compute the candidate set of u3, we have C(u3|f) =
{v2, v3, v4, v5}. To compute the result set of u3, we
have C∗(u3|f) = {v3, v4, v5}. v2 is not in C∗(u3|f)
because f has already mapped u2 to v2. With f

Algorithm 1 SubgEnum BFS

Input: the pattern graph P , data graph G and match order
π with π(i) = ui

Output: the instances R(P)
1: R(Pπ1) = {(u1, v)|v ∈ V (G)}
2: for 2 ≤ i ≤ |V (P)|
3: C∗ = COMPUTE(ui, R(Pπi−1))
4: R(Pπi) = MATERIALIZE (ui, C∗, R(Pπi−1))

5: procedure COMPUTE(ui, R(Pπi−1))
6: parallel for f ∈ R(Pπi−1)
7: C(ui|f) = ∩∀u∈Nπ+(ui),v=f(u)N(v)
8: C∗(ui|f) = C(ui|f)− {f(u)|u ∈ f}
9: Return C∗

10: procedure MATERIALIZE(ui, C∗, R(Pπi−1))
11: parallel for f ∈ R(Pπi−1), F = ∅
12: parallel for v ∈ C∗(ui|f)
13: fn = f ∪ (ui, v), F = F ∪ fn
14: R(Pπi) = R(Pπi) ∪ F
15: Return R(Pπi)

and C∗(u3|f), we generate three new partial instances
matched to Pπ4 : {(u0, v0), (u1, v1), (u2, v2), (u3, v3)},
{(u0, v0), (u1, v1), (u2, v2), (u3, v4)}, {(u0, v0), (u1, v1),
(u2, v2), (u3, v5)}. They are the extensions of f , while f
is their prefix. Given the vertex set V (Pπ2), the projection
of f on V (Pπ2) is f(V (Pπ2)) = {(u0, v0), (u1, v1)}.

We introduce several propositions as follows. Proposi-
tion 1 shows that for the partial instance f matched to
Pπi−1 and the data vertex v in the result set of ui, we can
add the mapping (ui, v) into f to generate a new partial
instance f∗ = f∪(ui, v) that is matched to Pπi . Proposition 2
illustrates that for the partial instance fi matched to Pπi and
its projection fi−1 on the pattern vertices matched before ui,
the data vertex fi(ui) is in the result set of ui given fi−1.
Proposition 1. Given 1 ≤ i ≤ |V (P)|, ∀f ∈ R(Pπi−1),∀v ∈

C∗(ui|f), (f ∪ (ui, v)) ∈ R(Pπi).

Proposition 2. Given 1 ≤ i ≤ |V (P)|, ∀fi ∈ R(Pπi), fi−1 =
fi(V (Pπi−1)), there is fi(ui) ∈ C∗(ui|fi−1).

We end this subsection with Table 1 listing the frequently
used notations throughout the paper.

2.2 BFS Approach

The state-of-the-art GPU solutions (NEMO [18] and GPSM
[19]) are based on the breadth-first search (BFS) approach as
shown in Algorithm 1. It initializes the partial instances with
all data vertices. For each remaining pattern vertex in π, it
executes two procedures, namely COMPUTE and MATERI-
ALIZE. COMPUTE iterates each partial instance f ∈ R(Pπi−1)
to compute the candidate set C(ui|f) and the result set
C∗(ui|f). The candidate set computation is the set intersec-
tion operation on the relevant adjacent lists (Line 7), which
is the runtime bottleneck in execution. To implement such
an operation, GPSM adopts the binary search method [19],
[29], [30], [31], [32]. Given multiple sets for intersection, it

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

5

chooses the set that has the smallest cardinality. Then, it
iterates each element in this set to check whether the ele-
ment exists in all remaining sets via the binary search. After
finishing COMPUTE, we obtain the result set C∗ for each
existing partial instance. Using C∗, MATERIALIZE extends
the existing partial instances for Pπi−1 to match one more
pattern vertex and generate the partial instances for Pπi .

3 RELATED WORK

Subgraph enumeration algorithms. Based on the approach
proposed by Ullman et al. [33], existing algorithms make
improvements by various pruning heuristics [2], [7], [8], [9],
[10] and selective match orders [7], [8], [26], [34]. While these
works reduce the search space mostly by minimizing the
number of partial instances searched, our work takes a dif-
ferent approach, i.e., decreasing the computation overhead
of generating each partial instance by avoiding unnecessary
set intersection operations.
Parallel subgraph enumeration. Parallel solutions for sub-
graph enumeration have been proposed in different settings,
including multi-core CPUs [16], [17], [35], GPUs [18], [19],
[36] and distributed clusters [11], [12], [13], [14], [37], [38].
Some multi-core CPU solutions adopt the DFS approach as
it is memory-efficient and easy to implement. However, the
backtracking nature of DFS approach makes it inefficient on
massively parallel architectures. For instance, it can cause
irregular execution paths among parallel threads and lead to
severe warp divergence on GPUs. As such, most GPU [18],
[19] and distributed [11], [12], [13], [14], [37], [38] solutions
follow the BFS approach.

Recent graph mining systems including Automine [39]
and Pangolin [40] provide programming abstractions to
ease users from identifying pattern-specific optimizations
e.g., filtering results beforehand and avoiding unnecessary
computation. However, these systems do not consider the
reuse scenario discussed in this paper.
GPU subgraph enumeration. GPUs have seen recent inter-
ests in accelerating graph applications [41], [42], [43], [44]. To
optimize GPU-based graph applications, [45] explores var-
ious designs for some morph algorithms where the graph
structures can change in an unpredictable fashion. However,
in subgraph enumeration, the graphs, i.e., the intermediate
result, change in a regular way as per the pattern graph.

For GPU subgraph enumeration [18], [19], [36], they
follow the same BFS approach as in Algorithm 1 and only
slightly differ in implementation details. For set intersection
operations, NEMO checks whether a data vertex exists in
another adjacent list by a linear scan, while NEMO and
GSI adopt the binary search. To materialize set intersection
results, NEMO and GPSM perform the computation in one ad-
ditional time to obtain the result size, but GSI pre-allocates
the memory for writes and compact the result afterwards.
Besides some implementation strategies, GPSM and GSI also
target general subgraph matching, i.e., subgraph enumera-
tion on labeled graphs, and propose specific optimizations,
e.g., PCSR structures in GSI to efficiently filter the data
vertices matched to a label. These optimizations do not
apply in our context as subgraph enumeration is defined
on unlabeled graphs. Desipte the differences in implemen-
tation, these works can apply our reuse scheme to boost the
performance as they are based on the same algorithm.

Set intersection operations. There are many works [46],
[47], [48], [49] proposed in the CPU context to improve the
single-thread performance for set intersection operations.
These works may not be efficiently deployed on GPUs,
because they do not consider load balance among parallel
threads, warp divergence and coalesced memory accesses
to optimize the performance. Green et al. [50] proposes
a merge-based approach for set intersection operations on
GPUs. It partitions two sorted arrays into non-overlapping
and equal chunks, each of which can be independently
proccessed by a group of threads. However, recent work [29]
shows that the simple binary search [19], [30] is more
efficent because it actually reduces the warp divergence and
increases the coalesced memory accesses.
Reuse in subgraph enumeration. To our knowledge, there
are two works [8], [16] that propose techniques similar to
reuse for subgraph enumeration, but their reuse scope is
limited. To compute the candidate set of a pattern vertex
ui, LIGHT [16] can utilize the candidate set of a pattern
vertex uj with j < i that is previously computed, only
when Nπ

+(uj) ⊆ Nπ
+(ui). In comparison, our approach can

reuse the computed result even when Nπ
+(uj) 6⊂ Nπ

+(ui)
(see Example 5). TurboIso [8] proposes the COMB/PERM
strategy to merge “equivalent” pattern vertices (i.e., pat-
tern vertices have exactly the same neighbors) into one
condensed pattern vertex, so that the candidate data ver-
tices can be generated only once but shared among the
equivalent pattern vertices. However, the equivalence of
pattern vertices greatly restricts the application scope of
the scheme. Besides the limited reuse scope, LIGHT and
TurboIso are based on the DFS approach, which is difficult
to be efficiently parallelized on GPUs as we mention earlier.

4 REUSE ANALYSIS FRAMEWORK

This section introduces the reuse analysis framework that
discovers the reuse opportunities and generates an efficient
execution plan for the candidate set computation.

4.1 Overview
To reuse the cached results and avoid the redundant compu-
tation, given the partial instance f to compute the candidate
set C(ui|f), we seek to find a partial instance f∗ that was
generated before and a pattern vertex uj such that the cor-
responding candidate set C(uj |f∗) is useful for computing
C(ui|f).

There are two challenges to reuse the cached result
C(uj |f∗) as mentioned above. First, since there are multiple
available pattern vertices and a tremendous number of
partial instances generated in the past, it is unclear how
to identify a specific uj and f∗ such that the corresponding
cached result C(uj |f∗) is useful. Second, even when we can
identify the cached results, we might not be able to find a
cached result C(uj |f∗) that is exactly equal to C(ui|f). In
this case, it is uncertain how to make use of the available
cached results to accelerate the computation of C(ui|f).

To address these challenges, our reuse analysis frame-
work provides two components, namely reuse discovery
mechanism and reusable plan generation. The reuse dis-
covery mechanism inspects the pattern vertex uj and es-
tablishes a transformation function to generate the partial

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

6

…

T1

T2
ui and f

(uj
1,g1)

(uj
2,g2)

……

f1
*

f2
*

…

C(uj
1|f1

*)

C(uj
2|f2

*)

…

C(ui|f)

ui constraint subsumes uj with g

Fig. 4: Overview of reuse discovery mechanism.

instance f∗ such that the cached result C(uj |f∗) is available
at runtime for reuse. With the available cached results,
the reusable plan generation evaluates each reuse option,
and then produces a reuse-aware execution plan for the
candidate set computation.

4.2 Reuse Discovery Mechanism

Our mechanism is based on an important relationship
among two pattern vertices called constraint subsume. It is
an indication that the candidate set computation of ui can
reuse the candidate set of uj . When ui constraint subsumes
uj , Pπj is isomorphic to a subgraph of Pπi with a special
mapping g, which specifically maps uj to ui and preserves
the orders among the pattern vertices in Pπj . The constraint
subsume relationship is formally defined as follows.
Definition 8 (Constraint subsume). Let 1 ≤ j < i ≤ |V (P)|.

Given π, ui constraint subsumes uj with g, denoted as
uj vπg ui, if there exists a mapping g : V (Pπj) → V (Pπi)
such that (1) g(uj) = ui; (2) ∀u ∈ V (Pπj),∀un ∈
Nπ

+(u), g(un) ∈ Nπ
+(g(u)); (3) ∀k,w ∈ [1, j], if k < w,

then π−1(g(uk)) < π−1(g(uw)). g is called the constraint
subsume function.

With the constraint subsume function g, which is a map-
ping between the pattern vertices, we define the subsume
transform function T that employs g to convert the partial
instance f to a new partial instance f∗. f∗ would map any
vertex in its domain u ∈ f∗ to the same data vertex as f
maps g(u) to, i.e., f∗(u) = f(g(u)).
Definition 9 (Subsume transform function). Given a partial

instance f , a constraint subsume function g and a set
of pattern vertices U ⊆ V (P), for any u ∈ U , u is in the
domain of g and g(u) is in the domain of f . The subsume
transform function T generates a new partial instance as

T (f, g, U) = {(u, f(g(u)))|u ∈ U}

Example 3. For the example pattern graph in Figure 1,
assume the match order π = (u0, u1, u2, u3, u4). u3
constraint subsumes u2 with g1. g1 maps (u0, u1, u2)
to (u0, u1, u3). u4 constraint subsumes u2 with g2.
g2 maps (u0, u1, u2) to (u0, u3, u4). Given the partial
instance f1 = {(u0, v0), (u1, v1), (u2, v2)}, we use g1
and V (Pπ2) to apply the subsume transform function
T (f1, g1, V (Pπ2)) = {(u0, v0), (u1, v1)}. Given the partial
instance f2 = {(u0, v0), (u1, v1), (u2, v2), (u3, v3)}, we
use g2 and V (Pπ2) to apply the subsume transform
function T (f2, g2, V (Pπ2)) = {(u0, v0), (u1, v3)}.

Mechanism overview. Figure 4 illustrates how the reuse
discovery mechanism identifies the available cached results.
For the candidate set computation of ui, our mechanism
finds all possible pairs of (uj , g) such that ui constraint
subsumes uj with the constraint subsume function g. All the
pairs can be generated by enumerating each pattern vertex
uj with j < i and any possible mappings g between the pat-
tern vertices. As the constraint subsume relationship only
relies on the pattern graph P and match order π, all the pairs
can be generated before enumerating the subgraphs of the
data graph. By means of the pair (uj , g), given any partial
instance f ∈ R(Pπi−1) that has matched the pattern vertices
before ui, we can apply the subsume transform function T
on the vertex set V (Pπj−1) to generate a new partial instance
f∗ = T (f, g, V (Pπj−1)). Then the corresponding candidate
set C(uj |f∗) can be reused for C(ui|f).
Benefits of reuse. To understand the benefit of reusing
C(uj |f∗), assuming the generated partial instance f∗ exists,
Lemma 1 proves that C(uj |f∗) is the partial execution
result to compute C(ui|f). Specifically, it is the intersection
result over the adjacent lists of the data vertices matched
to some backward neighbors of ui. As C(ui|f) is the in-
tersection result corresponding to all backward neighbors
of ui, C(uj |f∗) is a portion of workload necessary to
compute C(ui|f), and reusing C(uj |f∗) for C(ui|f) can
save the efforts of this portion. By Lemma 1, there is
always C(ui|f) ⊆ C(uj |f∗). When C(uj |f∗) is the inter-
section result that covers all backward neighbors of ui, then
C(ui|f) = C(uj |f∗) and hence we can directly useC(uj |f∗)
as the result of C(ui|f). For the case C(ui|f) 6= C(uj |f∗),
because C(ui|f) ⊂ C(uj |f∗), we can still reuse C(uj |f∗)
but need further computation to get C(ui|f) (more details
are discussed in the next subsection).

Lemma 1. Given π, assume uj vπg ui. Given the par-
tial instance f ∈ R(Pπi−1), f

∗ = T (f, g, V (Pπj−1)).
If f∗ ∈ R(Pπj−1), then (1) there exists U ⊆ Nπ

+(ui)
such that C(uj |f∗) = V (G) ∩ {∩∀u∈UN(f(u))}; (2)
C(ui|f) ⊆ C(uj |f∗).

Proof: This lemma can be proved using Lemma 2.
Feasibility of reuse. Although we can identify the cached
result C(uj |f∗) that is beneficial for reuse, reusing C(uj |f∗)
depends on an important condition that the generated
partial instance f∗ exists, which is assumed to be true by
Lemma 1. In fact, the existence of f∗ is guaranteed by the
constraint subsume relationship. The intuition is that when
ui constraint subsumes uj with the constraint subsume
function g, there is an isomorphism g′ = g − (uj , ui)
from Pπj−1 to a subgraph of Pπi−1. We denote this isomor-
phic subgraph of Pπi−1 as pi−1. Given the partial instance
f ∈ R(Pπi−1), the projection f(V (pi−1)) is a valid match to
the pattern pi−1. Since the pattern Pπj−1 is structurally the
same as pi−1 except for the different vertices, the projection
f(V (pi−1)) can also be a match to the pattern Pπj−1 if we can
arrange the domain of f(V (pi−1)) with the pattern vertices
V (Pπj−1). Such an arrangement is actually the application
of the subsume transform function T . As such, the partial
instance f∗ generated by T is a match to the pattern Pπj−1
and thus f∗ exists in R(Pπj−1).

To prove the existence of f∗, we first introduce Lemma 2.
Assuming f∗ exists, this lemma proves that for any uk ∈

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

7

V (Pπj) and the pattern vertex g(uk) mapped by g, given
any partial instance f that has matched the pattern vertices
before g(uk) and the partial instance f∗ generated by T ,
there are subsume relationships for the candidate set and
result set, i.e., C(g(uk)|f) ⊆ C(uk|f∗) and C∗(g(uk)|f) ⊆
C∗(uk|f∗). Assisted by Lemma 2, Theorem 1 proves that
given any partial instance f ∈ R(Pπi−1), the constraint
subsume relationship can guarantee the existence of f∗,
which is generated by the subsume transform function T .
Lemma 2. Given π, assume uj vπg ui. Given uk ∈ V (Pπj),

we define q(k) = π−1(g(uk)) − 1. ∀uk ∈ V (Pπj),∀f ∈
R(Pπq(k)), f

∗ = T (f, g, V (Pπk−1)), if f∗ ∈ R(Pπk−1), then
C(g(uk)|f) ⊆ C(uk|f∗) and C∗(g(uk)|f) ⊆ C∗(uk|f∗).

Proof: Since uj vπg ui, ∀u ∈ Nπ
+(uk), g(u) ∈

Nπ
+(g(uk)), which is an important condition for

C(g(uk)|f) ⊆ C(uk|f∗). Due to space limitations, the
proof is omitted.
Theorem 1. Given π, assume uj vπg ui. ∀f ∈ R(Pπi−1), f∗ =

T (f, g, V (Pπj−1)), there exists f∗ ∈ R(Pπj−1).
Proof: We can prove by induction to show that given

uk, for any f ∈ R(Pπb(k)) and f∗ = T (f, g, V (Pπk)), we have
f∗ ∈ R(Pπk). Please refer to supplementary materials for
details.
Example 4. As shown by Figure 2a, there is a partial instance

f = {(u0, v0), (u1, v1), (u2, v2), (u3, v3)} ∈ R(Pπ4). Con-
tinuing Example 3, we have u4 constraint subsumes u2
with g2. Let f∗ = T (f, g2, V (Pπ2)) = {(u0, v0), (u1, v3)}.
As shown in Figure 2a, f∗ ∈ R(Pπ2), which is a use case
of Theorem 1.

4.3 Reusable Plan Generation
Although the available cached results can be identified by
the reuse discovery mechanism, it is not easy to reuse them
as we may not be able to find a cached result that is exactly
equal to the candidate set we are computing. In that case,
it is unclear how to choose a set of cached results for the
candidate set computation so as to produce the correct
execution result and optimize the runtime performance.

To solve this problem, we design an execution plan
called reusable plan. The plan is composed by a series of
sub-plans, and each sub-plan corresponds to the candidate
set computation of one pattern vertex. We call the sub-
plan as reusable vertex plan. As shown by Figure 5, the
reusable vertex plan Z(ui) = (Z1(ui), Z2(ui)) consists of
two parts: Z2(ui) is a subset of the backward neighbors of
ui, while Z1(ui) refers to a set of cached results that can
be located by the reuse discovery mechanism. Specifically,
Z1(ui) comprises a series of (uj , g), where ui constraint
subsumes uj with the constraint subsume function g. Ac-
cording to the reuse discovery mechanism, given any partial
instance f ∈ R(Pπi−1), (uj , g) can be used to generate a
partial instance f∗ so that the cached result C(uj |f∗) can
be reused. By Lemma 1, C(uj |f∗) is the intersection result
over the adjacent lists of the data vertices matched to some
backward neighbors of ui. We say this set of backward
neighbors is covered by (uj , g). An important requirement
of the reusable vertex plan is to have the pattern vertices
covered by each (uj , g) in Z1(ui) and the pattern vertices
Z2(ui) constitute Nπ

+(ui).

ui

Z1(ui) Z2(ui)

Backward neighbors of ui

(uj
1,g1) (uj

2,g2)

Fig. 5: Illustration of reusable vertex plan Z(ui).

Definition 10 (Reusable vertex plan). The reusable vertex
plan for ui is defined as Z(ui) = (Z1(ui), Z2(ui)) that
satisfies: (1) for each (uj , g) ∈ Z1(ui), there is uj vπg
ui; (2) Z2(ui) ⊆ Nπ

+(ui); (3) {u|(uj , g) ∈ Z1(ui), un ∈
Nπ

+(uj), u = g(un)} ∪ Z2(ui) = Nπ
+(ui).

Execution by reusable plan. Following the reusable vertex
plan Z(ui), the candidate set computation would intersect
the cached results that are discovered with each (uj , g) ∈
Z1(ui) and the adjacent lists of the data vertices matched
to the pattern vertices Z2(ui) (i.e., Equation 1). Theorem 2
proves such a method leads to the correct result.

Theorem 2. Given the reusable vertex plan Z(ui) = (Z1(ui),
Z2(ui)) and the partial instance f ∈ R(Pπi−1), the candi-
date set of ui can be computed by

L(ui|f) = (∩∀(uj ,g)∈Z1(ui),f∗=T (f,g,V (Pπj−1))
C(uj |f∗))

∩ (∩∀u∈Z2(ui)N(f(u))) ∩ V (G)
(1)

Proof: Please refer to the supplemental materials.

Example 5. From Example 3, u4 constraint subsumes
u2 with g2. A reusable vertex plan for u4 can be
Z(u4) = (Z1(u4), Z2(u4)), where Z1(u4) = {(u2, g2)}
and Z2(u4) = ∅. From Example 4, we have a partial
instance f = {(u0, v0), (u1, v1), (u2, v2), (u3, v3)} ∈
R(Pπ4) and f∗ = {(u0, v0), (u1, v3)} ∈ R(Pπ2). Following
Equation 1 to compute C(u4|f), L(u4|f) = C(u2|f∗). As
shown in Figure 2a, C(u2|f∗) = {v1, v2, v4, v5}, which
we reuse for C(u4|f). Thus, C(u4|f) = L(u4|f) =
{v1, v2, v4, v5}.

Plan generation. Since the plan for each vertex is inde-
pendent, we can generate it separately. According to Equa-
tion 1, the number of intersection operations performed is
|Z1(ui)| + |Z2(ui)| − 1, and thus an efficient plan should
reduce the cardinality of Z1(ui) and Z2(ui). As shown
in Figure 5, the requirement of Z(ui) is that the back-
ward neighbors Nπ

+(ui) shall be fully covered by each
(uj , g) ∈ Z1(ui) and the pattern vertices Z2(ui). Therefore,
we formalize the plan generation as a minimum set cover
problem. We construct a set S containing all collections of
pattern vertices covered by the possible elements in Z1(ui)
and Z2(ui). Then we find a minimum subset S′ ⊆ S that can
cover the universeNπ

+(ui). Due to space limitation, we leave
the details of plan generation process in supplementary
materials.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

8

5 REUSABLE PARALLEL SEARCH

This section presents our reusable parallel search (RPS) at
runtime to make use of the available cached results that are
identified by the reuse analysis framework before execution.

5.1 Design

RPS is based on BFS, but it takes additional efforts to main-
tain and retrieve the cached results in execution. The main-
tenance is easy because we simply materialize the result
of a candidate set on its generation. To retrieve the cached
result, we can apply the transformation function established
by the reuse discovery mechanism to generate the partial
instance f∗ and use the pattern vertex uj specified in the
reusable vertex plan. Then, in order to acquire the cached
result C(uj |f∗), we need to search f∗ in execution.
Index partial instances. We organize the partial instances
as a tree structure as they are generated. This facilitates the
efficient retrieval of the cached results. Note that for each
partial instance f ∈ R(Pπi−1), MATERIALIZE generates a set
of extension F ⊂ R(Pπi) for f . We can consider each partial
instance as a tree node and place F as the descendants of
f in the tree, since f is the common prefix of any partial
instance in F . To build up the tree, we create a tree node
for each partial instance f ∈ R(Pπi) where 1 ≤ i < |V (P)|
and arrange its descendants. A root representing f⊥ is also
added to serve as the ancestors of all the tree nodes. Thus,
the resulting tree has the partial instances for R(Pπi) in the
i-th level and f⊥ in the 0-th level.
Search partial instances. With the tree structure, we follow
a two-step method to search partial instances. To compute
the candidate set of ui, given a partial instance f ∈ R(Pπi−1),
we search the corresponding partial instance f∗ ∈ R(Pπj−1)
(j < i). Considering each partial instance as a tree node,
the search of f∗ is the movement on the tree structure from
the node f to the node f∗. As such, in the first step of the
search, we move from the node f to the lowest common
ancestor (LCA) between f and f∗, say fL; in the second
step, we move from fL to the node f∗. The first step can
be easily implemented by iteratively tracking the ancestor
of each visited tree node until reaching fL. In the second
step, we need to iteratively search a specific descendant
of a tree node to move down the tree until reaching f∗.
Note that there could be a number of descendants for a tree
node, making the simple linear scan over all the descendants
rather slow.

To accelerate the search, we exploit the property that the
descendants of a tree node are sorted, which allows us to
apply the binary search. This property is true because we
adopt CSR to store the data graph. To implement COMPUTE,
we can easily materialize the candidate set and result set
in sorted order. With the sorted result set, MATERIALIZE
generates the sorted extension for each partial instance,
which is based on the following defined order.

Definition 11 (Order among partial instances). Assume
there is a total order for V (G). Given f1, f2 ∈ R(Pπi)
(1≤i≤|V (P)|), f1 < f2 if there exists k ∈ [1, i] such that
(∀w ∈ [1, k), f1(uw)=f2(uw)) and (f1(uk)<f2(uk)).

Example 6. Figure 6b shows the tree structure built for
the example graph in Figure 1. Assume the match

Algorithm 2 SubgEnum RPS

Input: the pattern graph P , data graph G, reusable vertex
plan of all pattern vertices Z = (Z1, Z2), match order π
with π(i) = ui

Output: the instances R(P)
Maintain: ∀f ∈ R(Pπi), f.parent, f.next,D(&f)

1: procedure COMPUTE(ui, R(Pπi−1))
2: parallel for f ∈ R(Pπi−1)
3: B = {N(f(u))|u ∈ Z2(ui)}
4: for (uj , g) ∈ Z1(ui) do
5: f∗ = T (f, g, V (Pπj−1))
6: C(uj |f∗) = SEARCH(ui, uj , g, f, f∗)
7: B = B ∪ C(uj |f∗)
8: C(ui|f) = ∩∀Bk∈BBk
9: D(&f) = C(ui|f)

10: C∗(ui|f) = C(ui|f)− {f(u)|u ∈ f}
11: Return C∗

12: procedure MATERIALIZE(ui, C∗, R(Pπi−1))
13: parallel for f ∈ R(Pπi−1), F = ∅
14: parallel for v ∈ C∗(ui|f)
15: fn = f ∪ (ui, v), F = F ∪ fn
16: fn.parent = &f

17: R(Pπi) = R(Pπi) ∪ F
18: f.next = &F

19: Return R(Pπi)

20: procedure SEARCH(ui, uj , g, f, f∗)
21: w ← argmaxz∈[1,j−1] {ux = g(ux),∀x ∈ [1, z]}
22: if w exists then
23: l = i− 1, ptr = &f
24: while l > w do
25: ptr = (∗ptr).parent, l = l − 1

26: else
27: l = 0, ptr = &f⊥
28: while l < j − 1 do
29: F = ∗((∗ptr).next) . F ⊂ R(Pπl)
30: fl+1 = f∗(V (Pπl+1))
31: ptr ← Binary search fl+1 over F . F is sorted
32: l = l + 1
33: C(uj |f∗) = D(ptr) . Now ∗ptr = f∗

34: Return C(uj |f∗)

order is π = (u0, u1, u2, u3, u4). The partial instance
f0 = {(u0, v0), (u1, v1)} has 4 extensions matched to
Pπ3 , namely f1 = {(u0, v0), (u1, v1), (u2, v2)}, f2 =
{(u0, v0), (u1, v1), (u2, v3)}, f3 = {(u0, v0), (u1, v1),
(u2, v4)}, f4 = {(u0, v0), (u1, v1), (u2, v5)}. These ex-
tensions are placed under f0 as the descendants of
f0. These extensions are sorted based on the order
we define, i.e., f1 < f2 < f3 < f4. For the partial
instance f = {(u0, v0), (u1, v1), (u2, v2), (u3, v3)} and
f∗ = {(u0, v0), (u1, v3)}, the LCA between f and f∗ is
{(u0, v0)}.

9

v1 v2 v3 v4 v5

v0 …

v1 v2 v4 v5

f┴

u2

u1

u0

v1 v2 v4 v5

f*: (u0,u1) → (v0,v3)

D(&f*) f.parentf*.next

C*(u2|f*) C(u2|f*)

(a) An execution of MATERIALIZE. Besides materializing
partial instances, given f∗ as shown above, we maintain
the auxiliary tree structure: f∗.next tracks the result set
C∗(u2|f∗);D(&f∗) records the candidate setC(u2|f∗), i.e.,
the set intersection result; for each child f of f∗, f.parent
tracks its parent f∗.

T(f,g,V(P2
π))

v1 v2 v3 v4 v5

v0 …

v2 v3 v4 v5 v1 v2 v4 v5

v1 v2 v4 v5

N(v0)∩N(v3)

v3 v4 v5v2

f: (u0,u1,u2,u3) → (v0,v1,v2,v3)

f*: (u0,u1) → (v0,v3)
f┴

N(v0)∩N(v3)

u4

u3

u2

u1

u0

": $0,$1,$2, $3 → (+0,+1, +2, +3)

(b) An execution of COMPUTE. Suppose the reusable ver-
tex plan has Z1(u4) = {(u2, g)} and Z2(u4) = ∅, where g
maps (u0, u1, u2) to (u0, u3, u4). Given f as shown above,
we would first generate f∗, traverse the tree structure
to locate f∗, and then reuse the result of C(u2|f∗), i.e.,
N(v0) ∩N(v3), for C(u4|f).

Fig. 6: An example using Algorithm 2 on the example graphs in Figure 1. The match order is {u0, u1, u2, u3, u4}. The cross
symbol × means the corresponding data vertex is in the candidate set but not result set.

5.2 Implementation

Algorithm 2 illustrates the implementation of RPS. We only
show the implementation of COMPUTE and MATERIALIZE
in Algorithm 2, as the workflow is the same as Algorithm 1.
In Algorithm 2, we use reference (&) and dereference (∗)
operator. For a variable a, &a denotes the memory address
of a; for a reference p, ∗p denotes the object at the address
of p. For each partial instance f ∈ R(Pπi), we maintain the
location of the prefix of f by f.parent and the location of
the extension of f by f.next. f.parent and f.next represent
the tree structure used to search the partial instance. We also
maintainD(&f) to track the cached intersection result along
with the location of f .
COMPUTE and MATERIALIZE. The COMPUTE procedure
differs from that of Algorithm 1 in the candidate set compu-
tation. Guided by the reusable vertex plan Z(ui), it collects
the adjacent lists of the data vertices matched to Z2(ui) (Line
3) and the cached intersection result indicated in Z1(ui)
(Lines 4-7). To retrieve the cached intersection result, we
first apply the subsume transform function T on the given
partial instance f to obtain another partial instance f∗ that
guarantees f∗ ∈ R(Pπj−1) (Line 5). Then, SEARCH is used
to find the candidate set C(uj |f∗) that was computed in
the past (Line 6). The collected adjacent lists and cached
intersection result are intersected to compute the candidate
set (Line 8). After that, the computation result is stored
along with f (Line 9). With the result set generated by
COMPUTE, similar to Algorithm 1, MATERIALIZE generates
a set of extension F for each partial instance f . Additionally,
it tracks the extensions by f.next and the prefix of each
extension fn ∈ F by fn.parent.
SEARCH. Given f ∈ R(Pπi−1), f

∗ ∈ R(Pπj−1), SEARCH
traverses the tree structure from f to get the location of f∗.
In the beginning, we identify a consecutive range [1, z] of
the domain of g such that g can map each element in [1, z]

to itself (Line 21). f and f∗ would have the common prefix
on such a range. That is, ∀x ∈ [1, z], f(ux) = f∗(ux). Let
w be the largest z if it exists. If w does not exist, there is
no common prefix between f and f∗. In this case, the LCA
between f and f∗ is f⊥, i.e., the root of the tree in the 0-
th level, so we directly search f∗ from f⊥ (Line 27). If w
exists, the LCA between f and f∗ is in the w-th level. The
LCA is the partial instance fL = f(π[1, w]). In this case, we
initialize the searching position ptr as the location of f in
(i− 1)-th level (Line 23). Then, we follow the pointer to the
ancestor of the tree node, (∗ptr).parent, to reach the LCA in
w-th level (Lines 24-25). After ptr can position the LCA, we
iteratively move downward the tree to reach f∗ (Lines 28-
32). In each iteration, we fetch the descendants of a tree node
via (∗ptr).next (Line 29). Among the descendants F , we are
interested in the one that is the projection of f∗ on V (Pπl+1)
(Line 30). To search that descendant, the binary search over
F is conducted (Line 31). After reaching the (j − 1)-th level
of the tree, ptr can position f∗ and we can fetch the result
C(uj |f∗) by D(ptr).

Memory management. Since GPUs are equipped with lim-
ited device memory but there are a large number of partial
instances, the execution of RPS is implemented in a pipeline
manner similar to [18]. Specifically, we reserve a portion of
device memory θi for each iteration i. To generate the partial
instances for R(Pπi), we extend a subset of partial instances
achieved in the previous iteration and produce a subset
Fi ⊂ R(Pπi). The size of Fi and the corresponding cached
results are ensured to fit to the reserved memory θi. Then Fi
would be used in the next iteration to generate the partial
instances for R(Pπi+1). Due to the pipeline processing, only
a subset Fi ⊂ R(Pπi) and the corresponding cached results
are stored in iteration i. When a partial instance to be
searched f∗ is not in the subset Fi, we are unable to locate
the cached result corresponding to f∗ and thus the reuse

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

10

cannot be exploited. In that case, we simply fall back to the
traditional method of candidate set computation without
the reuse. In execution, we find that such a case seldom
happens and the cached results are available most of the
time (with the reuse ratio up to 99% as shown in Figure 10).
Example 7. Figure 6 shows examples of COMPUTE and

MATERIALIZE of Algorithm 2. Figure 6a shows the
tree structure maintained for the partial instance f∗ =
{(u0, v0), (u1, v3)}. f∗.next tracks the corresponding
result set and f.parent records the parent of each
tree node. They help to navigate the tree structure in
SEARCH. D(&f∗) records the location of the set intersec-
tion result, i.e., C(u2|f∗).
Figure 6b shows an example of the candidate set com-
putation in COMPUTE. f = {(u0, v0), (u1, v1), (u2, v2),
(u3, v3)} ∈ R(Pπ4) is given to compute the candidate set
C(u4|f). First, we apply the subsume transform function
to get f∗ = {(u0, v0), (u1, v3)}. To search f∗, we traverse
the tree as indicated by the arrows. Starting from f , we
first go along the ancestors: {(u0, v0), (u1, v1), (u2, v2)},
{(u0, v0), (u1, v1)}, {(u0, v0)}. {(u0, v0)} is the LCA be-
tween f and f∗. Then we go from {(u0, v0)} to f∗ =
{(u0, v0), (u1, v3)} by a binary search over the descen-
dants of {(u0, v0)}. After reaching f∗, we retrieve the
result aligned with f∗, i.e., C(u2|f∗) = {v1, v2, v4, v5},
which was computed by N(v0)∩N(v3). To reuse this re-
sult, we copy it for C(u4|f). Now that C(u4|f) is ready,
we can proceed to compute the result set C∗(u4|f).

5.3 Match Order Selection

Although the reuse can be exploited for any given match
order π, the order can affect the performance of RPS because
the reusable plan can vary with π and thus the reuse scope
differs. To evaluate a match order, we rely on the reuse-
aware cost analysis that considers the performance gains
and overheads of reuse. The analysis differs from the cost
models proposed in previous works [8], [10], [18], [19] that
do not exploit reuse. Due to space limitation, we leave the
discussion of cost analysis in the supplementary materials.

The match order selection works as follows. First, we
enumerate each possible order of V (P), say π, and generate
the reusable vertex plan as discussed in Section 4.3 for
each pattern vertex. Then, our reuse-aware cost analysis
evaluates the execution cost given π. In the end, the order
with the least cost is chosen. Note that the reuse-aware order
selection may choose the plan that does not exploit reuse. In
this case, the execution would be the same as the traditional
BFS approach (Algorithm 1).

6 EXPERIMENTS

In this section, we first introduce the experimental setups
and then report the evaluation results.

6.1 Experimental Setup

Implementation. We implement the following methods on
GPUs for evaluation.
• GPSM [19]: The state-of-the-art GPU solution based on

Algorithm 1. Because the method is originally proposed

for labeled graphs, it has a filter phase to generate
candidate data vertices by the labels and a join phase to
enumerate the matched subgraphs. We only implement
the join phase since subgraph enumeration is defined
on unlabeled graphs and the filter phase is not needed.

• NEMO [18]: The recent GPU solution based on Algo-
rithm 1. As the work [18] is originally designed for
network motif discovery, we only implement its com-
ponent of subgraph enumeration for the experiment.
NEMO is the same as GPSM except that it implements
the set intersection operations in a different way (see
Section 3 for details).

• REUSE_KV: The direct method that uses the key-value
store to exploit the reuse. Based on GPSM, we implement
the hash table by the CUDPP library [51]. When a new
result of set intersection operation is generated, it is
inserted into the hash table with the key as the relevant
data vertices. To perform the set intersection, we would
query the hash table to check to reuse the cached results
As there are a large number of set intersection results
but the GPU memory is rather limited, the hash table
will be released if its memory consumption exceeds the
pre-defined threshold. We tune the parameter and find
setting it to 1GB can achieve good performance. After
the memory release, the hash table can continue to store
the cached results as usual.

• RPS: The implementation of our approach (Algo-
rithm 2) on top of GPSM.

Datasets. Statistics of the datasets are shown in Table 2. The
datasets include youtube (YT), wiki-Talk (WK), wiki-topcats
(TP), twitter-higgs (TW), dogster (DG) and orkut (OR). The
datasets are downloaded from SNAP [52] and Network
Repository [53].

TABLE 2: The datasets used in the experiments.

Dataset YT WK TP TW DG OR
|V |(×106) 1.1 2.3 1.8 0.4 0.4 3.0
|E|(×106) 2.9 5.0 28.5 14.9 8.5 117.1

Queries. Figure 7 lists the queries used in the experiments.
These queries have been evaluated in a number of recent
works [11], [14], [54], [55]. To evaluate the performance, we
count the number of instances matched to the query and
report the running time.
Experimental Environment. The experiments are con-
ducted on a machine equipped with 128GB main memory,
two NVIDIA TITAN V GPUs (each has 12GB device mem-
ory), and two Intel Xeon Gold 6140 CPU processors (each
has 18 cores). The programs are compiled with CUDA-10.0
and GCC 7.3.0 with O3 flag.

6.2 Effects of Reuse

Figure 8 shows the evaluation results comparing our ap-
proach with the existing GPU methods. In the figure, the
bars that reach the top mean the corresponding schemes
have not completed after more than 3 hours.
Comparison with GPSM. Compared with GPSM, RPS
achieves speedups of 1.2−3.0, 2.5−4.8, 1.3−3.3, 1.6−4.1,
1.8 − 5.0, 1.6 − 2.8 on the datasets YT, WK, TP, TW, DG,
OR respectively. This confirms that reuse can accelerate

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

11

q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3 q7

u1

u0

u3

u1 u4

u2

u0

u3

u4u2

u5

q8
q5

q6

u2u2

u1

u0

u4

u3

u1

u0

u4

u3
u2 u3

u2

u1

u0

u4

u3

u1

u0

u4

q4

u0

u1 u2

u3
u0

u1 u2

u3

q1
q2 q3

Fig. 7: Queries

T1 T2 T3 T4 T5 T6 T7 T8
10−1

100

101

102

103

(O
DS

Ve
G

WiP
e

(V
)

Y7

T1 T2 T3 T4 T5 T6 T7 T8

101

103

WK

T1 T2 T3 T4 T5 T6 T7 T8

101

103

(O
DS

Ve
G

WiP
e

(V
)

73

T1 T2 T3 T4 T5 T6 T7 T8

101

103

7W

T1 T2 T3 T4 T5 T6 T7 T8

101

102

103

104

(O
DS

Ve
G

WiP
e

(V
)

DG

T1 T2 T3 T4 T5 T6 T7 T8
101

102

103

104
25

536 G360 5(86(_KV 1(02

Fig. 8: Effects of reuse on GPUs.

q1 q2 q3 q4 q5 q6 q7 q8
0.0

0.5

1.0

Ti
m

e
ra

tio
 (%

)

YT WK TP TW DG OR

Fig. 9: The ratio of the execution time of set intersection operations versus the overall execution time. We run GPSM, the
state-of-the-art GPU solutions, to profile the execution.

q1 q2 q3 q4 q5 q6 q7 q8
0.0

0.5

1.0

Re
us

e
ra

tio
 (%

)

WK

q1 q2 q3 q4 q5 q6 q7 q8
0.0

0.5

1.0
OR

RPS REUSE_KV

Fig. 10: The ratio of the set intersection operations that can be avoided by the reuse.

TABLE 3: Plan generation time (in milliseconds) and the ratio (100%) of plan generation versus total execution time of RPS.

Query q1 q2 q3 q4 q5 q6 q7 q8
Time 0.13 0.17 0.96 1.81 0.58 0.78 48 1.22
WK 0.02 0.07 < 0.01 11 < 0.01 < 0.01 0.43 < 0.01
OR < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

12

q1 q2 q3 q4 q5 q6 q7 q8

100

101

102
El

ap
se

d
tim

e
(s

)

WK

q1 q2 q3 q4 q5 q6 q7 q8
101

102

103

104

OR

COMPUTE for RPS
MATERIALIZE for RPS

COMPUTE for GPSM
MATERIALIZE for GPSM

COMPUTE for REUSE_KV
MATERIALIZE for REUSE_KV

Fig. 11: The execution time breakdown of RPS, GPSM, and REUSE_KV.

runtime performance of parallel subgraph enumeration. The
acceleration comes from the benefit of the smaller number
of set intersection operations performed, since RPS reuses
the cached results to avoid the redundant operations. This
benefit reduces the workload executed in the COMPUTE
procedure, and thus improves the overall performance. To
verify that reuse reduces the number of set intersection op-
erations and improves the COMPUTE procedure, we present
the profiling results in the next subsection.
Comparison with REUSE_KV. REUSE_KV implements a
hash table to track the cached results of set intersection
operations. As the memory allocation on GPUs is slow,
we optimize the implementation of REUSE_KV by batched
memory allocation. Instead of allocating memory for each
cached result, we allocate an array to store all the cached
results in each iteration, and the hash table simply tracks
the position of each cached result on the array. Even with
this optimization, REUSE_KV still incurs large overheads
in execution for concurrent hash table maintenance. The
overheads can compromise and sometimes outweigh the
benefit of reuse. Indeed, the performance of REUSE_KV is
not better than that of GPSM, which is the implementation
without the reuse. Our RPS always outperforms REUSE_KV
because RPS exploits reuse efficiently and does not incur
large overheads as in REUSE_KV.
Comparison with NEMO. Our RPS achieves significantly
better performance than NEMO. Besides the reuse, another
reason for this improvement is that NEMO uses an inefficient
method to perform set intersection operations. To intersect
the adjacent lists N(v1), N(v2) · · ·N(vn), NEMO chooses the
adjacent list with the smallest cardinality, say N(vi), iterates
each neighbor v ∈ N(vi), and then scans the adjacent
list N(v) to verify whether N(v) contains the vertices
v1, v2 · · · vn. This approach is shown to be efficient for small
graphs [18] due to the coalesced memory access. However,
it is rather inefficient for large graphs because the quadratic
time complexity can significantly increase the workload for
large adjacent lists.

6.3 Profile Results
Bottleneck analysis. The set intersection operation is the
runtime bottleneck for parallel subgraph enumeration. We
run the state-of-the-art GPU solution, GPSM, to profile the
execution time of such an operation. As shown in Figure 9,
the operation takes nearly 90% of the running time for most
datasets and queries, and sometimes up to 95%.
Reuse ratio. We call the reuse ratio as the ratio of the
redundant operations avoided by the reuse versus the total

number of set intersection operations. We run RPS and
REUSE_KV to profile the reuse ratios. As shown in Figure 10,
RPS can avoid 42%− 99% of the set intersection operations.
Even though GPU memory is limited, most cached results
are still available for RPS. To perform the set intersection
given the partial instance f , it will find another partial
instance f∗ corresponding to the cached result. In many
cases, f and f∗ share a common prefix and the pipeline
processing will likely maintain both instances in the same
pipeline. This leads to the high reuse ratio for RPS.

In comparison, the reuse ratio of REUSE_KV is much
smaller than RPS. There are two reasons. First, REUSE_KV
can only reuse the result generated by exactly the same set
intersection operation, while RPS can even exploit the result
from a different operation with the help of the reuse analysis
framework. For example, for the clique q2, to compute the
set intersection operationN(v1)∩N(v2)∩N(v3) among data
vertices v1, v2, v3, RPS can exploit the result N(v1)∩N(v2).
However, REUSE_KV can reuse the result only if the same set
intersection operation N(v1)∩N(v2)∩N(v3) was executed
in the past, while such a condition is not true for q2. This
makes the reuse ratio of REUSE_KV as low as 0 in cliques,
i.e., q2, q4, q7.

Another reason of small reuse ratios is that our current
implementation of REUSE_KV simply drops the hash table to
release memory when its consumption exceeds the thresh-
old. This can remove plenty of useful cached results and
make them unavailable for later usage. One may think of
selectively dropping a subset of data in the hash table to im-
prove the reuse ratio but this is difficult to be implemented
in GPUs: it is inefficient to track sophisticated metadata in a
decentralized way, e.g., least recently used items, for cache
eviction; removing a set of items concurrently from the hash
table needs plenty of overheads [20]. Another consideration
is to increase the memory threshold, which is set to 1GB
currently. We think this amount is sufficiently large for
reuse. A larger threshold cannot help because REUSE_KV
can only salvage the results generated by exactly the same
set intersection operations and a lot still cannot be reused.
Moreover, a larger memory size for the hash table will in-
crease overheads of GPU memory allocation/deallocation,
which do not help to improve the overall performance.
Execution time breakdown. To investigate how reuse may
improve performance, we run RPS, GPSM, and REUSE_KV
to profile two major procedures in execution. As shown
in Figure 11, RPS outperforms GPSM because the time on
COMPUTE is reduced. In COMPUTE, RPS can exploit reuse
and avoid a large number of set intersection operations but

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

13

GPSM has to perform such operations repeatedly. In MA-
TERIALIZE, RPS spends more time than GPSM. To support
reuse, RPS needs to maintain extra data structures, e.g., the
tree structure to track the partial instances, which leads to
additional costs compared with GPSM.

REUSE_KV achieves better performance than GPSM
sometimes, but still cannot win over RPS because of two
reasons. First, the reuse ratio of REUSE_KV is lower than
RPS, as mentioned above. Thus, it needs to perform more
set intersection operations and costs more time in COM-
PUTE. The second reason is that REUSE_KV spends a large
amount of time in MATERIALIZE to concurrently insert set
intersection results into hash table, which involves lots of
irregular memory accesses and memory operations. This
causes REUSE_KV to perform even worse than GPSM for
some queries, i.e., the case without reuse.

6.4 Plan Generation
As shown in Table 3, the plan generation time takes less
than 1 millisecond for most queries because the number
of pattern vertices is small. This time is still rather small
compared with the total execution time.

7 CONCLUSION

This paper studies reusing the execution results of set inter-
section operations to accelerate subgraph enumeration on
GPUs. We propose the reuse analysis framework to generate
the execution plan to utilize the cached results and the
reusable parallel search to exploit the reuse in execution.
The experimental evaluation shows that our approach out-
performs the state-of-the-art GPU solutions and achieves the
speedups of up to 5 times.
Acknowledgements. The project of this work is supported
by the grant, MOE2017-T2-1-141, from Singapore Ministry
of Education. Yuchen Li is partially supported by Lee Kong
Chian fellowship.

REFERENCES

[1] N. Pržulj, D. G. Corneil, and I. Jurisica, “Efficient estimation
of graphlet frequency distributions in protein–protein interaction
networks,” Bioinformatics, vol. 22, no. 8, pp. 974–980, 2006.

[2] J. A. Grochow and M. Kellis, “Network motif discovery using
subgraph enumeration and symmetry-breaking,” in RECOMB,
vol. 4453. Springer, 2007, pp. 92–106.

[3] S. R. Kairam, D. J. Wang, and J. Leskovec, “The life and death
of online groups: Predicting group growth and longevity,” in
Proceedings of the fifth ACM international conference on Web search
and data mining. ACM, 2012, pp. 673–682.

[4] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[5] J. Leskovec, A. Singh, and J. Kleinberg, “Patterns of influence in a
recommendation network,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2006, pp. 380–389.

[6] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies:
Mapping the empirical and extremal geography of large graph
collections,” in Proceedings of the 22nd international conference on
World Wide Web. ACM, 2013, pp. 1307–1318.

[7] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 26,
no. 10, pp. 1367–1372, 2004.

[8] W.-S. Han, J. Lee, and J.-H. Lee, “Turbo iso: towards ultrafast and
robust subgraph isomorphism search in large graph databases,”
in Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. ACM, 2013, pp. 337–348.

[9] X. Ren and J. Wang, “Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs,” Proceedings of the
VLDB Endowment, vol. 8, no. 5, pp. 617–628, 2015.

[10] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the
2016 International Conference on Management of Data. ACM, 2016,
pp. 1199–1214.

[11] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, “Parallel
subgraph listing in a large-scale graph,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data.
ACM, 2014, pp. 625–636.

[12] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumer-
ation in mapreduce,” Proceedings of the VLDB Endowment, vol. 8,
no. 10, pp. 974–985, 2015.

[13] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, “Scal-
able distributed subgraph enumeration,” Proceedings of the VLDB
Endowment, vol. 10, no. 3, pp. 217–228, 2016.

[14] M. Qiao, H. Zhang, and H. Cheng, “Subgraph matching: on com-
pression and computation,” Proceedings of the VLDB Endowment,
vol. 11, no. 2, pp. 176–188, 2017.

[15] B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding
cluster index for scalable subgraph matching,” in Proceedings of
the 2019 International Conference on Management of Data, SIGMOD,
vol. 19, 2019.

[16] S. Sun and Q. Luo, “Efficient parallel subgraph enumeration on a
single machine,” in 2019 IEEE 35th International Conference on Data
Engineering, 2019.

[17] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and J. Banerjee,
“Pgx. iso: parallel and efficient in-memory engine for subgraph
isomorphism,” in Proceedings of Workshop on GRAph Data manage-
ment Experiences and Systems. ACM, 2014, pp. 1–6.

[18] W. Lin, X. Xiao, X. Xie, and X.-L. Li, “Network motif discovery: A
gpu approach,” in ICDE, 2015.

[19] H.-N. Tran, J.-j. Kim, and B. He, “Fast subgraph matching on large
graphs using graphics processors,” in International Conference on
Database Systems for Advanced Applications. Springer, 2015, pp.
299–315.

[20] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash
table for the gpu,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2018, pp. 419–429.

[21] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and
D. M. Tullsen, “Horton tables: fast hash tables for in-memory data-
intensive computing,” in 2016 USENIX Annual Technical Conference
USENIX ATC 16), 2016, pp. 281–294.

[22] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-
kv: a case for gpus to maximize the throughput of in-memory key-
value stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp.
1226–1237, 2015.

[23] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: An lsm-tree-based
ultra-large key-value store for small data items,” in 2015 USENIX
Annual Technical Conference USENIX ATC 15), 2015, pp. 71–82.

[24] R. Gandhi, A. Gupta, A. Povzner, W. Belluomini, and T. Kaldewey,
“Mercury: Bringing efficiency to key-value stores,” in Proceedings
of the 6th International Systems and Storage Conference. ACM, 2013,
p. 6.

[25] “Implementation of RPS,” 2020. [Online]. Available: https:
//github.com/guowentian/SubgraphMatchGPU

[26] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism,”
Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 364–375, 2008.

[27] N. Bell and M. Garland, “Efficient sparse matrix-vector multipli-
cation on cuda,” Nvidia Technical Report NVR-2008-004, Nvidia
Corporation, Tech. Rep., 2008.

[28] Y. Saad, “Sparskit: A basic tool kit for sparse matrix computa-
tions,” 1990.

[29] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle count-
ing on gpus,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 171–
182.

[30] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu, and
S. Lin, “Efficient parallel lists intersection and index compression
algorithms using graphics processing units,” Proceedings of the
VLDB Endowment, vol. 4, no. 8, pp. 470–481, 2011.

[31] J. Fox, O. Green, K. Gabert, X. An, and D. A. Bader, “Fast and
adaptive list intersections on the gpu,” in 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–7.

https://github.com/guowentian/SubgraphMatchGPU
https://github.com/guowentian/SubgraphMatchGPU

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3035564, IEEE
Transactions on Knowledge and Data Engineering

14

[32] L. Wang, Y. Wang, C. Yang, and J. D. Owens, “A comparative study
on exact triangle counting algorithms on the gpu,” in Proceedings
of the ACM Workshop on High Performance Graph Processing. ACM,
2016, pp. 1–8.

[33] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal
of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[34] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Efficient sub-
graph matching: Harmonizing dynamic programming, adaptive
matching order, and failing set together,” in Proceedings of the 2019
International Conference on Management of Data. ACM, 2019, pp.
1429–1446.

[35] S. Csun and Q. Luo, “Parallelizing recursive backtracking based
subgraph matching on a single machine,” in 2018 IEEE 24th In-
ternational Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2018, pp. 1–9.

[36] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: Gpu-
friendly subgraph isomorphism,” in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 2020, pp. 1249–1260.

[37] F. N. Afrati, D. Fotakis, and J. D. Ullman, “Enumerating subgraph
instances using map-reduce,” in Data Engineering (ICDE), 2013
IEEE 29th International Conference on. IEEE, 2013, pp. 62–73.

[38] T. Plantenga, “Inexact subgraph isomorphism in mapreduce,”
Journal of Parallel and Distributed Computing, vol. 73, no. 2, pp. 164–
175, 2013.

[39] D. Mawhirter and B. Wu, “Automine: harmonizing high-level ab-
straction and high performance for graph mining,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 509–523.

[40] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: an
efficient and flexible graph mining system on cpu and gpu,” arXiv
preprint arXiv:1911.06969, 2019.

[41] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-
accelerated subgraph enumeration on partitioned graphs,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 1067–1082.

[42] W. Guo, Y. Li, M. Sha, and K.-L. Tan, “Parallel personalized
pagerank on dynamic graphs,” Proceedings of the VLDB Endowment,
vol. 11, no. 1, pp. 93–106, 2017.

[43] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on gpus,” Proceedings of the VLDB Endowment, vol. 11,
no. 1, pp. 107–120, 2017.

[44] M. Sha, Y. Li, and K.-L. Tan, “Gpu-based graph traversal on com-
pressed graphs,” in Proceedings of the 2019 International Conference
on Management of Data, 2019, pp. 775–792.

[45] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on
gpus,” in Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2013, pp. 147–156.

[46] B. Ding and A. C. König, “Fast set intersection in memory,”
Proceedings of the VLDB Endowment, vol. 4, no. 4, pp. 255–266, 2011.

[47] S. Kim, T. Lee, S.-w. Hwang, and S. Elnikety, “List intersection for
web search: algorithms, cost models, and optimizations,” Proceed-
ings of the VLDB Endowment, vol. 12, no. 1, pp. 1–13, 2018.

[48] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in
graph algorithms using simd instructions,” in Proceedings of the
2018 International Conference on Management of Data. ACM, 2018,
pp. 1587–1602.

[49] B. Schlegel, T. Willhalm, and W. Lehner, “Fast sorted-set intersec-
tion using simd instructions.” in ADMS@ VLDB, 2011, pp. 1–8.

[50] O. Green, R. McColl, and D. A. Bader, “Gpu merge path: a gpu
merging algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 2012, pp. 331–340.

[51] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. D.
Owens, and N. Amenta, “Building an efficient hash table on the
gpu,” in GPU Computing Gems Jade Edition. Elsevier, 2012, pp.
39–53.

[52] “SNAP graph datasets,” 2019. [Online]. Available: https:
//snap.stanford.edu/data/

[53] “Network repository,” 2019. [Online]. Available: http:
//networkrepository.com

[54] X. Ren, J. Wang, W.-S. Han, and J. X. Yu, “Fast and robust dis-
tributed subgraph enumeration,” arXiv preprint arXiv:1901.07747,
2019.

[55] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah, “Dualsim: Parallel subgraph enumeration in a massive
graph on a single machine,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1231–1245.

Wentian Guo Wentian Guo received the BSc
degree in computer science from South China
University of Technology, Guangdong, China, in
2014 and the PhD degree in computer science
from the School of Computing, National Univer-
sity of Singapore (NUS). His research aims to
exploit modern hardwares to achieve fast and
scalable data processing. He completed a PhD
thesis on parallel graph processing with GPUs.

Yuchen Li Yuchen Li received the double BSc
degrees in applied math and computer science
(both degrees with first class honors) and the
PhD degree in computer science from the Na-
tional University of Singapore (NUS), in 2013
and 2016, respectively. He is an assistant pro-
fessor with the School of Information Systems,
Singapore Management University (SMU). Be-
fore joining SMU, he was a research fellow with
the School of Computing, National University of
Singapore. His research interests include graph

analytics and heterogeneous computing.

Kian-Lee Tan Kian-Lee Tan received the PhD
degree in computer science from the National
University of Singapore (NUS), in 1994. He is
a professor with the School of Computing, Na-
tional University of Singapore. His current re-
search interests include query processing and
optimization in multiprocessor and distributed
systems, database performance, data analytics,
and database security. He was also a 2013 IEEE
Technical Achievement Award recipient. He is
an associate editor of the ACM Transactions on

Database Systems (TODS) and the World Wide Web Journal. He has
also served on the editorial boards of the Very Large Data Base (VLDB)
Journal and the IEEE Transactions on Knowledge and Data Engineering
(2009-2013). He is a member of the ACM and senior member of the
IEEE

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
http://networkrepository.com
http://networkrepository.com

	Exploiting reuse for GPU subgraph enumeration
	Citation

	Exploiting Reuse for GPU Subgraph Enumeration

