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Abstract. This paper proposes a new inertial triple-projection algorithm for
solving the split feasibility problem. The process of projections is divided into

three parts. Each part adopts a different variable stepsize to obtain its projec-

tion point, which is different from the existing extragradient methods. Flexible
rules are employed for selecting the stepsizes and the inertial technique is used

for improving the convergence. Convergence results are proven. Numerical

experiments show that the proposed method converges more quickly than the
general CQ algorithm.

1. Introduction. The split feasibility problem (SFP) is to find a point x∗ satisfy-
ing

x∗ ∈ C, Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex sets of <N and <M , respectively, and
A is an M by N real matrix. It could arise in many fields such as approximation
theory [11] and image reconstruction [5, 6, 14] etc. The projection method is a
general way to solve the SFP. Let PC denote the orthogonal projection onto C;
that is, PC(x) = arg miny∈C ‖x − y‖. The CQ algorithm [4] presented by Byrne
is a classical method that takes an initial point x0 arbitrarily, and calculates the
iterative step via

xk+1 = PC
(
(I − γAT (I − PQ)A)xk

)
, (1.2)

where I is the unit matrix of suitable dimension, 0 < γ < 2/ρ(ATA) and ρ(ATA)
is the spectral radius of ATA.
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Inspired by the CQ algorithm, many other projection methods have been devel-
oped for solving the SFP, see, for example, [2, 7, 9, 12, 20]. Most of these algorithms
use invariable stepsize related to a Lipschitz constant, which is inflexible, and only
use the current iterate to obtain the next iterate, which may lead to slow conver-
gence. There are two ways to improve this situation. The first way is developed
by He [13], in which a method with self-adaptive stepsize was used for solving a
variational problem. The numerical results in [13] have shown that the self-adaptive
strategy is valid and robust. Subsequently, many self-adaptive projection methods
were proposed for solving the SFP [8, 21, 22]. The second way to improve conver-
gence is due to Polyak [16], who proposed an inertial gradient method to speed up
convergence in solving smooth convex minimization problems. The main idea of the
inertial method is to make use of two previous iterates in updating the next iter-
ate. Since the presence of inertial term in the algorithm speeds up the convergence,
many inertial algorithms have been widely studied (see, for example, [1, 6, 17]).

Motivated by the self-adaptive method presented in He [13] and Zhao [22] for
solving multiple-sets split problem and by the inertial strategy proposed of Polyak
[16], we propose an inertial triple-projection algorithm for solving the SFP, which
uses different variable stepsize at different projection steps instead of the same
stepsize as in [1, 6, 19]. In addition, in the first projection step, we combine
the Armijo linear-search technology with the inertial strategy to obtain the first
projection point; in the second projection step, we adopt a self-adaptive stepsize to
obtain the second projection point; and finally, we generate the next iteration xk+1

by using the third projection of the initial point on the intersection of three sets.
This algorithm is shown to be globally convergent to a solution under certain mild
assumptions. Preliminary numerical experiments show that the proposed method
may converge more quickly than the CQ algorithm.

The main contributions of the paper are as follows.
(i) The proposed algorithm employs different stepsizes at different projection

steps instead of using a fixed stepsize;
(ii) Our algorithm uses the iterate xk+1 generated by the projection of the

current point on the intersection of two halfspaces and a convex set C, instead of
only on the current projection region. This improves the efficiency of convergence
without increasing the computational cost.

(iii) To construct a halfspace that contains the solution set, we employ two previ-
ous iterative points with self-adaptive stepsizes to accelerate the rate of convergence.

2. Preliminaries. Let I denote the identity operator, Fix(T ) denote the set of the
fixed points of an operator T i.e., Fix(T ) := {x | x = Tx}, let Γ denote the solution
set of the SFP, that is,

Γ = {y ∈ C | Ay ∈ Q}. (2.1)

The following definitions and results will be used later on.

Definition 2.1. Given T : <N → <N ,
a) T is said to be monotone if

〈T (x)− T (y), x− y〉 ≥ 0,∀x, y ∈ <N ;

b) T is said to be nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖,∀x, y ∈ <N ;
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c) T is said to be co-coercive on <N with modulus α > 0, if

〈T (x)− T (y), x− y〉 ≥ α‖T (x)− T (y)‖2,∀x, y ∈ <N ;

d) T is said to be Lipschitz continuous on <N with constant L > 0, if

‖T (x)− T (y)‖ ≤ L‖x− y‖,∀x, y ∈ <N .

Lemma 2.1 [8]. Let C be a nonempty closed convex subset in <N and Let PC(x)
be the projection of x on C. Then for any x, y ∈ <N and z ∈ C,
(1) 〈PC(x)− x, z − PC(x)〉 ≥ 0;
(2) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉;
(3) ‖PC(x)− z‖2 ≤ ‖x− z‖2 − ‖PC(x)− x‖2;
(4) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ − ‖PC(x)− x+ y − PC(y)‖.

Remark 2.1. From item (2) of Lemma 2.1, we know that PC is a monotone, co-
coercive with modulus 1 and nonexpansive operator. Moreover, the operator I−PC
is also co-coercive with modulus 1.
Lemma 2.2 [17]. Let F be a mapping from <N into <N . For any x ∈ <N and
α ≥ 0, define x(α) = PC(x− αF (x)) and e(x, α) = x− x(α). Then, we have

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖.

3. Inertial triple-projection algorithm and its convergence. In the follow-
ing, we define the function F : <N → <N as

F (x) := AT (I − PQ)Ax

and respectively define

x(βk) := PC(xk − βkF (xk)) and e(xk, βk) := xk − x(βk).

By Lemma 8.1 in [5], the operator Fk is 1/ρ(ATA)-inverse strongly monotone or
co-coercive with modulus 1/ρ(ATA) and Lipschitz continuous with ρ(ATA), where
ρ(ATA) is the largest eigenvalue of the matrix ATA.

Next, we describe our inertial triple-projection algorithm.

Algorithm 3.1
Step 0. Select initial points x0 = x1 ∈ C arbitrarily, parameters γ > 0, l ∈
(0, 1), λ > 1, tk ∈ Θ = [tmin, tmax] for some fixed 0 < tmin < tmax < 2, {θk} ⊂ (0, 1).
Set k = 1.
Step 1. Set

wk = PC(xk + θk(xk − xk−1)). (3.1)

Compute

vk = PC(wk − βkF (wk)), (3.2)

where βk = γlmk and mk is the smallest nonnegative integer such that

〈F (wk), wk − vk〉 ≥ λ〈F (wk)− F (vk), wk − vk〉. (3.3)

Step 2. Find

uk = PC

(
wk − tk

〈F (vk), wk − vk〉
‖F (vk)‖2

F (vk)

)
. (3.4)
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Step 3. Find
Sk := {u ∈ <N |‖uk − u‖ ≤ ‖wk − u‖}, (3.5)

and
Hk = {u|〈xk − u, x1 − xk〉 ≥ 0}. (3.6)

Step 4. Compute
xk+1 = PC

⋂
Sk

⋂
Hk(x1). (3.7)

Set k = k + 1 and go to Step 1.

From the following lemma, we can see (3.3) is well defined.

Lemma 3.1. There exists a nonnegative number mk satisfying (3.3), for k ≥ 0.

Proof. By (3.1) we have wk ∈ C, so PC(wk) = wk. By (2) of Lemma 2.1, we have

〈F (wk), wk − vk〉 =
1

βk
〈βkF (wk), PC(wk)− PC(wk − βkF (wk))〉

≥ 1

βk
‖wk − vk‖2. (3.8)

By the inequality 〈a, b〉 ≤ ‖a‖
2

2 + ‖b‖2
2 and the nonexpansiveness of F , we get

〈F (wk)− F (vk), wk − vk〉 ≤ ‖F (wk)− F (vk)‖2

2
+
‖wk − vk‖2

2

≤ ρ(ATA)2 + 1

2
‖vk − wk‖2, (3.9)

where ρ(ATA) is the largest eigenvalue of the matrix ATA. Obviously, there must

exist a constant m such that 1
γlm ≥

λ(ρ(ATA)2+1)
2 . Hence

〈F (wk), wk − vk〉 ≥ 1

γlm
‖wk − vk‖2

≥ λ(ρ(ATA)2 + 1)

2
‖wk − vk‖2

≥ λ〈F (wk)− F (vk), wk − vk〉,
the proof is completed. �

Lemma 3.2. Suppose Γ 6= ∅ and the sequences {wk} and {vk} are generated by
Algorithm 3.1. Then, −F (vk) is a descent direction of the function 1

2‖w − z‖
2 at

the point wk, where z ∈ Γ.

Proof. From (3.3) and (3.7), one has

〈F (vk), wk − vk〉 = 〈F (vk)− F (wk), wk − vk〉+ 〈F (wk), wk − vk〉

≥ (1− 1

λ
)〈F (wk), wk − vk〉

≥ (1− 1

λ
)

1

βk
‖wk − vk‖2,

that is

〈F (vk), wk − vk〉 ≥ (1− 1

λ
)
1

γ
‖wk − vk‖2 ≥ 0. (3.10)
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Obviously, for z ∈ Γ, F (z) = 0. Since F is monotonic and z ∈ Γ, we have

〈F (vk), wk − z〉 = 〈F (vk), wk − vk〉+ 〈F (vk), vk − z〉

≥ 〈F (vk), wk − vk〉+ 〈F (z), vk − z〉,
that is,

〈F (vk), wk − z〉 ≥ 〈F (vk), wk − vk〉. (3.11)

Combining (3.11) with (3.10), we obtain the result. �

Remark 3.1. From the monotonicity of F , we know that

〈F (vk), z − vk〉 ≤ 〈F (z), z − vk〉 = 0,

along with (3.11), we obtain that the hyperplane

Hk := {x ∈ <N |〈F (vk), x− vk〉 = 0}
separates wk from the set Γ.

The following lemmas are also important for our convergence analysis.
Lemma 3.3. Suppose that the solution set Γ is nonempty. Then the sequence
{xk} generated by Algorithm 3.1 is well defined.
Proof. In view of Step 4 of the algorithm, it suffices to show that C

⋂
Sk ∩Hk 6= ∅

(Obviously, C ∩ Sk ∩Hk is a closed and convex set ∀k ≥ 1). We will in fact show
that Γ ⊂ C

⋂
Sk ∩ Hk. The fact that Γ ⊂ C is obvious by (1.1). To show that

Γ ⊂ Sk, let z ∈ Γ, αk = 〈F (vk),wk−vk〉
‖F (vk)‖2 . From (3.4), we have

‖uk − z‖2 = ‖PC [wk − tkαkF (vk)]− z‖2

≤ ‖wk − z − tkαkF (vk)‖2

= ‖wk − z‖2 − 2tkαk〈F (vk), wk − z〉+ t2kα
2
k‖F (vk)‖2

≤ ‖wk − z‖2 − 2tkαk〈F (vk), wk − vk〉+ t2kα
2
k‖F (vk)‖2.

Hence,

‖uk − z‖2 ≤ ‖wk − z‖2 − tk(2− tk)
〈F (vk), wk − vk〉2

‖F (vk)‖2
. (3.12)

From (3.10), we obtain

‖uk − z‖2 ≤ ‖wk − z‖2 − tk(2− tk)(1− 1

λ
)2 1

γ2

‖wk − vk‖4

‖F (vk)‖2
. (3.13)

By (3.13), we know that for all k,

‖uk − z‖2 ≤ ‖wk − z‖2, (3.14)

so z ∈ Sk, which implies Γ ⊂ Sk, for all k ∈ N . We next prove that Γ ⊂ Hk for all
k ≥ 1 by induction. Obviously, if k = 1, then

Γ ⊆ H1 = <N .
Suppose that Γ ⊂ Hk. Then Γ ⊂ Sk ∩Hk ∩ C.

For any z ∈ Γ, by Lemma 2.1 and the fact that

xk+1 = PSk∩Hk∩C
(
x1
)
,

we have that 〈
z − xk+1, x1 − xk+1

〉
≤ 0
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Thus, z ∈ Hk+1. The induction is complete, which concludes that Γ ⊂ Sk ∩Hk ∩C
for all k ≥ 1. �
Lemma 3.4. Let {xk} be a sequence generated by Algorithm 3.1. Then
1) limk→∞ ‖xk+1 − xk‖ = 0;
2) limk→∞ ‖xk − wk‖ = 0, limk→∞ ‖uk − wk‖ = 0;
3) limk→∞ ‖uk − vk‖ = 0, limk→∞ ‖xk − vk‖ = 0;
4) limk→∞ ‖(I − PQ)Awk‖ = 0.
Proof. For 1). Let z ∈ Γ. Since Γ ⊂ C

⋂
Sk
⋂
Hk,∀k ≥ 1 and xk+1 = PC

⋂
Sk

⋂
Hk

(x1), we have

‖xk+1 − x1‖ ≤ ‖z − x1‖, ∀k ≥ 1.

Thus,{‖xk+1 − x1‖} is bounded.
We observe that xk+1 ∈ Hk and by (3.6) we have

〈xk − x1, xk − xk+1〉 ≤ 0. (3.15)

Then

‖xk+1 − xk‖2 = ‖xk+1 − x1 − (xk − x1)‖2

= ‖xk+1 − x1‖2 − 2〈xk+1 − x1, xk − x1〉+ ‖xk − x1‖2

= ‖xk+1 − x1‖2 − 2〈xk+1 − xk + xk − x1, xk − x1〉+ ‖xk − x1‖2

= ‖xk+1 − x1‖2 − 2〈xk+1 − xk, xk − x1〉 − ‖xk − x1‖2.

From (3.15), we have

‖xk+1 − xk‖2 ≤ ‖xk+1 − x1‖2 − ‖xk − x1‖2, (3.16)

that is, ‖xk−x1‖2 ≤ ‖xk+1−x1‖2−‖xk+1−xk‖2. Thus, ‖xk−x1‖2 ≤ ‖xk+1−x1‖2,
therefore, {‖xk − x1‖} is a bounded monotone nondecreasing sequence. Hence,
limk→∞ ‖xk − x1‖ exists. From (3.16), we have

lim
k→∞

‖xk+1 − xk‖ = 0.

For 2). By 1), we have

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖xk − xk−1‖ = 0.

Recall (3.1)

wk = PC(xk + θk(xk − xk−1)),

Since xk ∈ C, by Lemma 2.1(3), we have

‖wk − xk‖ = ‖PC(xk + θk(xk − xk−1))− xk‖ ≤ |θk|‖xk − xk−1‖.

From 1), we have

lim
k→∞

‖xk − wk‖ = 0. (3.17)

From 1) and (3.17) , we get

‖xk+1 −wk‖ = ‖xk+1 − xk + xk −wk‖ ≤ ‖xk+1 − xk‖+ ‖xk −wk‖ → 0, as k →∞.

By the construction of Sk, we have

‖xk+1 − uk‖ ≤ ‖xk+1 − wk‖ → 0, as k →∞,
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that is, limk→∞ ‖xk+1 − uk‖ = 0.
Similarly, ‖xk − uk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − uk‖, it then follows that

lim
k→∞

‖xk − uk‖ = 0. (3.18)

It follows from (3.17) and (3.18) that

lim
k→∞

‖wk − uk‖ = 0. (3.19)

For 3). Clearly,

‖F (vk)‖ ≤ ‖F (vk)− z‖+ ‖z‖ ≤ ρ(ATA)‖wk − βkF (wk)− z‖+ ‖z‖

≤ ρ(ATA)‖wk − z‖+ γ‖Fk(wk)‖+ ‖z‖. (3.20)

In fact, by the boundedness of {wk} and the continuity of F , we know that {F (wk)}
is also bounded. Thus, there exists a constant M > 0 such that ‖F (vk)‖ ≤ M for
all k. Consequently, we obtain from (3.13) and the definition of tk that

lim
k→∞

‖wk − vk‖ = 0. (3.21)

From (3.19) and (3.21), it is easy to see that

lim
k→∞

‖uk − vk‖ = 0. (3.22)

Thus, from (3.18) and (3.22) we obtain

lim
k→∞

‖xk − vk‖ = 0. (3.23)

For 4). Define

e(x, µ) = x− PC(x− µF (x))

Then from Lemma 2.2, the definition of βk and equation (3.21), we have

lim
k→∞

‖e(wk, 1)‖ ≤ lim
k→∞

‖wk − vk‖
min{1, βk}

≤ lim
k→∞

‖wk − vk‖
min{1, β}

= 0, (3.24)

where β = l
λ(ρ(ATA)2+1

. Using part (1) of Lemma 2.1 and note that x∗ ∈ Γ, we

have for all i = 1, 2, · · · ,

〈wk − F (wk)− PC(wk − F (wk)), x∗ − PC(wk − F (wk))〉 ≤ 0,

that is,

〈e(wk, 1)− F (wk), wk − x∗ − e(wk, 1)〉 ≥ 0.

From the above inequality and (1) of Lemma 2.1, we know for all i = 1, 2, · · · ,

〈wk − x∗, e(wk, 1)〉 ≥ ‖e(wk, 1)‖2 − 〈F (wk), e(wk, 1)〉+ 〈F (wk), wk − x∗〉
= ‖e(wk, 1)‖2 − 〈F (wk), e(wk, 1)〉

+〈F (wk)− F (x∗), wk − x∗〉
= ‖e(wk, 1)‖2 − 〈F (wk), e(wk, 1)〉

+〈(I − PQ)(Awk)−AT (I − PQ)(Ax∗), Awk −Ax∗〉
≥ ‖e(wk, 1)‖2 − 〈F (wk), e(wk, 1)〉

+‖(I − PQ)(Awk)−AT (I − PQ)(Ax∗)‖2.
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Hence,

〈wk−x∗, ek(wk, 1)〉 ≤ ‖ek(wk, 1)‖2−〈F (wk), e(wk, 1)〉+‖(I−PQ)(Awk)‖2. (3.25)

Since

‖F (wk)‖ = ‖Fk(wk)− Fk(x∗)‖ ≤ ρ(ATA)‖wk − x∗‖,∀i = 1, 2, · · · ,

and {wki} is bounded, the sequence {F (wk)} is also bounded. Therefore, from
(3.24) and (3.25), we obtain

lim
k→∞

‖(I − PQ)(Awk)‖ = 0,

that is,

lim
k→∞

PQ(Awk)−Awk = 0. (3.26)

�
Theorem 3.1. Suppose Γ 6= ∅. Then, the sequence {xk} generated by Algorithm
3.1 converged to x̃, where x̃ = PΓ(x1).
Proof. We know that (1) of Lemma 3.4 implies that limk→∞ ‖xk−x1‖ exists. Now,
we show that xk → x̃ ∈ Γ. Let m, l ∈ N , then from (3) of Lemma 2.1, we have

‖xm − xl‖ = ‖xm − PC∩Sl−1

⋂
Hl−1

x1‖2 ≤ ‖xm − x1‖2 − ‖xl − x1‖2

= ‖xm − x1‖2 − ‖PC∩Sl−1

⋂
Hl−1

x1 − x1‖2 → 0.

Therefore, ‖xm−xl‖ → 0 as m, l→∞. Thus {xk} is a Cauchy sequence in C. Since
C is closed and convex, it implies that there exists x̃ ∈ C. Since ‖xk − vk‖ → 0,
‖xk − wk‖ → 0, then wk → x̃, hence Ax̃ ∈ Q. Therefore, x̃ ∈ Γ.

Finally, we show that x̃ = PΓ(x1). Suppose there exists ỹ ∈ Γ such that ỹ =
PΓ(x1). Then ỹ ∈ C ∩ Sk

⋂
Hk, and by the iterative sequence of Algorithm 3.1 we

have

‖xk − x1‖ ≤ ‖ỹ − x1‖.

Thus

‖xk − ỹ‖2 = ‖xk − x1 + x1 − ỹ‖2

= ‖xk − x1‖2 + ‖x1 − ỹ‖2 + 2〈xk − x1, x1 − ỹ〉

≤ ‖ỹ − x1‖+ ‖x1 − ỹ‖2 + 2〈xk − x1, x1 − ỹ〉

Letting k →∞, we have

‖xk − ỹ‖2 ≤ 2‖ỹ − x1‖+ 2〈xk − x1, x1 − ỹ〉

= 2〈x̃− ỹ, x1 − ỹ〉 ≤ 0,

where the last inequality is due to Lemma 2.1 and the fact that ỹ = PΓ(x1) and
x̃ ∈ Γ. Hence,

x̃ = ỹ = PΓ(x1).

Thus, the sequence {xk} converges to a point PΓ(x1). This completes the proof.
�
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4. Preliminary numerical results. We use two numerical examples to show
that the algorithm converges faster than the CQ algorithm and double project
algorithm (DPA)[16]. Throughout the computational experiments, we set Errork =
‖xk+1−xk‖2 ≤ ε = 10−4 as the stop criterion. In the algorithm, we set λ = 20, γ =
10, l = 0.01 in Algorithm 3.1. We can see the numerical results of Examples 4.1-4.2
from the following Tables 1 and 2 and Figures 1 and 2. In these two tables , “k”
,“s” and “x∗” denote the number of iterates, cpu time in seconds and the solution,
respectively. All codes are written in MATLAB7.0.
Example 4.1. Let

A =

 2 −1 3
4 2 5
2 0 2

 ;

C = {x ∈ <3| x1 +x2
2 + 2x3 ≤ 0}; and Q = {x ∈ <3| x2

1 +x2−x3 ≤ 0}. Find x ∈ C
with Ax ∈ Q.

From Table 1 and Figure 1, we can see that Algorithm 3.1 converges more quickly
than CQ algorithm and DPA. Figure 2 displays the changing trend of errors with
different inertial factors, and we can see that the algorithm with bigger inertial
factor converges more quickly than the algorithm with smaller inertial factor .

Example 4.2. Let A = (aij)M×N , aij ∈ (0, 1) be a random matrix, M,N be two

positive integers. C = {x ∈ <N |
∑N
l=1 x

2
l ≤ r2}; Q = {x ∈ <M | x ≤ b}. The

vector b is generated by using the following way: Given a random N−dimensional
negative vector (each component is negative) z ∈ C, r = ‖z‖, taking b = Az. Find
x ∈ C with Ax ∈ Q. We select e0 = (0, 0, · · · , 0) as the initial point in the example.

Table 2 shows the numerical results of Example 4.2 for CQ Algorithm, DPA and
Algorithm 3.1 with different tk, respectively. The results tell us that the inertial
technique has good behavior for the high dimensional case and the inertial effect is
very obvious for the big inertial factor.

From Table 1 and Table 2, as well as from Figure 1 and Figure 2, we can see
that Algorithm 3.1 is effective and promising for solving the SFP.

5. Concluding remarks. This paper presents a triple-projection method with
different rules of stepsize selection and inertial technique for solving the SFP. The
first projection point is obtained by employing an Amijo-line-search rule and inertial
strategy; The second projection point is calculated by adopting a self-adaptive
selection technique of stepsize, which is different from the self-adaptive projection
methods proposed in [21] and [22] that use the co-coercivity and the Lipschitz
continuity property of the gradient mappings. The next iterate is obtained from
the current iterative point on the intersection of two halfspaces and the convex set
C. Preliminary numerical results show that the proposed method is practical and
promising for solving the SFP.
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(a) For initial point x0 = (3, 2, 2)T (b) For initial point x0 = (2, 3, 4)T

(c) For initial point x0 = (0,−1, 5)T (d) For initial point x0 = (−2, 4, 3)T

Figure 1. The error results of Example of 4.1 for different initial points.
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