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Abstract—Representative subset selection (RSS) is an impor-
tant tool for users to draw insights from massive datasets. A
common approach is to model RSS as the submodular maximiza-
tion problem because the utility of extracted representatives often
satisfies the “diminishing returns” property. To capture the data
recency issue and support different types of constraints in real-
world problems, we formulate RSS as maximizing a submodular
function subject to a d-knapsack constraint (SMDK) over sliding
windows. Then, we propose a novel KnapWindow framework
for SMDK. Theoretically, KnapWindow is 1−ε

1+d
-approximate for

SMDK and achieves sublinear complexity. Finally, we evaluate
the efficiency and effectiveness of KnapWindow on real-world
datasets. The results show that it achieves up to 120x speedups
over the batch baseline with at least 94% utility assurance.

Index Terms—Data summarization; submodular maximiza-
tion; data stream; sliding window; approximation algorithm

I. INTRODUCTION

In the big data era, massive data is being continuously

generated by a wide range of applications, e.g., social media,

network traffic, and sensors. A critical task of immense impor-

tance is to retain only a small portion of valuable information

for users to draw insights about massive datasets. A com-

mon approach is representative subset selection (RSS) [1]–

[3] which extracts a concise set of representative elements

from the source dataset. In practice, the representativeness

of elements can be measured by information coverage [3],

information entropy [1], [2], and so on. Since these notions

of representativeness often satisfy the “diminishing returns”

property, RSS can be modeled as the submodular maximiza-

tion (SM) problem with certain budget constraints. In addition,

developing efficient RSS algorithms over data streams for real-

time analytics [1], [2] has also gained increasing research

attention recently. However, there are mainly two drawbacks

that limit the deployment of existing RSS algorithms in many

real-world applications.

First, most of the streaming RSS algorithms can only work

with a cardinality constraint, i.e., selecting k elements as rep-

resentatives, and fail to support more complex constraints. In

many real-world problems, RSS has more general constraints

than cardinality [4], [5]. For example, to extract representatives

from social data, the number, length, and influence scores of

social posts are all considered as constraints [5]. Generally,

the above constraints are practical examples of knapsack
constraints. However, existing algorithms that only support

a cardinality constraint cannot provide solutions with quality

assurance for RSS in more general scenarios.

Second, existing techniques cannot effectively support dy-

namic RSS over sliding windows. In many cases, data ele-

ments arrive as a stream with high velocity [6]–[9]. Moreover,

recent elements are more important and valuable than earlier

ones in a data stream, where the sliding window [10] model

is a natural way to capture such an essence. Although several

RSS algorithms [1], [5], [11] have been developed for the

append-only streaming model, RSS over sliding windows is

still largely unexplored and, to the best of our knowledge,

there is only one existing method [12] for this problem. Not

surprisingly, it is also specific for one cardinality constraint.

Our Contribution. To address the limitations of existing

techniques, it requires a framework for RSS that (1) supports

general monotone submodular utility functions, (2) works with

multiple knapsack constraints, and (3) maintains a set of

representatives for a massive dataset over sliding windows

efficiently. In this paper, we formulate RSS as maximizing

a submodular function with a d-knapsack constraint (SMDK)

and propose a novel KNAPWINDOW framework to address

SMDK over sliding windows.

We first propose the KNAPSTREAM algorithm for SMDK

in append-only streams. KNAPSTREAM estimates the optimal

utility value from observed elements and maintains a sequence

of candidates for different estimations. Each candidate derives

a unique threshold based on the estimation and includes a

subset of observed elements whose marginal utility gains reach

the threshold while the d-knapsack constraint is satisfied. After

processing the stream, the candidate with the maximum utility

is returned as the solution. KNAPSTREAM is 1−ε
1+d -approximate

for SMDK and achieves sublinear time and space complexity.

It improves upon the state-of-the-art approximation factor

of 1
1+2d − ε for SMDK in append-only streams [5]. Then,

we design the KNAPWINDOW framework for SMDK over

sliding windows. KNAPWINDOW maintains a sequence of s
checkpoints {x1, . . . , xs} ⊆ [t′, t] over the sliding window at

any time t (t′ is the start of the sliding window at time t).
Each checkpoint xi corresponds to a KNAPSTREAM instance

on processing a substream of elements from time xi to t.
The first checkpoint x1 always provides the solution at time

t after post-processing. Theoretically, KNAPWINDOW has the

same approximation factor as KNAPSTREAM. To the best of
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our knowledge, it is the first algorithm for SMDK in the

sliding window model. Finally, we evaluate the efficiency

and effectiveness of KNAPWINDOW compared with several

baselines on two real-world datasets. The results show that it

achieves up to 120x speedups over the batch baseline with at

least 94% utility assurance.

II. PROBLEM FORMULATION

Data Streams. A data stream comprises an unbounded

sequence of elements V = {v1, v2, . . .} and vt ∈ V is the

t-th element of the stream. We consider the elements in V
arrive one at a time in an arbitrary order. It only permits

one pass over the stream and elements must be processed

in the arrival order. Specifically, we focus on the sequence-

based sliding window [10] model for data streams. Let W
be the size of the sliding window. At any time t, the active
window At always contains the W most recent elements

(called active elements) in the stream1, i.e., At = {vt′ , . . . , vt}
where t′ = max(1, t−W + 1).

RSS over Sliding Windows. RSS selects a set of rep-

resentative elements from the ground set according to a

utility function with some budget constraint. In this paper, we

target the class of nonnegative monotone submodular functions

adopted in a wide range of RSS problems [1]–[3], [12].

Given a ground set V , we consider a set function f : 2V →
R≥0 that maps any subset of elements to a nonnegative utility
value. For a set S ⊆ V and an element v ∈ V \S, the marginal
gain of f(·) is defined by Δf (v|S) � f(S∪{v})−f(S). Then,

we define the monotonicity and submodularity of f(·) based

on its marginal gain.

Definition 1 (Monotonicity & Submodularity). A set function
f(·) is monotone iff Δf (v|S) ≥ 0 for any S ⊆ V and v ∈
V \ S. f(·) is submodular iff Δf (v|S) ≥ Δf (v|T ) for any
S ⊆ T ⊆ V and v ∈ V \ T .

Intuitively, monotonicity means adding more elements does

not decrease the utility value. Submodularity captures the “di-

minishing returns” property that the marginal gain of adding

any new element decreases as a set grows larger.

A knapsack is defined by a cost function c : V → R
+

that assigns a positive cost to each element in V . Let c(v)
denote the cost of v ∈ V . The cost c(S) of a set S ⊆ V is

the sum of the costs of its members, i.e., c(S) =
∑

v∈S c(v).
Given a budget b, we say S satisfies the knapsack constraint iff

c(S) ≤ b. W.l.o.g., we normalize the budget to 1 and the costs

of elements to (0, 1). A d-knapsack constraint ξ is defined by d
cost functions c1(·), . . . , cd(·). Formally, we define ξ = {S ⊆
V : cj(S) ≤ 1, ∀j ∈ [d]}. We say S satisfies the d-knapsack

constraint iff S ∈ ξ.

Then, we formulate RSS as an optimization problem of

maximizing a utility function f(·) subject to a d-knapsack

constraint ξ (SMDK) over the sliding window. At every

time t, RSS provides a subset St of elements that (1) only

1We only discuss the sequence-based sliding window in this paper. But the
proposed algorithms can naturally support the time-based sliding window.

contains active elements, (2) satisfies the constraint ξ, and (3)

maximizes the utility function f(·). Formally,

maximize f(St) s.t. St ⊆ At ∧ St ∈ ξ (1)

We use S∗t = argmaxSt⊆At∧St∈ξ f(St) to denote the optimal

solution of SMDK at time t.
According to the definition of the d-knapsack constraint, a

cardinality constraint with a budget k is a special case of a

1-knapsack constraint when c(v) = 1
k , ∀v ∈ V . As SM with a

cardinality constraint is NP-hard, SMDK is also NP-hard. A

naı̈ve approach to SMDK over the sliding window is to store

all elements in At and run an algorithm for SMDK in the batch

setting from scratch for every window slide. A typical batch al-

gorithm for SMDK is COSTEFFECTGREEDY [4], which is de-

signed for SM with 1-knapsack constraints but can be trivially

extended to SMDK. It initializes SUC = ∅ and SCE = ∅.

Then, it iteratively adds v∗uc = argmaxv∈At\SUC
Δf (v|SUC)

to SUC until SUC∪{v} /∈ ξ, ∀v ∈ At\SUC . At the same time,

it also iteratively adds v∗ce = argmaxv∈At\SCE

Δf (v|SCE)
δ(v) ,

where δ(v) = maxj∈[d] cj(v), to SCE until SCE ∪ {v} /∈ ξ,

∀v ∈ At \ SCE . Finally, it returns the one with higher utility

between SUC and SCE as the solution for SMDK at time

t. However, COSTEFFECTGREEDY is undesirable for stream

processing because it requires multiple passes over all active

elements and invokes a large number of evaluations of f(·)
for every window slide. Therefore, it calls for a more efficient

method for RSS over sliding windows.

III. THE KNAPWINDOW FRAMEWORK

Overview. We propose an efficient KNAPWINDOW frame-

work for SMDK over sliding windows in this section.

KNAPWINDOW maintains a sequence of checkpoints Xt =
{x1, . . . , xs} over the sliding window at any time t. At

each checkpoint xi, an instance of KNAPSTREAM is invoked

for an append-only substream from vxi to vt at time t.
KNAPSTREAM tracks the optimal utility OPT by a sequence

of estimations. Each candidate is maintained independently

over the substream with a unique threshold derived from an

estimation for OPT. To retrieve the solution for SMDK at

time t, KNAPWINDOW returns the result of KNAPSTREAM

corresponding to x1 and KNAPSTREAM selects the candidate

with the maximum utility among all candidates.

The KnapStream Algorithm maintains a solution for

SMDK in an append-only stream Vx,y = {vx, . . . , vy}. Ba-

sically, it uses the threshold-based framework [1], [11] for

streaming SM. The mechanism of KNAPSTREAM depends

on estimating the optimal utility value OPT. Although OPT

cannot be exactly determined unless P=NP, KNAPSTREAM

can track the lower and upper bounds of OPT from observed

elements and maintain a sequence of candidates with different

estimations for OPT within the range. Each candidate derives a

unique threshold for marginal gains according to its estimation

for OPT. When an element arrives, a candidate decides whether

to include it based on the marginal gain of the element and

its threshold. After processing the stream, the candidate with

the maximal utility is returned as the result.
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Algorithm 1 KNAPSTREAM

Input: Stream Vx,y = {vx, . . . , vy}, parameter λ
Output: Solution Sx,y for SMDK w.r.t. Vx,y

1: Φ = {(1 + λ)l|l ∈ Z}
2: for all φ ∈ Φ do Sφ ← ∅
3: Initialize m← 0, M ← 0 and vmax ← nil
4: for t← x, . . . , y do
5: if f({vt}) > f({vmax}) then vmax ← vt
6: if M < f({vt})/γt then M ← f({vt})/γt,m← f({vt})
7: Φ = {(1 + λ)l|l ∈ Z,m ≤ (1 + λ)l ≤M · (1 + d)}
8: Delete all Sφ such that φ /∈ Φ
9: for all φ ∈ Φ do

10: if Δf (vt|Sφ) ≥ δt·φ
1+d
∧ Sφ ∪ {vt} ∈ ξ then

11: Sφ ← Sφ ∪ {vt}
12: Smax ← argmaxφ∈Φ f(Sφ)
13: return Sx,y ← argmax(f(Smax), f({vmax}))

Although following a similar scheme, KNAPSTREAM is

different from the algorithms of [1] and [11] from two aspects:

(1) the criterion for including an element considers not only

the marginal gain of adding it but also its costs, i.e., it checks

the cost-effectiveness of adding the element in each knapsack

and includes it only when its cost-effectivenesses reaches the

threshold in d knapsacks; (2) the singleton element with the

largest utility is also considered as a candidate.

The pseudo-code of KNAPSTREAM is given in Alg. 1. It

maintains three auxiliary variables: vmax stores the element

with the maximum utility among observed elements at time t;
m and M track the lower and upper bounds of OPT respec-

tively (Lines 5–6). The sequence of candidates is maintained

according to the up-to-date m and M (Lines 7–8). Then, each

candidate checks whether to include vt independently. For

each φ ∈ Φ, if the marginal gain Δf (vt|Sφ) reaches δt·φ
1+d

where δt = max∀j∈[d] ctj and the d-knapsack constraint is

still satisfied after adding vt into Sφ, vt will be included into

Sφ (Lines 9–11). Finally, after processing all elements in the

stream, it first finds Smax with the maximum utility among the

candidates, then compares Smax with {vmax}. The one with

the higher utility is returned as the solution Sx,y for SMDK

w.r.t. the stream Vx,y (Lines 12 and 13).

The theoretical results for KNAPSTREAM are shown in The-

orems 1 and 2. We assume the cost of any element is bounded

by γ and δ, i.e., 0 < γ ≤ ctj ≤ δ < 1, ∀t ∈ [n], ∀j ∈ [d]. It is

noted that γ and δ are not needed to be known in advance.

Theorem 1. Sx,y returned by KNAPSTREAM satisfies that
f(Sx,y) ≥ 1−ε

1+d · f(S∗x,y) where ε = λ + δ and S∗x,y is the
optimal solution for SMDK in Vx,y .

Theorem 2. KNAPSTREAM requires only one pass over Vx,y ,
buffers O( log(d·γ

−1)
γ·λ ) elements, and has O( log(d·γ

−1)
λ ) update

complexity per element.

The KnapWindow Framework adapts KNAPSTREAM to

SMDK in the sliding window model. It maintains a sequence

of checkpoints and KNAPSTREAM instances over the sliding

window. At time t, KNAPWINDOW maintains a sequence of s
checkpoints Xt = {x1, . . . , xs} where t′ ≤ x1 < . . . < xs ≤

Algorithm 2 KNAPWINDOW

Input: Stream V = {v1, v2, . . .}, window size W , interval L
Output: Solution St for SMDK at time t

1: Initialize s← 0, X0 ← ∅
2: for t← 1, 2, . . . do
3: if t ∈ {x : x = j · L, j ∈ N} then
4: s← s+ 1, xs ← t, and Xt ← Xt−L ∪ {xs}
5: Initiate KNAPSTREAM instance H(xs)

6: while t > W ∧ x1 < t′ do
7: Xt ← Xt \ {x1} and terminate H(x1)
8: Shift the remaining checkpoints, s← s− 1

9: for i← 1, . . . , s do
10: H(xi) processes vt according to Lines 5–11 of Alg. 1

11: // post-processing at time t
12: H(x1) processes elements from vt′ to vx1−1 according to

Lines 5–11 of Alg. 1
13: return St ← the solution of H(x1)

t. At each checkpoint xi, a KNAPSTREAM instance H(xi) is

maintained by processing a substream from element vxi to the

up-to-date element vt. When t > W , if the first checkpoint

x1 expires (x1 < t′ where t′ = max(1, t −W + 1)), it will

be deleted from checkpoints. Its corresponding KNAPSTREAM

instance H(x1) will be terminated as well. In addition, it does

not set up a checkpoint for any arrival element for efficiency

issue. Given an interval L, it only creates a checkpoint and

initiates a KNAPSTREAM instance for every L elements. To

provide the solution for SMDK in At, it uses the result of

H(x1). But it is noted that elements from vt′ to vx1−1 have

not been seen byH(x1) yet. Thus, it feeds the unseen elements

to H(x1) before returning the final solution.
The pseudo-code of KNAPWINDOW is presented in Alg. 2.

The sequence of checkpoints is initialized to X0 = ∅. A

checkpoint xs = t is created and added to Xt at each

time t = L, 2L, . . .. A KNAPSTREAM instance H(xs) is

invoked accordingly (Lines 3–5). Then, it deletes all ex-

pired checkpoints from Xt (Lines 6–8). Subsequently, each

checkpoint processes vt and updates the result independently.

This procedure follows Lines 5–11 of Alg. 1. To provide the

solution St for SMDK at time t, H(x1) post-processes the

elements from vt′ to vx1−1 (Line 12). Finally, the solution of

H(x1) after post-processing is returned as St (Line 13).
The approximation ratio and complexity of KNAPWINDOW

are shown in Theorems 3 and 4.

Theorem 3. St returned by KNAPWINDOW at time t satisfies
that f(St) ≥ 1−ε

1+d ·f(S∗t ) where ε = λ+δ and S∗t is the optimal
solution for SMDK at time t.

Theorem 4. KNAPWINDOW scans only one pass over
the stream V , maintains s = 
WL � checkpoints for At,
buffers O( s·log(d·γ

−1)
γ·λ ) elements, updates an element in

O( s·log(d·γ
−1)

λ ) time, and takes O(L·log(d·γ
−1)

λ ) time for post-
processing.

IV. EXPERIMENTS

We use two real-world datasets, Twitter and Yahoo! Web-
scope, in the experiments. Twitter is collected by the stream-
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Fig. 1. The utility of compared approaches over time.
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(b) Yahoo! Webscope
Fig. 2. The overall experimental results.

ing API containing about 8.9M tweets and 6.9M users. Select-

ing representative tweets is modeled as the maximum coverage
problem with a 2-knapsack constraint. A tweet is represented

as a set of users who retweet it and the goal is to select a set

of tweets to cover the maximum number of users. We define a

2-knapsack constraint to limit the number and total length of

selected tweets. Yahoo! Webscope is downloaded from https:

//webscope.sandbox.yahoo.com/. It consists of about 46M five-

dimensional feature vectors. Selecting representative feature

vectors is modeled as the active set selection problem with a 1-

knapsack constraint. The utility for a set of vectors is measured

by the IVM [1] function to maximize the information entropy.

We define a 1-knapsack constraint to limit the number of

selected vectors.

We compare the KNAPWINDOW (KW) framework with

COSTEFFECTGREEDY [4] (CEG) for SMDK in the batch

setting, the algorithm in [5] for SMDK in append-only streams

(STR), and selecting a set of random elements from the active

window (RND). All compared approaches are implemented in

Java 8 and the experiments are conducted on a server running

Ubuntu 16.04 with an Intel Xeon E7-4820 1.9GHz processor

and 128 GB memory.

In the experiments, we feed the elements of both datasets

to compared approaches in ascending order of timestamp and

retrieve the representatives selected by each approach for every

window slide. The window size W is 1M, the interval L for

neighboring checkpoints is 100K, and the number of elements

for each window slide is 1% ×W . In addition, the average

cost of elements is 0.1 and λ in Alg. 1 is set to 0.1.

We present the average CPU time to process each window

slide and average utility of the solutions returned by compared

approaches in Fig. 2. First, KW achieves speedups of 120x

and 35x over CEG on two datasets respectively. At the same

time, the average utility of solutions provided by KW is at

least 94% of those returned by CEG. Second, KW not only

runs faster than STR but also provides solutions with higher

utilities. Third, not surprisingly, RND cannot provide any

meaningful solutions on both datasets. In Fig. 1, we show

the utilities of the solutions returned by compared approaches

from t = W to the end of the stream. We can see the solutions

of CEG always have the highest utilities among compared

approaches. KW shows equivalent or better solution utilities

than STR in most cases. The experimental results show that

KW significantly improves the efficiency of CEG for SMDK

over sliding windows with a trivial loss in utility.

V. CONCLUSION

In this paper, we studied the representative subset selection
(RSS) problem in data streams. First, we formulated dynamic

RSS as maximizing a submodular function subject to a d-

knapsack constraint (SMDK) over sliding windows. We then

proposed the KNAPWINDOW framework for this problem.

Theoretically, KNAPWINDOW provided solutions for SMDK

over sliding windows with an approximation factor of 1−ε
1+d .

Finally, the experimental results showed the efficiency and

effectiveness of KNAPWINDOW compared with baselines.
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