
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

5-2019 

Neural multimodal belief tracker with adaptive attention for Neural multimodal belief tracker with adaptive attention for 

dialogue systems dialogue systems 

Zheng ZHANG 

Lizi LIAO 
Singapore Management University, lzliao@smu.edu.sg 

Minlie HUANG 

Xiaoyan ZHU 

Tat-Seng CHUA 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Citation Citation 
ZHANG, Zheng; LIAO, Lizi; HUANG, Minlie; ZHU, Xiaoyan; and CHUA, Tat-Seng. Neural multimodal belief 
tracker with adaptive attention for dialogue systems. (2019). WWW '19: Proceedings of the World Wide 
Web Conference, San Francisco, May 13-17. 2401-2412. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7120 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Neural Multimodal Belief Tracker with Adaptive Attention for
Dialogue Systems

Zheng Zhang1,†, Lizi Liao2,†, Minlie Huang1,∗, Xiaoyan Zhu1, Tat-Seng Chua2
1Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems

1Beijing National Research Center for Information Science and Technology
1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2National University of Singapore
{zhangz.goal,liaolizi.llz}@gmail.com, {aihuang,zxy-dcs}@tsinghua.edu.cn, chuats@comp.nus.edu.sg

ABSTRACT
Multimodal dialogue systems are attracting increasing attention
with a more natural and informative way for human-computer
interaction. As one of its core components, the belief tracker esti-
mates the user’s goal at each step of the dialogue and provides a
direct way to validate the ability of dialogue understanding. How-
ever, existing studies on belief trackers are largely limited to textual
modality, which cannot be easily extended to capture the rich se-
mantics in multimodal systems such as those with product images.
For example, in fashion domain, the visual appearance of clothes
play a crucial role in understanding the user’s intention. In this
case, the existing belief trackers may fail to generate accurate belief
states for a multimodal dialogue system.

In this paper, we present the first neural multimodal belief tracker
(NMBT) to demonstrate how multimodal evidence can facilitate
semantic understanding and dialogue state tracking. Given the
multimodal inputs, while applying a textual encoder to represent
textual utterances, the model gives special consideration to the se-
mantics revealed in visual modality. It learns concept level fashion
semantics by delving deep into image sub-regions and integrating
concept probabilities via multiple instance learning. Then in each
turn, an adaptive attention mechanism learns to automatically em-
phasize on different evidence sources of both visual and textual
modalities for more accurate dialogue state prediction. We perform
extensive evaluation on a multi-turn task-oriented dialogue dataset
in fashion domain and the results show that our method achieves
superior performance as compared to a wide range of baselines.

CCS CONCEPTS
•Computingmethodologies→Discourse, dialogue andprag-
matics; • Information systems → Information retrieval; Multi-
media and multimodal retrieval; Users and interactive retrieval.
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1 INTRODUCTION

User:	I	am	looking	 for	some	formal	shoes with	liberty	 type	patterns
System:	Sorry	I	don’t	have	but	would	you	like	to	see	some	as	below

User:	Show	me	something	similar to	the	4th image
System:	The	similar	looking	 ones	are	
User:	What	type is	it	in	the	1st image?
System:	The	formal	shoe	in	the	1st image	has	formal	type
User:	Show	me	more	in	the	style as	in	the	1st image
System:	Found	some	as	

Figure 1: An illustrative example of multimodal dialogue
for fashion retail, which demonstrates the importance of vi-
sualmodality in understanding the inherent semantics. Key-
words in blue correspond to images, where both modalities
are crucial for dialogue state tracking.

By offering a natural and interactive way to satisfy user’s in-
formation need, multimodal dialogue systems [34] have attracted
more and more attention recently. Compared to traditional text-
based systems, multimodal dialogue systems enable users to easily
provide an image sample instead of racking their minds for an ap-
propriate text description, such as in search of fashion products.
At the same time, it is more straight-forward for users to perceive
information from system provided images rather than text based
on supposition. In task oriented scenarios, multimodal dialogue
systems can better help users achieve their goals such as finding
specific fashion products or travel sights under the help of visual
modality and has achieved superior performance [26].

Efficient operation of such dialogue systems requires a core
component — belief tracker (or known as dialogue state tracking)
that can track what has happened by modeling system outputs, user
utterances, and context from previous turns etc. A belief tracker
provides a direct way to validate the systems’ understanding of
user’s goal at each step of the dialogue. At the same time, the output
of the belief tracker also supports the downstream dialogue policy
component to decide what action the system should take next. Such
output offers an explicit way to evaluate whether the learned policy
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is reasonable. Therefore, the belief tracker component is essential
for the final performance of a complete dialogue system.

However, since current dialogue systems are largely confined to
textual modality, existing efforts on belief tracker are also limited
primarily to text-based methods. Thus, it may fail to generate ac-
curate belief states for multimodal systems, as the rich semantics
inherent in visual modality are ignored. For example, in order to
generate correct belief states for each turn of the dialogue as shown
in Figure 1, the system needs to understand the visual features of
the fourth image, the type and style of the first image, etc. Purely
relying on text, the system would fail to obtain these useful se-
mantics, and thus result in inaccurate belief states. Moreover, it
may further affect the performance of other downstream dialogue
system components. Therefore, the primary goal of our work is
to build a multimodal belief tracker which is able to accurately
understand multimodal evidence and adaptively integrate these
modalities for dialogue state tracking.

Although we have shown that multimodal evidence is crucial
for dialogue state tracking, it is non-trivial to correctly extract
useful semantics and leverage them appropriately in dialogue state
tracking. First, there exists the well-known semantic gap between
the low-level visual cues and the high-level semantics (e.g., style, fit).
Indeed, there are many studies focusing on the Vision-to-Language
problems such as image captioning [27], visual storytelling [18] and
visual question answering (VQA) [2], which have achieved good
performance. Still, as pointed out in [10, 45], there exist strong
language priors which lead to good superficial performance of
these models without truly understanding the visual content. For
example, for questions starting with “Do you see a ...” in VQA
dataset, blindly answering “yes” can achieve 87% accuracy. Second,
the heterogeneity between the visual and textual modalities makes
it hard to incorporate them well to generate concrete belief states.
Due to the difference in expressiveness, users tend to prefer image
for illustrating certain concepts (such as style, pattern) while use
text for describing others (such as category, material). Finding out
these patterns of user behavior is essential for improving dialogue
state tracking.

In this paper, we propose a neural multimodal belief tracker
(NMBT) (see Figure 3) and apply it for semantic understanding
across modalities and user intent tracking. First, to fill the semantic
gap and avoid being misled by language priors, we develop a visual
concept learner in a weakly-supervised manner by leveraging mul-
tiple instance learning [5] which reasons with sub-regions rather
than the full image. The visual concept learner enables the tracker to
understand fine-grained semantics of product images at the concept
level. Second, to model user’s behavior patterns regarding different
modalities, the tracker employs an attention mechanism to adap-
tively attend to images and texts during dialogue state tracking at
each turn. Conditioned on both textual contexts and visual contents
observed so far, the model automatically learns to emphasize the
evidence coming from user provided image, system provided image,
or the text utterances for more accurate dialogue state tracking.

To the best of our knowledge, this is the first work for dialogue
state tracking or belief tracking in multimodal dialogue systems.
The main contributions for this work are as follows:

• We validate the importance of integrating multimodal evidence
in dialogue state tracking and identify the critical challenges in
understanding as well as leveraging such evidence.

• We delve into image sub-regions to learn concept level visual
semantics and propose an adaptive attention mechanism for
automatically deciding the evidence source for dialogue state
tracking based on multimodal dialogue context.

• We conduct extensive experiments to evaluate the proposed
method in various evaluation metrics and show superior per-
formance over state-of-the-art methods.

2 RELATEDWORK
2.1 Text-based Dialogue State Tracking
Since spoken interaction promises a natural, effective, and hands-
and eyes-free method for human-computer interaction, together
with the progress in natural language processing, dialogue systems
have been mainly developed within textual modality. In this paper
we focus on the dialogue state tracking (DST) task in task-oriented
dialogue systems. Here, we summarize recent work on DST and
discuss the major difference of our work.

Early dialogue systems used hand-crafted rules for DST, keeping
track of a single top hypothesis for each slot of the belief state
[23, 46]. Such systems require no training data and allow developers
to incorporate domain knowledge to boost performance. However,
such methods fail to make use of the entire N-best hypothesis
list, thus do not account for uncertainty in a principled way. In
addition, uncertainty also arises from the inherent ambiguity of
natural language.

Therefore, statistical DST methods are introduced to better solve
the uncertainty problem. Generally speaking, the statistical meth-
ods can be categorized into two types, namely generative and dis-
criminative approaches [12]. Generative approaches maintain a
distribution over dialogue states, which is calculated by Bayes rules
based on the history of observations (NLU results and previous
system action) in each turn. Early generative approaches attempt to
formalize the dialogue system as a Markov decision process (MDP)
[24, 25, 44]. However, MDP models have an assumption that the
state is observable, which cannot account for the uncertainty in
either dialogue state or user act parsed by NLU. Therefore, [43]
further proposed POMDP-based dialogue model, treating the dia-
logue state as hidden variable which can be inferred from system
observations, and achieved better performance. However, since
all possible states are enumerated in the above methods, it can be
intractable when the state space is very large [12]. Also, as pointed
out by [40], generative approaches must model all the correlations
in the input features, so they cannot easily exploit arbitrary but
potentially useful features.

Discriminative approches have the key benefits that they can in-
corporate a large number of features, and can be optimized directly
for prediction accuracy. [3] proposed the first discriminative state
tracking trained from data where features were taken from spoken
language understanding (SLU) output and dialogue history. Sub-
sequent work has explored numerous variations of this approach.
For instance, [41] applied a ranking algorithm which has the ability
to construct conjunctions of features. [15] applied a deep neural
network as a classifier. More recently, [16] proposed an RNN-based



DST to directly take automatic speech recognition results as input
without extra semantic understanding and obtains better perfor-
mance than those which only utilizes semantic features produced
by external NLU. [30] proposed a CNN-based method to extract
semantic features from raw ASR results and passed it to DST.

As observed in the dialogue state tracking challenges (DSTC),
discriminative methods tend to dominate all other approaches [39].
Our work is also based on the discriminative statistical DST frame-
work. However, existing approaches are constrained within textual
modality while ignores the rich semantics inherent in visual images.
In the emerging mutimodal dialogue systems, this information be-
comes essential for performance improvement. We thus take a step
further towards understanding and adaptively using such multi-
modal evidence.

2.2 Multimodal Understanding
Another line of work related to ours lies in multimodal understand-
ing, which focuses on recognizing inherent semantics of multimodal
data [1] and exploits the relevance between different modalities
[2, 7, 27]. In this work, we focus on understanding concept-level
semantics within multimodal data, which relates to research of
visual-semantic embedding, image captioning and visual question-
answering (VQA).

With the aim of learning a mapping from images into a semantic
space, visual-semantic embedding have shown to be effective in
image-text ranking and zero-shot learning. There are some em-
bedding models based on Canonical Correlation Analysis (CCA)
[11] which learns a linear projection to maximize the correlation
between two modalities [8, 9]. Kernel CCA [22] is further employed
to extend to nolinear projection. Nevertheless, as point out in [38],
scaling CCA to large amounts of data can be difficult. Another line
of efforts train a joint embeddingmodel with ranking loss. [7] learns
linear transformation between visual and textual features with a
single-directional ranking loss, which applies penalty to incorrect
sentences ranked higher than correct ones. Bi-direction ranking
loss is employed to boost the performance by further ensuring the
correct image described by a sentence ranked higher than other
images [19–21]. However, these works cannot be directly utilized
by our work due to the difference in nature between our dialogue
state tracking task and other tasks. In the above tasks, the seman-
tics of image and text are to be aligned, while in the multimodal
dialogue problem, the semantics of user intent come from either vi-
sual supplied evidence or textual inputs. Though certain semantics
are presented by both modality, many of them only reside in one
modality due to the concise nature of dialogues.

For image captioning, most existing methods adopt an encoder-
decoder framework, which consists of a CNN visual encoder along
with an RNN language decoder [27, 37]. The CNN encoder extracts
visual feature from the image and feed it to the RNN decoder to
generate a natural language text. Inspired by the advances in neural
machine translation, some works further introduced the attention
mechanism, which attends to different sub-regions of an image
during decoding [42].

Compared to image captioning, VQA [2] shares a more similar
task setting with multimodal dialogue, since it involves single-turn
interaction through question and answer. VQA also utilized the
encoder-decoder framework while the encoder side includes both

System: 

User:  I like the 1st image . Show me 

something like it but in type as in this image

Color dark

Taxonomy nightdress

Length short

Material cotton

Type casual 

Color beige

Taxonomy nightdress

Length mini

Material silk

Type patchwork

Color dark

Taxonomy nightdress

Length short

Material cotton

Type patchwork

Color -

Taxonomy nightdress

Length -

Material -

Type -

𝑆𝑡𝑎𝑡𝑒%&'

𝑆𝑡𝑎𝑡𝑒%

1st sytem image attributes user image attributes

Figure 2: An example turn in multimodal dialogue. The
model extracts semantics fromboth visual and textual input
to update the dialogue state to Statet . Slots “Color”, “Length”
and “Material” are updated by understanding the system
provided image. While “Type” is updated based on both tex-
tual and visual evidence from the user provided image.

image and question [2, 32]. The work of visual dialogue [4, 29]
further handles multi-turn QA pairs as multimodal dialogue does.
Even so, as pointed out in [29], these works should be categorized
into image-grounded QA rather than multimodal dialogue. The
reason lays on the way they utilize images. In VQA tasks, only
one single image is involved and the conversation is centered on
it. While in multimodal dialogue tasks, the model has to process
multiple images which acts as supporting evidence.

However, as pointed out in [10, 45], most existing Vision-to-
Language task performance should be attributed to the language
prior and the models do not truly understand the images. While
in our scenario, accurate understanding of visual image is rather
important for intention inference. Therefore, we propose to extract
explicit semantic concepts from image and feed to downstream
dialogue tracker.

Recently, [33] contributed a large-scale benchmark dataset with
150K dialogue sessions and proposed two end-to-end models based
on the hierarchical recurrent encoder decoder (HRED) framework
[35] as baselines for response generation.We use their dataset while
focus on the multimodal dialogue state tracking task.

3 MODEL
3.1 Task Definition and Model Overview
Our model is designed to tackle the problem of dialogue state track-
ing (DST) which maintains the belief state St in each turn during
the dialogue flow. Different from traditional text-based task, we
need to extract semantic concepts from both textual and visual
modalities. An example is shown in Figure 2. Note that the slot
values of a state are derived from not only the textual evidence, but
also system provided and user provided visual evidences.

SupposeT ′

t ,V
′

t refer to the textual and visual parts of the system
response in turn t , while Tt ,Vt are those of the subsequent user
posts, the task of multimodal dialogue state tracking can be stated
as follows: in the t-th turn, given the dialogue context withmessages
from both user and agent sidesXt = {T

′

1,V
′

1 ,T1,V1, ...,T
′

t ,V
′

t ,Tt ,Vt },



the model is supposed to give an estimation of the belief state pkt
for each slot k :

pkt = f k (Xt ), (1)
where f k represents the belief tracker for slot k , pkt is a Nk + 1
dimensional vector1 which is a probability distribution over the
values of slot k . The belief state St in turn t is defined as a collection
of distributions over the values of all the Ns slots:

St = [p1t ,p
2
t , ...,p

Ns
t ]. (2)

As described above, both the system and user messages may
consist of a textual and a visual part where the textual part is
a natural language utterance and the visual part refers to some
images. It is worth noting that in our work, the visual part of
system responseV ′

t usually contains zero or multiple images, while
the user post Vt contains zero or only one image.

Specifically, our proposed model consists of three major parts:
- The basic textual network learns representations of the tex-
tual evidences by taking only the textual utterances from
both system and user sides as inputs:

ht = ftextual (T
′

1,T1,T
′

2,T2, ...,T
′

t ,Tt ). (3)

- The sub-region based visual concept learning part extracts
concept level visual representation v for each image I . Given
the image, it first embeds sub-regions and then maps to
concepts under the multiple instance learning scenario:

v = fvisual (I ). (4)

- The adaptive modality attention part predicts the belief state
by integrating the textual and visual representations:

pt = fattn (v
′

t , vt , rt ,ht ), (5)

where v′

t and vt denote the visual representation of system
and user images respectively, rt refers to the textual repre-
sentation of user text Tt . The model learns to automatically
emphasize on different sources of evidences for dialogue
state tracking.

In the following part, we will explain the three parts in more
detail. Since all the slots share a common model structure, for the
convinience of description, we omit the slot subscript k in the
following subsections and only describe the model architecture for
a single slot.

3.2 Basic Textual Framework
We first introduce a basic textual framework upon which we will
build our multimodal model. The framework is an hierarchical RNN
model, which consists of a word-level encoder and an utterance-
level encoder. In this framework, the textual inputs in the t-th turn
are Tt and T

′

t . Suppose Tt and T
′

t are the embedding matrices ob-
tained via one hot vectors of words in user post Tt and system
response T ′

t multiplying with the pre-trained word embedding ma-
trix respectively. Under such processing, we actually represent each
word in its semantic vector form, namely word vectors. We then em-
ploy a word-level RNN encoder, which takes as input a word vector

1Nk is the number of values of slot k , while the extra one dimension represents that
slot k is not mentioned in the dialogue yet.

at each time step, to learn the integrated semantic representations
of Tt and T

′

t respectively as follows:
rt = RNN 1(Tt ), (6)

r
′

t = RNN 1(T
′

t ), (7)
where the word-level encoder is denoted as RNN1. The concatena-
tion of rt and r

′

t is then fed into an utterance-level encoder, which
is denoted as RNN2. Therefore, we have

ht = RNN 2_CELL(ht−1, [rt , r
′

t ]), (8)
where ht is the output of RNN cell, and [, ] denotes concatenation
of vectors.

Note that ht is the summary of information observed so far in
turn t . In pure text-based systems, they usually directly fed ht into
a fully-connected layer followed by a softmax function to generate
the probability distribution over the values of the slot:

gt = so f tmax(FC(ht )). (9)
The dimension of the fully-connected layer is d + 1, where d is
the number of possible slot values for this specific slot. The extra
one dimension represents that this slot is not mentioned yet. As
mentioned before, we have a totally of Ns slots. Thus, we maintain
Ns such RNN pipelines for all the slots.

3.3 Sub-region based Visual Concept Learning
One of the major challenges in multimodal DST is to accurately
extract visual concepts from images, which can be easily formulated
as a multi-class or multi-label image classification problem with
manual annotation. However, we notice that most visual concepts
correspond to only a small sub-region of the image, such as the
slots “Neck” and “Belt-loops”. Studies like [6] have also shown that
feeding the whole image into attribute classifiers leads to worse
performance. Therefore, we delve into image sub-regions to harvest
visual concepts.

Basically, for each individual image i , we define a bag bi , which
is a collection of the image’s sub-regions (detailed in Section 4.3).
An image is labeled positive for the conceptw if there is at least one
sub-region in the bag containing w , which is actually a multiple
instance learning (MIL) problem. In this work, the sub-regions are
squared areas which can overlap in case that some objects are cut
up by the square boundary. Intuitively, suppose the probability of
one sub-region j containing the conceptw is vwij , the probability of
the whole image i containingw should be no less than the largest
sub-region concept probability in the bag. At the same time, multi-
ple sub-regions showing high probability of containing the concept
w should result in increased probability but not over-exaggerated.
A diminishing return characteristic is preferable for our case. There-
fore, the probability of image i containing the conceptw is defined
as follows:

vwi = 1 −
|bi |∏
j=1

(1 −vwij ), (10)

where vwi is not larger than 1 and not less than the largest vwij .
When there are more vwij being large, the incremental effect on vwi
actually decreases.

We use the ResNet-50 without the last layer as the base network
to learn the representation for image sub-region bi j as bi j , and feed
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Figure 3: Overview of our proposed model. We first extract the features of user’s and system’s textual input evidences using
two RNN networks and use them to update the textual base hidden state ht . In the visual concept learning stage, the model
learns visual semantics by looking into image sub-regions and integrating probabilities under the multiple instance learning
scenario. Finally, we apply the adaptive modality attention mechanism on different evidence sources to obtain the context
vector ct , which is then fed into a MLP followed by a softmax activation to get the final belief state Pt .

it into a fully-connected layer followed by a sigmoid activation to
compute the sub-region level concept probability vector vi j :

vi j = σ (FC(bi j ))), (11)

where vi j is a collection of Bernoulli distributions over each concept
and vwij is the probability of conceptw .

At the whole image level, we obtain the image representation vi
for image i via

vi = 1 −
|bi |∏
j=1

(1 − vi j ). (12)

3.4 Adaptive Modality Attention
When updating the dialogue state, each slot should emphasize on
different evidence sources of the input. For example in Figure 2,
the user said “... something like it but in type as in this image”,
which means that the value of “type” should be equal to that of the
user given image, while the values of other primary slots should be
the same as the chosen image (“the 1st image”). Another common
situation is that we can find an exact value in user text, such as
“Show me more in purple colored type”.

Generally speaking, there are three main sources of evidences for
tracking dialogue states: the system provided images, user provided
image 2 and user provided text. Note that the system provided text
offers little useful clues about states, we thus only use it in context

2In the dataset, users only provide one image each time.

modeling as in Equation 8, and do not take it as an evidence source
in a way similar to [30].

Essentially, we aim to get a context vector ct as an attentive
summarization of the three evidence sources: user provided image
representation vt , system provided image representation v

′

t , and
user text representation rt . We then feed it into a fully-connected
layer followed by a softmax activation to find the new distribution
on values:

pt = so f tmax(FC(ct )). (13)
The summarization vector ct is obtained by combining the rep-

resentations of the three evidence sources using a weight vectorα t ,
which is an probability distribution over the three input sources.
How to decide the attention weights α t is essential to our model
since emphasizing on the correct evidence source is critical for gen-
erating the right slot value. Therefore, we first use two projection
matrices to map the three evidence vectors into a common space
and obtain an concatenated evidence matrix Et :

ct =
3∑

m=1
αt,mEt (m), (14)

Et = [W1vt ,W1v
′

t ,W2rt ], (15)

where W1 ∈ Rh×d and W2 ∈ Rh×h are projection parameters.
m indicates the index of evidence source and Et (m) is the m-th
column vector of Et .

To get the attention distribution α t , we first project the visual
and textual evidences into a common space and then feed them



along with the RNN output ht into a neural network followed by a
softmax activation:

Zt = [W3vt ,W3v
′

t ,W4rt ], (16)
kt,m = score(Zt (m),ht ), (17)

αt,m =
exp(kt,m )∑3
i=1 exp(kt,m )

, (18)

where W3∈Rh×d , W4 ∈ Rh×b are projection parameters mapping
the textual and visual evidence vt , v

′

t and rt into a common space.
The score function yields a scalar measuring to what extent each
evidence source is matched to the slot. It is based on the projected
evidence source Zt (m) and the textual encoder state ht . In our im-
plementation, we parametrized it as a feed forward neural network
which is jointly trained with all the other components.

score(Zt (m), ht ) = w⊤
h tanh (Zt (m) +Wдht ), (19)

wherewh ∈ Rh ,Wд ∈ Rh×h are the parameters to be learned, h, b
are the model hyper-parameters in which b is the RNN hidden state
size. Note that in our attention mechanism, we use different key and
value matrices Zt and Et by projecting the evidence source into dif-
ferent spaces, since earlier works [28] have already suggested that
the dual use of a single vector makes training the model difficult.

The intuition of this design is as follows: as defined in Section 3.2,
the utterance-level hidden state ht of the basic textual framework
contains the long and short term information obtained from the
textual side. More specifically, the long term information is an
aggregation of previous dialogue evidences, such as whether certain
slot has already been mentioned in history. While the short term
information includes more recent evidences such as which slot is
mentioned in the current user post. Both kinds of information can
provide extensive clues on which modality should be attended to in
the current turn. We thus feed the evidence source representations
along with ht through a single layer neural network (the score
function) followed by a softmax activation to generate the attention
distribution α t over different evidence sources.

We use cross entropy loss to measure the prediction results of
belief tracker. Specifically, we have:

L = −
∑
w

ywt logpwt , (20)

wherew indicates a certain slot value, pwt is an element of pt which
is the probability thatw is chosen as the new belief state, and ywt is
the golden truth.

4 EXPERIMENT
In this section, we conducted extensive experiments to validate our
NMBT’s performance on the task of dialogue state tracking3. More
specifically, we want to figure out:
• How much can the task of dialogue state tracking benefit by
involving multimodal evidence ?

• Whether the image representations obtained by sub-region based
visual concept learning perform better than the dense features
extracted by the CNN models ?

• Has the adaptive attention mechanism really learned to pay at-
tention to the correct modality ?

3The code is available at https://github.com/zhangzthu/NMBT

4.1 Data Preparation
The collection of training corpus is one of the bottlenecks for de-
veloping statistical dialogue system, due to the cost and concerns
about privacy disclosure. Recently, [34] proposed a large-scale mul-
timodal dialogue dataset which consists of about 150K conversation
sessions between sale agents and shoppers. However, there is no
dialogue state labels in the original dataset, we thus utilized the
meta data provided by [34] to build the domain ontology4 for di-
alogue act annotation. More specifically, we extracted slot-value
pairs from the corpus using a two stage process. During the first
stage, we defined a slot value dictionary and 81 natural language
templates to extract slots using direct string matching techniques.
During the second stage, we conducted manual correction. Finally,
seven slots are considered and the number of their corresponding
values are shown in Table 1. To train the sub-region based visual
concept learning model, we also need to get a collection of images
with labels in this domain. We extracted the labels of each image
from the raw catalog which consists of text descriptions of each
fashion item.

Table 1: The number of values of different slots.

Slot Name # Value
material 114
style 17
color 47
type 56
fit 17

length 19
gender 3

In the dataset, the average turn number of dialogue sessions is
18.3, which is a lot larger than other text-based datasets [13, 14]
and leads to greater difficulty.

4.2 Baselines
To evaluate the effectiveness of our proposed NMBT model, we
compared it with the following baselines.
• Seq2seq_DST [17]: This model includes an encoder-decoder
architecture with an attention mechanism to map an input utter-
ance to a sequence of slot-value pairs. Note that Seq2seq_DST is
different fromRNN_DST in that the last hidden state of Seq2seq_DST’s
encoder is fed into an RNN decoder, rather than a MLP classifier.

• CNN_DST: A CNN based textual neural belief tracker[36], which
utilizes a slot-specific filter to extract semantic features from raw
inputs.

• RNN_DST: The textual only framework of our NMBT model.
The hidden state of the utterance level encoder is fed into a MLP
classifier to predict the belief state.

• NBT: A textual DST model which uses CNN to learn n-gram
utterance feature from word embeddings. The utterance feature
is then used for DST tracking [30].

• M-RNN_DST: We extended the RNN_DST model to multimodal
scenario by feeding the image feature vectors of each turn as
extra input of the untterance level encoder, which is similar to

4The domain ontology means all the slots and their values to be involved in the study.

https://github.com/zhangzthu/NMBT


the Multimodal HRED model in [34]. The difference is that the
last hidden state of the untterance level encoder is fed into a MLP
with a softmax activation to predict the slot value rather than a
natural language decoder.

• M-NBT: The multimodal version of NBT, in which we combined
the ResNet-50 extracted image features with the text features
obtained before the last layer of NBT to predict the dialogue state,
similar as Multimodal HRED [34] does.
It is worth noting that Seq2seq_DST, CNN_DST, RNN_DST and

NBT are representative textual-based models from the Dialogue
State Tracking Challenge [13], while M-RNN_DST and M-NBT are
two multimodal extensions based on strong textual baselines.

Table 2: The dialogue state tracking accuracy of different
models.

Method Overall
Slots

Style Material Color Fit
Seq2seq_DST 51.1 80.0 84.7 47.7 51.2
CNN_DST 51.7 81.4 81.5 50.8 54.8
RNN_DST 51.2 80.4 85.1 49.5 51.5

NBT 52.0 84.9 66.1 49.3 47.9
M-RNN_DST 56.4 81.8 87.0 49.9 53.7

M-NBT 57.2 82.7 87.7 51.5 56.1
NMBT w/o SBVL 58.6 86.9 89.7 52.6 59.0
NMBT w/o Attn 57.5 81.3 88.0 54.3 56.8

NMBT 59.8 87.9 92.3 55.6 60.6

4.3 Experimental Setups
The training of our model is carried out in two stages. First, we
pre-train the basic textual model and the visual concept detector
respectively. Then we fuse them together to train the full NMBT
model with adaptive modality attention. For the textual base com-
ponent, both RNN encoders’ hidden state sizes are set to 512, and
the number of layers is 3. We use 300 as the dimension of word vec-
tors, which are extracted by pre-trained GloVe model [31]. During
training, we keep the extracted word embeddings fixed.

The sub-regions in visual concept learning are defined by sliding
window. More specifically, we first resize the image to 468 × 468,
and the size of image sub-region is 224 × 224 as in ResNet-50. With
a stride size of 30, we finally get 81 (9 × 9) sub-regions for each
image. The stride size is determined through mode validation, since
a smaller size leads to computing complexity and a larger one may
cut off a potential object. The size of image feature extracted by
ResNet-50 is 2048, which is then fed into a MLP followed by a
sigmoid activation to get vi j (see Equation 10). The h in Section 3.4
is set to 100. Both MIL and adaptive modality attention parameters
is trained using Adam optimizer with a learning rate of 0.001, and
the momentum parameters β1 = 0.9 and β2 = 0.999.

4.4 Evaluation Protocols
We adopted the dialogue state tracking accuracy as the main metric
to evaluate the performance of our model. In each turn, the model
predicts a value for each slot k . For each slot, we can get a slot-wise
accuracy. The overall accuracy is averaged over all slots. Each user

utterance from the original corpus is annotated with a specific state
type, which indicates its function, such as “show orientations” and
“show similar to”. To give a more elaborate comparison, we also
provide the accuracy scores of each baseline model on different
state types.

We also analysis the performance of visual concept detection. For
each slot k , we picked out the valuew with the highest probability
vwij as the predicted value for that slot. In this metric, we show the
overall and slot-wise accuracy scores. To give a more intuitional
understanding of how the visual concept extractor works, we vi-
sualize its vwij results for some conceptw in Figure 4. As described
in Section 4.3, we get a 9 × 9 vwij map for each image. In order to
visualize these probabilities on the image, we simply resize the heat
map to 464 × 464 by upsampling and apply a Gaussian filter. Note
that the heat map here is not the “attention” heat map which is
widely used in many attention-based visual models [42]. In our
model, vwij is a binary classification probability, which indicates the
probability that sub-region j contains conceptw .

To validate the effectiveness of our adaptive modality attention
mechanism, we conduct a case study with a visualization of the
adaptive attention weights. Due to space limitation, we only visual-
ize the attention weights of five representative slots.

4.5 Performance of Dialogue State Tracking
We first report the DST prediction performance on the overall
accuracy score and accuracy scores of several representative slots.
Besides the baseline methods described in Section 4.2, we also
conduct two ablation studies on the sub-region based visual concept
learning (SBVL) component and modality attention mechanism
(Attn). The results are shown in Table 2. Note that we only report
the result of some primary slots which occupy about xx% of the
data.

Some key observations are summarized as follows:

• First of all, as compared to textual-based methods, there is a sig-
nificant improvement on both the overall and the slot-specific
accuracy scores for those methods considering multimodal infor-
mation. For example, the overall accuracy score of M-RNN_DST
increases 5.2% as compared to that of its pure textual-based ver-
sion RNN_DST. The overall accuracy score of M-NBT also shows
similar improvement pattern comparing to that of NBT. It indi-
cates that by involving images into dialogue state tracking, the
model is able to extract more useful information for better track-
ing the user’s intention. In fact, it is natural to use images in the
fashion products shopping conversation scenario. As the example
shown in Figure 1, the images carry detailed information about
the user’s requirements which can not be easily expressed using
only textual utterances. Therefore, it is crucial to capture the vi-
sual evidence in dialogue state tracking under these multimodal
scenarios.

• Secondly, by learning sub-region based concept level visual rep-
resentations, our proposed model achieves better performance
as compared to the multimodal models that leverage pre-trained
model extracted visual features. We compared with several multi-
modal baselines and a variation of our model named NMBT w/o
SBVL, in which we remove the sub-region based visual concept



Table 3: The comparison of DST accuracy of different methods over three state type, where “show similar to” and “like show
result” indicate the user asks to recommend products similar to the current one, and “like earlier show result” means the user
requires products similar to someone in previous turns. Several representative slot-specific accuracy scores and the average
accuracy score are reported. Note that the accuracy scores here are calculated on state type level, which can not be compared
with the results in Table 2.

Method
show similar to like show result like earlier show result

Style Material Color Fit Overall Style Material Color Fit Overall Style Material Color Fit Overall

Seq2seq_DST 81.5 88.6 49.4 52.1 52.6 86.2 88.0 47.9 55.7 53.6 81.7 83.6 48.6 46.2 51.6
CNN_DST 84.3 85.7 51.7 56.4 53.7 87.6 85.8 51.1 60.3 54.7 83.8 80.7 51.5 51.0 52.5
RNN_DST 83.3 87.4 49.9 55.3 52.6 88.0 87.3 48.0 55.1 54.0 81.9 86.0 48.7 46.6 52.4

NBT 84.7 72.5 45.3 50.7 52.0 85.5 71.9 54.6 47.3 53.1 84.0 67.6 49.0 45.2 52.1

M-RNN_DST 81.2 82.3 50.0 67.1 64.9 78.2 88.2 47.3 71.8 66.9 87.5 82.9 51.0 49.0 60.7
M-NBT 84.3 84.6 50.5 67.4 65.7 85.0 91.2 52.1 71.6 69.0 83.0 84.9 51.4 46.8 60.1
NMBT 87.6 91.1 55.4 72.1 68.5 88.6 95.9 55.7 75.5 71.2 85.6 88.9 55.0 51.6 61.8

learning component while replace it with the pre-trained ResNet-
50 to extract visual features. In Table 2, we observe that utilizing
visual information by simply using representations learned by
pre-trained ResNet-50 is not an efficient way. There exists a large
performance gap between our method NMBT and M-RNN_DST,
M-NBT. For instance, the overall accuracy score of NMBT is
improved by 3.4% and 2.6% respectively as compare to that of M-
RNN_DST and M-NBT. For our proposed model NMBT, when the
sub-region based visual concept learning component is removed,
the overall performance of resulting method NMBT w/o SBVL
drops about 1.2%. These results validate the effectiveness of our
proposed visual concept learning model. By using sub-regions of
image rather than the whole image, the model manages to learn
more accurate concepts with less background noise.

• Thirdly, by combining textual and visual evidences through adap-
tive modality attention mechanism, NMBT manages to learn a
better integrated representation of multimodal evidences. In M-
RNN_DST and M-NBT, the textual and visual representations are
integrated by vector concatenation. In the ablation model NMBT
w/o Attn, we removed the attention mechanism by redefining the
context vector in Equation 13 as a concatenation of the column
vectors in Et . Compared to these multimodal models, NMBT
achieves better performance on both slot-specific and overall
accuracy. Intuitively, it is a non-trivial task to fuse the visual
and textual evidences together. The image provided by either
system or user can be regarded as an attribute list, which acts as a
candidate value set for belief state update. The textual utterances
contain two important clues: the values of some slots which are
explicitly expressed in the utterance, such as “looking for some
formal shoes”, and the control information which decides the
source of each slot’s update, such as “in the style as in the 1st
image”. This mechanism can not be model by either simple fea-
ture concatenation as in M-RNN_DST, M-NBT, or the NMBT
w/o Attn ablation which simply averages the three evidences.
In contrast, our model learns to automatically emphasize on the
different evidence sources for updating belief state based on the
conversational context.

4.6 Fine-grained DST Performance Analysis
To give a more detailed analysis, we report the state type level ac-
curacy on three representative types, as shown in Table 3. First we
analyze the function of “show similar to” which means that the user
requires the agent to show similar items to the currently selected
product. The selected product can come from one of the three ev-
idence sources, which favors our adaptive attention mechanism.
Therefore, we observe that the performance of our method NMBT
in this type is better than the averaged performance shown in Table
2, which means in this scenario where the modality choice appears
frequently, the attention mechanism manages to emphasize the
correct modality in most cases. Also, our NMBT method obtains
higher accuracy compared to the baseline methods. Next we ana-
lyzed “like show result” which is similar to “show similar to” and thus
we can get similar conclusion based on its results, which further
verifies NMBT’s performance on emphasizing different modalities.
When coming to the “like earlier show result” type which means
that the user requires items related to results shown several turns
before, we observed that although NMBT still outperforms baseline
methods, the margin is dwindled from 2.2% to 1.1%. The possible
reason might be that in “like earlier show result”, the agent needs
to recall back to previous turns other than the current turn, which
brings extra difficulty.

4.7 Evaluation of Visual Concept Learning
Component

Learning good visual representations is crucial to the model’s per-
formance since it serves as the input to downstream modules of
dialogue state tracking. We thus analyze the effectiveness of visual
concept learning in terms of concept classification accuracy and
report results in Table 4.

Table 4: The visual concept detection accuracy on different
slots.

Method Overall
Slots

Style Material Color Fit
ResNet50 42.8 58.7 21.4 42.8 48.1
SRVL 44.8 61.2 24.2 42.0 52.3



Figure 4: Sub-region basedmultiple instance learning for visual concept learning.We visualized the concept region probability
of values such as style, color and type, where the three slots correspond to the three rows. The sub-region with the highest
probability containing the concept is marked by a red rectangle.

Figure 5: Visualization of the heatmap ofvwij and the bounding box of quartz digital and flip flop concepts.We presentmultiple
examples for the two concepts where the product images are taken in different orientations.

We found that the sub-region based visual concept learning
(SRVL) can capture more accurate classification features by lo-
calizing the visual concept and reducing background noise. This
statement can be concluded from Table 4, where the overall and
several representative slot-wise concept prediction accuracy scores
are reported. We compare with the ResNet-50 model which directly
uses the feature vector of the entire image to predict a concept. As
shown in Table 4, by incorporating sub-region based visual concept
learning, the accuracy score is improved by about 2.0%. Neverthe-
less, as it can be seen in the slot-specific result, the accuracy on
“color” is dwindled by about 0.8%. This result is generally in line
with our intuition, since the slot “color” is a more holistic concept
which makes it more easily to be predicted with the overall image
feature.

In order to validate whether our design of using image sub-
regions is reasonable and whether our model can find those correct
sub-regions for concepts, we visualize the spatial response map vwij

of some concepts as shown in Figure 4. The bounding box of the
sub-region with the highest probability containing the concept is
marked by a red rectangle. We can see from the visualization results
that without bounding box annotations for training, our model is
still able to locate and associate visual concepts with correct sub-
regions. For example, in the “closed toe” picture, our model locates
the sub-region on the toe part of a shoe, and in the “washed” exam-
ple, our model focuses on the washed-styled pants rather than the
T-shirts. For “color” prediction, the model focuses on the main body
of each product which takes the most information about the prod-
uct’s color. These results indicate that the image representations
given by sub-region based multiple instance learning indeed cap-
ture important visual classification concepts and can thus extract
informative features for the task.

We further validate whether our proposed model can capture
a concept presented in different orientations or poses. In fashion



i like the material in the 4th one but not the print.
can you show me some more

i like the 5th image . show something like it but in 
contrast color type

these don’t quite match my taste. please show
me more having standard style

User: 

User: 

User: 

Agent: 

Agent: 

Agent: 

style type color gender fit

user text

user image

sys image

user text

user image

sys image

user text

user image

sys image

𝑡

𝑡 + 1

𝑡 − 1

In previous turns, the user asked for a products 
of trapeze type and flare fit.

Figure 6: Visualization ofmodality attention weights. The attention weights of fivemajor slots over the three evidence sources
are plotted, where darker color indicates larger attention weight. Note that each column represents an attention distribution.

domain, the product images are often taken in different orienta-
tions, which requires the visual concept detector to identify a single
concept in different modes. For example, as for the concept “watch”,
the model needs to identify it no matter its image is taken from the
side or front, while the image features can be very different in this
two cases. To validate whether our model fits this requirement, we
conducted a more specific analysis by showing the heat map and
bounding box of a single concept in images taken from different
orientations. As demonstrated in Figure 5, we gave five images for
two concepts, taken from at least three different orientations. For
the concept of “quartz digital”, our model can identify it by locating
the feature of knob, dial and band, which are very different features.
As for “flip flop”, our model identifies its key characteristic, the toe
thong, from different orientations. In the 4th image where there are
two of it, the model is even able to find the toe thong feature for
both identical objectives.

4.8 Case Study of Adaptive Modality Attention
As the adaptive modality attention is essential in our model, we con-
ducted case studies by visualizing the modality attention weights
to verify how it works in modeling multimodal conversations. As
shown in Figure 6, we visualized the attention weights for our
proposed model. Note that each column represents an attention
distribution over the three sources where darker color indicates
larger attention weight.

The result demonstrates that the adaptive modality attention
mechanism is able to automatically emphasize the three sources
based on both textual and visual contexts in multimodal dialogue,
even without specific supervision. For example in Figure 6, during
the t-th turn, the user asked for products similar to the 5th one
but with a different color, which indicates that the update of all
slots except “color” should attend to system image. The correspond-
ing attention weights fit this expectation, in which the colors of

other slots is more shaded on “sys image”, while that of “color” is
more shaded on user text. In the (t + 1)-th turn, the user asked for
“standard” style products which is explicitly expressed in user text.
Hence, the tracker of “style” pays more attention to user text. This
case shows that the adaptive attention mechanism can capture the
clues about which part is more important for each slot’s update
and thus boosts the overall performance.

5 CONCLUSION
In this work, we studied how visual evidence can be incorporated
in the task of dialogue state tracking, and proposed a neural mul-
timodal belief tracking model named NMBT, which seamlessly
integrates and adaptively selects textual and visual information in
multi-model dialogues. This model consists of a textual encoder
which encodes textual utterances, a sub-region based visual con-
cept detector which extracts concepts from image, and a multi-
modality attention mechanism which adaptively attends to textual
or visual evidence during conversations. Extensive experiments
demonstrated that our model outperforms the state-of-the-art base-
lines. Results showed that dialogue state tracking in multimodal
dialogues can significantly benefit from jointly considering multi-
modal evidences.

Multi-modal dialogue systems have many applications in real-
world dialogue systems such as online shopping or virtual dialogue
agent. We believe that this research direction is still in its infancy
and our work may inspire many future studies.
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