
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2020

SADT: Syntax-aware differential testing of certificate validation in SADT: Syntax-aware differential testing of certificate validation in

SSL/TLS Implementations SSL/TLS Implementations

Lili QUAN

Qianyu GUO

Hongxu CHEN

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Xiaohong LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
QUAN, Lili; GUO, Qianyu; CHEN, Hongxu; XIE, Xiaofei; LI, Xiaohong; LIU, Yang; and HU, Jing. SADT: Syntax-
aware differential testing of certificate validation in SSL/TLS Implementations. (2020). Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering (ASE): Virtual, 2020
September 21-25. 524-535.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7114

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Lili QUAN, Qianyu GUO, Hongxu CHEN, Xiaofei XIE, Xiaohong LI, Yang LIU, and Jing HU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7114

https://ink.library.smu.edu.sg/sis_research/7114

SADT: Syntax-Aware Differential Testing of Certificate
Validation in SSL/TLS Implementations

Lili Quan
College of Intelligence and

Computing, Tianjin University

China

Qianyu Guo∗

College of Intelligence and

Computing, Tianjin University

China

Hongxu Chen
School of Computer Science and

Engineering, Nanyang Technological

University, Singapore

Xiaofei Xie†

School of Computer Science and

Engineering, Nanyang Technological

University, Singapore

Xiaohong Li
College of Intelligence and

Computing, Tianjin University

China

Yang Liu
School of Computer Science and

Engineering, Nanyang Technological

University, Singapore

Jing Hu†

College of Intelligence and

Computing, Tianjin University

China

ABSTRACT

The security assurance of SSL/TLS critically depends on the correct

validation of X.509 certificates. Therefore, it is important to check

whether a certificate is correctly validated by the SSL/TLS imple-

mentations. Although differential testing has been proven to be

effective in finding semantic bugs, it still suffers from the following

limitations: (1) The syntax of test cases cannot be correctly guaran-

teed. (2) Current test cases are not diverse enough to cover more

implementation behaviours. This paper tackles these problems by

introducing SADT, a novel syntax-aware differential testing frame-

work for evaluating the certificate validation process in SSL/TLS

implementations. We first propose a tree-based mutation strategy

to ensure that the generated certificates are syntactically correct,

and then diversify the certificates by sharing interesting test cases

among all target SSL/TLS implementations. Such generated cer-

tificates are more likely to trigger discrepancies among SSL/TLS

implementations, which may indicate some potential bugs.

To evaluate the effectiveness of our approach, we applied SADT

on testing 6 widely used SSL/TLS implementations, compared with

the state-of-the-art fuzzing technique (i.e., AFL) and two differential

testing techniques (i.e., NEZHA and RFCcert). The results show that

SADT outperforms other techniques in generating discrepancies.

In total, 64 unique discrepancies were discovered by SADT, and 13

of them have been confirmed as bugs or fixed by the developers.

∗Qianyu Guo contributes equally with Lili Quan to this paper and is the co-first author.
†Xiaofei Xie (xfxie@ntu.edu.sg) and Jing Hu (mavis_huhu@tju.edu.cn) are the corre-
sponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416552

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Differential testing, Certificate validation, SSL/TLS Implementation

ACM Reference Format:

Lili Quan, Qianyu Guo, Hongxu Chen, Xiaofei Xie, Xiaohong Li, Yang Liu,

and Jing Hu. 2020. SADT: Syntax-Aware Differential Testing of Certificate

Validation in SSL/TLS Implementations. In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3324884.3416552

1 INTRODUCTION

The Secure Sockets Layer (SSL) [4] and its descendant Transport

Layer Security (TLS) [44] protocols are the foundations of internet

security. For example, Hypertext Transfer Protocol Secure (HTTPS)

[45] uses them to provide trusted authentication and secure com-

munication. SSL/TLS authenticates a server or client by validating

the X.509 certificate during the handshake phase to ensure a se-

cure connection. The authentication on a server means that the

client validates the certificate presented by the server to determine

whether it is a genuine communication server. The authentication

on a client is also the similar way. After the server/client is authen-

ticated, subsequent communications can be launched. Therefore,

it is critically important to ensure the correctness of certificate

validation by SSL/TLS implementations.

A communication may be dangerous if an invalid certificate sent

by malicious server/client is falsely accepted. Similarly, a normal

communication requirement may be denied if a valid certificate

sent by benign server/client is falsely rejected. However, the certifi-

cate validation is a complex process involving many aspects, such

as checking multiple fields (e.g., validity, public key, extensions)

in a certificate and verifying each certificate along the certificate

chain. Existing SSL/TLS implementations conduct the validation

524

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

conforming to the specifications in Request For Comments (RFCs)

(i.e., RFC 2527 [13], RFC 5246 [46], RFC 5878 [5], RFC 5280 [14],

RFC 6101 [16], RFC 6818 [58], and RFC 6125 [47]). However, the

developers may have different understandings on these specifica-

tions, which may further lead to the incorrect implementations.

This makes the certificate validation remain as a weak part in the

whole network ecosystem. Therefore, a systematic testing tech-

nique is still in urgent need for evaluating the quality of certificate

validation of SSL/TLS implementations.

Recently, some approaches have been proposed to evaluate the

SSL/TLS certificate validation process [6–8, 42] based on the dif-

ferential testing technique [31]. The basic idea is to cross-check

the behaviours among multiple SSL/TLS implementations. If one

implementation accepts an input while another rejects it, the dis-

crepancy occurs, which can be considered as a potential bug. How-

ever, existing differential testing based techniques still suffer from

the following three limitations: 1) Existing techniques are ineffi-

cient because they heavily rely on a large number of certificates for

constructing a well-behaved corpus to discover semantic bugs. For

example, Frankencert [6] finds only 9 unique discrepancies among

15 SSL/TLS implementations using 243,246 seed certificates as in-

puts. 2) The diversity of generated certificates is not enough to cover

all validation behaviours in SSL/TLS implementations, which may

miss some corner cases. A typical example is RFCcert [8], which

aims at generating certificates that violate the extracted rules. How-

ever, the rules may be incomplete, and many certificates that satisfy

the rules but may reveal bugs are missed. 3) Some mutation-based

differential testing techniques cannot guarantee that the generated

certificates are syntactically correct. Such invalid certificates are

more likely to be filtered, making the testing ineffective. For in-

stance, NEZHA [42] directly mutates the certificate files, regardless

of the structured X.509 syntax, and generates enormous amount of

test cases that are syntactically incorrect (e.g., 97.52% syntactically

incorrect certificates after 100,000 mutations in our experiments).

To tackle these problems, we propose SADT, a novel syntax-

aware differential testing based framework for detecting bugs in

the certificate validation process of SSL/TLS implementations. The

main difference between our approach and previous work is that the

certificates generated by SADT are more likely to trigger discrepan-

cies, meanwhile the syntax is ensured to be correct. Specifically, a

tree-based mutation strategy is first proposed to guarantee the syn-

tax correctness of generated certificates. Then a global coverage on

all targeted implementations is introduced to guide the selection of

the certificate. Finally, such generated certificates are employed for

the cross validation in different implementations. In order to evalu-

ate the performance of SADT, we design experiments on 6 SSL/TLS

implementations to answer the following research questions:

RQ1 : How effective is SADT in discovering discrepancies?

RQ2 : How does SADT perform compared to the state-of-the-art

differential testing frameworks?

RQ3 : How does SADT perform compared to the state-of-the-art

fuzzing technique (i.e., AFL)?

In summary, this paper makes the following main contributions:

• Tree-based mutation.We introduce a novel tree-based mutation

strategy which parses the certificate into a tree according to the

Figure 1: General structure of a certificate chain.

X.509 syntax and mutates the nodes on it to obtain new certifi-

cates. This method can guarantee syntactical correctness of the

generated certificates and it may be applicable in the generation

of other syntactically complex inputs.

• The global coverage guidance. We propose the global coverage

guidance by sharing interesting test cases across all tested imple-

mentations to diversify the certificate generation that are more

likely to trigger discrepancies.

• Implementation and evaluation.We implement SADT by extend-

ing AFL and compare against the state-of-the-art differential test-

ing techniques (i.e., NEZHA and RFCcert) on 6 popular SSL/TLS

implementations. The results show that SADT improves the ca-

pability of bug detection in these SSL/TLS implementations.

• Community feedback.We have reported the bugs found by SADT.

To date, 13 bugs have been confirmed or fixed by developers.

The remainder of this paper is organized as follows. Section 2

briefly introduces X.509 certificate and certificate validation. Sec-

tion 3 presents the technical details of our approach including the

certificate generation and cross validation. Section 4 shows the

effectiveness and performance of SADT. Related work is discussed

in Section 5 and this paper is concluded in Section 6.

2 BACKGROUND

2.1 X.509 Certificate

The X.509 certificate is a signed data structure that binds a public

key to a person, computer, or organization and it is used in many In-

ternet protocols, including SSL/TLS. However, it is also complex in

structure and syntax. As shown in Figure 1, each certificate consists

of a sequence of three required fields: (1) tbsCertificate, (2) Signa-

tureAlgorithm, and (3) SignatureValue. The first part tbsCertificate

contains a subject, an issuer and other basic information. Compared

with the version-1 certificate, the version-2 certificate adds the Sub-

jectUniqueID (Subject Unique Identifiers) and IssuerUniqueID (Issuer

Unique Identifiers) fields. In addition, Extensions are added to the

version-3 certificate. The second part SignatureAlgorithm contains

the identifier of the signature algorithm used by Certificate Author-

ity (CA) to sign this certificate. As the third part, SignatureValue

records the digital signature computed upon tbsCertificate.

In Public Key Infrastructure (PKI), a certificate is usually orga-

nized into a certificate chain together with it’s issuers. Figure 1

shows the general structure of a certificate chain. In general, each

525

Figure 2: Overview of SADT

certificate chain starts with a leaf certificate followed by all the

issuers and each certificate in it is signed by the next certificate and

the last certificate (i.e., the root certificate) is a trusted self-signed

CA certificate. Moreover, the Issuer of a certificate is equal to the

Subject of the next certificate. More details about X.509 certificate

can be found in RFC 5280 [14].

The X.509 certificate is encoded by the Distinguished Encoding

Rules (DER) [32]. The transfer syntax used by DER always follows

the format 〈𝑇𝑎𝑔, 𝐿𝑒𝑛𝑔𝑡ℎ,𝑉𝑎𝑙𝑢𝑒〉 that is usually referred to as a TLV
triplet in which each field (T, L, or V) contains one or more bytes.

The Tag specifies the type of the data structure. For example, the

Tag 0x02 represents the current data type is Integer, and the Tag
0x06 represents the current data type isObject Identifier. The Length
specifies the number of bytes of Value field, and the Value stores

data content. According to DER transfer syntax, basic and string

types are encoded by using primitive forms, while constructed

types are encoded in a constructed form. Note that the Value field

is triplet if the data type is constructed form as shown in Figure 3.

Figure 3: The DER data structure

2.2 Certificate Validation

Certificate validation is the key of authentication since it checks

the genuineness and validity of certificates. It usually requires two

inputs: the trusted CA certificates and a certificate chain to be val-

idated. During the validation process, SSL/TLS implementations

first check whether the content of the leaf certificate is valid at

the current time, including checking the validity period and basic

constraints of other fields. Then they check whether the certificate

is issued by a valid CA through checking the validity of the next

certificate (issuer certificate) in the certificate chain, and validating

the signature value by the signature algorithm. This process con-

tinues along the certificate chain until the certificate be checked

appears in the trusted certificate set. A certificate will be accepted

if and only if all of checks mentioned above are passed. Otherwise

it is rejected. More information about certificate validation can be

found in RFC 5246 [46] and RFC 6125 [47].

3 APPROACH

This section presents the technical details of our approach. We

introduce the overview of SADT, and then discuss the algorithms

of certificate generation and cross validation.

3.1 Overview

Figure 2 presents the overview of SADT, which consists of two

phases: the certificate generation (Section 3.2) and the cross valida-

tion (Section 3.3). In the phase of certificate generation, new test

cases (i.e., certificates) are generated with the help of tree-based

mutation and global coverage guidance. Specifically, before start-

ing to generate certificates, all of the target SSL/TLS programs are

instrumented by the instrumentation module (see 1), so that the

code coverage information can be obtained in execution (see 2).

Next, SADT randomly selects a seed certificate from the certificate

corpus (see 3), which will be first parsed from a nested TLV-based

DER format (Section 2.1) into a tree-based structure by the cert

parser (Section 3.2.1, see 4 and 5). Such tree-based structure is also

known as Generic Certificate Tree (GCT) in this paper. Then SADT

conducts the tree-based mutation by randomly changing the leaf

nodes and recursively updating the tree (Section 3.2.2, see 6). The

mutated tree is then parsed back to a DER-format certificate (see
7). Afterwards, we run the generated certificate on those instru-

mented programs in parallel, with the support of a global guidance

engine (Section 3.2.3, see 8). Note that, the guidance engine is

designed here to cover the code paths of all SSL/TLS tools as many

as possible. It determines whether the mutated certificate is able to

trigger new code coverage in any of the targeted SSL/TLS tools (see
9). If yes, SADT adds the mutated certificate into the certificate

corpus for further iteration; Otherwise, SADT discards it (see 10).

We repeatedly conduct the aforementioned steps for multiple times

(i.e., a time budget) to obtain an extensive certificate corpus.

The certificate corpus is further deployed for cross validation (Sec-

tion 3.3) when the certificate generation phase is completed. In this

phase, each certificate in the corpus is fed to all SSL/TLS tools

in parallel (see 11), and the output vector for each certificate is

recorded (see 12). As shown in Figure 2b, an output vector consists

of a certificate name (𝐶𝑁) and the validation results on each imple-

mentation, where 0 means “accept" the certificate and the non-zero

number means “reject" it with different return values. We get a

large number of validation vectors, corresponding to individual

526

(a) DER code snippet

(b) The initial GCT (c) The mutated GCT

Figure 4: The examples of data structure for DER and GCT.

test cases. SADT checks these vectors to identify whether there are

discrepancies. A discrepancy is found when there are at least two

implementations exhibit different outputs. Finally, we summarize

the discrepancy report for further bug confirmation (see 13).

3.2 Certificate Generation

The performance of software testing largely depends on the quality

of test cases, especially when the target program requires highly-

structured inputs. Specific to SSL/TLS validation, we need a large

number of representative certificates as test cases. However, as men-

tioned earlier, the certificates generated by previous work suffer

from various limitations such as the syntactical incorrectness and

high redundancy. SADT aims to address such problems by intro-

ducing two novel solutions: 1) a tree-based mutation strategy for

ensuring the syntactical correctness during certificate generation,

and 2) a global coverage guidance for diversified test case selection.

3.2.1 Certificate Parsing. To obtain high-quality certificates that

conform to the strict syntax requirements in mutation, we need a

deep understanding on the certificate composition. In other words,

given a certificate, we need to address the following two concerns:

how to precisely locate each field and how to extract the field value.

As described in Section 2.1, the certificate is composed of a nested

〈𝑇𝑎𝑔, 𝐿𝑒𝑛𝑔𝑡ℎ,𝑉𝑎𝑙𝑢𝑒〉 triplet, a.k.a. TLV triplet, encoded by the DER.

The structure is nested in that when we get a field value in a TLV

triplet, the value itself may be another nested structure, which needs

to be recursively obtained. This is similar to traversing values on

the tree. Therefore, the certificate can be represented as a tree-based

structure so as to facilitate the field location and value acquisition.

The Cert Parser is introduced for parsing the DER format certifi-

cate into a tree-based structure, which we call theGeneric Certificate

Tree (GCT) in this paper. Specifically, the GCT is a tree with mul-

tiple typed nodes, where each node is a TLV triplet, representing

a particular certificate component. It should be noted that, each

subsequent node next to the root node represents a certificate field,

whose value is recursively determined by its sub-tree. As to the

bottom of tree, the leaf node represents an atomic content which

can be directly translated by DER (e.g., an integer number).

Figure 4 shows an example converting DER to GCT. Consider

the DER snippet in Figure 4a, it is a nested TLV triplet, where

the root tag, intermediate tags and end tag are marked as the red

box (i.e., 30), blue boxes (i.e., 30 and 02), and green box (i.e., 02),

respectively. Specifically, for the root triplet, the tag 30 means it

is a SEQUENCE. The length 0a (a hexadecimal number) indicates

that the values of this SEQUENCE occupy the following 10 bytes,

ranging from the index 2 to index 11. Similarly, we can identify the

two intermediate triplets (i.e., the indices 2-6 and 7-11, respectively)

and the end triplet (i.e., the indices 4-6). Note that, the value of end

triplet is a one-byte integer number 02 which cannot be further

split. Based on above observations, we can build the GCT by linking

the containment relationship between each triplet. As shown in

Figure 4b, node a and node c correspond to the root triplet and end

triplet in Figure 4a, while node b and node d correspond to the two

intermediate triplets, respectively.

Algorithm 1 presents our certificate parsing method, which takes

a DER-format certificate (i.e.,𝐷) as input, and outputs a GCT (i.e.,T)

corresponding to 𝐷 . Since the certificate is a nested TLV structure,

we can first extract the root tag (i.e.,𝑇), length (i.e., 𝐿), and value (i.e.,
𝑉) from 𝐷 (Lines 2 to 4). Then we construct an initial node for GCT

(Line 5), which also consists of three parts, corresponding to the

tag, length, and value in the TLV triplet, respectively (see Figure 4b).

We directly assign the obtained tag and length to this node (Line 6).

When it comes to the node value, we adopts different assignment

solutions depending on the structure type (i.e., node tag). According

to the DER encoding specification, if the tag belongs to the primitive

types (Line 7), such as the Bit String (i.e., 03) and Integer (i.e., 02), it

means we get an atomic TLV triplet. Thus we consider the current

node as a leaf node, and directly assign the extracted value 𝑉 to the

value part of this node (Line 8). Otherwise, it means we get a nested

TLV triplet, where the value 𝑉 can be further split. Therefore, we

consider the current node as an root or intermediate node, which

needs to recursively conduct the same procedure for building the

child nodes under its value part (Line 13). Note that, for the obtained

value 𝑉 , it may be a wrapper of multiple subsequent TLV triplets,

thus we need to traverse all sub-TLV triplets on 𝑉 (Lines 10 to 16).

As a result, we will build multiple sub-trees under the current node.

Finally, after recursively assigning or linking nodes based on the

DER triplet, we can build a hierarchical structure, a.k.a., the GCT.

3.2.2 Tree-based Mutation. We perform certificate mutation based

on the transformed GCT. To ensure the generated certificates are

syntactically correct, we apply a bottom-up mutation strategy on

GCT, which can be divided into two phases: 1) the leaf selection,

and 2) the backtracking repair.

Leaf Selection. At the beginning, we first need to select a target

component in certificate as the entry for mutation. With the help

of GCT, we can easily obtain any component by traversing along

the tree. Theoretically, each component can be considered as the

candidate for mutation. However, as mentioned earlier, for some

component TLV triplets in a certificate, the value part itself may be

another sub-TLV triplet. As a result, a direct mutation on the value

part of such triplets will inevitably destroy the certificate syntax,

generating a large number of low-quality certificates. With respect

to GCT, such triplets can be mapped to the intermediate nodes. By

contrast, the leaf node on GCT is the atomic triplet that cannot be

further split, making it syntax-free to change the value. Therefore,

we select the leaf nodes as the mutation entry. Specifically, we

recursively apply the Breadth-First Search (BFS) strategy on the

GCT for randomly localizing a leaf node to conduct the mutation.

Backtracking Repair. Given a leaf node on GCT, we then apply

the built-in mutation strategies (e.g., bitflip) of AFL to change its

527

Algorithm 1: Certificate Parsing

Input :𝐷 = 〈𝑇, 𝐿,𝑉 〉: An DER certificate
Output :T : A GCT corresponding to 𝐷

1 Function certParse(𝐷)
2 𝑇 := 𝑔𝑒𝑡𝑇𝑎𝑔(𝐷) ;

3 𝐿 := 𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ(𝐷);

4 𝑉 := 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 (𝐷);

5 T := 𝑖𝑛𝑖𝑡𝑁𝑜𝑑𝑒 ();

6 T → 𝑡,T → 𝑙 := 𝑎𝑠𝑠𝑖𝑔𝑛𝑁𝑜𝑑𝑒 (𝑇, 𝐿);

7 if isAtomic(𝑇) then
8 T → 𝑣 := 𝑉 ; ⊲ Leaf node assignment

9 else

10 𝑃 := 𝑓 𝑖𝑟𝑠𝑡𝑇𝐿𝑉 (𝑉);

11 𝑖 := 0;

12 repeat

13 T → 𝑉𝑖 := 𝑐𝑒𝑟𝑡𝑃𝑎𝑟𝑠𝑒 (𝑃); ⊲ Assign recursively

14 𝑃 := 𝑛𝑒𝑥𝑡𝑇𝐿𝑉 (𝑉);

15 𝑖 := 𝑖 + 1;

16 until 𝑃 = ∅;

17 return T ;

value part (i.e., not the tag part or length part). Suppose the data

value before and after mutation on the value part are 𝑉𝑜 and 𝑉𝑚 ,
respectively. It is very likely that 𝑉𝑚 differs from 𝑉𝑜 in both data
value and data length, due to the randomness in mutation. Since

the certificate is composed of a series of nested triplets, any change

in the data length of the underlying triplet will inevitably affect

the data length of the upper one. Therefore, we need to recursively

“repair” the node length part along the GCT from bottom to top. In

this way, we ensure that the generated certificates always conform

to the syntax requirement.

Figure 4b and Figure 4c give an example on how the syntax-

aware mutation is conducted along the GCT. Consider the leaf node

𝑐 in initial GCT (Figure 4b), we mutate the value from 02 to 01, 03,

and get a new leaf node 𝑐 ′, with the length of 2 bytes (Figure 4c).
Since the length of the node changes from 1 to 2 during mutation,

which violates the syntax restriction of DER, we need to recursively

“repair” the length of upper nodes to ensure the correctness of the

syntax of the certificate. Consider the intermediate nodes (i.e., 𝑏
and 𝑏 ′) in two figures, the node length is updated from 03 to 04.

The length of the root node 𝑎 is further updated from 0a to 0b, as

shown by the node 𝑎′ in Figure 4c.
Algorithm 2 details the certificate mutation process, which takes

a GCT T as input and outputs a updated GCT (i.e., T ′) after muta-

tion on T . Our objective is to find a leaf node as quickly as possible,

so that we can start the mutation. For this purpose, we conduct a

Breadth-First Search (BFS) from the root node on, and randomly

select a sub-tree T𝑠𝑢𝑏 (Lines 2 to 3). If T𝑠𝑢𝑏 is a leaf node as expected,

we mutate its value part (Line 5). Note that, the change of data value

(i.e., T𝑠𝑢𝑏 → 𝑣 to 𝑉 ′) may also result in a change on the number

of bytes occupied by this value, which may further affect the num-

ber of bytes occupied by the length part of the node. Consider the

mutation example in Figure 4b and Figure 4c, we mutate the value

Algorithm 2: Tree-based Mutation

Input :T : A GCT for mutation

Output :T ′: A new GCT after mutation

1 Function mutateAndRepair(T)
2 𝑛 := 𝑟𝑎𝑛𝑑𝑜𝑚(10);

3 T𝑠𝑢𝑏 := 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝐹𝑆 (T , 𝑛);

4 if 𝑖𝑠𝐿𝑒𝑎𝑓 (T𝑠𝑢𝑏) then
5 𝑉 ′ :=𝑚𝑢𝑡𝑎𝑡𝑒 (T𝑠𝑢𝑏 → 𝑣);

6 𝐿′ := 𝑙𝑒𝑛(𝑉 ′);

7 𝐿 := T𝑠𝑢𝑏 → 𝑙 ;

8 Δ1 := 𝐿′ − T𝑠𝑢𝑏 → 𝑙 ;

9 Δ2 := 𝑙𝑒𝑛(𝐿′) − 𝑙𝑒𝑛(𝐿);

10 T𝑠𝑢𝑏 → 𝑣 := 𝑉 ′; ⊲ Update value

11 T𝑠𝑢𝑏 → 𝑙 := 𝐿′; ⊲ Repair length

12 return T𝑠𝑢𝑏 , Δ1 + Δ2;

13 else

14 Δ1 :=𝑚𝑢𝑡𝑎𝑡𝑒𝐴𝑛𝑑𝑅𝑒𝑝𝑎𝑖𝑟 (T𝑠𝑢𝑏);
15 𝐿 := T → 𝑙 ;

16 T → 𝑙 := T → 𝑙 + Δ1; ⊲ Repair length

17 Δ2 := 𝑙𝑒𝑛(T → 𝑙) − 𝑙𝑒𝑛(𝐿);

18 return T , Δ1 + Δ2

19 T ′, _ :=𝑚𝑢𝑡𝑎𝑡𝑒𝐴𝑛𝑑𝑅𝑒𝑝𝑎𝑖𝑟 (T);

20 return T ′

part of leaf node 𝑐 from 02 to 01, 03, resulting a length addition by 1.

The current 1-byte length part in node suffices to store the updated

length. However, if the value of 𝑐 is mutated to a long value (e.g.,
a 17-byte number), then the current allocated space for the node

length part is not enough to represent such a number, and needs

one more byte for accommodation. Therefore, we need record these

two length changes (Lines 6 to 9) and then update the value part

(i.e., T𝑠𝑢𝑏 → 𝑣) and length part (i.e., T𝑠𝑢𝑏 → 𝑙) in the current node
(Lines 10 to 11). The updated node and the total length change are

returned (Line 12). For the cases that the selected T𝑠𝑢𝑏 is an interme-

diate node, we need to recursively apply the random BFS strategy

on the GCT, until a leaf node is found (Line 14). Similarly, for each

recursion, we “repair” the length part in the current node caused by

its child node (Line 16) and calculate the changes in the number of

bytes the node length part takes, which is raised by the repair just

now (Line 17). Then the total change in byte count(Δ1 + Δ2) and
the current sub-tree (i.e., T) are returned to upper node (Line 18).

When backtracking to the root node, we get the updated GCT T ′.

It should be noted that, the subsequent nodes next to the root of

tree represent the root triplet of each certificate field. Thus when

applying BFS on the root node, we can identify the field name

according to the random number, which facilitates the further dis-

crepancy localization.

3.2.3 Global Coverage Guidance. The built-in coverage guidance

engine in AFL is not suitable for differential testing, because it

only maximizes the coverage of a single program during the input

generation, leaving more coverage information on other programs

unused, which may help to trigger discrepancies. In this work,

528

Figure 5: The workflow of global coverage guidance.

we extend the guidance engine of AFL by using global coverage

information of all tested programs. Our objective is to generate the

inputs that can cover as many differential behaviours as possible

among multiple programs. Intuitively, a test input that is interesting

for some programs, may be not interesting for other programs. The

“interesting” input here refers to an input that can cover new edges

or achieve a new hit count for an already-exercised edge. Therefore,

sharing interesting inputs can improve the diversity of test cases,

which are more likely to trigger discrepancies among different tools.

The motivation can be illustrated in the following example.

Suppose A and B are two programs used for differential testing.

𝐼1 and 𝐼2 stand for two inputs. We also suppose that only A is fuzzed

by AFL to generate test inputs, and the generated test inputs are

further used for differential testing between A and B. As a result,

the input 𝐼1 covers the edges {𝐴1,𝐴2} on A and the edges {𝐵1,𝐵2}
on B, respectively. The other input 𝐼2 covers the edge {𝐴1} on A
and the edges {𝐵2,𝐵3} on B, respectively. However, despite covering
new edge on B (i.e., {𝐵3}), 𝐼2 still cannot be selected for further

mutation under the built-in guidance engine of AFL, because only

the new coverage of A can be captured by AFL. Such situation can

be addressed when we use the global coverage of both programs.

Then, the input 𝐼2 would be included for further mutation. It is
similar to the case that only B is fuzzed to generate the test inputs.

The global coverage guidance engine is implemented by sharing

interesting inputs among all programs involved in the differential

testing. The general workflow of global coverage guidance in SADT

is presented in Figure 5. When a mutation is completed, all SSL/TLS

tools are executed in parallel with respect to the mutated certifi-

cate. These tools have been instrumented in advance to capture

edge coverage and edge hit counts at runtime. Subsequently, the

edge coverage of each program is obtained and then it is used to

guide the selection of the interesting input from different SSL/TLS

tools. Finally, those interesting inputs are shared among different

programs by maintaining the same queue for test cases. Different

SSL/TLS programs can be implemented differently and these differ-

ences can be captured by test inputs. Therefore, sharing interesting

inputs can improve the diversity of test cases, which are more likely

to trigger discrepancies among different tools.

Algorithm 3 presents the details about the global coverage guid-

ance in SADT. Given an initial certificate corpus (i.e., 𝑄), and a
series of instrumented SSL/TLS tools (i.e., 𝐴), we aim to extend

the corpus with a lot of mutated certificates, which expand the

overall coverage when running these tools in parallel. Specifically,

we initialize a coverage set of all SSL/TLS tools for test, a.k.a, the

global coverage coverage (i.e., C) in Line 1. We also record the latest

time that the global coverage is no longer updated (Line 2). Next, a

Algorithm 3: Global Coverage Guidance

Input :𝐴 = 〈𝛼1, . . . , 𝛼𝑛〉: Instrumented SSL/TLS tools
𝑄 : The certificate corpus

Output :𝑄 : The extended certificate corpus
Const :𝑡 : A timeout threshold

1 C := ∅;

2 𝑇𝑙𝑎𝑡𝑒𝑠𝑡 := 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 ();

3 repeat

4 𝐷 := 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑄);

5 𝐷 ′ :=𝑚𝑢𝑡𝑎𝑡𝑒 (𝐷);
6 for 𝛼 ∈ 𝐴 do
7 𝑐 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝛼, 𝐷 ′); ⊲ Single coverage

8 C := C
⋃
{𝑐}; ⊲ Global coverage

9 𝑇𝑐𝑢𝑟 := 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 ();

10 if 𝑛𝑒𝑤𝐶𝑜𝑣 (C) then
11 𝑄 := 𝑄

⋃
{𝐷 ′}; ⊲ Add interesting cert

12 𝑇𝑙𝑎𝑡𝑒𝑠𝑡 := 𝑇𝑐𝑢𝑟 ;

13 𝑇 := 𝑇𝑐𝑢𝑟 −𝑇𝑙𝑎𝑡𝑒𝑠𝑡 ;
14 until 𝑇 > 𝑡 ;

15 return 𝑄 ;

new certificate 𝐷 ′ is generated by mutation on a seed certificate

𝐷 , which is randomly selected from the corpus (Lines 4 to 5). We

run 𝐷 ′ simultaneously on all tools and capture the global coverage

by merging the coverage under each tool (Lines 6 to 8). A critical

checking is then performed on 𝐷 ′ to see whether it produces new

coverage on at least one of the tools (Line 10). If yes, we consider

𝐷 ′ as an interesting input , and add it into the corpus (Line 11).

Meanwhile, we update the time when the new coverage was last

generated (Line 12). We repeatedly conduct above procedures until

the global coverage is no longer updated within a given period of

time (Line 14). Finally, we obtain an extended corpus, with a lot of

interesting certificates added.

3.3 Cross Validation

Differential testing [31] is a popular software testing technique

that aims to detect semantic bugs, by providing the same input

to a series of similar applications or different implementations of

the same application, and observing discrepant behaviours in their

executions. Any discrepancy in outputs of targeted applications

indicates a potential bug because the specifications of these applica-

tions are theoretically identical. We propose a novel syntax-aware

differential testing framework based on the certificate generation

described in Section 3.2. In order to facilitate statistics and analysis

of discrepancy, we define an (m+1)-dimensional validation vector
−−→
𝑐𝑒𝑟𝑡 for each tested certificate:

−−→
𝑐𝑒𝑟𝑡 =< 𝐶𝑁 , 𝑟𝑒𝑠𝑢𝑙𝑡1, 𝑟𝑒𝑠𝑢𝑙𝑡2, ..., 𝑟𝑒𝑠𝑢𝑙𝑡𝑚 >,

where𝑚 is the number of tested implementations, 𝐶𝑁 is the cer-

tificate name, and the 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑚) indicates the validation

result returned by the 𝑖𝑡ℎ implementation. 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is 0 if the certifi-
cate is accepted. Otherwise, it is the returned code of the rejection.

These vectors are used as metrics in the following ways.

529

(1) If 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 = 0 and 𝑟𝑒𝑠𝑢𝑙𝑡 𝑗 ≠ 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑚 ∧ 𝑖 ≠ 𝑗), the
vector is considered as a discrepancy.

(2) For a vector < 𝑟𝑒𝑠𝑢𝑙𝑡1, ..., 𝑟𝑒𝑠𝑢𝑙𝑡𝑚 >𝑥 , if it is not equivalent

to any < 𝑟𝑒𝑠𝑢𝑙𝑡1, ..., 𝑟𝑒𝑠𝑢𝑙𝑡𝑚 >𝑦 among 𝑘 discrepancies found (1 ≤

𝑥,𝑦 ≤ 𝑘 ∧ 𝑥 ≠ 𝑦), the vector is considered as a unique discrepancy.
Furthermore, in order to measure the diversity of certificates in

a Cert Corpus, we define the metric [12]:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =
|𝑈𝐷𝐶𝑒𝑟𝑡 |

|𝐶𝑒𝑟𝑡 |
× 100%,

where |𝑈𝐷𝐶𝑒𝑟𝑡 | indicates the number of unique discrepancies trig-
gered by Cert Corpus and the |𝐶𝑒𝑟𝑡 | indicates the number of cer-
tificates in Cert Corpus. It is clear that, given certain number of

certificates, when there are more unique discrepancies, the certifi-

cates in the Cert Corpus are more diverse.

In addition, it is non-trivial to localize the root cause of each

unique discrepancy due to the large number of reported discrep-

ancies and targeted implementations. To mitigate this problem,

SADT stores each mutated certificate along with its original seed

certificate and records the mutated field name for each certificate,

as described in Section 3.2.2. Then the root cause of a detected dis-

crepancy can be immediately pinpointed by comparing the content

of mutated field in the discrepancy-revealing certificate with the

seed certificate it originates from.

4 EVALUATION

We implement SADT based on the state-of-the-art tool AFL [37]

using C and Python. To evaluate the effectiveness of SADT and

understand the root cause of the discrepancies and bugs, we aim to

answer the research questions as mentioned in Section 1.

4.1 Experimental Setup

To evaluate SADT, the following 6 popular SSL/TLS implementa-

tions are selected: OpenSSL (v1.1.1d) [41], GnuTLS (v3.6.11) [1],

MbedTLS (v2.16.3) [3], NSS (v3.48) [36], WolfSSL (v4.2.0) [57] and

LibreSSL (v3.0.2) [38].

To capture discrepancies, we need to run different implemen-

tations with the same certificate and compare the outputs. Hence,

we modify these implementations such that the outputs are re-

turned, respectively. Specifically, if the certificate is accepted, the

output value 0 is returned. Otherwise, we return the specific code

of the rejection. We randomly download 61 real certificates from

the existing websites, which are used as the initial cert corpus of

SADT. Note that, all certificates in the cert corpus do not cause any

discrepancies among these implementations.

All experiments are conducted on a high performance worksta-

tion, equipped with a 64-bit Ubuntu 16.04 LTS system, a 32GB RAM,

and two 18-core 2.3GHz Intel Xeon E5-2699 CPUs.

4.2 RQ1: How effective is SADT in discovering
discrepancies?

To detect the discrepancies between the 6 popular SSL/TLS imple-

mentations, we apply SADT to continuously generate test cases

until there is no interesting test case generated within 30 minutes.

Finally, SADT ran for 3 hours and generated 2305 interesting certifi-

cates (in Cert Corpus). Then we compare the results from 6 different

Table 1: Number of unique discrepancy between each pair of

SSL/TLS implementations

OpenSSLGnuTLSMbedTLSNSSWolfSSL LibreSSL

OpenSSL - 5 3 7 8 1
GnuTLS - - 4 6 9 6
MbedTLS - - - 5 5 4
NSS - - - - 11 8

WolfSSL - - - - - 9
LibreSSL - - - - - -

implementations. We say a certificate could trigger the discrepan-

cies if there are at least two implementations return the different

results. Finally, 64 unique discrepancies are generated and the Di-

versity is 2.78%. The results show that SADT could generate diverse

certificates that are more likely to trigger unique discrepancies.

The total number of unique discrepancies depends on the number

of tested implementations. Intuitively, the more implementations

tested, the more unique discrepancies. Then, we further show the

unique discrepancies for each pair implementations. For example,

suppose two output vectors <0, 1, 3, 3, 3, 3> and <0, 1, 3, 2, 1, 3> are

returned from two inputs, which are regarded as the same discrep-

ancy for the (𝑃1, 𝑃2) pair. It is because the output difference is the
same, i.e., (0, 1). Table 1 shows the number of unique discrepancies

in each pair of implementations. Overall, there are an average of

6.06 unique discrepancies between each pair of SSL/TLS implemen-

tations. Specifically, we can observe that SADT detected the most

unique discrepancies between NSS and WolfSSL (i.e., 11). More-

over, SADT detected one unique discrepancy between OpenSSL

and LibreSSL although they fork the same code base. Such results

demonstrate that SADT can effectively detect unique discrepancies

between any two SSL/TLS implementations.

We further investigate the root cause of each discrepancy by com-

paring the content of fields, by mutating which (during fuzzing)

the discrepancy is generated. Thus, based on checking the mu-

tated field, the 64 unique discrepancies are classified into different

categories that show the root causes. Table 2 lists the results of

classification. The first column shows different fields, where SPKI,

AKI, EKU, and AIA indicates the Subject Public Key Info, Authority

Key Identifier, Extended Key Usage and Authority Information Access,

respectively. The results show that SADT could detect more diverse

discrepancies between the 6 SSL/TLS implementations. Specifically,

the detected discrepancies are from 11 fields including some critical

fields (e.g., Validity, Key Usage, AKI, et al.). In addition, most of the

discrepancies are caused by the Extensions.

We have report the detected bugs found by SADT to the devel-

opers. To date, 13 bugs have been fixed or confirmed as described

below. More detailed case studies are shown in Section 4.5

• OpenSSL has confirmed 2 bugs: (1) OpenSSL accepts a Version 1

certificate with Extension [39]. (2) OpenSSL accepts certificates

including two instance of a particular extension [40].

• GnuTLS has confirmed and fixed 5 bugs: (1) GnuTLS accepts a

certificate whose notbefore field is a non-digits string [18]. (2)

GnuTLS can not checkObject Identifier correctly [21]. (3) GnuTLS

accepts certificates including two instance of a particular exten-

sion [19]. (4) GnuTLS can not check Issuer correctly [20]. (5)

GnuTLS accepts notbefore with length 11 [22].

530

Table 2: The distribution of unique discrepancies found by SADT in terms of infected fields

Field Name Version SerialNumber Subject Issuer Validity Signature SPKI
Extensions

Total
KeyUsage AKI EKU AIA

Number 5 4 6 6 9 3 11 5 8 6 1 64

• MbedTLS has confirmed 1 bug: MbedTLS accepts invalid certifi-

cates whose key identifier of the Authority Key Identifier is not

the same as Subject Key Identifier of issuer certificate [30].

• NSS has confirmed 2 bugs: (1) NSS accepts a Version 1 certificate

with Extension [34]. (2) NSS accepts notbefore with length 11 [35].

• WolfSSL has fixed 3 bugs: (1) WolfSSL accepts a certificate with

Authority Key Identifier that does not match issuer certificate [55].

(2) WolfSSL accepts a certificate with an invalid time format [54].

(3) WolfSSL accepts a certificate whose Issuer does not match the

Subject of issuer certificate [56].

Answer to RQ1: SADT is effective in finding unique discrepan-

cies. Specifically, SADT finds 64 unique discrepancies (including

13 confirmed bugs) across 6 SSL/TLS implementations and finds

average 6.06 unique discrepancies between each pair of implemen-

tations. Moreover, the discrepancies are diverse and could cover

most of fields in the certificate.

4.3 RQ2: How does SADT perform compared to
state-of-the-art differential testing
frameworks?

We select two state-of-the-art techniques as the baselines, i.e., RFC-

cert [8] and NEZHA [42], which have been shown effective in

detecting discrepancies between SSL/TLS implementations. We do

not select Mucert [12] and Frankencert [6] due to that RFCcert [8]

has been demonstrated to be the more effective one than them.

Since the source code of RFCcert is not applicable, we re-implement

it according to the algorithm described in [8].

Note that, unlike SADT and NEZHA, RFCcert is a rule-based

framework, which only generates certificates with the existing rules

extracted from RFCs. To make a fair comparison, SADT is restricted

to only mutate the certificate fields involved in the rules used by

RFCcert. The same Cert Corpus are also provided for SADT and

NEZHA. Furthermore, NEZHA has two kinds of guidance: gray-box

guidance and black-box guidance. Since SADT is gray-box frame-

work guided by global coverage guidance, the gray-box guidance of

NEZHA is used in all comparison. In our experiment, 11 rules are

extracted from RFC5280 [14] and these rules involve 10 common

fields of X.509 certificate. We run each frameworks five times and

calculate the average results for comparison. The performance of

SADT, NEZHA and RFCcert are compared in terms of the number

of unique discrepancies and the diversity of certificates.

4.3.1 The number of unique discrepancies. Figure 6a shows the av-

erage number of unique discrepancies discovered by SADT, NEZHA

and RFCcert under different iterations. We could observe that SADT

finds more unique discrepancies than NEZHA and RFCcert under

the same iterations. For example, SADT finds about 1.4 times and 4

times unique discrepancies than NEZHA and RFCcert respectively

(a) The number of unique discrep-
ancies found by SADT, NEZHA and
RFCcert under different iterations

(b) The distribution of unique dis-
crepancies found by SADT, NEZHA
and RFCcert under 100,000 iterations

Figure 6: The performances of SADT, NEZHA and RFCcert

under 100,000 iterations. Furthermore, the number of unique dis-

crepancies found by SADT keeps increasing in different iterations

while NEZHA and RFCcert stop detecting new discrepancies after

60,000 iterations. The results demonstrate that SADT outperforms

NEZHA and RFCcert in finding unique discrepancies. The main

reason is that NEZHA mutates the inputs without knowing the

structure information of the input. RFCcert considers the syntax in-

formation and ensures the syntactical correctness of the generated

certificates, but it lacks the coverage feedback. Differently, SADT

considers both of the two perspectives, i.e., generating interest-

ing test cases based on the syntactical structure and the coverage

guidance, making SADT more effective.

Figure 6b shows the distribution of the unique discrepancies

found by each tool under 100,000 iterations. As seen in Figure 6b,

the number of unique discrepancies found by SADT, NEZHA and

RFCcert are 41, 31 and 15, respectively. The results show that these

tools could generate different discrepancies. For examples, 25, 20

and 6 unique discrepancies are only found by SADT, NEZHA and

RFCcert, respectively, i.e., the discrepancies cannot be found by

other two tools. This is due to differences in their respective meth-

ods with regards to the certificate generation. NEZHA randomly

mutates certificates at the granularity of the entire certificate, thus

many test cases generated by NEZHA violate the syntax of the

certificate. In other words, NEZHA may find more discrepancies

at the syntax parsing stage. For example, in our experiment, 97522

certificates (97.52%) generated by NEZHA are syntactically incor-

rect after 100,000 mutations. However, certificates generated by

RFCcert have correct syntax but are not diverse enough, i.e., all

of the generated certificates violate RFC specifications. However,

the tree-based mutation and global coverage guidance make SADT

address the above two problems, making SADT more effective.

In addition, NEZHA and RFCcert miss 73.17% and 78.05% of the

discrepancies found by SADT, respectively. We also found that

some of discrepancies detected by RFCcert and NEZHA are missed

by SADT. This is because the current mutation strategies of SADT

might be incomplete. In order to ensure that the generated certifi-

cate have the valid syntax, SADT focuses on changing the value of

531

Table 3: The discrepancy diversity of SADT, NEZHA, and

RFCcert under different mutation iterations.

Iterations
SADT NEZHA RFCcert

60,000 80,000 100,000 60,000 60,000

Uniq. 35 36 41 31 15
Certificates 1019 1125 1172 6638 60,000
Diversity(%) 3.43 3.20 3.50 0.47 0.03

the certificate field but does not change the structure of the certifi-

cate, such as adding or deleting certificate fields. Despite the fact

that the mutation operators of SADT may be limited, SADT still

detects more bugs than NEZHA and RFCcert due to the combina-

tion of syntax-guided and coverage-guided mutation. We plan to

extend more mutation operators on SADT in the future.

4.3.2 The diversity of certificates. As shown in Figure 6a, no new

unique discrepancies are discovered by NEZHA and RFCcert af-

ter 60,000 iterations, while new unique discrepancies continue to

be found by SADT. Hence, the Diversity of certificates generated

by NEZHA and RFCcert decreases as iterations increases. Table 3

shows that the Diversity of certificates generated by each frame-

work and Row Uniq. indicates the number of unique discrepancies.

As shown in Table 3, after 60,000 iterations, 1019, 6638 and 60,000

certificates are generated by SADT, NEZHA, and RFCcert, respec-

tively, and each of them find 35, 31, and 15 unique discrepancies,

respectively. Therefore, the diversity of certificates generated by

SADT, NEZHA and RFCcert are 3.43% (35/1019), 0.47% (31/6638)

and 0.03% (15/60000), respectively. It is obvious that the diversity

of certificates generated by SADT is much greater than that of

NEZHA and RFCcert. Note that, the diversity of SADT under 80,000

and 100,000 iterations are also close to that under 60,000 iterations

and they are still much greater than that of NEZHA and RFCcert

under 60,000 iterations. These results demonstrate the certificates

generated by SADT are more diverse than NEZHA and RFCcert.

Answer to RQ2: Compared with state-of-the-art differential test-

ing techniques, SADT is more effective to generate diverse certifi-

cates that could detect more unique discrepancies.

4.4 RQ3: How does SADT perform compared to
the state-of-the-art fuzzing technique (i.e.,
AFL)?

SADT is implemented by extending the built-in mutation and guid-

ance engine of AFL. Therefore, we compare the performance of

SADT with the general-purpose AFL in terms of the number of

unique discrepancies to further illustrate the effectiveness of our

approach. Since AFL does not support differential testing, we adapt

AFL for differential testing as follows: using AFL to generate certifi-

cates based on a single SSL/TLS implementation (i.e., OpenSSL) and

then invoking the validation routines from 6 different implementa-

tions with these generated certificates. Moreover, to evaluate the

contribution of components in SADT (i.e., the tree-based mutation

and the global coverage guidance), we conduct another variant of

SADT, named S-SADT, which performs the tree-based mutation

Figure 7: The number of unique discrepancies found by

SADT, S-SADT and AFL under different iterations

but the default coverage guidance of AFL. Then we feed the same

initial Cert Corpus (61 certificates) to SADT, S-SADT and AFL, and

obtain the results. To reduce the randomness, each tool is run five

times and the average results are compared.

The number of unique discrepancies discovered by SADT, S-

SADT and AFL under different iterations are presented in Figure 7.

It can be observed that AFL only finds 2 unique discrepancies and

the number of unique discrepancies remains the same as iterations

increase. Whereas, SADT and S-SADT find more unique discrep-

ancies than AFL under same iterations and the number of unique

discrepancies keeps increasing during the iterations. The number

of unique discrepancies discovered by SADT is about 20 times than

that of AFL under 100,000 iterations. Consider the results between

S-SADT and AFL, we found that S-SADT finds 9 times more unique

discrepancies than AFL under 100,000 iterations, which demon-

strates that the tree-based mutation is effective in detecting discrep-

ancies. Consider the results between SADT and S-SADT, we found

that SADT could detect much more discrepancies (e.g., more than 2

times) than S-SADT under the same iterations, which demonstrates

the effectiveness of the global coverage guidance in improving the

performance of SADT. In general, SADT improves the capability of

AFL to find bugs in SSL/TLS implementations.

Answer to RQ3: SADT finds about 2 times more unique discrep-

ancies than S-SADT. S-SADT finds 9 times more unique discrepan-

cies than AFL under 100,000 iterations. It is clearly that SADT and

S-SADT outperform AFL in finding unique discrepancies. The re-

sults demonstrate that both of tree-based mutation and the global

coverage guidance are effective in detecting unique discrepancies.

4.5 Case Studies of Bugs

To understand the root cause of the bugs reported by SADT, we

manually analyze the detailed implementation and summarize the

root causes of these bugs into two categories: (1) Lack of checking

of corner case. The SSL/TLS implementation developers may ignore

some cases that may not be clearly stated in the RFCs. For example,

GnuTLS lacks some checks on whether the Validity value is digital

string as shown in Listing 1. (2) Incorrect implementation of rules in

RFCs. The developer’s wrong understanding of rules may lead to the

rules not being implemented correctly. The code for finding issuer

on WolfSSL was implemented incorrectly as shown in Listing 2,

532

1 static time_t utcTime2gtime(const char ∗ ttime) {

2 char xx [3];

3 int year ;

4 if (strlen (ttime)<10){

5 gnutls_assert () ;

6 return (time_t)−1;

7 }

8 xx[2]=0;

9 memcpy(xx,ttime,2) ;

10 /∗ year is 0 if xx is non−digits ∗/

11 year=atoi(xx);

12 ttime +=2;

13 if (year>49)

14 year+=1900;

15 else

16 year+=2000;

17 return time2gtime(ttime ,year) ;

18 }

Listing 1: GnuTLS cannot parse validity field correctly

which is a typical example. In this section, we respectively introduce

the two typical bug cases in detail.

4.5.1 GnuTLS-Incorrect validation of validity. The Validity (includ-

ing notBefore and notAfter) of the X.509 certificate has two repre-

sentations: UTCTime (YYMMDDHHMMSSZ) and GeneralizedTime

(YYYYMMDDHHMMSSZ), which contain 13 and 15 characters, re-

spectively. It is obvious that the value of notBefore and notAfter

cannot be a non-digital string. However, we find that GnuTLS erro-

neously accepts a malformed certificate whose notBefore or notAfter

contain non-digital characters while other SSL/TLS implementa-

tions reject it. After manually debugging the implementation from

the discrepancy, we found that GnuTLS lacks the check on whether

the Validity value is digital string as shown in Listing 1. For example,

while other implementations reject a certificate whose notBefore

field is UTCTime #01010101000Z since it is a incorrect time for-

mat. However, GnuTLS incorrectly interprets the time as Otc 10

10:10:00 1900 GMT. This is because the function 𝑎𝑡𝑜𝑖 (𝑥𝑥) returns
0 when 𝑥𝑥 is non-digits (Line 11 in Listing 1). We have reported

this bug to the corresponding developers and committed a Merge

Request to fix it. The GnuTLS team has confirmed this bug and has

fixed it in GnuTLS v3.6.12 [18].

There are no such rules like “validity MUST be digital string” in

RFCs, which makes RFCcert unable to generate such certificates.

Therefore this bug cannot be discovered by RFCcert. The result also

demonstrates that SADT could be a supplement to RFCcert.

4.5.2 WolfSSL-Incorrect validation of issuer. As described in section

4.2.1.2 of RFC5280, the Subject Key Identifier of a CA certificate

MUST match the Authority Key Identifier of certificates issued

by the CA. However, our experiments show that WolfSSL accepts a

certificate that violates this rule while other SSL/TLS implementa-

tions reject such certificate because they could not find the issuer.

Through debugging, we find that the code for finding issuers in

WolfSSL are not implemented correctly. As shown in Listing 2,

WolfSSL will look up the issuer certificate by matching the value of

Issuer when it could not find the corresponding issuer certificate by

matching Authority Key Identifier (Lines 7 to 12 in Listing 2). In this

case, WolfSSL will accept the certificate if the Issuer matches the

1 int ParseCertRelative (DecodedCert∗ cert , int type , int verify , void

∗ cm){

2 ...

3 if (verify != NO_VERIFY && type != CA_TYPE && type !=

TRUSTED_PEER_TYPE) {

4 cert−>ca = NULL;

5 # ifndef NO_SKID

6 /∗CA certificate is found if one field matches the cert∗/

7 if (cert->extAuthKeyIdSet)

8 cert->ca = GetCA(cm, cert->extAuthKeyId);

9 if (cert->ca == NULL && cert->extSubjKeyIdSet)

10 cert->ca = GetCA(cm, cert->extSubjKeyId);

11 if (cert->ca == NULL)

12 cert->ca = GetCAByName(cm, cert->issuerHash);

13 ...

14 }

Listing 2: WolfSSL cannot find issuer correctly

Subject of the issuer certificate. WolfSSL has confirmed and fixed

this bug [55], and MbedTLS has also confirmed it [30].

4.6 Threats to Validity

The selected versions of SSL/TLS implementations in our study

could be a threat to validity. This work mainly focuses on the dif-

ferent SSL/TLS implementations. The threat could be reduced by

selecting more different versions of the SSL/TLS implementations.

The initial cert corpus may be a threat. We mitigate this issue by

randomly selecting diverse certifications from the existing websites.

Another threat would be the randomness when comparing discrep-

ancies detection between SADT and the baselines. To mitigate this

issue, we run each tool five times and calculate the average results.

5 RELATEDWORK

We summarize the related work in following two aspects: the secu-

rity of SSL/TLS implementations and the mutation-based testing.

5.1 Security of SSL/TLS implementations

Recently, many researches have been proposed to evaluate the secu-

rity of SSL/TLS implementations. Marlinspike [29, 33] found several

vulnerabilities in the certificate validation process of SSL/TLS im-

plementations. Kaminsky et al. [23] demonstrated two new types of

collision attacks against the X.509 certificate. Georgiev et al. [17] an-

alyzed several vulnerabilities that are caused by badly designedAPIs

of SSL implementations (i.e., OpenSSL). Their results revealed the

security risks in SSL/TLS implementations. These results motivate

us to detect bugs of certificate validation in SSL/TLS implementa-

tions through automated methods.

Frankencert [6] is proposed for the first time to test certificate val-

idation logic in SSL/TLS implementations. Chen et al. [12] further

applied a guided technique to improve Frankencert (i.e., Mucert).

Different from our work, Frankencert is unguided and Mucert

guides certificate generation based on a single implementation

instead of multiple targeted implementations. DRLgencert [7] first

applied deep reinforcement learning to the automated testing of

SSL/TLS implementations. It needs to extract features from a large

number of certificates, which is not required in our work. TLS-

Attacker [50] evaluated the security of TLS libraries by two-step

fuzzing approach. Sivakorn et al. presented HVLearn [49] to find

533

bugs in hostname verification. They are orthogonal to our work as

they mainly focus on protocol level or hostname verification while

SADT focuses on certificate validation process.

The most relevant work to SADT are NEZHA [42] and RFC-

cert [8]. Our work distinguishes from them in the following aspects:

1) RFCcert assembles certificates depending on the rules extracted

from RFCs while we generate certificates in a rule-independent

way, guided by the global coverage of all SSL/TLS implementations;

2) NEZHA directly mutates the certificate files regardless of the

certificate syntax, while SADT leverages a tree-based mutation to

generate syntactically correct certificates; and 3) we propose a more

fine-grained bug localization than NEZHA.

5.2 Mutation-based Testing

In the recent years, there are many mutation-based techniques

proposed for software testing, e.g., AFL [37], libFuzzer [28], Fair-

Fuzz [25], Steelix [26], Cerebro [27], Hawkeye [10], MUZZ [9], and

UAFL [51], which mutate test cases with the guidance of customized

domain-specific code coverage. Their guidance is ill-suitable for

differential testing because it guides mutation based on a single im-

plementation instead of multiple implementations. SlowFuzz [43]

and PerfFuzz [24] generate test cases based on the resource usage.

Vuzzer [48] and Angora [11] use taint analysis to identify which

bytes should be mutated. They mutate test case regardless of the

syntax of test case while SADT leverages a tree-based mutation to

ensure mutated test case is syntactically correct. However, there are

some techniques are proposed to generate syntactically correct test

case. 𝜇4SQLi [2] generates executable SQLs by applying mutation
operators on valid SQLs. Superion [53] leverages grammar-aware

trimming strategy and two grammar-aware mutation strategies to

ensure the mutated test case is syntactically correct. Domato [15]

generates test cases by specifying the syntax of HTML/CSS struc-

ture and JavaScript objects. Skyfire [52] generates well-distributed

test cases by leveraging the knowledge of many existing samples. It

should be noted that, above techniques are orthogonal to our work

as they mainly focus on generating highly-structured inputs (such

as JavaScript) instead of X.509 certificate.

6 CONCLUSION

In this paper, we design, implement and evaluate a syntax-aware

differential testing framework, i.e. SADT, for testing certificate val-

idation in SSL/TLS implementations. Specifically, the tree-based

mutation and the global coverage guidance are extended on AFL

to effectively mutate and diversify X.509 certificates while keeping

the certificate syntactically correct. These generated certificates are

leveraged to identify the discrepancies between different SSL/TLS

implementations. Our experimental results demonstrate that SADT

is more effective than the state-of-the-art differential testing frame-

works (i.e., NEZHA and RFCcert) in detecting discrepancies and

the general-purpose fuzzing technique AFL. Overall, SADT finds

64 unique certificate validation discrepancies on 6 widely used

SSL/TLS implementations. In particular, 13 bugs have been con-

firmed or fixed by the developers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comprehensive feed-

back. This work was partly supported by the National Science Foun-

dation of China (No. 61872262, 61572349). It was also sponsored by

the Singapore Ministry of Education Academic Research Fund Tier

1 (Award No. 2018-T1-002-069), the National Research Foundation,

Prime Ministers Office, Singapore under its National Cybersecurity

R&D Program (Award No. NRF2018NCR-NCR005-0001), the Sin-

gapore National Research Foundation under NCR Award Number

NSOE003-0001 and NRF Investigatorship NRFI06-2020-0022.

REFERENCES
[1] Tim Rühsen,Daiki Ueno,Dmitry Baryshkov. 2020. The GnuTLS Transport Layer

Security Library. https://www.gnutls.org
[2] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. 2014.

Automated Testing for SQL Injection Vulnerabilities: An Input Mutation Ap-
proach. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Computing Ma-
chinery, New York, NY, USA, 259–269. https://doi.org/10.1145/2610384.2610403

[3] ARM Limited. 2020. armMBED. https://tls.mbed.org
[4] Richard Barnes, Martin Thomson, Alfredo Pironti, and Adam Langley. 2015.

Deprecating Secure Sockets Layer Version 3.0. RFC 7568. https://doi.org/10.
17487/RFC7568

[5] Mark Brown and Russ Housley. 2010. Transport Layer Security (TLS) Authoriza-
tion Extensions. RFC 5878. https://doi.org/10.17487/RFC5878

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 114–129.

[7] Chao Chen, Wenrui Diao, Yingpei Zeng, Shanqing Guo, and Chengyu Hu. 2018.
DRLGENCERT: Deep Learning-based Automated Testing of Certificate Verifi-
cation in SSL/TLS Implementations. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 48–58.

[8] Chu Chen, Cong Tian, Zhenhua Duan, and Liang Zhao. 2018. RFC-directed
differential testing of certificate validation in SSL/TLS implementations. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
859–870.

[9] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang
Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing
for Effective Bug Hunting in Multithreaded Programs. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 2325–2342. https://www.
usenix.org/conference/usenixsecurity20/presentation/chen-hongxu

[10] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2095–2108.

[11] P. Chen and H. Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy (SP). 711–725.

[12] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 793–804.

[13] Santosh Chokhani, Warwick Ford, Randy Sabett, Charles Merrill, and Stephen
Wu. 1999. RFC 2527: Internet X. 509 public key infrastructure certificate policy
and certification practices framework. Internet Engineering Task Force (IETF), RFC
(1999).

[14] David Cooper, Stefan Santesson, S Farrell, Sharon Boeyen, Rusell Housley, and
W Polk. 2008. RFC 5280: Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. IETF, May (2008).

[15] Fratric. 2017. The great dom fuzz-off of 2017. https://googleprojectzero.blogspot.
sg/2017/09/the-great-dom-fuzz-off-of-2017.html.

[16] Alan Freier, Philip Karlton, and Paul Kocher. 2011. Rfc 6101: The secure sockets
layer (SSL) protocol version 3.0. The Internet Engineering Task Force (IETF) (2011).

[17] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL
certificates in non-browser software. In Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 38–49.

[18] gnutls. 2019. Gnutls accepts a certificate whose notbefore field is a non-digits string
while openssl rejects such certificates. https://gitlab.com/gnutls/gnutls/-/issues/870

[19] gnutls. 2019. gnutls accepts certificates including two instance of a particular
extension. https://gitlab.com/gnutls/gnutls/-/issues/887

[20] gnutls. 2019. gnutls can’t check certificate issuer correctly according to RFC5280.
https://gitlab.com/gnutls/gnutls/-/issues/885

534

[21] gnutls. 2019. gnutls can’t check object identifier value correctly. https://gitlab.
com/gnutls/gnutls/-/issues/886

[22] gnutls. 2019. GnuTLS3.6.7.1 cannot process validity field according to RFC5280.
https://gitlab.com/gnutls/gnutls/-/issues/864

[23] Dan Kaminsky, Meredith L Patterson, and Len Sassaman. 2010. PKI layer cake:
New collision attacks against the global X. 509 infrastructure. In International
Conference on Financial Cryptography and Data Security. Springer, 289–303.

[24] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 254–265. https://doi.org/10.1145/3213846.3213874

[25] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering - ASE 2018. ACM
Press. https://doi.org/10.1145/3238147.3238176

[26] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[27] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. 2019. Cerebro: context-aware adaptive fuzzing
for effective vulnerability detection. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 533–544.

[28] LLVM. 2020. libFuzzer-a library for coverage-guided fuzz testing - LLVM 3.9
documentation. http://llvm.org/docs/LibFuzzer.html

[29] Moxie Marlinspike. 2009. More tricks for defeating SSL in practice. Black Hat
USA (2009).

[30] mbedtls. 2019. mbedtls2.16.3 accepts invalid certificate whose key identifier field
of the authority key identifier extension is not the same as subject key identifier in
issuer. https://github.com/ARMmbed/mbedtls/issues/2954

[31] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[32] Microsoft. 2020. Distinguished Encoding Rules. https://docs.microsoft.com/en-
us/windows/win32/seccertenroll/distinguished-encoding-rules

[33] Marlingspike Moixe. 2009. New tricks for defeating ssl in practice. In BlackHat
Conference, USA.

[34] mozilla. 2019. NSS accepts a version-1 certificate with extension fields. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1603034

[35] mozilla. 2019. NSS UTCTime parser should reject short fields. https://bugzilla.
mozilla.org/show_bug.cgi?id=1599331

[36] Mozilla. 2020. Network Security Services. https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS

[37] M.Zalewski. 2020. american fuzzy lop. http://lcamtuf.coredump.cx/afl/
[38] OpenBSD. 2020. LibreSSL. https://www.libressl.org/
[39] OpenSSL. 2019. openssl accepts a certificate with version 1 and extension fields.

https://github.com/openssl/openssl/issues/10599
[40] OpenSSL. 2019. openssl accepts certificates including two instance of a particular

extension. https://github.com/openssl/openssl/issues/10686

[41] OpenSSL Software Foundation. 2020. OpenSSL. https://www.openssl.org
[42] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and

Suman Jana. 2017. Nezha: Efficient domain-independent differential testing. In
2017 IEEE Symposium on Security and Privacy (SP). IEEE, 615–632.

[43] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 2155–2168. https://doi.org/10.1145/
3133956.3134073

[44] Marsh Ray, Alfredo Pironti, Adam Langley, Karthikeyan Bhargavan, and Antoine
Delignat-Lavaud. 2015. Transport Layer Security (TLS) session hash and extended
master secret extension. Transport (2015).

[45] Eric Rescorla. 2000. HTTPOver TLS. RFC 2818. https://doi.org/10.17487/RFC2818
[46] Eric Rescorla and Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246
[47] Peter Saint-Andre and Jeff Hodges. 2011. Representation and Verification of

Domain-Based Application Service Identity within Internet Public Key Infras-
tructure Using X. 509 (PKIX) Certificates in the Context of Transport Layer
Security (TLS). RFC 6125 (2011), 1–57.

[48] Vivek Jain Sanjay Rawat, Lucian Cojocar Ashish Kumar, and Herbert Bos Cris-
tiano Giuffrida. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS
Symposium 2017.

[49] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and
Suman Jana. 2017. HVLearn: Automated black-box analysis of hostname veri-
fication in SSL/TLS implementations. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 521–538.

[50] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1492–1504. https://doi.org/10.1145/2976749.2978411

[51] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-Guided Fuzzer for Discover-
ing Use-after-Free Vulnerabilities. In 42nd International Conference on Software
Engineering. ACM.

[52] J. Wang, B. Chen, L. Wei, and Y. Liu. 2017. Skyfire: Data-Driven Seed Generation
for Fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP). 579–594.

[53] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2018. Superion: Grammar-
Aware Greybox Fuzzing. CoRR abs/1812.01197 (2018). arXiv:1812.01197 http:
//arxiv.org/abs/1812.01197

[54] wolfssl. 2019. wolfssl 4.0.0 accepts a certificate with an invalid time format. https:
//github.com/wolfSSL/wolfssl/issues/2657

[55] wolfssl. 2019. wolfssl-4.0.0 accepts a certificate with authority key identifier exten-
sion field that do not match issuer . https://github.com/wolfSSL/wolfssl/issues/
2659

[56] wolfssl. 2019. wolfssl4.2.0 accepts a certificate whose issuer not matching the subject
of CA certificate. https://github.com/wolfSSL/wolfssl/issues/2680

[57] wolfSSL. 2020. wolfSSL. https://www.wolfssl.com/
[58] Peter E. Yee. 2013. Updates to the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile. RFC 6818. https:
//doi.org/10.17487/RFC6818

535

	SADT: Syntax-aware differential testing of certificate validation in SSL/TLS Implementations
	Citation
	Author

	SADT: Syntax-Aware Differential Testing of Certificate Validation in SSL/TLS Implementations

