
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

11-2021 

Algorithmic transparency Algorithmic transparency 

Jian SUN 
Singapore Management University, jiansun@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Finance Commons, and the Finance and Financial Management Commons 

Citation Citation 
SUN, Jian. Algorithmic transparency. (2021). 1-70. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/7109 

This Working Paper is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/345?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Algorithmic Transparency
(Job Market Paper)

Jian Sun∗
[Click here for most recent version]

November 15, 2021

Abstract
I study the optimal algorithmic disclosure in a lending market where lenders use a
predictive algorithm to mitigate adverse selection. The predictive algorithm is unob-
servable to borrowers and uses a manipulable borrower feature as input. A regulator
maximizes market efficiency by disclosing information about the statistical properties
of variables embedded in the predictive algorithm to borrowers. Under the optimal dis-
closure policy, the posterior belief consists of two disjoint regions in which the borrower
feature is more relevant and less relevant in predicting borrower quality, respectively.
The optimal disclosure policy differentiates posterior lending market equilibria by the
equilibrium data manipulation levels. Equilibria with more data manipulation hurt
market efficiency, but also discourage lenders’ use of the borrower feature. Equilib-
ria with less data manipulation benefit from that and generate more efficient market
outcomes. Unconditionally, the borrower feature is used less intensively under optimal
disclosure. This information design problem can be reduced to a one-dimensional max-
imization problem by imposing a mild distributional assumption on manipulation cost.
As an extension, I also discuss the joint design of algorithmic disclosure and costly
verification.
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1 Introduction
Predictive algorithms have been widely used to mitigate adverse selection in various decision
making processes, including hiring, college admission, and lending1. In these settings, deci-
sion makers use predictive models that establish links between variables that are relevant in
their decision making problems. For example, employers score resumes to predict capability,
schools use results of standardized tests to predict academic potential, and FinTech lenders
use alternative data to predict credit quality. In these examples, the exact relationship be-
tween input and output is opaque to the public, and economic agents (such as job candidates,
students, and borrowers) have little information about that. With the development of big
data and data processing technology, predictive algorithms have become more complex and
nonintuitive, involving variables that have no obvious relationship with each other, and thus
become even more opaque. A popular argument to justify this opaque nature of predictive
algorithms is the extent to which they can be manipulated by “gaming the system”, that is,
when economic agents know more about the predictive model, they are more likely to change
their behavior strategically, which hurts the informativeness of the input. Despite the impor-
tance of this question, the effects of algorithmic transparency/opacity on market outcomes
is still underexplored in academic research. Although some of the recent regulations start to
consider this issue2, the motivation usually comes from concerns about fairness, and largely
ignores the effects on market efficiency. Moreover, due to the limited understanding of the
consequences of algorithmic transparency, there is still uncertainty about future regulation3,
which may add another layer of inefficiency.

To better understand this question, this paper studies the optimal disclosure of a pre-
dictive algorithm that maximizes market efficiency in a FinTech lending setup. There are
three types of players in this model: borrowers, lenders, and a regulator. Borrowers have
private types, which is either good or bad. There is a borrower feature, such as phone
usage behavior or social media activities, that can be observed by lenders but can also be
manipulated by borrowers privately and at cost. Borrower feature is perfectly correlated
with borrower type if not manipulated. Each borrower owns a borrower-specific project that
needs to be financed by lenders. The required initial investment is the same for all borrowers,
and the project payoffs are independent random variables that depend on borrower type. A

1See Bogen and Rieke (2018) for algorithmic hiring, Kizilcec and Lee (2020) for algorithmic fairness in
education, Bruckner (2018) and Di Maggio et al. (2021) for algorithmic lending.

2“...company using algorithmic decision-making must know what data is used in its model and how that
data is used to arrive at a decision and explain that to the consumer.”—Federal Trade Commission;
“Whenever personal data is subject to automated decision making, people have ....the right to an

explanation”— General Data Protection Regulation
3For example, in June 2021, NCRC, Affirm, Lending Club, Oportun, PayPal Holdings Inc, Square and

Varo Bank asked the Consumer Financial Protection Bureau (CFPB) to provide guidance on how it will
apply disparate impact rules to any systems that use artificial intelligence (AI), machine learning (ML),
algorithms, or alternative data to make lending decisions.
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predictive algorithm reveals the statistical properties of fundamental random variables in an
economic environment. In this paper, the predictive algorithm is a mapping from borrower
type to payoff distribution4. Specifically, when projects are financed, bad type borrowers al-
ways receive zero payoff and thus always default, and good type borrowers will receive i.i.d.
nonnegative random payoffs with the same cumulative distribution function indexed by a
one-dimensional parameter: relevance, denoted by ρ. When the relevance is higher(lower),
the expected value of the random payoff from good type borrowers is higher (lower)5. Bor-
rowers do not observe the true value of the relevance but share a common belief about it.
Lenders observe the exact value of it, which partially determines how to use borrower data
in lending decisions. This two-sided private information, i.e., one side (lenders) privately
observes the statistical properties of fundamental random variables in the economic envi-
ronment, and the other side (borrowers) privately manipulates their data, is novel in the
literature and is the key feature of this model.

The lending market equilibrium consists of the manipulation behavior of borrowers and
the use of borrower data by lenders in lending decisions. The regulator can establish a
disclosure rule and ask lenders to disclose any possible information about the true state of
relevance to borrowers. It is clear that the lending market equilibrium is determined by
the updated public belief in the relevance, so the market outcome depends on the choice
of disclosure policy. In this paper, I consider the optimal design of a disclosure policy that
maximizes market efficiency.

In this model, I focus on the informational role of algorithmic disclosure, but not the
role as a commitment device. From the disclosure, borrowers receive new information about
the true value of relevance, which updates their belief about the usefulness of their data.
Lenders, on the other hand, cannot commit to how to use borrower data in their lending
decisions. This lack of commitment problem turns out to be the source of the inefficiency
in this model. Because lenders always make the most efficient use of borrower data, this ex
post efficient use of borrower data gives borrowers excessive ex ante manipulation incentives,
which in turn makes the feature noisier and also makes market outcome less efficient from
the unconditional perspective. The optimal disclosure policy mitigates this problem and
generates lower levels of data manipulation unconditionally.

I model this optimal disclosure problem as a Bayesian persuasion problem (Kamenica and
Gentzkow (2011)), and characterize the optimal public disclosure of the relevance. First, I
show that it is suboptimal to disclose nothing. In this no disclosure equilibrium, borrowers’
manipulation behavior and lenders’ lending decisions are jointly determined by the public

4In practice, a predictive algorithm usually refers to a mapping from the observed data to the output but
not the unobserved type to the output. In Section 3.7, I provide a discussion on the equivalence of these two
views when algorithmic disclosure only plays an informational role but not serves as a commitment device,
which is the feature of this model.

5In this paper, I use relevance and relevance of the feature interchangeably, because ρ measures how useful
the feature is in lending decisions if there is no manipulation.
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prior belief about the relevance of the feature. Since lenders always make efficient lending
decisions ex post using all information available, there must exist scenarios where the surplus
from using the feature in lending decisions is small but positive, and the lenders choose to
use it ex post because it is efficient to do so. However, this possibility gives borrowers
extra incentives to manipulate their features ex ante, and hurts efficiency in other scenarios.
This cross-state externality through data manipulation makes lenders use the feature too
intensively in their lending decisions. Second, it is also suboptimal to disclose everything,
and I show that this full transparency policy leads to the worst outcome. This result relies on
our assumption that there are sufficiently many bad type borrowers, so the adverse section
problem is severe when there is no borrower data available. The intuition is that when
borrowers know exactly how relevant their feature is, they will choose their manipulation
behavior such that in equilibrium lenders are indifferent between using the feature or not,
and thus there is zero surplus from lending market, resulting in the worst market outcome.

The optimal disclosure policy features partial disclosure, and differentiates the posterior
lending market equilibria by their equilibrium data manipulation levels. The regulator can
implement the optimal disclosure policy by assigning a score to the feature based on its rele-
vance. Notably, the score function is not monotone in relevance, that is, features with higher
relevance may be assigned with lower scores. Under each score realization, the posterior
belief about the relevance consists of two disjoint intervals, denoted as approval region and
rejection region, respectively. The true relevance is either in the approval region in which
manipulating feature can help to get financing, or in a rejection region in which lenders do
not use the feature at all and therefore manipulation is useless. The relative fraction of these
two regions in the posterior belief determines all the equilibrium outcomes, including the
data manipulation level and loan approval rate. Specifically, for all the posterior equilibria,
when the feature is used in lending decisions with higher probability, there will be more data
manipulation, and lenders will use the feature only when the relevance is high enough.

Several economic implications follow accordingly. First, unconditionally, the use of the
feature in lending decisions is monotone in relevance, i.e., there exists a cutoff such that
lenders will use the feature in their lending decisions if and only if the true relevance is
above the cutoff. This property is obviously true for any posterior equilibrium (no matter
what the posterior belief is), but I show that it also holds unconditionally under the optimal
disclosure policy. Second, under the optimal policy, the unconditional probability that the
lenders use the feature in their lending decisions is strictly lower than that under the no dis-
closure equilibrium. This confirms our intuition that lenders use the feature too intensively
without disclosure. Thirdly, compared to the no disclosure equilibrium, the “worst” posterior
equilibrium under the optimal policy induces more manipulation, while the “best” posterior
equilibrium induces less manipulation. This uncovers the intuition of why the optimal dis-
closure policy improves efficiency: although the worse equilibria induce more manipulation
and hurt market efficiency, they also force lenders to have a higher standard for the use of
the feature in their lending decisions, and in turn deter borrowers’ manipulation incentives.
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Better equilibria benefit from this and induce less data manipulation. Unconditionally, there
is less data manipulation, and the negative cross-state externality is mitigated.

With the general structure of the optimal policy, I also provide a closed-form character-
ization by imposing a mild distributional assumption on the borrowers’ manipulation cost.
In this case, the optimal score function consists of a discrete part, which induces the equilib-
rium with lowest level of data manipulation, and a continuous part with data manipulation
level continuously moving from the lowest level to the highest level. Furthermore, for any
posterior belief, the highest relevance in the rejection region is exactly the level at which the
lenders break even. With this result, I can simplify the optimal disclosure problem to a one-
dimensional optimization problem, and the optimal score function is solved by an ordinary
differential equation (ODE).

I also consider an extension with costly verification. In practice, lenders can verify the
types of borrowers by manually reviewing their profiles, conducting interviews, and using
various fraud detection techniques. In this extension, lenders can reveal the true type of
any borrower with a linear cost function. I explore how costly verification interacts with
algorithmic disclosure under the optimal policy. It turns out that in the optimal joint
design, these two channels work as substitutes: verification is used when the relevance of the
feature is higher than a threshold and disclosure becomes irrelevant in this case; otherwise,
disclosure will be used and there is no verification in equilibrium. The optimal joint design
can be implemented by two steps: The regulator first reveals if the relevance of the feature is
above or below the threshold. If it is above the threshold, all lenders will verify all applicants
with a positive probability; otherwise, the regulator reveals additional information under the
updated belief and no verification will be used.

The rest of this paper is organized as follows. In this section, I continue to discuss related
literature. Section 2 provides a simple model, and Section 3 introduces the general model.
In Section 4, I discuss the source of friction and the intuition of improving market outcome
from the no disclosure equilibrium. In Section 5, I discuss the results of the general model.
Section 6 studies an extension where costly verification is available, and Section 7 concludes.

Related Literature
This paper mainly contributes to three strands of the literature. First, there is a nascent
but growing literature on the impact and regulation of algorithmic decision-making. Most
of the existing research mainly focuses on fairness, bias, or discrimination (e.g. Bartlett
et al. (2021), Milone (2019), Gillis and Spiess (2019),Raghavan et al. (2020),Coston et al.
(2021)). This paper contributes to the literature by considering the regulation on algorith-
mic disclosure from the perspective of market efficiency. A closely related paper that asks
a similar question and also considers strategic manipulation of data is Wang et al. (2020).
They consider both the correlational and causal observables in their model and only consider
the full transparency and no disclosure policies. Compared to their work, my model only
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considers correlational features as input in the predictive algorithm, and thus the fundamen-
tal frictions are different. Besides, I consider flexible disclosure policies, the results on the
optimal design of algorithmic disclosure in my paper do not have a counterpart in their pa-
per. Another theoretical paper that also focuses on algorithmic transparency and governance
is Blattner et al. (2021). They consider the trade-off between model complexity and trans-
parency and the role of algorithmic audit in regulating algorithms, which is different from
my focus. Björkegren et al. (2020) examine the interplay between strategic manipulation of
data and algorithmic transparency. Although the question in their paper is quite different
from mine, the results in their field experiment empirically verify the existence of data ma-
nipulation when people know more about the algorithms. There is also a growing literature
in computer science about algorithmic explainability or explainable AI (Bhatt et al. (2020),
Carvalho et al. (2019), Lundberg and Lee (2017), Murdoch et al. (2019)). But the computer
science literature usually focuses on algorithmic audit and explainability which mainly con-
sider the “black box” nature of machine learning algorithms, while my paper simplifies this
“black box” nature and considers an information design question in a finance setting.

I also add to a growing literature on Bayesian persuasion (Kamenica (2019) and Berge-
mann and Morris (2019) provide excellent surveys) and its applications in finance. The
way I model information structure follows Kamenica and Gentzkow (2011), and I consider
a persuasion problem with continuous state as in Dworczak and Martini (2019). Method-
ologically, Bayesian persuasion problems with continuous states are in general not tractable,
except for some special cases (for example, Gentzkow and Kamenica (2016), Dworczak and
Martini (2019), Goldstein and Leitner (2018)). In my model, the information designer’s
objective function depends on the entire distribution of posterior beliefs, and this question
does not fit into any existing tractable framework. I obtain my theoretical results using
a novel “guess and verify” method. There are many applications of Bayesian persuasion
in finance literature, including shareholder voting (Malenko et al. (2021)), security design
(Szydlowski (2021)), bank stress test (Goldstein and Leitner (2018), Goldstein and Leitner
(2020) Inostroza (2019), Inostroza and Pavan (2021), Leitner and Williams (2020)) and fi-
nancial network (Huang (2020)). This paper contributes to this literature by considering a
new question (algorithmic disclosure) and provides a novel optimal signal structure.

Lastly, this project is related to the literature on strategic manipulation of data (Frankel
and Kartik (2019a), Frankel and Kartik (2019b), Ball (2019)), or more broadly, the signaling
models. The way I model private information on the borrower side is similar to Frankel
and Kartik (2019b). Ball (2019) considers a problem with multi-dimensional features, and
shows that the optimal scoring rule underweights some features to deter data manipulation.
All of these papers focus mainly on how committing to certain decision rules will improve
efficiency. Relative to these work, I consider an information design question, and focus on
how commitment on information structure (disclosure policy) will improve efficiency.
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2 A Simple Model
To fix ideas, let’s consider a simple model. There is a competitive lending market with
many identical lenders and a unit mass of borrowers. Each borrower i is endowed with
zero initial wealth and a borrower-specific project which requires an initial investment I
at time 0. The project generates a positive cash flow V if it succeeds, and zero if it fails.
The probability of success is a random variable, and its distribution is formally introduced
later. All the borrowers can get private benefit b if their own borrower-specific project is
successfully financed regardless of the outcome.

There is a manipulable feature for each borrower, which takes two possible levels: High
or Low. Borrowers who are born with High (Low) feature make up µ (1 − µ) of the entire
population, and they are called good (bad) type borrowers. Manipulating feature is possible
for bad borrowers6, and they can privately change their feature to High by paying a cost c.
The manipulation cost c follows a uniform distribution on [0, 1] among the bad borrowers.
A key assumption here is that manipulation behavior does not change borrower type. In
this lending market, the only data that lenders can collect and observe is the the borrower
feature after potential manipulation.

Probability of success depends on borrower type (good or bad). Specifically, bad bor-
rowers always fail. For good borrowers, the probability of success ρ is drawn from a uniform
distribution on [0, 1]. The true value of ρ is only observable to lenders, and all borrowers
share the common prior about the distribution of ρ. In this example, we call ρ the relevance
of the borrower feature, because it represents how relevant the borrower feature is in lending
decisions when there is no manipulation. Besides, from the perspective of borrowers, the
probability of success ρ is the only uncertain element in the mapping from borrower type to
payoff distribution. In this example, let’s impose the following assumption7.

Assumption 1. (Severe Adverse Selection) b ≥ 1 and µV ≤ I.

Note that the manipulation cost follows c ∼ U [0, 1], so b ≥ 1 implies that if lenders
lend to borrowers with feature High with probability 1, the private benefit always dominates
the manipulation cost for all bad borrowers, and thus all of them will choose to manipulate
their features. And the second condition µV ≤ I implies that lenders will never lend to any
borrower if all bad type borrowers choose to manipulate their features. These two conditions
jointly imply that in any equilibrium, not all bad borrowers choose to manipulate their
features.

6Here we only allow bad borrowers to manipulate their features for simplicity of exposition. But this
assumption is not necessary. Even if we assume that good type borrowers can costly manipulate their
features, they will never do this in equilibrium.

7We’ll have a similar assumption in the main model

7



No Disclosure On The Relevance ρ

First we consider the equilibrium when no additional information about ρ is disclosed to
borrowers. Lenders can make their lending decisions based on the observed feature. The
lending market is competitive, so lenders always make zero profit in equilibrium. In this
case, it can be shown that there is a unique equilibrium which consists of two cutoffs c̄N and
ρN , such that

• all bad type borrowers with manipulation cost lower than c̄N choose to manipulate
their features to High;

• lenders will lend to borrowers with feature High if ρ > ρN .

For bad type borrowers with manipulation cost c̄N , the indifference condition is

Prob (ρ > ρN) · b = c̄N ,

where Prob (ρ > ρN) is the probability that the loan application is approved for borrowers
with feature High. For lenders, the total surplus from lending is zero when ρ = ρN , implying

µρNV = (µ+ (1− µ)Prob (c ≤ c̄N)) I.
Based on our distributional assumptions, the unique solution of the equilibrium is(

ρN = I

µV + (1− µ)I , c̄N = b · µ(V − I)
µV + (1− µ)I

)
.

Let
kN = (µ+ (1− µ)Prob (c ≤ c̄N)) I

be the effective financing cost, then the lending market surplus (measured by the net value
of all projects financed) is

WN =
∫ 1

ρN

(µρV − kN) dρ.

For simplicity, let’s take the following parameters:

I = 3, V = 10, b = 1, µ = 3/10,

then the equilibrium variables are

(ρN = 0.59, c̄N = 0.41,WN = 0.25) . (1)

Figure 1 summarizes the above equilibrium. The green triangle in Figure 1 is the surplus
WN . In equilibrium, the expected payoff outweighs the cost only when ρ > 0.59, and
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borrowers with High feature are financed only when ρ is in this region. The green line on the
horizontal axis represents the support of posterior belief. In this no disclosure equilibrium,
the posterior belief is the same as the prior belief, and thus the support of the posterior
belief is the interval [0, 1].

Project Value 

or Financing Cost 

Figure 1: Equilibrium–No Disclosure

Full Transparency

Another natural disclosure policy is full transparency which reveals the true state of ρ per-
fectly to borrowers. It turns out that the surplus equals to zero in this case, which leads to
the worst market outcome. To see this, suppose the true relevance ρ satisfies ρ < I

V
, then

even only lending to good type borrowers is inefficient, and thus there will be no financing
and the market outcome must be zero. For any ρ ≥ I

V
, we know in equilibrium, the prob-

ability that lenders lend to borrowers with feature High must be less than 1, which means
that they must be indifferent between lending and not lending. Then the surplus also must
be zero for any ρ ≥ I

V
.

A Binary Color Signal

Our question is, can a regulator achieve a strictly higher outcome by designing a signal about
ρ and disclosing it to the market? The answer is yes. The definition of disclosure policy
is formally introduced in Section 3.4, here let’s take the numbers from the no disclosure
example and consider the following specific score function which consists of two levels R(ed)
and B(lue):
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Figure 2: The Color Signal

s =

R(ed) if ρ ∈ [0, 0.54) ∪ (0.64, 0.91)
B(lue) if ρ ∈ [0.54, 0.64] ∪ [0.91, 1]

. (2)

This score function assigns colors to state of ρ, which is represented by Figure 2. It only
reveals which region (Red or Blue) that the true state of ρ belongs to, and induces two
possible posterior equilibria.

Specifically, if the signal realization is R, then the posterior belief about ρ is a uniform
distribution on two disjoint intervals [0, 0.54) ∪ (0.64, 0.91), and it can be shown that the
equilibrium outcomes are

(c̄R = 0.34, ρR = 0.54,WR = 0.19) . (3)

Similarly, if the signal realization is B, the posterior belief about ρ is a uniform distribution
on [0.54, 0.64] ∪ [0.91, 1], and the equilibrium outcomes are

(c̄B = 0.48, ρB = 0.64,WB = 0.09) . (4)

Figure 3 summarizes the surpluses of these two equilibria. The red trapezoid in the left
graph represents the surplus on observing R, and the two red intervals on the horizontal
line represent the support of the posterior belief. In this equilibrium, lenders will lend to
borrowers with feature High only when ρ ∈ (0.64, 0.91). Similarly, the right graph in Figure
3 shows the surplus on observing B. The total surplus with this color signal (2) is

Ws = WR +WB = 0.19 + 0.09 = 0.28 > 0.25 = WN .

So the surplus improves.

10



Project Value or Financing Cost  Project Value or Financing Cost 

Figure 3: Equilibrium–Score R and B

Our analysis shows that the binary color signal dominates both the no disclosure policy
and full transparency policy. But what is the intuition behind this result? The result that full
transparency policy is dominated is clear: when the exact information about the relevance
of the feature is disclosed to the market, bad type borrowers will manipulate their features
such that in equilibrium the surplus from using the borrower data in lending decisions is
always zero, and all lenders are indifferent between using and not using the borrower data
in their lending decisions. The inefficiency embedded in the no disclosure equilibrium is the
lenders’ lack of commitment problem, that is, lenders always make the most efficient use of
borrower data ex post in their lending decisions. To see this, suppose in the no disclosure
equilibrium, the regulator is able to “force” the lenders to use the feature in their lending
decisions only when ρ is greater than an exogenous cutoff ρx = ρN + x, where x� 1. Then
the bad type borrowers with manipulation cost

c ≤ c̄x = b · Prob (ρ ≥ ρx)

will choose to manipulate their features, and the total surplus is a function of the exogenous
cutoff ρx:

W (x) =
∫ 1

ρx

[µρV − (µ+ (1− µ)(1− ρx)) I] dρ. (5)

Note W (0) = WN , then
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dW (x)
dx

∣∣∣∣∣
x=0

= − [µρNV − (µ+ (1− µ) (1− ρN)) I] +
∫ 1

ρN

(1− µ)Idρ

=
∫ 1

ρN

(1− µ)Idρ > 0.
(6)

This is because the lender’s equilibrium condition in the no disclosure equlibrium is

[µρNV − (µ+ (1− µ) (1− ρN)) I] = 0. (7)

The result in (6) shows that the equilibrium cutoff ρN is inefficiently low from the ex ante
perspective. So the probability that the borrower data is used in lending decisions, (1− ρN),
is inefficiently high. This result is based on condition (7),which is the ex post efficient use
of borrower data in lending decisions. In equilibrium, when lenders use borrower data more
often in some states ex post, more bad borrowers will choose to manipulate their features
ex ante, and the effective financing cost will increase for all other states from the ex ante
perspective. This cross-state externality makes no disclosure equilibrium inefficient. In
the first order derivative (6), when lenders increase their lending cutoff by x, the approval
probability decreases by

Prob (ρ > ρN)− Prob (ρ > ρx) = x

from the perspective of bad type borrowers, then the fraction of bad type borrowers who
would like to manipulate decreases by

Prob (c ≤ c̄N)− Prob (c ≤ c̄x) = x,

implying that the effective financing cost decreases by

(1− µ) I · x.

Then the total cost saving from all states ρ > ρN is∫ 1

ρN

(1− µ)Idρ · x

which corresponds to the last term in (6).
To mitigate the excess manipulation, the signal (2) defers lenders’ use of borrower data

by differentiating the two lending market equilibria by data manipulation levels. To see this,
upon observing B, in equilibrium we have

c̄B = 0.48 > c̄N = 0.41,

12



which means there are more bad type borrowers manipulating their features compared to
the no disclosure equilibrium. As a result, lenders have a more stringent lending standard,
and lend to borrowers with feature High when ρ > ρB = 0.64, which is greater than the
cutoff in the no disclosure equilibrium (ρN = 0.59). Then the lenders will not use borrower
data in their lending decisions when ρ ∈ [0.59, 0.64] under signal B. But note this is the
region when lenders lend to borrowers with feature High in the no disclosure equilibrium.
For s = R, there is less manipulation compared to the no disclosure equilibrium because
c̄R = 0.34 < 0.41 = c̄N , and borrower data is used by lenders only when ρ ∈ (0.64, 0.91).

Unconditionally, with the binary color signal, the feature is used when ρ > 0.64, while it
is ρ > ρN = 0.59 in the no disclosure equilibrium. So the feature is used less frequently with
the binary color signal. Intuitively, by differentiating the two equilibria by data manipulation
levels, the “worse” equilibrium (s = B) effectively guarantees that the feature will not be used
in cases when it was indeed used in no disclosure equilibrium, and the “better” equilibrium
(s = R) has lower level of data manipulation and generates more efficient outcome.

Actually this binary color signal is optimal among all binary signals. In the main model,
I’ll consider a general space of disclosure policies. But this binary color signal has several
notable properties that are still robust in the optimal disclosure policy in the main model.
First, there exists a threshold (ρ? = 0.64), such that unconditionally, the feature is used in
lending decisions if and only if the true state is above the threshold. It is clear that this
cutoff property always holds for any posterior equilibria, and here I show it also holds un-
conditionally. The intuition is clear: the relevance ρ represents how useful borrower feature
is in lending decisions. When ρ is higher, borrowers with feature High are of better qualities
and will have higher probability of success. Then it is efficient to lend to borrowers with
feature High when the true relevance ρ is higher. Second, for any score realization (R or
B), the support of posterior belief is always a union of two disjoint intervals. These two
intervals correspond to lenders’ equilibrium lending decisions. The interval below ρ? repre-
sents the rejection region, and the lenders will reject all borrowers when the true relevance
is in this region; while the interval above ρ? represents the approval region and lenders will
lend to all borrowers with feature High when the true relevance is in this region. Thirdly,
the unconditional probability of using the feature in lending decisions is less than that in
the no disclosure equilibrium, implying that the feature is used less intensively with optimal
disclosure. Lastly, the binary color signal induces two posterior equilibria, with one equilib-
rium (B) having a higher data manipulation level than the no disclosure equilibrium, and
the other one (R) having a lower data manipulation level. All of these properties still hold
in the optimal disclosure policy in the main model.

3 The Main Model
The main model is a generalization of the simple model.
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3.1 Players
There are three types of players in this model: a unit mass of borrowers, N(> 1) lenders, and
a regulator. All players are risk neutral. We model borrowers in a similar way as the agents in
Frankel and Kartik (2019b). Borrowers have two-dimensional private information: quality
type θ ∈ {G(ood), B(ad)}, and (manipulation) cost type c. For the joint distribution of
(θ, c), I assume the unconditional probability of good type borrowers in the population is

Prob (θ = G) = µ > 0.

And the conditional probability c|θ is

c|θ

≡ ∞ if θ = G

∼ Fc(·) if θ = B
, (8)

where Fc (·) is the cumulative distribution function for a continuous random variable defined
on [0, c̄]8. Assume F ′c (x) > 0 and F ′′c (x) is bounded for all x ∈ [0, c̄]

All lenders are identical and operate in a competitive lending market. At time 0, each
borrower i receives a borrower-specific project (project i) and has zero initial wealth. Each
project i requires an initial investment I; otherwise it fails, and is liquidated with zero liqui-
dation value. If project i is financed at time 0, it will generate a nonnegative random payoff
Ṽi

9 at t = 1, and the realization of the random payoff is publicly observable. Besides, bor-
rower i also receives a constant nontransferable private benefit b if the project is successfully
financed. Any project can be financed by at most one lender.

If the project i is financed by lender j with debt face value Di
j, then when the payoff Ṽi

is realized, borrower i receives
max

{
Ṽi −Di

j, 0
}

+ b,

lender j receives
min

{
Ṽi, D

i
j

}
− I,

and the regulator’s payoff (surplus) is the total outcome of lending market, which is10

Ṽi − I.
8Here I assume c|θ = G ≡ ∞ for simplicity of exposition. Actually c|θ = G is irrelevant for all of my

results. For example, we can assume c|θ ∼ Fc (·) for both θ ∈ {G,B}, and all the results will be the same.
9For expositional convenience, we sometimes use Ṽ to represent the random payoff for an arbitrary

borrower.
10Note that the private benefit is not included in the regulator’s utility, but this assumption is not crucial.

Actually the key result, that partial disclosure is optimal, is still robust even if we include private benefit in
the regulator’s payoff function.
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3.2 Predictive Algorithm
For each borrower i, his quality type θi is informative about his random payoff Ṽi. Specifically,
when θi = B, Ṽi ≡ 0, i.e., bad type borrowers always fail. When θi = G, Ṽi is a nonnegative,
continuous random variable on

[
0, V̄

]
, with cumulative distribution function F (·). The key

feature of our model is that F (·) is drawn from a family of distribution functions {Fρ (·)}ρ∈P ,
where P is a subset of R. Intuitively, since bad type borrowers always fail, ρ effectively
measures how the quality type θ can be used to predict payoff distribution. Throughout the
paper, I call ρ the relevance. In practice, machine learning algorithms adopted by FinTech
lenders are hard to explain and interpret and can rarely be summarized by a one-dimensional
parameter. In this paper, since I focus on disclosure instead of explainability (which is the
primary focus of the computer science literature, see Lundberg and Lee (2017)), I abstract
away the “black box” feature of the predictive algorithms and assume them to be summarized
by a one-dimensional parameter ρ.

The relevance ρ is drawn from a continuous distribution with cumulative (probability)
distribution function Π0 (ρ) (π0 (ρ)). Without loss of generality, we assume ρ is drawn from
a uniform distribution in [0, 1]11, so P = [0, 1]. The key assumption of our model is that ρ
is only observable to all lenders but not borrowers, and we assume all borrowers share the
common prior belief about the distribution of ρ.

Let
m (ρ) = E

(
Ṽ |G, ρ

)
=
∫ V̄

0
v · dFρ (v)

be the expected payoff from any good type borrower if he is successfully financed. Then we
impose the following assumptions on m (ρ):
Assumption 2. m (ρ) satisfies the following conditions:

1. m (ρ) is continuous and strictly increasing;

2. m (0) = 0 and m (1) > I;

3. µm (1) ≤ I.
The first assumption is mainly for expositional convenience; relaxing this assumption

does not affect our main results. In the second assumption, m (0) = 0 is also mainly for
expositional convenience so we can relax it without changing the main results. m (1) > I
is to make sure that when ρ = 1, it is efficient to lend to good type borrowers, otherwise
it is always efficient to reject any borrower and the equilibrium becomes trivial. The last
assumption means that the adverse selection in the market is severe and it is inefficient to
lend to all borrowers, this assumption helps to establish a clear benchmark, but my main
results do not rely on this specific assumption.

11Note that for any continuous random variable x with cumulative distribution function T (·), the new
variable y = T (x) always follows a uniform distribution on [0, 1].
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3.3 Feature and Manipulation
Although the quality type is informative about borrowers’ riskness, it is the private infor-
mation of borrowers, and thus can not be directly used by lenders in their lending decisions.
There is a feature θ̂ ∈

{
Ĝ, B̂

}
for each borrower and can be publicly observed by lenders.

If borrowers do not manipulate their features, θ̂ = Ĝ(B̂) if θ = G(B), i.e., borrower feature
θ̂ can perfectly reveal borrower type θ. However, each borrower can change his feature to
the other value by privately paying the non-pecuniary manipulation cost c. The cost struc-
ture is introduced in (8). Intuitively, good type borrowers are not able to manipulate their
features, while bad type borrowers can manipulate their features by paying cost c, which
follows a continuous distribution on [0, c̄] with cumulative distribution function Fc (·). The
assumption that good type borrowers are not able to manipulate their features is actually
redundant. We can show that good type borrowers will never manipulate in equilibrium
even if they have finite manipulation cost (see Appendix A).

In equilibrium, lenders use the feature θ̂ to assess borrowers’ riskness, but the informative-
ness of the feature θ̂ is determined by bad type borrowers’ manipulation behavior. Lenders’
lending decisions and bad type borrowers’ data manipulation levels are jointly determined
in equilibrium.

A key assumption in this model is that manipulation behavior does not change borrower
type, i.e., the distribution of Ṽ is not influenced by the manipulation behavior, so feature
θ̂ only plays an informational role. This assumption is motivated by the “gaming the sys-
tem” concern in the algorithmic transparency debate. For example, lenders find variables
that can predict default risk using historical training data and machine learning algorithms,
which focus more on correlation but not causation between input and output. If borrowers
strategically change their behavior, their true riskness does not change but the predictive
algorithm may become less effective.

I impose the following assumption which also shows up in Assumption 1 in the simple
model.

Assumption 3. b ≥ c̄.

This assumption implies that if lenders lend to Ĝ borrowers for sure, then all of the bad
type borrowers will choose to manipulate and the borrower feature becomes useless. This
assumption, together with the condition µm (1) ≤ I in Assumption 2, jointly imply that in
any equilibrium not all bad type borrowers choose to manipulate their features. This result
that helps to characterize the optimal policy, but my main results can easily be extended to
the case when this condition is violated.
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3.4 Disclosure Policy
This project primarily focuses on the public disclosure of the relevance ρ. Although its
realization is unobservable to borrowers, we consider the scenario in which the regulator can
publicly reveal some information about the true state of ρ to all borrowers before they choose
their manipulation behavior. Below is the formal definition of a disclosure policy.

Definition 3.1. A disclosure policy (S, σ̃) consists of a signal space S and a mapping σ̃
from the realization ρ ∈ P = [0, 1] to a distribution over signal space S:

σ̃ (s|ρ) : [0, 1]→ ∆ (S) .

So σ̃ (s|ρ) is the (generalized) probability distribution function12 of s conditional on state
ρ. The regulator publicly announces the disclosure rule and then draws a realization of s
based on it. After observing the realization s, all borrowers can update their beliefs on the
distribution of ρ by Bayesian updating and then choose their manipulation strategies.

A special case of policies defined in Definition 3.1 is the deterministic policy. For these
policies, the signal realization conditional on any state ρ is deterministic, so the conditional
probability can be summarized by a deterministic function. Below is the definition of a
deterministic policy. For notational simplicity, let’s denote δ (x) as the Dirac function13.

Definition 3.2. A disclosure policy (S, σ̃) is deterministic if for any ρ ∈ [0, 1], the signal
realization is deterministic, i.e., there exists a message function

σ : [0, 1]→ S,

such that
σ̃ (s|ρ) = δ (s− σ (ρ)) .

Throughout this paper, when there is no confusion, we use (S, σ) to represent a determin-
istic disclosure policy with signal space S and message function σ. To gain more intuitions
on how disclosure policies work, note that the full transparency can be implemented by a
deterministic policy with signal space S = [0, 1], and the message function σ is

σ (ρ) = ρ.

12See Ziółkowski (2009) for discussion on generalized probability distribution function.
13A Dirac function δ (x) is defined as

δ (x) =
{
∞ if x = 0
0 if x 6= 0

,

and
∫ +∞
−∞ δ (x) dx = 1.

17



In this case, the regulator assigns a unique signal s = ρ to each state ρ. When borrowers
observe a realization s, the public belief will be updated and it is sure that the true state of
relevance ρ is ρ = s. This disclosure policy effectively reveals all information about the true
state of ρ. Another example is the no disclosure policy, i.e., the regulator does not reveal any
information. It can also be implemented by a deterministic policy with only one element in
the signal space. Then borrowers will always observe the same realization no matter what
the true state of relevance ρ is, and thus they will learn nothing from the signal and no
information is revealed by this disclosure policy.

A more complex but also commonly used signal structure is the cutoff disclosure, i.e, the
regulator only reveals whether the true state of relevance ρ is above a threshold ρ̂ or not. In
this case, the disclosure can be implemented by a deterministic policy with two elements in
the signal space S = {sL, sH}, and the message function σ (ρ) is

σ (ρ) =

sL if ρ ∈ [0, ρ̂]
sH if ρ ∈ (ρ̂, 1]

.

So the regulator discloses sH if ρ > ρ̂ and sL otherwise. Then borrowers can only learn if
the true state of relevance ρ is above the threshold ρ̂ or not.

The main advantage of modeling information disclosure in this way is the flexibility.
Intuitively, the information structure defined in Definition 3.1 summarizes all possible ways
of disclosing information, which also sheds light on the boundary of the pure information
channel on mitigating manipulation in this problem.

Once we have a general signal structure (S, σ̃), it will induce a distribution of posterior
beliefs {f (s) , π (ρ|s)}s∈S , wheref (s) is the (generalized) density function of the random
variable s, and π(ρ|s) is the public posterior belief (probability distribution function) of ρ
conditional on observing the public signal realization s. To get sharp predictions on the
optimal disclosure policy, we impose the following technical restriction on the posterior
beliefs14:

Criterion 1. We focus on disclosure policies such that for any s, and any ρ ∈ supp (π (ρ|s)),
there exists a closed set Bs.ρ ⊂ supp (π (ρ|s)), such that ρ ∈ Bs,ρ and E

(
1Bs,ρ (ρ) |s

)
> 0,

where 1A (x) is the indicator function:

1A (x) =

1 if x ∈ A,
0 if x /∈ A.

14This technical restriction is not important. In our model, any zero-measure change on the disclosure
policy doesn’t change the expected payoff. This restriction is to rule out some optimal policies that are
almost the same as the optimal policies we characterize later.
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The distribution of posteriors {π (ρ|s)}s∈S must satisfy a necessary condition15:∫
s
π (ρ|s) f (s) ds = 1[0,1] (ρ) . (9)

This is also known as the Bayes-plausible condition (Kamenica and Gentzkow (2011)). The
interpretation is that the average of all posterior beliefs must be consistent with the prior
belief. Then following the literature, instead of working with the signal structures directly,
I work with distributions of posterior beliefs that satisfy condition (9) and 16

∫
s
f (s) ds = 1.

3.5 Lending Market
There are N > 1 identical lenders operating in a competitive lending market, then in equi-
librium all lenders make zero profit17. The lending market equilibrium consists of the bad
type borrowers’ manipulation strategies and lenders’ lending decisions. We only focus on
symmetric equilibria in which all lenders choose the same strategy in equilibrium.

When the regulator commits to a disclosure policy (S, σ̃), for each signal realization
s ∈ S, we call the lending market induced by this signal realization s the subgame s. Before
exploring how (S, σ̃) will change the market outcome, we solve the model backwards and
first consider the lending market equilibrium under an arbitrary posterior belief.

Suppose updated public belief of ρ is π (ρ|s). For any borrower i and lender j, let(
Is,θ̂j , Ds,θ̂

j

)
be the lender’s strategy and γsi be the borrower’s manipulation decision where

1. Is,θ̂j ∈ [0, 1] represents the probability that lender j approves the loan application from
θ̂ borrowers, and Ds,θ̂

j represents the face value of the debt conditional on approval;

2. γsi ∈ {0, 1} represents the probability that borrower i manipulates his feature θ̂i.

It’s clear that γsi = 0 for all good type borrowers in any equilibrium because they have
infinite manipulation cost, so the good type borrowers are passive in our model and do not
play any strategic role. For all lenders, they’ll never lend to B̂ borrowers, as those must be

15The RHS of the condition represents the density of the prior belief of ρ, which is 1 under the uniform
distribution on [0, 1].

16These two conditions are necessary conditions, and I’ll verify the existence of the optimal policy later.
17This is not the key assumption of our model. Actually we can consider a model with a monopoly lender,

and the results on the optimal disclosure polices are the same, as long as there is no screening by contracts.
This is because in this model, the regulator wants to maximize the total surplus from financing activities,
while market structure only changes the distribution of surplus but not the total surplus.
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bad type borrowers who will default with probability 1. So we must have Is,B̂j = 0, and the
choice of Ds,B̂

j becomes irrelevant.
Let ks be the total (effective) financing cost of lending to Ĝ borrowers, since all projects

require the same initial investment, ks
I

is the measure of Ĝ borrowers and
(
ks
I
− µ

)
is the

measure of bad type borrowers who choose to manipulate their features. For a lender j, she
lends to Ĝ borrowers only if

µm (ρ)− ks ≥ 0.
Then any lender j’s lending decision can be summarized by18

Is,Ĝj (ρ)


= 1 if ρ > ρs
∈ [0, 1] if ρ = ρs
= 0 if ρ < ρs

,

where
ρs = m−1

(
ks
µ

)
. (10)

Since we only focus on symmetric equilibrium, in equilibrium we must have E
(
Is,Ĝj

)
=

E
(
Is,Ĝk

)
for any j, k. For simplicity, let Is represent the equilibrium approval decision under

signal s.
For a bad type borrower with private manipulation cost ci, since he always fails, the only

benefit he may get from the deal is the private benefit B, so he chooses to manipulate only
if

E (Is) ·B ≥ ci.

Then it’s clear that the bad type borrowers’ manipulation strategy can be characterized
by a cutoff c̄s, such that all bad type borrowers with manipulation cost c ≤ c̄s choose to
manipulate their features, where

c̄s = E (Is) · b. (11)
Moreover, in equilibrium, we must have

ks = [µ+ (1− µ)Fc (c̄s)] I. (12)

Then the equilibrium of the subgame s is characterized by (10),(11), and (12). Below is
the formal definition of an equilibrium for any subgame s:

18In equilibrium, the debt face value Ds,Ĝ
j must satisfy the zero-profit condition:

µE
[
min

{
Ṽ , Ds,Ĝ

j

}
|θ = G

]
= ks. However, in our model, the debt face value only affects the distri-

bution of surplus between lenders and borrowers and does not change the regulator’s payoff (the surplus).
So in this paper, we’ll only focus on the approval decision.
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Definition 3.3. An equilibrium of subgame s is a triple (ks, ρs, c̄s), and a function Is, where
ks is the total cost of financing Ĝ borrowers, ρs is the cutoff in lending approval decisions,
c̄s is the cutoff in bad type borrowers’ manipulation decisions, and Is is the probability that
Ĝ borrowers are financed, such that the following conditions are satisfied:

1. Lender optimization: Is


= 1 if ρ > ρs
∈ [0, 1] if ρ = ρs
= 0 if ρ < ρs

, where ρs = m−1
(
ks
µ

)
;

2. Borrower optimization: c̄s = E (Is) ·B;

3. Consistency: ks = [µ+ (1− µ)Fc (c̄s)] I.

The regulator’s utility in this subgame is all the surplus generated from the financing
activities, which is

Ws = E
[
(µm (ρ)− ks)+

]
.

Then her unconditional expected utility is

W =
∫
s∈S

Wsf (s) ds,

which is the expected surplus across all subgames. Then the regulator’s information design
problem is the following

maximize
{S,{f(s),π(ρ|s)}s∈S}

W =
∫
s∈S

E
[
(µm (ρ)− ks)+ |s

]
f (s) ds (13)

subject to
∫
s∈S

f (s) ds = 1, (14)∫
s∈S

π (ρ|s) f (s) ds = 1ρ∈[0,1], (15)

Fc

(
b · Prob

(
ρ > m−1

(
ks
µ

)
|s
))
≤ µ

1− µ

(
ks
µI
− 1

)

≤ Fc

(
b · Prob

(
ρ ≥ m−1

(
ks
µ

)
|s
))

. (16)

The solution to the regulator’s problem is not unique, but in Section 5, we’ll discuss and
characterize the general properties of the optimal policies. The above regulator’s problem
is known as a Bayesian persuasion problem with continuous states. Bayesian persuasion
models with continuous states are in general not tractable, except for some special cases
(Gentzkow and Kamenica (2016), Dworczak and Martini (2019)). The regulator’s problem
in this paper does not fit into any existing tractable framework and I solve this model using
a ’guess and verify’ method.

21



Figure 4: Timeline

3.6 Timeline

We summarize all the key ingredients of the model in Figure 4. All events occur in the
following order:

1. the regulator chooses a signal structure (S, σ̃); and Nature chooses the realization of
ρ;

2. signal realization s is revealed, and is publicly observable to all the borrowers;

3. borrowers choose their manipulation strategies;

4. all lenders make their lending decisions simultaneously, and borrowers decide which
contract to accept;

5. all random variables are realized, and all players receive their payoffs.

3.7 Discussion of the Assumptions
1. The notion of predictive algorithm. In practice, predictive algorithm usually refers to

the mapping from observed input (which is the borrower feature after potential ma-
nipulation in this model) to the output (which is the future payoff distribution in this
model). In this paper, I consider the disclosure policy from a pure informational per-
spective and it cannot serve as a commitment device. This means that, when lenders
disclose their predictive algorithm, they are able to flexibly change their predictive
algorithms privately as a response to the borrowers’ manipulation behavior. Focusing
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on the informational role of a predictive algorithm, disclosing information about the
predictive algorithm is equivalent to disclosing the fundamental statistical properties
of the random variables in the economic environment, which is the mapping from the
borrower type to future payoff distribution in this model. By rational expectation, the
manipulation behavior and lending decision rules are known by all players in equilib-
rium.

2. Disclosure vs regulating decision rules. In this paper, the disclosure is about the
statistical properties of variables in the economy, and the regulator is not able to
monitor or regulate lenders’ lending decisions directly (for example, how they use
certain variables in lending decisions). This feature is motivated by the challenge of
regulating algorithmic lending in practice. First, although some regulations aim at
regulating lending decisions directly (for example, prohibit the use of certain variables
in lending decisions), the motivation usually comes from concerns on fairness and
discrimination, and thus the regulation is independent of the statistical nature of the
variables and easy to implement. With the focus on market surplus, in this paper,
regulating lending decisions will depend on the statistical natural of variables, which
is hard to monitor and implement. Second, regulating lending decisions by monitoring
the use of certain variables may not be effective, because they can easily be deduced
from other variables that correlate highly with them, known as the ’reconstruction
problem’ (Kleinberg et al. (2018)). Thirdly, the algorithms are dynamic and adjust
over time depending on the availability of data and data processing technology, which
makes it harder to monitor and regulate their decision rules directly.

3. Lending market structure. In this model, I assume all lenders are identical and the
lending market is competitive. This assumption is mainly for expositional convenience.
The regulator cares about the total surplus generated from all financing activities,
but not the distribution of the surplus between borrowers and lenders. In this model,
market structure only changes the distribution of surplus among borrowers and lenders
but not the total surplus. In an extreme case with a monopoly lender, if the lender
does not use differentiated contracts to screen borrowers19, then all the results about
optimal disclosure policies remain the same, and the only difference is the distribution
of surplus between borrowers and lenders.

4. Bad type borrowers always fail. In the model, I assume the bad type borrowers always
fail, and thus the only benefit they can receive from financing their projects is the
private benefit. This is to simplify the lending market equilibrium, and make the
analysis more concentrated on the disclosure side. Relaxing this assumption may

19In Appendix, I show that in our baseline model, lenders will not screen borrowers using differentiated
contracts.
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make the regulator’s problem messy and intractable, but our key result, that partial
disclosure policy is optimal, is still robust.

5. Only bad type borrowers are able to manipulate. In the model, I assume that only
bad type borrowers are able to manipulate their features. But allowing good type
borrowers to manipulate their features does not change the results. The key reason is
that in equilibrium, B̂ borrowers are always viewed as a worse group than Ĝ borrowers
because bad type borrowers can always be B̂ borrowers with no cost. Then good type
borrowers have no incentive to manipulate and mimic the bad type. But this result
relies on the assumption that the space of θ̂ is binary. In a model with general feature
space, the good type borrowers may be able to signal their type by paying cost and
differentiating themselves from the bad type borrowers further.

4 The Lack of Commitment Problem and the Ineffi-
ciency of No Disclosure

The only friction in our model is the adverse selection due to endogenous data manipulation
behavior. Bad type borrowers change their manipulation behavior as a best response to the
updated public belief on the relevance ρ. For the optimal policy, a natural guess would be
that the regulator shouldn’t disclose any information about the relevance ρ to the public and
make it as opaque as possible. In this case, the lending market equilibrium is characterized
by (kN , ρN , c̄N), and the regulator’s payoff is

WN =
∫ 1

ρN

(µm (ρ)− kN) dρ.

However, in this scenario, the use of the feature θ̂ is too intensive from the regulator’s
perspective, and thus it creates too much manipulation unconditionally. This result comes
from the lenders’ lack of commitment problem: they always make the most efficient use of
borrower data ex post. To see this, suppose the regulator can ’force’ all lenders to choose
a higher lending cutoff ρN + x (x � 1), so the lenders only use feature θ̂ in their lending
decisions when the relevance ρ > ρN + x. From the perspective of borrowers, the feature θ̂
will be used with lower probability, and thus discourage their manipulation incentives. The
marginal change of regulator’s payoff is

dW

dx

∣∣∣∣∣
x=0

= − (µm (ρN)− kN) +
∫ 1

ρN

(
−dkN
dx

∣∣∣∣∣
x=0

)
dρ. (17)

In equilibrium we must have −dkN
dx

∣∣∣
x=0

< 0, because the more stringent lending cutoff
discourages borrowers’ manipulation incentives, which in turn decreases the total financing
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cost. Besides, the ex post efficiency in the lending market equilibrium implies

µm (ρN)− kN = 0,

this is the lenders’ break-even condition at ρ = ρN in the no disclosure equilibrium. The
above two observations jointly imply that

dW

dx

∣∣∣∣∣
x=0

> 0.

This suggests that ’forcing’ lenders to use the feature less frequently improves the outcome of
the lending market. Similar results show up in other economics settings where the informa-
tion receivers commit to underweight some variables in decision rules to deter manipulation
and improve efficiency (for example, Ball (2019)).

Although committing to the lending decisions is impossible in our model, the regula-
tor can mitigate (average) manipulation behavior by disclosing information about the true
state of relevance ρ. This leads to our first key result: the suboptimality of no disclosure
equilibrium.

Proposition 4.1. There exists a disclosure policy (S, σ̃) with total surplus W , such that
W > WN .

Proposition 4.1 challenges the conventional wisdom that making algorithms more trans-
parent will always hurt efficiency because of the “gaming the system” concern. This is not
true even if only correlational features are used in the predictive algorithm. The key to
Proposition 4.1 is to find a disclosure policy under which the lenders will use feature θ̂ less
frequently from the ex ante perspective, which will deter manipulation of the feature θ̂.

To gain intuitions on how it works, suppose the regulator designs a deterministic disclo-
sure policy with three elements in the signal space S = {s1, s2, s3}, and the message function
is

σ (ρ) = s11A1 (ρ) + s21A2 (ρ) + s31A3 (ρ)
where A1, A2, and A3 are (unions of) intervals shown on Figure 5. The above disclosure policy
effectively discloses which set of A1, A2, and A3 that the true state belongs to. When signal
si is disclosed to the borrowers, updated belief π (ρ|si) is a uniform distribution conditional
on set Ai. The boundaries of the intervals are chosen such that:

1. the equilibrium of subgame s1 is the same as the no disclosure equilibrium, i.e.,

(k1, ρ1, c̄1) = (kN , ρN , c̄N) ;
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Figure 5: Suboptimality of No Disclosure Policy

2. A2 = [ρN , ρN + x], where x� 1;

3. A3 = [0, 1]− A1 ∪ A2.

The equilibrium of subgame s1 is the same as the no disclosure equilibrium, so it has no
effect on the change of regulator’s payoff. The signal s2 reveals that the true state is in the
interval [ρN , ρN + x]. Note that the equilibrium condition

µm (ρN)− kN = 0

implies the surplus when ρ ∈ [ρN , ρN + x] is close to zero in the no disclosure equilibrium.
And in the equilibrium of subgame s2, the surplus must be nonnegative, then the change of
regulator’s payoff is also negligible in this case. When s3 is disclosed, in the equilibrium of
subgame s3, the probability of financing Ĝ borrowers is lower than that in the no disclosure
equilibrium (note that Ĝ borrowers will be financed only if the true state is in the right
interval of A3), which mitigates the manipulation incentives of bad type borrowers and
improves the market surplus. Then the net effect of marginally increasing lending cutoff is
positive.

5 General Properties of Optimal Policies
In this section, I discuss the general properties of the optimal policies.
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5.1 Structure of The Optimal Policies
We already show that no disclosure is suboptimal in Section 4. Another natural guess for
the optimal disclosure policy is full transparency, i.e., disclosing all information about the
relevance ρ to the public. We can show that full transparency leads to the worst outcome,
and thus it must be suboptimal.

Lemma 5.1. SupposeWF is the regulator’s payoff when she makes the true state of relevance
ρ fully transparent, then WF = 0.

Note that the regulator’s payoff must be nonnegative. Lemma 5.1 implies that disclosing
all information about the true state of relevance ρ leads to the regulator’s worst payoff,
so it must be suboptimal. The intuition behind the result is straightforward: when bad
type borrowers know perfectly about the true state of relevance ρ, then in equilibrium, the
data manipulation level satisfies that there is zero surplus from financing Ĝ borrowers, and
lenders are indifferent between using and not using borrower data in lending decisions. This
result is consistent with the popular argument that disclosing too much information about
the predictive model hurts efficiency.

Proposition 4.1 and Lemma 5.1 jointly imply that the optimal disclosure policy must
feature partial disclosure. Before exploring the properties of the optimal policy, we show all
the subgame equilibria are ranked by equilibrium variables.

Lemma 5.2. For any disclosure policy (S, σ̃), and any two signal realizations s1 and s2, we
must have

ks1 ≶ ks2 ⇐⇒ c̄s1 ≶ c̄s2 ⇐⇒ ρs1 ≶ ρs2 ,

where (ks1 , ρs1 , c̄s1) and (ks2 , ρs2 , c̄s2) are defined in Definition 3.3.

When more bad type borrowers manipulate their features, adverse selection is more
severe in the pool of Ĝ borrowers, and the quality type θ needs to be a more relevant
variable (higher ρ) in identifying borrowers with better quality in lending decisions. Another
observation related to Lemma 5.2 is that if there exist two signal realizations s1, s2 such that

(ks1 , ρs1 , c̄s1) = (ks2 , ρs2 , c̄s2) ,

then “combining” these two signal realizations together does not change the equilibrium
outcome. The following lemma is a formal statement of this result.

Lemma 5.3. For an optimal signal structure (S, σ̃) with distribution of posterior beliefs
{f (s) , π (ρ|s)}s∈S , if there exist two distinct realizations s1, s2 ∈ S, such that

(ks1 , ρs1 , c̄s1) = (ks2 , ρs2 , c̄s2) ,
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then the signal structure (S ′, σ̃′) is also optimal, where {s′0} /∈ S and (S ′, σ̃′) is defined by

S ′ = {s′0} ∪ S\ {s1, s2}

and
σ̃′ (s|ρ) = σ̃ (s|ρ)1S\{s1,s2} (s) + (σ̃ (s1|ρ) + σ̃ (s2|ρ))1{s′0} (s)

for all ρ ∈ [0, 1] and s ∈ S ′.

Lemma 5.3 is very intuitive. When there are two signal realizations s1 and s2 that lead to
the equivalent equilibria, then instead of disclosing these two signal realizations separately,
we can simply disclose that “the realization is either s1 or s2”, and the equilibrium outcome
will be unchanged. Based on this observation, without loss of generality, we impose the
following restriction on optimal policies:

Criterion 2. We focus on policies (S, σ̃) such that for any s1, s2 ∈ S and s1 6= s2, the
lending market equilibria satisfy (ks1 , ρs1 , c̄s1) 6= (ks2 , ρs2 , c̄s2).

Based on the above criterion and the suboptimality of no disclosure equilibrium, the
optimal policy must differentiate the subgame equilibria by the data manipulation levels
(and other equilibrium variables), which is measured by c̄s. The next lemma shows that
data manipulation exists in all subgame equilibria, so there is no first best outcome for any
subgame. And an implication of the lemma is that it is never optimal to confirm that a
feature is not used in lending decisions for sure.

Lemma 5.4. (Manipulation in all states) Suppose (S, σ̃) is an optimal policy. Then for
almost all s ∈ S, we must have

ks > I, ρs > m−1 (I) , c̄s > 0.

Lemma 5.4 rules out some disclosure policies. For example, suppose the regulator chooses
a disclosure policy that reveals whether the relevance ρ is below m−1 (I) or not. Note that
for any ρ < m−1 (I), it is inefficient to finance any borrowers, then there will be no loan
approved and no manipulation. On the other hand, if ρ > m−1 (I) is revealed, Ĝ borrowers
will be financed and the unique lending market equilibrium is determined by conditions
in Definition 3.3. This disclosure policy violates the result in Lemma 5.4, and thus it is
inefficient. This is because compared to the no disclosure equilibrium, the regulator does
not gain anything from states ρ ≤ m−1 (I) as she still only receives zero payoff, but more
people will choose to manipulate in states ρ > m−1 (I), as signal ρ > m−1 (I) confirms the
high relevance of the feature θ̂ and incentivizes more manipulation. This cutoff policy is
dominated by the no disclosure policy, which effectively pools these two signals together.
Actually, as we will discuss later, in the optimal policy, we want to mix low states (where
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Figure 6: Efficiency

relevance ρ is low) with high states (where relevance ρ is high) and preserve uncertainty of
the true state of relevance ρ in all posterior equilibria.

The second necessary condition of optimal policy features ex ante cutoff of lending de-
cisions. Note that under any subgame s, the loan applications from Ĝ borrowers will be
approved if the relevance ρ is high enough, i.e., when ρ > ρs. This means that the lending
decision is always a cutoff decision ex post, and this is a natural result in equilibrium: the
feature θ̂ is more useful when ρ is higher. It turns out that this condition is also satisfied ex
ante under the optimal disclosure policy. The following lemma states this result.

Lemma 5.5. (Ex ante lending cutoff) Suppose that (S, σ̃) is an optimal policy, with induced
distribution of posteriors {f (s) , π (ρ|s)}s∈S , then there must exist a constant ρ? ∈ (0, 1),
such that for almost all s ∈ S, Ĝ borrowers are financed if and only if

ρ ∈ (ρ?, 1] ∩ supp (π (ρ|s)) .

Figure 6 explains Lemma 5.5 by showing three specific signal realizations s1, s2, and s3.
The colored regions represent the posterior beliefs under these three signals, and cutoffs ρs1 ,
ρs2 and ρs3 represent lenders’ equilibrium lending cutoffs in these three equilibria. Consider
signal s1 with ρs1 > ρ?. Since in the subgame s1, Ĝ borrowers will not be financed if ρ ≤ ρs1 ,
Lemma 5.5 implies that

supp (π (ρ|s1)) ∩ (ρ?, ρs1 ] = ∅.
Similar results can be obtained for all other signal realizations.
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Then from the unconditional (ex ante) perspective, Ĝ borrowers will be financed if and
only if

ρ > ρ?.

This condition confirms the efficiency of optimal policies, in which lenders utilize the feature
θ̂ if and only if the relevance ρ is high enough. Besides, note that for almost all subgame s,
Lemma 5.5 implies that, in equilibrium we have

sup {supp (π (ρ|s)) ∩ [0, ρ?]} ≤ ρs ≤ inf {supp (π (ρ|s)) ∩ (ρ?, 1]} .

Then the support of the posterior belief is divided into two parts: the rejection region

supp (π (ρ|s)) ∩ [0, ρ?]

in which all loan applications are rejected, so the lending decision is independent of borrower
data; and the approval region

supp (π (ρ|s)) ∩ (ρ?, 1]
in which Ĝ borrowers are financed, so the lending decision making is dependent on borrower
data. The following lemma shows that, without loss of generality, we can focus on determin-
istic disclosure policies in which both regions are intervals for all posterior equilibria, and all
subgames are ranked by the equilibrium data manipulation levels.

Lemma 5.6. For any optimal disclosure policy (S, σ̃), there must exist a deterministic opti-
mal policy (S, σ) with the same signal space S. Let

{
f̃ (s) , π̃ (ρ|s)

}
s∈S

and {f (s) , π (ρ|s)}s∈S
be the distribution of posteriors for the policy (S, σ̃) and (S, σ) respectively, and let

(
k̃s, ρ̃s, ˜̄cs

)
and (ks, ρs, c̄s) be equilibrium outcomes for the policy (S, σ̃) and (S, σ) respectively. Then
the following properties hold:

1. f (s) = f̃ (s) and
(
k̃s, ρ̃s, ˜̄cs

)
= (ks, ρs, c̄s) for almost all s, and the ex ante lending

cutoffs defined in Lemma 5.5 are the same under these two policies, denoted as ρ?;

2. for almost all s ∈ S, both
supp (π (ρ|s)) ∩ [0, ρ?]

and
supp (π (ρ|s)) ∩ (ρ?, 1]

are non-empty intervals;

3. for almost all s1, s2 ∈ S with c̄s1 < c̄s2,

sup {supp (π (ρ|s1)) ∩ [0, ρ?]} ≤ inf {supp (π (ρ|s2)) ∩ [0, ρ?]} (18)

and
sup {supp (π (ρ|s1)) ∩ (ρ?, 1]} ≤ inf {supp (π (ρ|s2)) ∩ (ρ?, 1]} . (19)
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Lemma 5.6 simplifies the space of optimal disclosure policies. It shows that, for any op-
timal policy (S, σ̃), we can find a payoff-equivalent deterministic policy (S, σ) which induces
the same posterior lending market equilibria. And for the deterministic optimal disclosure
policy, the posterior belief always consists of two intervals representing the rejection re-
gion and the approval region. For almost all signal realizations, the posterior equilibria are
ranked by the equilibrium data manipulation levels (measured by c̄s). Based on the above
observations, we characterize the structure of an optimal disclosure policy in the following
theorem.

Theorem 5.1. There exists a deterministic optimal policy (S, σ) which consists of

1. a signal space S ⊂ [c̄min, c̄max];

2. a message function σ and cutoff ρ? ∈ (0, 1) such that both

σ|[0,ρ?] : [0, ρ?]→ S

and
σ|(ρ?,1] : (ρ?, 1]→ S

are weakly increasing functions with the same range.

Under this optimal policy, for any subgame s, the equilibrium cutoff of data manipulation
cost is c̄s = s, and Ĝ borrowers will be financed if and only if ρ > ρ? for all s.

Here we select a specific signal space such that the message sent to borrowers is actually
the recommended data manipulation decision. Upon observing signal realization s, bad type
borrowers are recommended to manipulate their features if and only if their manipulation
cost satisfies c ≤ s. Note that in Theorem 5.1 we only characterize the general structure of
the optimal message function σ but not provide the exact functional form of it.

Figure 7 is a graphical illustration of Theorem 5.1. For each signal realization s (for
example, the signal s = c̄min or c̄24), the posterior belief is a union of two disjoint intervals20

which can always be separated by the cutoff ρ?. These two disjoint intervals represent the
rejection region and approval region in lending decisions. For example, the red intervals
represent the posterior belief of signal s = c̄min, and when the true state of ρ is in the red
region, the recommended cutoff of data manipulation cost c̄min is sent to the borrowers.
Upon observing the signal s = c̄min, bad type borrowers update their belief and choose to
manipulate their features if their manipulation cost satisfies c ≤ c̄min.

The optimal message function consists of two parts, denoted as

σL = σ|[0,ρ?]

20Note that a single point is also a closed interval.
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Figure 7: Graphical Illustration of Theorem 5.1

and
σR = σ|(ρ?,1] .

Then σL (ρ) and σR (ρ) can be viewed as the message functions for the rejection region and
approval region respectively. For any s ∈ Ran (σL) = Ran (σR)21, σ−1

L (s) (or σ−1
R (s)) can

either be an interval with positive length or a single point. In the first case, the signal is
discrete and the equilibrium approval probability for Ĝ borrowers is

Prob
(
σ−1
R (s)

)
Prob

(
σ−1
L (s)

)
+ Prob

(
σ−1
R (s)

) .
In the second case, the signal is continuous, and the equilibrium approval probability for Ĝ
borrowers is22

1
σ′R(σ−1

R (s))
1

σ′L(σ−1
L (s)) + 1

σ′R(σ−1
R (s))

,

21Ran(f) means the range of a function f .
22In this case, the probability of observing a specific signal is always zero. Then the distribution of signal

is represented by a density function f (s):

f (s) = 1
σ̃′L
(
σ̃−1
L (s)

) + 1
σ̃′R
(
σ̃−1
R (s)

) ,
where 1

σ̃′
L(σ̃−1

L
(s)) and 1

σ̃′
R(σ̃−1

R
(s)) represent the weights of the rejection region and approval region, respec-

tively.
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where 1
σ′R(σ−1

R (s))

(
1

σ′L(σ−1
L (s))

)
is an analog of Prob

(
σ−1
R (s)

) (
Prob

(
σ−1
L (s)

))
in the previous

case.

5.2 Properties of Optimal Policies
In this subsection, we discuss some properties of the posterior equilibria. First, the prior
belief of ρ is ρ ∼ U [0, 1], then unconditionally, the probability that Ĝ borrowers are financed
is

Prob (ρ > ρ?) = 1− ρ?.
Similarly, in the no disclosure equilibrium, the probability that Ĝ borrowers are financed is

Prob (ρ > ρN) = 1− ρN .

The following Proposition shows that Ĝ borrowers are financed less frequently under the
optimal disclosure policy compared to the no disclosure case.

Proposition 5.1. Suppose ρ? is the cutoff described in Lemma 5.5, then ρ? > ρN .

Proposition 5.1 implies that borrower data are used less frequently under the optimal
disclosure policy compared to the no disclosure case, which confirms our intuition why no
disclosure equilibrium is suboptimal, and why it can be improved. In the no disclosure
equilibrium, the feature θ̂ is used too intensively, resulting in too much manipulation. To
mitigate this problem, the regulator prefers the feature θ̂ to be used less frequently, and this
is achieved by the optimal policy.

The second property is about the data manipulation levels in posterior equilibria.

Proposition 5.2. c̄max > c̄N > c̄min.

c̄max and c̄min represents the highest and lowest equilibrium cutoffs of manipulation cost
among all posterior equilibria. Proposition 5.2 explains the idea of differentiation of posterior
equilibria. In the equilibrium with highest data manipulation level (c̄s = c̄max), a higher ρ is
required for the feature θ̂ to be used in lending decisions, and this deters the use of borrower
data in this subgame equilibrium. The cost is the higher data manipulation level, and thus
lenders have to finance more bad type borrowers, while the benefit is the less use of borrower
data which discourages data manipulation unconditionally. As we discussed in Section 4,
the positive effect dominates and surplus improves.

The last property is about the surplus in the posterior equilibria. Note in Section 4, we
show that the inefficiency comes from states when ρ is close to ρN (see condition (17)). In
these states the regulator’s payoff is small, so the benefit of financing Ĝ borrowers cannot
justify the negative externality it imposes on other states. The following Proposition shows
that, to mitigate the negative externality, the surplus from lending activities must be large
enough for any posterior equilibrium that occurs with positive probability.
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Proposition 5.3. (Positive surplus) Under any optimal policy characterized in Theorem
5.1, for any ε > 0, there exists δ > 0, such that for any posterior equilibrium with signal
realization s satisfying

Prob (s) > ε,

the surplus from lending must be greater than δ for any ρ > ρ?.

5.3 A Closed-Form Characterization
I characterize the general structure of optimal policies in Theorem 5.1, while leaving the
functional form of message function σ (·) unsolved. In this subsection, I provide a closed-
form characterization of the optimal policy by imposing a distributional assumption on the
manipulation cost.

Assumption 4. xFc (x) has at most one inflection point23 on [0, c̄].

Many commonly used distribution functions satisfy Assumption 4, including truncated
normal distribution, uniform distribution, truncated exponential distribution, Beta distribu-
tion, Gamma distribution, Weibull distribution, etc. Since xFc (x) is locally convex around
x = 0, Assumption 4 means that xFc (x) is either a weakly convex function on [0, c̄], or
there exists c̃ ∈ (0, c̄) such that xFc (x) is weakly convex on [0, c̃] and weakly concave on
[c̃, c̄]. With this assumption, the optimal policy has a simpler structure. In Theorem 5.1,
the message is the recommended data manipulation decision, while in the following theorem,
without loss of generality, I choose a different signal space to make the results simpler.

Theorem 5.2. When Assumption 4 is satisfied, there exists a deterministic optimal policy
(S, σ) characterized by

1. three cutoffs (ρa, ρ?, ρb) satisfying 0 < ρa < ρ? < ρb < 1;

2. a signal space S = [ρa, ρ?];

3. a continuous, strictly increasing function γ : [ρb, 1]→ [ρa, ρ?] satisfying γ (ρb) = ρa and
γ (1) = ρ?, such that the message functions σ (ρ) is

σ|[0,ρ?] =

ρa if ρ ∈ [0, ρa]
ρ if ρ ∈ (ρa, ρ?]

and

σ|(ρ?,1] =

ρa if ρ ∈ (ρ?, ρb]
γ (ρ) if ρ ∈ (ρb, 1]

.

23Inflection points are points where the function changes concavity.
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Figure 8: A closed-form characterization

For any s ∈ S, the equilibrium data manipulation decision c̄s satisfies

µm (s) = (µ+ (1− µ)Fc (c̄s)) I.

The optimal policy is a simplified version of our general result in Theorem 5.1. Both
σ|[0,ρ?] and σ|(ρ?,1] are continuous and consist of a flat region and a strictly increasing region.
In the signal space S = [ρa, ρ?], s = ρa is a discrete signal and the posterior belief is a uniform
distribution conditional on [0, ρa] ∪ (ρ?, ρb]. For any s ∈ (ρa, ρ?], the signal is continuous.
Let x = γ−1 (s), then the posterior distribution of relevance ρ is a lottery24 with binary
outcomes: 〈

(γ (x) , x) , (γ′ (x) , 1)
γ′ (x) + 1

〉
.

For any subgame s, the equilibrium lending cutoff ρs satisfies the following condition:
Lemma 5.7. Under the deterministic optimal disclosure policy (S, σ) characterized in The-
orem 5.2, for any s ∈ S, we must have ρs = sup {supp (π (ρ|s)) ∩ [0, ρ?]}.

This means that the lending cutoff ρs is chosen such that it equals the highest value in
the rejection region. Lemma 5.7 and all equilibrium conditions jointly imply that for all
ρ ∈ (ρb, 1], the function γ (ρ) satisfies the following ODE:

m (γ (ρ)) = 1 + 1− µ
µ

Fc

(
b · 1

1 + γ′ (ρ)

)
, (20)

24A lottery 〈(x1, x2, ...xN ) , (p1, p2, ...pN )〉 is a discrete random variable with probability function
Prob (x = xi) = pi.
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with boundary conditions
γ (ρb) = ρa and γ (1) = ρ?.

The equilibrium condition under the discrete signal s = ρa implies

γ′ (ρb) = ρa
ρb − ρ?

.

With the above characterization, all of γ (ρ), ρa and ρb can be solved as a function of
the ex ante lending cutoff ρ?, so the equilibrium is uniquely determined by a single variable
ρ?. Then we can reduce the original infinite-dimensional optimization problem to a one-
dimensional problem. The regulator’s problem becomes

maximize
ρ?

∫ 1

ρ?
m (x) dx−

∫ 1

ρb

m (γ (x)) dx− (ρb − ρ?)m (ρa)

subject to m (γ (x)) = 1 + 1− µ
µ

Fc

(
b · 1

1 + γ′ (x)

)
,

γ (ρb) = ρa, γ (1) = ρ?,

γ′ (ρb) = ρa
ρb − ρ?

.

(21)

6 Extension: Costly Fraud Detection
In the main model, all bad type borrowers’ manipulation decisions are unobservable to
lenders. In practice, lenders can also costly identify fraudulent activities using various meth-
ods, which is another way of mitigating adverse selection. In this extension, I consider how
the disclosure policy interacts with fraud detection in the regulator’s problem.

Assume all lenders have the identical linear cost function of fraud detection, i.e., each
lender can verify and reveal any borrower’s true type by paying cost t > 0. Once the type
of a borrower is verified, it becomes public information. To consider the optimal disclosure
policy with this fraud detection technology, note that for any equilibrium with posterior
belief π (ρ|s) and total financing cost ks, the net value of verifying a Ĝ borrower’s true type
is

WV = max
{
µI

ks
(m (ρ)− I) , 0

}
− t.

And the net value of not verifying the borrower’s true type is

WNV = max
{
µI

ks
m (ρ)− I, 0

}
.

Figure 9 compares WV and WNV . When t > I
(
1− µI

ks

)
,

WNV > WV
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Figure 9: WN vs WNV

for all ρ, then in this case, lenders will never verify any borrower’s true type.
When t < I

(
1− µI

ks

)
,

WNV < WV ⇐⇒ ρ > ρe,

where ρe solves
µI

ks
(m (ρe)− I)− t = 0.

Then lenders will verify Ĝ borrowers with probability 1 when ρ > ρe, and lend to Ĝ borrowers
only when they pass the verification. However, this cannot be an equilibrium because in this
case no bad type borrower has the incentive to manipulate (since approval is possible only
when they pass the verification). As a best response, lenders have no incentive to verify,
which is a contradiction.

When t = I
(
1− µI

ks

)
, ρe solves

µm (ρe)− ks = 0,

so ρe = ρs. Moreover,
WNV = (>)WV ⇐⇒ ρ ≥ (<)ρe.

In this case, lenders are indifferent between verifying or not when ρ ≥ ρs, and will lend to Ĝ
borrowers only when ρ ≥ ρs.

In summary, if in subgame s, lenders verify any borrower’s true type with positive prob-
ability, we must have

t = I
(

1− µI

ks

)
⇐⇒ ks = kv = µI2

I − t
.
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And the data manipulation level c̄v is

kv = (µ+ (1− µ)Fc (c̄v)) I ⇐⇒ c̄v = F−1
c

(
µt

(1− µ) (I − t)

)
.

In this subgame, when ρ ≥ m−1
(
kv

µ

)
, lenders verify Ĝ borrowers’ true types with positive

probability and lend to those who are not verified or verified to be good type borrowers.
The verification probability pv25 satisfies the condition that bad type borrowers with cost c̄v
break even.

The following theorem presents the optimal disclosure policy with verification and con-
firms the robustness of our baseline result.

Theorem 6.1. With costly verification, there exists tv such that

1. when t ≥ tv, lenders will never use verification, and the optimal disclosure policy will
not change;

2. when t < tv, there exists ρv ∈ (0, 1), such that the optimal disclosure is characterized
as two steps:

(a) The regulator first reveals if the true state ρ is above ρv or not.
(b) If the true state ρ > ρv, then the lenders will verify all Ĝ borrowers with probability

pv = 1 − c̄v

B
, and lend to Ĝ borrowers who are not verified or verified to be good

type borrowers.
(c) If the true state ρ ∈ [0, ρv], then information about ρ is disclosed according to

a policy (Sv, σv), where (Sv, σv) is an optimal disclosure policy characterized in
Theorem 5.1 with prior belief ρ ∼ U [0, ρv].

Theorem 6.1 shows that the disclosure policy and verification technology interact in a
simple way: when the relevance ρ is sufficiently high (ρ > ρv), only verification is used
to disincentivize manipulation behavior, and disclosure becomes irrelevant; while when the
relevance ρ is not high enough (ρ ≤ ρv), only disclosure policy is used to disincentivize the
manipulation behavior and verification technology is never used.

7 Conclusion
I study the optimal algorithmic disclosure in a lending market. FinTech lenders use privately
observed predictive algorithms to help make lending decisions. The input of the predictive

25Here I assume pv to be constant for simplicity. The choice of verification probability pv can depend on
the true state ρ, and thus is not unique.

38



algorithm is the data collected from borrowers, which is subject to a strategic manipulation
problem. In the optimal public disclosure, the information about the predictive algorithm
should be partially disclosed to the borrowers, which differentiates the posterior lending
market equilibira by data manipulation levels. Under the optimal disclosure policy, lenders
use borrower data less intensively in their lending decisions which decreases the average data
manipulation level and improves efficiency.

There are some potential directions for future research. First, in my model, I abstract
away the screening channel using contracts in the lending market. The joint design of
information and contract will be a natural question for future research. Second, the feature
in my model is a binary variable, and it will be interesting to consider a model with a
general space for input. In a general model, all types of borrowers may signal their types
by costly manipulation, and the interaction between the signaling and information design is
also interesting. Thirdly, this paper mainly focuses on efficiency but not the distribution of
surplus. Since fairness is also a crucial part of the regulator’s objective, it will be interesting
to consider the optimal algorithmic disclosure that achieves a particular surplus distribution.
Finally, all lenders use the same predictive algorithm in my model, but it is natural to
consider the setting where lenders use different but correlated algorithms, and in this case,
algorithmic disclosure may change the lending market structure.
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Appendix
A When All Borrowers Can Manipulate
In this section, we consider the case that all borrowers can manipulate their features θ̂, while
keeping the space of feature to be binary. In this section, we show that in any lending market
equilibrium, the good type borrowers never manipulate their features.

Suppose any borrower can manipulate his characteristic by paying cost ci, i.e., a good
(bad) type borrower can change his characteristic to θ̂ = B̂ (θ̂ = Ĝ) by paying cost ci, which
follows a continuous distribution Dθ (c), for θ ∈ {G,B}. So the distribution of manipulation
cost is type-dependent. Similar to our baseline model, ci is observable to borrowers but not
to lenders. Under posterior belief π (ρ|s), for borrowers with type θ ∈ {G,B}, denote lender
j’s lending decision as

{
Is,θ̂j (ρ) , Ds,θ̂

j (ρ)
}
, where Is,θ̂j (ρ) ∈ [0, 1] represents the probability

that lender j approves the loan applications from borrowers with feature θ̂ conditional on
the true state being ρ and the signal disclosed to borrowers being s; and Ds,θ̂

j (ρ) represents
the face value of debt that lender j offers to borrowers with feature θ̂, conditional on the
true state being ρ and the signal disclosed to borrowers being s. We only focus on symmetric
equilibria.

Similar to the baseline model, in this extension, the borrowers’ manipulation strategy
is summarized by a cutoff c̄θ, such that borrowers with type θ will choose to manipulate
if and only if their manipulation cost type ci is no greater than c̄θ. The following lemma
shows that the good type borrowers will never manipulate in any subgame equilibrium, so
our assumption in the baseline model that good type borrowers are not able to manipulate
is without loss of generality.

Lemma A.1. Given π (ρ|s), in any equilibrium, Is,B̂j (ρ) = 0 for all j and ρ ∈ supp (π (ρ|s)),
and no good type borrower chooses to manipulate, i.e., c̄G = 0.

Proof. Suppose the posterior belief is π (ρ|s), and in equilibrium, all lenders choose
{
Is,θ̂j (ρ) , Ds,θ̂

j (ρ)
}
.

Then the fraction of borrowers with different types and features are summarized in the fol-
lowing table:

θ̂ = Ĝ θ̂ = B̂

θ = G µ
(
1− Fc

(
c̄G
))

µFc
(
c̄G
)

θ = B (1− µ)Fc
(
c̄B
)

(1− µ)
(
1− Fc

(
c̄B
)) .

Table 1: Fraction of borrowers.
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In equilibrium, lenders will lend to borrowers with feature θ̂ = Ĝ if and only if ρ ≥ ρG,
where ρG is solved by

µ
(
1− Fc

(
c̄G
))
m
(
ρG
)
−
[
µ
(
1− Fc

(
c̄G
))

+ (1− µ)Fc
(
c̄B
)]
I = 0. (22)

And for all ρ ≥ ρG, the equilibrium debt contract Ds,Ĝ (ρ) is solved by

E
(
min

{
Ṽ , Ds,Ĝ (ρ)

}
|s, ρ, θ = G

)
−
µ
(
1− Fc

(
c̄G
))

+ (1− µ)Fc
(
c̄B
)

µ (1− Fc (c̄G)) I = 0. (23)

Similarly, lenders will lend to borrowers with feature θ̂ = B̂ if and only if ρ ≥ ρB, where ρB
is solved by

m
(
ρB
)
−
µFc

(
c̄G
)

+ (1− µ)
(
1− Fc

(
c̄B
))

µFc (c̄G) I = 0. (24)

And for all ρ ≥ ρB, the equilibrium debt contract Ds,B̂ (ρ) is solved by

E
(
min

{
Ṽ , Ds,B̂ (ρ)

}
|s, ρ, θ = G

)
−
Fc
(
c̄G
)

+ (1− µ)
(
1− Fc

(
c̄B
))

µFc (c̄G) I = 0. (25)

If ρG ≥ ρB, from (22) and (24), we have

µ
(
1− Fc

(
c̄G
))

+ (1− µ)Fc
(
c̄B
)

µ (1− Fc (c̄G)) ≥
µFc

(
c̄G
)

+ (1− µ)
(
1− Fc

(
c̄G
))

µFc (c̄G) .

However, in this case, for all the bad type borrowers, it’s strictly profitable not to manipulate,
which means in equilibrium we must have c̄B = 0, and thus

µ
(
1− Fc

(
c̄G
))

+ (1− µ)Fc
(
c̄B
)

µ (1− Fc (c̄G)) = 1 <
µFc

(
c̄B
)

+ (1− µ)
µFc (c̄B) ,

a contradiction!
If ρG < ρB, by (22) and (24), we must have

µ
(
1− Fc

(
c̄G
))

+ (1− µ)Fc
(
c̄B
)

µ (1− Fc (c̄G)) <
µFc

(
c̄G
)

+ (1− µ)
(
1− Fc

(
c̄G
))

µFc (c̄G) ,

substitute this condition into (23) and (25), we can show that, for any ρ ≥ ρB we must have

Ds,B̂ (ρ) > Ds,Ĝ (ρ) .
Then for all good type borrowers, manipulating is strictly dominated by not manipulating,
and thus in equilibrium we must have c̄G = 0.

So in this equilibrium we must have c̄G = 0, which is the same as our baseline model.
Then allowing all borrowers to manipulate their features doesn’t change the equilibrium for
any posterior belief π (ρ, s), and thus it doesn’t change our results.
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B Proofs

B.1 Proofs in Section 2
No Disclosure On The Relevance ρ

Based on the distributional assumptions on the manipulation cost c and the relevance, the
two equilibrium conditions are

B (1− ρN) = c̄N

and
µρNV = (µ+ (1− µ)c̄N) I.

The unique solution is(
ρN = I

µV + (1− µ)I , c̄N = B · µ(V − I)
µV + (1− µ)I

)
.

Full Transparency

In this case, when ρ ≥ I
V
, the surplus from lending to Ĝ borrowers must be zero. To see

this, if lenders lend to Ĝ borrowers for sure, since B ≥ 1, all of the bad type borrowers must
choose to manipulate their features. In this case, it’s not profitable to lend to Ĝ borrowers
for any ρ < 1 because µV ≤ I, a contradiction!

B.2 Proof of Proposition 4.1
The no disclosure policy is implemented by a signal (S, σ̃) with only one element in the
signal space S = {sN}, and the mapping σ̃ (s|ρ) is trivial. The lending market equilibrium
is characterized by (kN , ρN , c̄N) which satisfy conditions in Definition 3.3 under the prior
belief of ρ. Let the regulator’s payoff be WN in the no disclosure case. Now let’s consider
the following deterministic disclosure policy (S ′, σ′), where S ′ = {s′1, s′2}, and

σ′ (ρ) =

s′1 ρ ∈ [0, ρ′1] ∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]
s′2 ρ ∈ (ρ′1, ρN) ∪ (ρN + ε1, 1− ε2)

where ρ′1 < ρN satisfies
Prob (ρ ∈ [ρN , ρN + ε1] ∪ [1− ε2, 1])

Prob (ρ ∈ [0, ρ′1] ∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]) = c̄N .

Denote the equilibria under signals s′1 and s′2 as
(
ks′1 , ρs′1 , c̄s

′
1

)
and

(
ks′2 , ρs′2 , c̄s

′
2

)
, respec-

tively, it’s easy to verify(
ks′1 , ρs′1 , c̄s

′
1

)
=
(
ks′2 , ρs′2 , c̄s

′
2

)
= (kN , ρN , c̄N) .
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Then introducing the policy (S ′, σ′) doesn’t change the regulator’s payoff, i.e., WN = W ′,
where the regulator’s payoff under disclosure policy (S ′, σ′) can be written as

W ′ =Prob
(
ρ ∈

[
0, ρ′1

]
∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]

)
· Es′1

(µṼ − (µ+ (1− µ)Fc
(
c̄s′1

))
I
)
· 1{

ρ≥ρs′1

}
(26)

+ Prob
(
ρ ∈

(
ρ′1, ρN

)
∪ (ρN + ε1, 1− ε2)

)
· Es′2

(µṼ − (µ+ (1− µ)Fc
(
c̄s′2

))
I
)
· 1{

ρ≥ρs′2

}
Then, let’s construct a new disclosure policy based on (S ′, σ′), and show that the new

disclosure policy increases regulator’s payoff. Let’s consider the deterministic disclosure
policy (S ′′, σ′′), with S ′′ = {s′′1, s′′2, s′′3}, and

σ′′ =


s′′1 ρ ∈ [ρN , ρN + ε1]
s′′2 ρ ∈ [0, ρ′1] ∪ [1− ε2, 1]
s′′3 ρ ∈ (ρ′1, ρN) ∪ (ρN + ε1, 1− ε2)

.

The signal realization s′′3 is “equivalent” to the signal realization s′2 in disclosure policy
(S ′, σ′), both induce the same posterior belief in (ρ′1, ρN) ∪ (ρN + ε1, 1− ε2). The difference
is that policy (S ′′, σ′′) further reveals if the true state is in [ρN , ρN + ε1] or not. Note that
the regulator’s payoff in state [ρN , ρN + ε1] is close to zero in the no disclosure case, as ρN is
the equilibrium cutoff in lending decisions. So revealing this information only changes the
regulator’s payoff marginally in states ρ ∈ [ρN , ρN + ε1]. However, the increase in regulator’s
payoff is non-trivial. Note that the approval probability is lower under s′′2 compared to the
no disclosure case, so the equilibrium data manipulation level is lower under s′′2. As what we
will show later, this is the dominating effect thus the regulator’s payoff increases under the
disclosure policy (S ′′, σ′′). To see this, note that the regulator’s payoff under (S ′′, σ′′) is

W ′′ =Prob (ρ ∈ [ρN , ρN + ε1]) · Es′′1
(µṼ − (µ+ (1− µ)Fc

(
c̄s′′1

))
I
)
· 1{

ρ≥ρs′′1

}
+ Prob (ρ ∈ [0, ρ′1] ∪ [1− ε2, 1]) · Es′′2

(µṼ − (µ+ (1− µ)Fc
(
c̄s′′2

))
I
)
· 1{

ρ≥ρs′′2

}
(27)

+ Prob (ρ ∈ (ρ′1, ρN) ∪ (ρN + ε1, 1− ε2)) · Es′′3
(µṼ − (µ+ (1− µ)Fc

(
c̄s′′3

))
I
)
· 1{

ρ≥ρs′′3

}
It’s obvious that the last term in (27) is equal to the last term in (26), because equilibria
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under signal realizations s′′3 and s′2 are the same. Then

W ′′ −W ′

=Prob (ρ ∈ [ρN , ρN + ε1]) · Es′′1
(µṼ − (µ+ (1− µ)Fc

(
c̄s′′1

))
I
)
· 1{

ρ≥ρs′′1

}
+ Prob (ρ ∈ [0, ρ′1] ∪ [1− ε2, 1]) · Es′′2

(µṼ − (µ+ (1− µ)Fc
(
c̄s′′2

))
I
)
· 1{

ρ≥ρs′′2

}
− Prob (ρ ∈ [0, ρ′1] ∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]) · Es′1

(µṼ − (µ+ (1− µ)Fc
(
c̄s′1

))
I
)
· 1{

ρ≥ρs′1

}
≥Prob (ρ ∈ [0, ρ′1] ∪ [1− ε2, 1]) · Es′′2

(µṼ − (µ+ (1− µ)Fc
(
c̄s′′2

))
I
)
· 1{

ρ≥ρs′′2

}
− Prob (ρ ∈ [0, ρ′1] ∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]) · Es′1

(µṼ − (µ+ (1− µ)Fc
(
c̄s′1

))
I
)
· 1{

ρ≥ρs′1

}
Note that ρs′1 = ρN , we know

Prob (ρ ∈ [0, ρ′1] ∪ [ρN , ρN + ε1] ∪ [1− ε2, 1]) · Es′1
(µṼ − (µ+ (1− µ)Fc

(
c̄s′1

))
I
)
· 1{

ρ≥ρs′1

}
=

Prob (ρ ∈ [ρN , ρN + ε1]) · E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]
+Prob (ρ ∈ [1− ε2, 1]) · E

[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [1− ε2, 1]

]
Then

W ′′ −W ′ =Prob (ρ ∈ [1− ε2, 1]) ·
[
(1− µ) I

(
Fc (c̄N)− Fc

(
c̄s′′2

))]
− Prob (ρ ∈ [ρN , ρN + ε1]) · E

[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]
.

In the equilibrium of subgame s′′1,

c̄s′′2 = Prob (ρ ∈ [1− ε2, 1])
Prob (ρ ∈ [0, ρ′1] ∪ [1− ε2, 1])

= c̄N − x
1− x

where
x = Prob (ρ ∈ [ρN , ρN + ε1]) · (1− c̄N)

Prob (ρ ∈ [0, ρ′1]) .
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Consider the case when fixing ε2, and let ε1 → 0, then x→ 0 and c̄s′′2 = c̄N−x (1− c̄N)+o(x).

W ′′ −W ′

=Prob (ρ ∈ [ρN , ρN + ε1]) ·

 Prob (ρ ∈ [1− ε2, 1]) ·
(1−µ)I

(
Fc(c̄N )−Fc

(
c̄s′′2

))
Prob(ρ∈[ρN ,ρN+ε1]) −

E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]


≈Prob (ρ ∈ [ρN , ρN + ε1]) ·
 Prob(ρ∈[1−ε2,1])(1−c̄N )

Prob(ρ∈[0,ρ′1]) · (1−µ)I(Fc(c̄N )−Fc(c̄N−x(1−c̄N )))
x

−

E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]


≈Prob (ρ ∈ [ρN , ρN + ε1]) ·

 Prob(ρ∈[1−ε2,1])(1−c̄N )2(1−µ)I
Prob(ρ∈[0,ρ′1]) · F ′c (c̄N)−

E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]
 .

Since ε1 → 0, we must have

E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ ∈ [ρN , ρN + ε1]

]
→ 0,

because the equilibrium condition in the no disclosure case is

E
[(
µṼ − (µ+ (1− µ)Fc (c̄N)) I

)
|ρ = ρN

]
= 0.

With F ′c (c̄N) > 0 , then we must have

W ′′ −W ′ > 0

which means that the no disclosure policy is dominated by our new disclosure policy (S ′′, σ′′).

B.3 Proof of Lemma 5.1
The full disclosure policy (S, σ) can be implemented by space S = [0, 1] and a deterministic
message function σ (ρ) = ρ. In this case, the true state ρ is perfectly revealed to the public.
Denote ρ as the solution of

m (ρ) = I,

For any s = ρ > m−1 (I), the lending market equilibrium of subgame s, (ks, ρs, c̄s), must
satisfy ρs = ρ, and thus

µm (ρ)− ks = 0. (28)
To see this, suppose µ (ρ) > ks, in equilibrium all Ĝ borrowers must be approved, and all bad
type borrowers must choose to manipulate because of Assumption 3. Then the regulator’s
payoff of financing all Ĝ borrowers is

µm (ρ)− I ≤ µm (1)− I ≤ 0,
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and the equality holds only when ρ = 1. As as result, lenders will not lend to Ĝ borrowers
for all ρ < 1, a contradiction. So in equilibrium condition (28) must hold. And this condition
implies that the regulator’s payoff is zero.

Next, it’s obvious that when ρ ≤ ρ, lender will never lend to any borrowers. In summary,
regulator’s payoff is zero for any s ∈ S thus the regulator’s total payoff is WF = 0 under full
disclosure policy.

B.4 Proof of Lemma 5.2
The results are directly derived from the definition of lending market equilibrium. For any
two equlibria (ks1 , ρs1 , c̄s1) and (ks2 , ρs2 , c̄s2), the first condition in Definition 3.3

µm (ρs) = ks

implies
ks1 ≥ ks2 ⇐⇒ ρs1 ≥ ρs2 , (29)

because m (·) is an increasing function. The third condition

ks = [µ+ (1− µ)Fc (c̄s)] I

implies that
ks1 ≥ ks2 ⇐⇒ c̄s1 ≥ c̄s2 . (30)

Then (29) and (30) complete the proof.

B.5 Proof of Lemma 5.3
We just need to verify that the regulator’s payoff is unchanged under the new disclosure
policy (S ′, σ̃′). Notice that

σ̃′ (s|ρ) = σ̃ (s|ρ)

for any ρ ∈ [0, 1] and s ∈ S\ {s1, s2} = S ′\ {s′0}. Then for any s ∈ S\ {s1, s2} = S ′\ {s′0}, the
posterior beliefs are the same under the two policies, i.e., for any s ∈ S\ {s1, s2} = S ′\ {s′0},
we have

π (ρ|s) = π′ (ρ|s) .

So the lending market equilibira are the same for any s ∈ S\ {s1, s2} = S ′\ {s′0} in these
two policies. Besides, the regulator’s payoff from signal realization s′0 in the new disclosure
policy is the sum of that under signal realizations s1 and s2 in policy (S, σ), this is because
the lending market equilibrium under s0, s1 and s2 are all the same, and the probability of
observing s′0 in the new policy is the sum of the probabilities of observing s1 and s2 in policy
(S, σ̃). Since policy (S, σ̃) is optimal, the new policy (S ′, σ̃′) must also be optimal.

48



B.6 Proof of Lemma 5.4
Given any policy (S, σ̃) with distribution of posteriors {f (s) , π (ρ|s)}s∈S , for any subgame
s,

c̄s = 0⇐⇒ ρs = m−1 (I)⇐⇒ ks = I.

In this equilibrium, there is no manipulation, and lenders always reject all loan applications.
The posterior belief must satisfy

sup {supp (π (ρ|s))} ≤ m−1 (I) .

Since m (1) > I, there must exist at least one signal realization s1, such that

c̄s1 > 0.

Suppose there also exists another signal realization s2, such that

c̄s2 = 0.

Here assume both the probabilities of s1 and s2 are positive26, then let’s consider a new
policy (S ′, σ′) with distribution of posteriors {f ′ (s) , π′ (ρ|s)}s∈S′ , signal space S ′ = {s′0} ∪
S\ {s1, s2} , and

σ̃′ (s|ρ) = σ̃ (s|ρ)1S\{s1,s2} (s) + (σ̃ (s1|ρ) + σ̃ (s2|ρ))1{s′0} (s) .

Obviously, any signal realization s ∈ S\ {s1, s2} must exist in the signal spaces of both
disclosure polices, and induce the same lending market equilibrium. Besides, for signal
realization s′0 in (S ′, σ′) and {s1.s2} in (S, σ), we have

f ′ (s0) = f (s1) + f (s2) ,

and
π′ (ρ|s′0) = 1

f (s1) + f (s2) (f (s1) π (ρ|s1) + f (s2) π (ρ|s2)) .

The equilibrium conditions in Definition 3.3 implies that c̄s satisfies

Prob
(
ρ ≥ m−1

(
[µ+ (1− µ)Fc (c̄s)] I

µ

)
|s
)
≥ c̄s
B
≥ Prob

(
ρ > m−1

(
[µ+ (1− µ)Fc (c̄s)] I

µ

)
|s
)

Note that
Π (ρ|s′0) > Π (ρ|s1)

26The proof for the case when the signal is continuous is similar, in that case, we just need to deal with
density functions.
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for any ρ > m−1 (I), and both m−1 (·) and Fc (·) are increasing functions, we conclude that

c̄s′0 < c̄s1 .

Since the regulator’s payoff is always zero for any ρ ≤ m−1 (I), the difference of regulator’s
payoffs under (S ′, σ′) and (S, σ) is

W ′ −W =
f (s′0)Es′0

(µṼ − (µ+ (1− µ)Fc
(
c̄s′0

))
I
)
1(

ρs′0
,1
]
∩supp(π(ρ|s′0))

(s)
−

f (s1)Es1

[(
µṼ − (µ+ (1− µ)Fc (c̄s1)) I

)
1(ρs1

,1]∩supp(π(ρ|s1)) (s)
]

=
f (s1)Es1

(µṼ − (µ+ (1− µ)Fc
(
c̄s′0

))
I
)
1(

ρs′0
,1
]
∩supp(π(ρ|s′0))

(s)
−

f (s1)Es1

[(
µṼ − (µ+ (1− µ)Fc (c̄s1)) I

)
1(ρs1

,1]∩supp(π(ρ|s1)) (s)
] .

Since c̄s0 < c̄s1 and m−1 (I) < ρs′0 < ρs1 , we have(
ρs′0 , 1

]
∩ supp (π (ρ|s′0)) = (ρs1 , 1] ∩ supp (π (ρ|s1)) ,

and thus
W ′ −W > 0.

B.7 Proof of Lemma 5.5
Suppose there exists an optimal disclosure policy (S, σ̃) and it induces the distribution of
posteriors {f (s) , π (ρ|s)}s∈S . If S is a singleton, then the policy is simply the no information
policy. In this case, let ρ? = ρN and this lemma is obviously true. Otherwise, if the statement
is not true, there must exist s1, s2 ∈ S, with lending market equilibria (ks1 , ρs1 , c̄s1) and
(ks2 , ρs2 , c̄s2), such that

ρ1 > ρ2,

ρ1 ∈ [0, ρs1 ] ∩ supp (π (ρ|s1))
and

ρ2 ∈ (ρs2 , 1] ∩ supp (π (ρ|s2)) .
Then there must exist intervals B1, B2

27, such that

ρ1 ∈ B1 ⊂ [0, ρs1 ] ∩ supp (π (ρ|s1)) ,
27Note that a single point is also a closed interval.
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ρ2 ∈ B2 ⊂ (ρs2 , 1] ∩ supp (π (ρ|s2)) ,

inf B1 > supB2,

Prob (B1|s1) = K1 > 0,
and

Prob (B2|s2) = K2 > 0.
For this proof, let’s assume both s1 and s2 occur with positive probability, then f (s1)

and f (ss) represent the associated probabilities. The other case is when either s1 or s2 occur
with zero probability and f (s1) or f (s2) represent the density functions. The proof strategy
is basically the same.

In this case, if f (s1)K1 ≥ f (s2)K2, then let’s consider the following distribution of
posteriors:

{
f̂ (s) , π̂ (ρ|s)

}
s∈S̃

, where Ŝ = S, f̂ (s) = f (s), and

π̂ (ρ|s) =


π {ρ|s1}+ f(s2)

f(s1)π {ρ|s2}1B2 (ρ)− f(s2)K2
f(s1)K1

π {ρ|s1}1B1 if s = s1

π {ρ|s2} − π {ρ|s2}1B2 + K2
K1
π {ρ|s1}1B1 if s = s2

π (ρ|s) o.w.

We can check that
{
f̂ (s) , π̂ (ρ|s)

}
s∈S̃

is Bayes-plausible, and there exists a disclosure policy(
Ŝ, σ̂

)
that induces this distribution of posteriors. But now in the new policy

(
Ŝ, σ̂

)
, ρ2 /∈

supp (π (ρ|s2)). And the regulator’s payoff is weakly increasing under the new policy
(
Ŝ, σ̂

)
because

1. f̂ (s) = f (s)for all s ∈ Ŝ = S;

2. the lending market equilibria (ks, ρs, c̄s) are the same under the two policies for any
s ∈ S = Ŝ;

3. the regulator’s payoff under any signal realizations except for s2 is unchanged;

4. the regulator’s payoff under signal realization s2 increases.

The last point holds because with the new disclosure policy
(
Ŝ, σ̂

)
, under the signal real-

ization s2, the equilibrium variables (ks2 , ρs2 , c̄s2) is the same compared to that with policy
(S, σ), so the total financing cost is unchanged, which is ks. But the total payoff generated
from projects increases by

f (s2) ·K2 · [E [µm (ρ) |s1, B1]− E [µm (ρ) |s2, B2]]

which is positive because inf B1 > supB2.
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B.8 Proof of Lemma 5.6
For the optimal disclosure policy (S, σ̃), if S is a singleton, this lemma is obviously true.
Otherwise, there exist two different signals s1 and s2 with probabilities(densities) f̃ (s1) and
f̃ (s2), respectively. For simplicity, let’s assume that both f̃ (s1) and f̃ (s2) are positive, the
proof for other cases are basically the same. Denote the lending market equilibrium variables
as
(
k̃s1 , ρ̃s1 ,

˜̄cs1

)
and

(
k̃s2 , ρ̃s2 ,

˜̄cs2

)
under these two signals. Without loss of generality, let’s

assume ρ̃s1 < ρ̃s2 . Denote the ex ante lending cutoff as ρ? in this case. Suppose for s1, s2,
the condition

sup {supp (π̃ (ρ|s1)) ∩ (ρ?, 1]} ≤ inf {supp (π̃ (ρ|s2)) ∩ (ρ?, 1]} (31)

is not satisfied, let

B = [inf {supp (π̃ (ρ|s2)) ∩ (ρ?, 1]} , sup {supp (π̃ (ρ|s1)) ∩ (ρ?, 1]}] .

Then there must exist two non-negative functions v1, v2, such that

f̃ (s1) v1 (ρ) + f̃ (s2) v2 (ρ) = f̃ (s1) π̃ {ρ|s1} · 1B (ρ) + f̃ (s2) π̃ {ρ|s2} · 1B (ρ) , (32)

sup {supp (v1 (ρ)) ∩ (ρ?, 1]} ≤ inf {supp (v2 (ρ)) ∩ (ρ?, 1]}
and ∫

v1 (ρ) dρ =
∫
π {ρ|s1} · 1B (ρ) dρ. (33)

Now let’s consider the following distribution of posterior beliefs with signal space S:{
f̂ (s) , π̂ (ρ|s)

}
s∈S

, where f̂ (s) = f (s) and

π̂ (ρ|s̃) =


π̃ {ρ|s1} − π̃ {ρ|s1} · 1B (ρ) + v1 (ρ) if s̃ = s1

π̃ {ρ|s2} − π̃ {ρ|s2}1B (ρ) + v2 (ρ) if s̃ = s2

π̃ (ρ|s) o.w.

.

We can check that the new distribution of posteriors
{
f̂ (s) , π̂ (ρ|s)

}
s∈S

is still Bayes-
plausible, because ∫

v1 (ρ) dρ =
∫
π̃ {ρ|s1} · 1B (ρ) dρ

and ∫
v2 (ρ) dρ =

∫
π̃ {ρ|s2} · 1B (ρ) dρ.

The second condition is a direct result of (32) and (33). And we can check that
{
f̂ (s) , π̂ (ρ|s)

}
s∈S

can be induced by a disclosure policy (S, σ̂). Now the condition (31) is not violated anymore
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in the new policy. Then we just need to show that the regulator’s payoff is unchanged under
the new policy, and thus it is still optimal. To see this, with policy (S, σ̃), we know under
posterior belief π̃ (ρ|s1)

Prob(S,σ̃) (ρ > ρs1|s1) = c̄s1

B
.

Note that since ρs1 < ρs2 , we know

inf {supp (π (ρ|s2)) ∩ (ρ?, 1]} ≥ ρs2 > ρs1 .

Then for any ρ ∈ B, we must have ρ > ρs1 . Then under posterior belief π̂ (ρ|s1), we know

Prob(S,σ̂) (ρ > ρs1|s1) = Prob(S,σ̃) (ρ > ρs1|s1)−
∫
π̃ {ρ|s1} · 1B (ρ) dρ+

∫
v1 (ρ) dρ

= Prob(S,σ̃) (ρ > ρs1|s1)

= c̄s1

B
.

The second equality comes from condition (33). Based on this, we can check all other
equilibrium conditions are also satisfied, and this implies

(
φ̂s1 , ρ̂s1 , ∆̂s1

)
= (φs1 , ρs1 ,∆s1).

Similarly, we can check
(
k̃s, ρ̃s, ˜̄cs

)
= (ks, ρs, c̄s). For all other s ∈ S\ {s1, s2}, it’s obvious

that the lending market equilibria are all the same under these two disclosure policies. Then
we can easily show that the regulator’s payoff is the same under those two policies.

The proof strategy still works if condition (33) is not satisfied in the optimal policy (S, σ).
Besides, note that the third property in Lemma 5.6 implies the second property in Lemma
5.6, and these two jointly imply that the disclosure policy must be deterministic. Since all
the posterior lending market equilibira are the same, the ex ante lending cutoff ρ? must be
unchanged.

B.9 Proof of Theorem 5.1
Lemma 5.6 shows that for any optimal policy, there exists a deterministic optimal policy
(S, σ) that induces almost equivalent lending market equilibria. Our Criterion 2 implies that
for any two distinct signal realizations s1, s2 ∈ S, we must have

c̄s1 6= c̄s2 .

Then we consider a new signal space S ′ = [c̄min, c̄max], where

c̄min=inf
s∈S
{c̄s}

and
c̄max = sup

s∈S
{c̄s} ,
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and a message function
σ′ (ρ) = c̄σ(ρ).

Then obviously (S ′, σ′) is also a deterministic optimal policy, with the same lending market
equilibira as (S, σ). And the cutoff ρ? will be the same under these two optimal policies.
For any two signals s′1, s′2 ∈ S ′, and s′1 < s′2 where both σ′−1 (s′1) and σ′−1 (s′2) are nonempty.
Based on the construction of the new policy, we must have

sup
{
σ−1 (s′1) ∩ [0, ρ?]

}
≤ inf

{
σ−1 (s′2) ∩ [0, ρ?]

}
and

sup
{
σ̃−1 (s′1) ∩ (ρ?, 1]

}
≤ inf

{
σ̃−1 (s′2) ∩ (ρ?, 1]

}
.

This means that for any ρ ∈ [0, ρ?] or ρ ∈ (ρ?, 1], σ′ (ρ) is a weakly increasing function, with
inf σ′ (ρ) = c̄min and supσ′ (ρ) = c̄max.

B.10 Proof of Proposition 5.1
For any optimal policy, Lemma 5.6 shows that there exists another optimal policy that has
the same ex ante lending cutoff ρ?, the same lending market equilibria, and satisfies conditions
(18) and (19). So without loss of generality, we just need to focus on optimal policies that
satisfy conditions (18) and (19). Let’s introduce the following lemmas to establish our results.

Lemma B.1. For any two posterior beliefs π (ρ|s1) and π (ρ|s2), with positive probabilities
(densities) f (s1) and f (s2), and lending market equilibira (ks1 , ρs1 , c̄s1) and (ks2 , ρs2 , c̄s2)
satisfying ρs1 < ρs2. Let ŝ be the “combined”signal with posterior belief

π (ρ|ŝ) = f (s1) π (ρ|s1) + f (s2) π (ρ|s2)
f (s1) + f (s2) ,

Then the lending market equilibrium (kŝ, ρŝ, c̄ŝ) satisfies

ks1 < kŝ < ks2 ,

ρs1 < ρŝ < ρs2

and
c̄s1 < c̄ŝ < c̄s2 .

Proof. First, it’s impossible to have ρŝ ≤ ρs1 . Note that for the equilibria under s1 and s2,
the equilibrium conditions are28

µm (ρs1) = [µ+ (1− µ)Fc (c̄s1)] I
28This is solved by the equilibrium conditions in Definition 3.3.
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and
µm (ρs2) = [µ+ (1− µ)Fc (c̄s2)] I.

For ŝ, we have
µm (ρŝ) = [µ+ (1− µ)Fc (c̄ŝ)] I.

If ρŝ ≤ ρs1 , Lemma 5.2 implies
c̄ŝ ≤ c̄s1 < c̄s2 .

Following the equilibrium conditions in Definition 3.3, we have

c̄ŝ
B

= E
(
I ŝ|ŝ

)
= f (s1)
f (s1) + f (s2)E

(
I ŝ|s1

)
+ f (s2)
f (s1) + f (s2)E

(
I ŝ|s2

)
. (34)

Since
ρŝ ≤ ρs1 < ρs2 ,

we must have
I ŝ (ρ) ≥ Is1 (ρ) ≥ Is2 (ρ)

for all ρ ∈ [0, 1]. Then
E
(
I ŝ|s1

)
≥ E (Is1|s1) = c̄s1

B

and
E
(
I ŝ|s1

)
≥ E (Is2|s1) = c̄s2

B
.

Then condition (34) implies

c̄ŝ
B
≥ f (s1)
f (s1) + f (s2)

c̄s1

B
+ f (s2)
f (s1) + f (s2)

c̄s2

B
>
c̄s1

B
⇒ c̄ŝ > c̄s1 ,

contradiction!
The same proof strategy works for the case ρŝ ≥ ρs2 . So the equilibrium must satisfy

ρs1 < ρŝ < ρs2 .

The following lemma provides an intermediate results about the structure of the deter-
ministic optimal policy characterized in Lemma 5.6.
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Lemma B.2. Suppose (S, σ) is a deterministic optimal policy, then for almost any s ∈ S ,
if there exists a constant εs > 0, such that

supp (π (ρ|s)) ∩ (ρs − εs, ρs) = ∅ (35)

and
Prob (ρ ≤ ρs − εs|s) > 0, (36)

then there must exist a constant δs > 0, such that

supp (π (ρ|s)) ∩ [ρs, ρs + δs] = ∅.

Proof. Suppose for the sake of contradiction that there exists s0 ∈ S satisfying conditions
(35) and (36), and at least one of the following two scenarios is true:

1. There exists a constant δ, such that for any 0 < x < δ,

(ρs0 , ρs0 + x) ⊂ supp (π (ρ|s0)) ∩ (ρ?, 1]

and
Prob (ρ ∈ (ρs0 , ρs0 + x) |s0) > 0.

2. The first condition doesn’t hold and Prob (ρ = ρs0|s0) > 0.

If the first scenario is true, then let’s consider another deterministic disclosure policy (S ′, σ′)
with signal space S ′ = S\{s0} ∪ {s′0, s′}, and

σ′ (ρ) =


σ (ρ) if ρ /∈ [0, 1] \ supp (π (ρ|s0))
s′0 if ρ ∈ supp (π (ρ|s0)) \ (ρs0 , ρs0 + x)
s′ if ρ ∈ (ρs0 , ρs0 + x)

,

where x < δ.
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The increase in regulator’s payoff under this new policy is

∆W

=Prob (ρ ∈ (ρs0 , ρs0 + x)) · Es′1,G
(µṼ − (µ+ (1− µ)Fc

(
c̄s′1

)))
· 1{

ρ≥ρs′1

}
+ Prob (ρ ∈ supp (π (ρ|s0)) \ (ρs0 , ρs0 + x)) · Es′0,G

(µṼ − (µ+ (1− µ)Fc
(
c̄s′0

)))
· 1{

ρ≥ρs′0

}
− Prob (ρ ∈ supp (π (ρ|s0))) · Es0,G

[(
µṼ − (µ+ (1− µ)Fc (c̄s0))

)
· 1{ρ≥ρs0}

]

≥Prob (ρ ∈ supp (π (ρ|s0)) \ (ρs0 , ρs0 + x)) · Es′0,G
(µṼ − (µ+ (1− µ)Fc

(
c̄s′0

)))
· 1{

ρ≥ρs′0

}
− Prob (ρ ∈ supp (π (ρ|s0))) · Es0,G

[(
µṼ − (µ+ (1− µ)Fc (c̄s0))

)
· 1{ρ≥ρs0}

]
=Prob (ρ ∈ (ρ?, 1] ∩ supp (π (ρ|s0)) \ (ρs0 , ρs0 + x)) · (1− µ)

[
Fc (c̄s0)− Fc

(
c̄s′0

)]
− Prob (ρ ∈ (ρs0 , ρs0 + x)) · EG

[(
µṼ − (µ+ (1− µ)Fc (c̄s0))

)
|ρ ∈ (ρs0 , ρs0 + x)

]
.

Similar to the proof of Proposition 4.1, we know

Prob (ρ ∈ (ρ?, 1] ∩ supp (π (ρ|s0)) \ (ρs0 , ρs0 + x)) · (1− µ)
[
Fc (c̄s0)− Fc

(
c̄s′0

)]
= O(x)

and

Prob (ρ ∈ (ρs0 , ρs0 + x)) · EG
[(
µṼ − (µ+ (1− µ)Fc (c̄s0))

)
|ρ ∈ (ρs0 , ρs0 + x)

]
= O(x2).

So we must have
∆W > 0

when x is sufficiently small, and this means the new disclosure policy generates higher
regulator’s payoff, a contradiction!

If the second scenario is true, the same proof strategy applies and we can also find a
disclosure policy (not deterministic) that generates higher regulator’s payoff, a contradiction.

The next lemma in this proof presents a property about the “worse” subgame (the sub-
game with highest data manipulation level in equilibrium).

Lemma B.3. For any deterministic optimal policy (S, σ) that satisfies properties in Lemma
5.6, we must have

sup
s∈S

ρs = ρ?. (37)
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Proof. First, we must have sups∈S ρs ≥ ρ?, otherwise, there exists δ > 0, such that for any
s, ρs < ρ? − δ. If this is true, consider any state ρ ∈ (ρ? − δ, ρ?). Since ρs < ρ? − δ for any
s, lenders will finance Ĝ borrowers when the true state ρ ∈ (ρ? − δ, ρ?). However, by our
definition of ρ?, lenders will reject all loan applications if the state ρ < ρ?, a contradiction.
So we must have sups∈S ρs ≥ ρ?.

Now we want to show it’s impossible to have sups∈S ρs > ρ?. Suppose for the sake of
contradiction that there exists δ > 0, such that

sup
s∈S

ρs > ρ? + δ.

Then there must exist a signal realization, denoted as sm, such that ρsm > ρ? + δ. From
Lemma B.2, we know that there exists an interval (ρsm , ρsm + εm) such that

(ρsm , ρsm + εm) ∩ supp (π (ρ|sm)) = ∅,

and
Prob (ρ ∈ (ρsm , ρsm + εm)) < Prob ([ρsm + εm, 1] ∩ supp (π (ρ|sm))) .

Then we can find an interval B, and a one to one mapping

z : (ρsm , ρsm + εm)→ B,

with z′ (x) ≡ 1, such that

B ⊆ [ρsm + εm, 1] ∩ supp (π (ρ|sm)) .

Now let’s consider the following deterministic disclosure policy (S ′, σ′) with S ′ = S, and

σ′ (ρ) =


σ (ρ) if ρ /∈ B ∪ (ρsm , ρsm + εm)
σ (z (ρ)) if ρ ∈ (ρsm , ρsm + εm)
σ (z−1 (ρ)) if ρ ∈ B

.

It’s easy to check that all lending market equilibria are unchanged. Then the regulator’s
payoff is unchanged. However, under the new disclosure policy, for the signal realization sm,
we have

ρsm = inf {supp (π (ρ|sm)) ∩ (ρ?, 1]} .
But this violates Lemma B.2, a contradiction. So it’s impossible to have

sup
s∈S

ρs > ρ?,

and thus we must have
sup
s∈S

ρs = ρ?.
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Then Lemma 5.1 is a direct result of Lemma B.1 and B.3. Suppose for the sake of
contradiction that ρ? ≤ ρN , then Lemma B.3 implies that

ρs ≤ ρN

for all s ∈ S. Note that the signal in no information case is a “combined” signal of all signals
in the optimal policy (S, σ), Lemma B.1 implies that

ρN < sup
s∈S

ρs,

a contradiction! So we must have
ρ? > ρN .

B.11 Proof of Proposition 5.2
Suppose the deterministic optimal policy is (S, σ). Since there are at least two signals in the
optimal policy, we must have

c̄max>c̄min.

Note that the no disclosure is the “combined” signal of optimal policy (S, σ). Then Lemma
B.1 implies that

c̄max>c̄N >c̄min.

B.12 Proof of Proposition 5.3
Consider an optimal disclosure policy (S, σ̃) with distribution of posteriors {f (s) , π (ρ|s)}s∈S .
Since the prior belief of ρ is a continuous distribution, for any s0 satisfying

Prob (s0) > ε,

the equilibrium conditions imply that there must exist εs0 > 0 and δs0 > 0, such that

Prob (ρ ≤ ρ? − εs0 |s0) = δs0 > 0.

Let M = c̄s0
B
. Denote T as the solution of

T · Prob (ρ ≥ ρ?|s0)
δs0

= M

1−M .

Then let’s consider a new signal space

Sa = S\ {s0} ∪ {sa1, sa2}
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and a distribution of posteriors {fa (s) , πa (ρ|s)}s∈Sa where

fa (s) =


f (s) if s ∈ S\ {s0}
δs0

1−M f (s0) if s = sa1(
1− δs0

1−M

)
f (s0) if s = sa2

,

and

πa (ρ|s) =


π (ρ|s) if s ∈ S\ {s0}
1−M
δs0

[
π (ρ|s0)1[0,ρ?−εs0 ] (ρ) + T · π (ρ|s0)1[ρ?,1] (ρ)

]
if s = sa1

1
1− δs0

1−M

[
π (ρ|s0)1(ρ?−εs0 ,ρ

?) (ρ) + (1− T ) · π (ρ|s0)1[ρ?,1] (ρ)
]

if s = sa2

.

We can check the distribution of posteriors {fa (s) , πa (ρ|s)}s∈Sa is still Bayes-plausible,
and there exists a disclosure policy that can induce this distribution of posteriors. Besides,
we can check that the equilibrium variables {ks, ρs, c̄s} are all the same for equilibria under
signal s0, sa1 and sa2. Then by Lemma B.229, there must exists ts > 0, such that

supp (π (ρ|sa2)) ∩ [ρs0 , ρs0 + ts] = ∅,

which implies
supp (π (ρ|s0)) ∩ [ρs0 , ρs0 + ts] = ∅

because of our construction of πa. Then the surplus from lending must be greater than

µ
(
m
(
ρs0 + ts

2

)
−m (ρs0)

)
> 0

for any ρ > ρ? in this posterior equilibrium s0.

B.13 Proof of Theorem 5.2
The proof of Theorem 5.2 is established by three lemmas.

Lemma B.4. (Pooling at the bottom) When Assumption 4 is satisfied, in any deterministic
optimal policy (S, σ) characterized in Theorem 5.1, there must exist ε > 0, such that for any
ρ1, ρ2 ∈ (0, ε) ∪ (ρ?, ρ? + ε), we have σ (ρ1) = σ (ρ2).

29Although Lemma B.2 only considers deterministic optimal policies, it can be shown that it also holds
for general optimal policies.
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Proof. Suppose (S, σ) is a deterministic optimal policy characterized in Theorem 5.1. Note
Lemma B.3 implies ρs ≤ ρ? for all s, then let

S1 =
{
s| sup {supp (π (ρ|s)) ∩ (0, ρ?)} < m−1 (I) &ρs <

1
2
(
m−1 (I) + ρ?

)}
,

B1 = ∪s∈S1 supp (π (ρ|s)) ,
and

c̄1 = sup {c̄s|s ∈ S1} .

Suppose for the sake of contradiction that it doesn’t satisfy the Pooling at the bottom prop-
erty. Then there are infinite elements in S1. Regulator’s ex ante surplus from all s ∈ S1
is

W̃1 =
∫
s∈S1

f (s) · Es
[
(µm (ρ)− (µ+ (1− µ)Fc (c̄s)) I)+

]
ds

=
∫
s∈S1

f (s) · Prob (ρ > ρ?|s) · µEs (m (ρ)− I|ρ > ρ?) ds−∫
s∈S1

f (s) · Prob (ρ > ρ?|s) · (1− µ)Fc (c̄s) Ids

=
∫
s∈S1

f (s) · c̄s
B
· µEs (m (ρ)− I|ρ > ρ?) ds−

∫
s∈S1

f (s) · c̄s
B
· (1− µ)Fc (c̄s) Ids,

= Prob (ρ ∈ (ρ?, 1] ∩B1)µE (m (ρ)− I|ρ ∈ (ρ?, 1] ∩B1)−
∫
s∈S1

f (s) · c̄s
B
· (1− µ)Fc (c̄s) Ids

Here we use the equilibrium condition Prob (ρ > ρ?|s) = c̄s
B

in the last equality. Then we
show that the regulator’s payoff increases under another disclosure policy that satisfies the
Pooling at the bottom property. To see this, in the above equilibrium,∫

s∈S1
f (s) · c̄s

B
· ds =

∫
s∈S1

f (s) · Prob (ρ > ρ?|s) · ds

= Prob (ρ ∈ (ρ?, 1] ∩B1) .

Let c̄0 be the solution of(∫
s∈S1

f (s) · ds
)
c̄0

B
= Prob (ρ ∈ (ρ?, 1] ∩B1) =

∫
s∈S1

f (s) · c̄s
B
· ds,

obviously c̄0 < sups∈S1 c̄s. Based on Assumption 4, and using the concavification method
(Kamenica and Gentzkow (2011)), we know there exist c̄1 ≤ c̄2 ≤ sups∈S1 c̄s, and two positive
numbers p1, p2 satisfying p1 + p2 = 1, such that

p1 + p2 = 1,

p1
c̄1

B
+ p2

c̄2

B
= c̄0

B
,
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and(∫
s∈S1

f (s) · ds
)

(1− µ)
[
p1
c̄1

B
Fc (c̄1) + p2

c̄2

B
Fc (c̄2)

]
<
∫
s∈S1

f (s) · c̄s
B
· (1− µ)Fc (c̄s) ds.

(38)
Here c̄1 and c̄2 represent the equilibrium data manipulation cutoffs for two signals ŝ1 and
ŝ2. From the ex ante perspective. The regulator’s payoff from financing good projects are
unchanged for all states ρ ∈ B1, while the ex ante surplus loss from financing bad projects
decreases with the binary signals ŝ1 and ŝ2 because of condition (38). Then the new disclosure
policy with signals ŝ1 and ŝ2 improves regulator’s payoff, and this policy satisfies the Pooling
at the bottom property.

Then we want to show that there exists at most one discrete signal s satisfying Prob (s) >
0. To get this result, let first provide an intermediate result:
Lemma B.5. Suppose (S, σ) is a deterministic optimal policy, then for any s ∈ S such that
Prob (s) > 0, function xFc (x) can not be strictly concave at x = c̄s.

Proof. Suppose (S, σ) is a deterministic optimal policy, and there exists s0 ∈ S such that
Prob (s0) > 0. Suppose for the sake of contradiction that xFc (x) is strictly concave at
x = c̄s0 . In this equilibrium, since Prob (s0) > 0, there must exists ε0 > 0 and δ0 > 0 such
that

Prob (ρ ∈ (0, ρs0 − ε0) ∩ supp (π (ρ|s0))) > δ0

and
Prob (ρ ∈ (ρs0 + ε0, 1) ∩ supp (π (ρ|s0))) > δ0.

Then there exists two sets L1 and R1, such that

L1 ⊂ (0, ρs0 − ε0) ∩ supp (π (ρ|s0)) ,

R1 ⊂ (ρs0 + ε0, 1) ∩ supp (π (ρ|s0)) ,

Prob (L1) > 0,
Prob (R1) > 0,

and
Prob (L1)
Prob (R1) = Prob ((0, ρs0) ∩ supp (π (ρ|s0)))

Prob
((
ρ?s0 , 1

)
∩ supp (π (ρ|s0))

) .
Then consider the following deterministic policy with signal space S ′ = S\ {s0} ∪ {s′1, s′2}
and message function

σ′ (ρ) =


σ (ρ) if ρ /∈ supp (π (ρ|s0))
s′1 if ρ ∈ L1 ∪R1

s′2 if ρ ∈ supp (π (ρ|s0)) \ (L1 ∪R1)
.
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The lending market equilibria under s′1 and s′2 are the same as the equilibrium under s0 with
equilibrium variables

(
ks0 , ρ

?
s0 , c̄s0

)
. However we can improve the regulator’s payoff from

states ρ ∈ L1 ∪R1 by disclosing additional information based on s′1. Since xFc (x) is strictly
concave at x = c̄s0 , there exists ε̄2 > 0, such that for all ε < ε̄2, there exist two numbers c̄1 and
c̄2 satisfying c̄1, c̄2 ∈ (c̄s0 − ε, c̄s0 + ε) and two positive numbers p1, p2 satisfying p1 + p2 = 1
such that

p1c̄1 + p2c̄2 = c̄s0 ,

and
p1c̄1Fc (c̄1) + p2c̄2Fc (c̄2) < c̄s0Fc (c̄s0) . (39)

Let ρ1 and ρ2 be

ρ1 = m−1
(
µ+ (1− µ)Fc (c̄1)

µ
I

)
and

ρ2 = m−1
(
µ+ (1− µ)Fc (c̄2)

µ
I

)
,

then we can choose ε small enough, such that

ρ1, ρ2 ∈ (ρs0 − ε0, ρs0 + ε0) .

Then there must exist L11, L12, R11, R12 such that

L11 ∪ L12 = L1

R11 ∪R12 = R1,

Prob (ρ ∈ R11)
Prob (ρ ∈ R11) + Prob (ρ ∈ L11) = c̄1

B

and
Prob (ρ ∈ R12)

Prob (ρ ∈ R12) + Prob (ρ ∈ L12) = c̄2

B
.

Then let’s consider the following deterministic policy with signal space S ′1 = S\ {s0}∪{s′2}∪
{s′11, s

′
12} and message function

σ′1 (ρ) =


σ (ρ) if ρ /∈ supp (π (ρ|s0))
s′11 if ρ ∈ L11 ∪R11

s′12 if ρ ∈ L12 ∪R12

s′2 if ρ ∈ supp (π (ρ|s0)) \ (L1 ∪R1)

.
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It can be verified that, compared to the disclosure policy (S, σ), the regulator’s payoff is
unchanged under the new policy (S ′1, σ′1) for all states ρ ∈ [0, 1] \ (L1 ∪R1). And for states
ρ ∈ L1 ∪R1, the regulator’s payoff under (S, σ) is

W0 = Prob (ρ ∈ R1)µE (m (ρ)− I|ρ ∈ R1)− Prob (ρ ∈ R1) (1− µ)Fc (c̄s0) I

= Prob (ρ ∈ R1)µE (m (ρ)− I|ρ ∈ R1)− Prob (ρ ∈ L1 ∪R1) c̄s0

B
(1− µ)Fc (c̄s0) I

while the regulator’s payoff under (S ′1, σ′1) is

W12 = Prob (ρ ∈ R1)µE (m (ρ)− I|ρ ∈ R1)− Prob (ρ ∈ L11 ∪R11) c̄1
B

(1− µ)Fc (c̄1) I
−Prob (ρ ∈ L12 ∪R12) c̄2

B
(1− µ)Fc (c̄2) I .

Since
Prob (ρ ∈ L11 ∪R11) + Prob (ρ ∈ L12 ∪R12) = Prob (ρ ∈ L1 ∪R1) ,

condition (39) implies that
W12 > W0,

which implies that the regulator’s payoff under (S ′1, σ′1) is greater than her payoff under
(S, σ), a contradiction!

Lemma B.6. For any deterministic optimal policy characterized in Theorem 5.1, there exists
a payoff-equivalent deterministic optimal policy (S, σ), such that there exists only one s ∈ S
that satisfies Prob (s) > 0.

Proof. Suppose (S, σ)is a deterministic optimal policy, and suppose for the sake of contra-
diction that there exists two signals s1, s2 ∈ S, such that

Prob (s1) > 0,

and
Prob (s2) > 0.

Denote the equilibrium variables under these two signals are (ks1 , ρs1 , c̄s1) and (ks2 , ρs2 , c̄s2),
respectively. Without loss of generality assume c̄s1 < c̄s2 . Using the proof techniques in
Lemma B.5, we can create two signals s′1 and s′2 based on s1 and s2, such that equilibrium
under s′1 (s′2) is the same as the equilibrium under s1 (s2), and there exists two constant
ε > 0, such that

supp (π (ρ|s′1)) ∩ (ρs1 − ε, ρs1 + ε) = ∅

and
supp (π (ρ|s′2)) ∩ (ρs2 − ε, ρs2 + ε) = ∅.
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Lemma B.5 implies that function xFc (x) is weakly convex at both c̄s1 and c̄s2 .
If the function xFc (x) is convex on [c̄s1 , c̄s2 ]. Then for any δ > 0 that is small enough,

there exists positive numbers p1, p2, c̄1 ∈ (c̄s1 , c̄s1 + δ), c̄2 ∈ (c̄s2 − δ, c̄s2), such that

p1 + p2 = Prob (s′1) + Prob (s′2)

and
p1c̄1 + p2c̄2 = Prob (s′1) c̄s1 + Prob (s′2) c̄s2 .

Let ρ1 and ρ2 be

ρ1 = m−1
(
µ+ (1− µ)Fc (c̄1)

µ
I

)
and

ρ2 = m−1
(
µ+ (1− µ)Fc (c̄2)

µ
I

)
.

Then we can choose δ small enough, such that

ρ1 ∈ (ρs1 − ε, ρs1 + ε)

and
ρ2 ∈ (ρs2 − ε, ρs2 + ε) .

Then following the proof strategy in Lemma B.5we can create another deterministic disclo-
sure policy that generates higher regulator’s payoff by creating two signals with equilibrium
cutoffs ρ1 and ρ2.

If the function xFc (x) is not always convex on [c̄s1 , c̄s2 ], based on Assumption (4), we
must have (xFc (x))′′

∣∣∣
x=c̄s2

= 0. Let

L1 = supp (π (ρ|s2)) ∩ (ρ?, 1] ,

and
C1 =

[
F−1
c

(
µ

1− µ

(
m (inf L1)

I
− 1

))
, F−1

c

(
µ

1− µ

(
m (supL1)

I
− 1

))]
.

if xFc (x) is linear on C1, then we can show that there exists a disclosure policy such that the
message function is strictly increasing on L1. If xFc (x) is not linear on C1, then there must
exist c2 ∈ C1, such that xFc (x) is strictly concave at c2. The using the proof strategy in
Lemma (B.5), we can show this disclosure policy must be suboptimal, a contradiction.

Besides,the based on the general characterization in Theorem 5.1, there must exists cutoff
ρa, ρb and ρ? and a signal space [c̄min, c̄max] such that the message function is weakly increasing
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on [0, ρ?] and (ρ?, 1]. Since message function is σ (ρ) = c̄σ(ρ), we can consider a different signal
space S ′ = [ρa, ρ?], such that new message function is

σ′|[0,ρ?] =

ρa if ρ ∈ [0, ρa]
ρ if ρ ∈ (ρa, ρ?]

,

and

σ′|(ρ?,1] =

ρa if ρ ∈ (ρ?, ρb]
γ (ρ) if ρ ∈ (ρb, 1]

,

where γ (x) = supp (π (ρ|s = σ (x))) ∩ [0, ρ?]. Then there must exist a deterministic policy
that has the structure characterized in Theorem 5.2.

B.14 Proof of Lemma 5.7
Suppose (S, σ) is the deterministic optimal signal characterized in Theorem 5.2. For any
ρ ∈ (ρa, ρ?), the signal is s = ρ, and

supp (π (ρ|s)) ∩ [0, ρ?] = s.

If
ρs = sup {supp (π (ρ|s)) ∩ [0, ρ?]}

doesn’t hold for ρ0 ∈ (ρa, ρ?), there must exist an interval B0 ∈ (ρa, ρ?) and a constant
ε0 > 0, such that

ρx > sup {supp (π (ρ|x)) ∩ [0, ρ?]}+ 2ε0
for all x ∈ B. Besides, Lemma B.3 implies that there exists B ∈ B0 and a constant ε < ε0,
such that

ρx < inf {supp (π (ρ|x)) ∩ (ρ?, 1]} − 2ε.

Then for all x ∈ B, we have

ρx ∈ (sup {supp (π (ρ|x)) ∩ [0, ρ?]}+ 2ε, inf {supp (π (ρ|x)) ∩ (ρ?, 1]} − 2ε) .

Theorem 5.2 implies that there exists s0 with

Prob (s0) > 0,

and ρs0 < ρx for any x ∈ B. Without loss of generality, based on Assumption 4, we can
focus on the cases when xFc (x) is concave on x ∈ B or it’s convex on x ∈ B. This is because
there is only one inflection point for function xFc (x), so if this condition doesn’t hold, we
can always “truncate” it such that the concavity of function xFc (x) is unchanged on x ∈ B.
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If xFc (x) is convex on x ∈ B, since B ∩ supp (π (ρ|s0) ∩ [0, ρ?]) = ∅, we can find c̄1 > c̄s0 ,
and two functions fn (ρ) and c̄n (ρ) on ρ ∈ B, such that∫

ρ∈B
fn (ρ) dρ =

∫
ρ∈B

f (ρ) dρ

Prob(s0)·c̄1 +
∫
x∈B

fn (x) c̄n (x) dρ = Prob(s0)·c̄s0 +
∫
x∈B

f (x) c̄xdx

and

Prob(s0)·c̄1Fc (c̄1) +
∫
x∈B

fn (x) c̄n (x)Fc (c̄n (x)) dρ

<Prob(s0)·c̄s0Fc (c̄s0) +
∫
x∈B

f (x) c̄xFc (c̄x) dx, (40)

where the last condition is from the convexity of function xFc (x). We can always find
(c̄1, fn (ρ) , c̄n (ρ)) such that

c̄1 < inf
x∈B

c̄n (x) ,

and
inf
x∈B

m−1
((

1 + 1− µ
µ

Fc (c̄n (x))
)
I

)
> sup

x∈B
{supp (π (ρ|x)) ∩ [0, ρ?]} .

This proof strategy replicates the idea in the proof of Lemma B.6, basically we want to
design a new disclosure policy that generates higher regulator’s payoff. And the conditions
we impose here guarantee that under the new disclosure policy, the regulator’s payoff from
financing good projects is unchanged, while the cost from financing bad projects decreases
because of the condition (40). The complete proof is omitted here because the rest is the
same as the proof of Lemma B.6.

If xFc (x) is concave on x ∈ B, then we can follow the idea in proof of Lemma B.5 and
show this is suboptimal. To see this, note we can find two functions fm (ρ) and c̄m (ρ) on
ρ ∈ B, such that ∫

ρ∈B
fm (ρ) dρ =

∫
ρ∈B

f (ρ) dρ∫
x∈B

fm (x) c̄m (x) dρ =
∫
x∈B

f (x) c̄xdx

and ∫
x∈B

fm (x) c̄m (x)Fc (c̄m (x)) dρ <
∫
x∈B

f (x) c̄xFc (c̄x) dx (41)

where the last condition is from the concavity of function xFc (x). We can always find
(fm (ρ) , c̄m (ρ)) such that

inf
x∈B

m−1
((

1 + 1− µ
µ

Fc (c̄m (x))
)
I

)
> sup

x∈B
{supp (π (ρ|x)) ∩ [0, ρ?]} .
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This proof strategy replicates the idea in the proof of Lemma B.5, basically we want to
design a new disclosure policy that generates higher regulator’s payoff. And the conditions
we impose here guarantee that under the new disclosure policy, the regulator’s payoff from
financing good projects is unchanged, while the cost from financing bad projects decreases
because of the condition (41). The complete proof is omitted here because the rest is the
same as the proof of Lemma B.5.

B.15 Proof of Theorem 6.1
First, it’s obvious that when verification cost t is sufficiently high, the verification technology
will never be used. In our analysis, we already show that in any equilibrium s that the
verification is used, we must have

ks = kv = µI2

I − t
,

and the data manipulation level is

c̄v = F−1
c

(
µt

(1− µ) (I − t)

)
.

Then the lending market equilibrium variables (ks, ρs, c̄s) are uniquely determined whenever
there is verification used in equilibrium. Suppose the disclosure policy is (S, σ̃), then there
is at most one signal s under which verification is used. Suppose under s0 ∈ S there is
verification used in equilibrium, and Prob (s0) > 0, then we must have

supp (π (ρ|s0)) ∩
(

0,m−1
(
kv

µ

))
= ∅.

To see this, suppose for the sake of contradiction that

supp (π (ρ|s0)) ∩
(

0,m−1
(
kv

µ

))
= B,

and Prob (B|s0) > 0. It’s clear that lenders will never lend to any borrowers if ρ ∈ B in
equilibrium s0. Then let’s consider a new disclosure policy which keeps everything unchanged
except disclosing whether the true state ρ ∈ B or not if the signal realization is s0 in the
previous policy. It’s clear that if the true state ρ ∈ B, the regulator’s payoff from these
states is zero under the old policy, and is non-negative under the new policy, so it weakly
improves. The regulator’s payoff from other states are unchanged, because lenders are always
indifferent between verifying types or not under this equilibrium, and thus the regulator’s
payoff will be unchanged from these states. Then the regulator’s payoff weakly increases
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under the new policy. Besides, we know that for all s ∈ S\ {s0}, we have ρs < m−1
(
kv

µ

)
.

Then without loss of generality, we can consider the policy such that the signal s0 reveals if
the true state is above a threshold or not. Formally speaking,

Lemma B.7. There exists an optimal disclosure policy (S, σ̃) and a cutoff ρv such that

supp (π (ρ|s0)) = (ρv, 1] ,

and
supp (π (ρ|s)) ⊂ [0, ρv]

for any s ∈ S\ {s0}, where s0 is the signal under which verification is used with positive
probability.

Then all signals s ∈ S\ {s0} can only reveal information about states below ρv. The
following lemma shows that the disclosure policy conditional on S\ {s0} is the optimal dis-
closure policy when the prior belief is ρ ∼ U [0, ρv].

Lemma B.8. Suppose (S, σ̃) is an optimal disclosure policy characterized in Lemma B.7,
then the disclosure policy (S1, σ̃1) where

S1 = S\ {s0}

and
σ̃1 (s|ρ) = σ̃ (s|ρ)|ρ∈[0,ρv ]

is an optimal disclosure policy when the prior ρ ∼ U [0, ρv].

The proof of Lemma B.8 is intuitive. Suppose (S2, σ̃2) is an optimal disclosure policy
under prior belief ρ ∼ U [0, ρv]. If

sup
s∈S

ρs ≤ ρv,

then this optimal disclosure policy is consistent with the constraint of no verification: ρ ≤ ρv,
and thus this is optimal. If

sup
s∈S

ρs > ρv,

then including verification can actually increase the regulator’s payoff from states ρ ∈ [0, ρv],
which means that (S, σ̃) is not optimal, a contradiction!

The last part of the proof is to show that for any cost tx, if when t = tx, verification
is used with positive probability under the optimal disclosure policy, then verification will
always be used under optimal disclosure policy for any t < tx. This result is straightforward.
Suppose WNV is the regulator’s payoff when there is no verification technology available,
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and WV (t) is regulator’s payoff when verification cost is available and the cost parameter is
t. It’s easy to show that WV (t) is decreasing in t, so if

WV (tx) > WNV ,

we must have
WV (t) > WNV

for any t < tx. This means that when t is below a threshold (denoted as tv), verification will
always be used under optimal disclosure. The above observation, together with Lemma B.7
and Lemma B.8, complete the proof.
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