
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2017

Loopster: Static loop termination analysis Loopster: Static loop termination analysis

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Bihuan CHEN

Liang ZOU

Shang-Wei LIN

Yang LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
XIE, Xiaofei; CHEN, Bihuan; ZOU, Liang; LIN, Shang-Wei; LIU, Yang; and LI, Xiaohong. Loopster: Static loop
termination analysis. (2017). Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, Paderborn, Germany, September 4-8. 84-94.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7104

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xiaofei XIE, Bihuan CHEN, Liang ZOU, Shang-Wei LIN, Yang LIU, and Xiaohong LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7104

https://ink.library.smu.edu.sg/sis_research/7104

Loopster: Static Loop Termination Analysis

Xiaofei Xie∗

Tianjin Key Laboratory of Advanced

Networking

Tianjin University, China

xiexiaofei@tju.edu.cn

Bihuan Chen
Nanyang Technological University

Singapore

bhchen@ntu.edu.sg

Liang Zou
Nanyang Technological University

Singapore

zouliang@ntu.edu.sg

Shang-Wei Lin†

Nanyang Technological University

Singapore

shang-wei.lin@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore

yangliu@ntu.edu.sg

Xiaohong Li‡

Tianjin Key Laboratory of Advanced

Networking

Tianjin University, China

xiaohongli@tju.edu.cn

ABSTRACT

Loop termination is an important problem for proving the cor-

rectness of a system and ensuring that the system always reacts.

Existing loop termination analysis techniques mainly depend on

the synthesis of ranking functions, which is often expensive. In

this paper, we present a novel approach, named Loopster, which

performs an efficient static analysis to decide the termination for

loops based on path termination analysis and path dependency

reasoning. Loopster adopts a divide-and-conquer approach: (1) we

extract individual paths from a target multi-path loop and analyze

the termination of each path, (2) analyze the dependencies between

each two paths, and then (3) determine the overall termination of

the target loop based on the relations among paths. We evaluate

Loopster by applying it on the loop termination competition bench-

mark and three real-world projects. The results show that Loopster

is effective in a majority of loops with better accuracy and 20×+
performance improvement compared to the state-of-the-art tools.

CCS CONCEPTS

• Theory of computation → Program analysis; • Software

and its engineering→ Automated static analysis;

KEYWORDS

Loop Termination, Reachability, Path Dependency Automaton

ACM Reference format:

Xiaofei Xie, Bihuan Chen, Liang Zou, Shang-Wei Lin, Yang Liu, and Xiao-

hong Li. 2017. Loopster: Static Loop Termination Analysis. In Proceedings of

2017 11th Joint Meeting of the European Software Engineering Conference and

∗Also with Nanyang Technological University, Singapore.
†Shang-Wei Lin and Yang Liu have equal contribution in this work.
‡Xiaohong Li is the corresponding author, School of Computer Science and Technology,
Tianjin University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106260

the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

Paderborn, Germany, September 04-08, 2017 (ESEC/FSE’17), 11 pages.

https://doi.org/10.1145/3106237.3106260

1 INTRODUCTION

Program termination analysis is an important program analysis task

to guarantee the correctness and reliability of systems. Nontermi-

nation bugs can cause performance problems or denial-of-service

attacks [14]. Furthermore, termination proving techniques [17, 21]

can be used to prove liveness properties. Loops, as the basic program

structure, are the key challenge in program termination analysis.

Program termination analysis has received considerable atten-

tion, and a lot of advances [7, 9–11, 15, 20, 22, 28, 32, 40, 41, 43] have

been made. The general approach is to synthesize termination ar-

guments, which requires solving two problems [12]: the search for

ranking functions and the validity of the ranking functions. How-

ever, termination proving has been proved to be undecidable [21],

and it is not always possible to find suitable ranking functions. Thus,

the existing techniques can only handle certain restricted types of

programs. For example, the techniques in [9, 10, 43] are complete

only for linear arithmetic loops. Besides, the search for ranking

functions can be very expensive, especially for complex lexico-

graphic ranking functions. For example, the techniques in [11, 28]

may not terminate when proving the termination of some programs.

In principle, enumeration can provide a complete method but is not

practical [11]. Moreover, the validity of ranking functions usually

depends on a safety checker to search for invariants on demand,

which is known to be the bottleneck of ranking function-based

techniques [32]. Instead of finding non-trivial lexicographic rank-

ing functions, several techniques [20, 22, 32] attempt to find simple

termination arguments based on Ramsey’s theorem. However, these

techniques still have to make trade-offs between the time overhead

for the search and validity of ranking functions.

Therefore, the main limitation of ranking function-based tech-

niques is the substantial time overhead for searching and validat-

ing ranking functions. From our study on loops, there are many

loops whose termination can be quickly determined by analyzing

the termination in each path and the dependencies between the

paths. In this paper, we propose Loopster, a relatively lightweight

static analysis-based approach to proving termination and non-

termination for such loops, which does not depend on ranking

84

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu and X. Li

1 int n :=∗ ;
2 int x :=∗ ;
3 int z :=∗ ;
4 while (x<n)
5 i f (z>x)
6 x++;
7 else
8 z++;

(a) Loop

a

b

c d

e f

(b) CFG

1 2

3

(c) PDAx

Figure 1: Unnested Loop from [26] with CFG and PDAx

functions. Our key idea is to use a divide-and-conquer approach

at the path level to: 1) extract paths in a target loop and analyze

the termination of each path, 2) analyze the dependencies between

each pair of paths, and 3) determine the overall termination of the

target loop based on the dependencies between paths.

Technically, to formally analyze multiple paths in a loop, we

first extend the path dependency automaton (PDAx) in our prior

work [47] to capture the dependencies among the paths (Section 2.2).

Based on the PDAx , Loopster performs the termination analysis for

a multi-path loop in three steps (Section 3). In the first step, it uses

exit conditions as the slicing criteria to perform a program slicing

on the target loop and obtains the control flow graph (CFG) of the

loop. In the second step, it first extracts paths and analyzes the

termination of each path by a static monotonicity analysis [39] or

temporal-logic proving [18, 31]. Analyzing monotonicity of a cer-

tain function in each path is usually easier than inferring a ranking

function in amulti-path loop. A path can be terminating or nontermi-

nating. Then, it constructs the PDAx of the loop to capture the path

dependencies. If there is any path that cannot be determined as ter-

minating or nonterminating in the second step, a context-sensitive

depth-first search on the PDAx is performed to refine the unknown

paths in the last step. During the traversal, if one path marked as

nonterminating is reachable, Loopster finds a nonterminating trace.

If all the paths along the trace are marked as terminating and the

traversal ends with an accepting state, Loopster concludes that the

trace terminates. If there exists one path that is marked as unknown

and cannot be refined, Loopster returns unknown.

We implemented Loopster and evaluated its effectiveness and

performance (Section 4) by applying it on the loops from the termi-

nation analysis benchmark [1] and three open-source projects. For

the 101 loop programs taken from the benchmark, Loopster can

correctly handle 93 (92.08%) of the programs with only 7.76 seconds,

while the best state-of-the-art tool UAutomizer [29] in our experi-

ments can correctly handle 92 of them with 2246 seconds. For the

total 6820 loops from real-world projects, Loopster can handle 2655

(39%) with 91 seconds. The results show that Loopster is scalable and

effective, and the biggest advantage is that our static analysis can

make a dramatic performance improvement (20×+) for most loops.

In summary, the contributions of our paper are threefold:

(1) We extend the path dependency automaton (PDAx) to i) support

nested loops and ii) compute transitions for the paths with non-

induction variables.

i n t x : =∗ ;
i n t y : =∗ ;
i n t z : =∗ ;
whi le (y>=1)

x−−;
whi le (y<z)

x ++;
z−−;

y := x+y ;

(a) Loop

a

b

c d

e

f g

(b) CFG

1

2

(c) PDAx

Figure 2: Nested Loop from [34] with CFG and PDAx

(2) Based on the PDAx , we propose an efficient static analysis to i)

prove termination of multi-path loops and ii) detect nontermi-

nation through finding nonterminating state with reachability

analysis on the PDAx , and prove the soundness of our approach.

(3) We implement our approach in Loopster, and conducted an

evaluation to demonstrate the effectiveness and scalability of

Loopster on benchmarks and real-world projects.

2 LOOP MODELING

In this section, we define the scope of this work and extend the

path dependency automaton (PDAx).

2.1 Scope of the Work

We focus on multi-path loops in which the variables are over in-

tegers and the operations are standard integer operations (addi-

tion, subtraction, multiplication, and division). Let D be a finite

integer domain and X = {x1,x2, . . . , xn } be a finite set of vari-

ables ranging over D. An atomic predicate over X is of the form

f (x1,x2, . . . ,xn) ∼ b, where f : Dn �→ D is a function that repre-

sents the standard integer operations on X , ∼∈ {=, <, ≤, >, ≥}, and
b ∈ D. A predicate is a Boolean combination of atomic predicates

over X . PX is to denote the set of all possible predicates over X .

Loops containing data structures and function calls are not sup-

ported in this work. However, we can perform a program slicing if

they do not affect the termination of the loop. The possible exten-

sions for some unsupported loops is discussed in Section 4.4.

2.2 Path Dependency Automaton

The loop we considered can be modeled by a control flow graph

(CFG), as formulated in Definition 2.1.

Definition 2.1. A control flow graph (CFG) of a loop is a tuple

G = (L,E, lpre ,Lh ,Le), where (1) L is a set of basic blocks, each

of which contains a sequence of assignment instructions. (2) E ⊆
L × PX × L is a set of directed edges connecting the basic blocks. (3)

lpre ∈ L is the pre-header after which the entry block of the loop

will execute. (4) Lh ⊂ L is a set of header blocks. Given two blocks

l , l ′ ∈ L, we say l dominates l ′ (l dom l ′), if every path from lpre
to l ′ passes through l . Lh = {l ∈ L | ∃(l ′,p, l) ∈ E ∧ l dom l ′}. (5)
Le = {l ∈ L | ∀l ′ ∈ L,p ∈ PX , (l ,p, l ′) � E} is a set of exit blocks.

For simplicity, we use l1
p−−→ l2 to denote an edge (l1,p, l2) ∈ E,

which means that in the basic block l1, if the condition p holds,

85

Loopster: Static Loop Termination Analysis ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Figure 3: Flow Diagram of Loopster

then the (loop) program goes to the basic block l2. In this work, we

consider the weakest precondition operatorwp and the strongest

postcondition operator sp, based on Hoare Logic [30].

Definition 2.2. Given a CFG G = (L,E, lpre ,Lh ,Le), a path (de-

noted as σ) is a sequence l0
p0−−→ l1

p1−−→ . . . pk−1−−−−→ lk , where l0 ∈ Lh
is the head of σ , denoted by head(σ); lk ∈ (Lh ∪ Le) is the tail

of σ , denoted by tail(σ); ∀1 ≤ i < k, li � (Lh ∪ Le). The weak-

est triggering condition of path σ (denoted as θσ) is computed as

wp(l0,p0) ∧wp(l0; l1,p1) ∧ . . . ∧wp(l0; . . . ; lk−1,pk−1), where the
li inwp represents the instructions in the basic block.

For simplicity, wewill use path condition to represent the weakest

triggering condition of a path in the following sections. For example,

the path condition for while(y > 0){x++; i f (x < 0)z++; } is y >
0 ∧ x < −1 rather than y > 0 ∧ x < 0.

The path σ is feasible only when θσ is satisfiable. Otherwise, it is

an infeasible path. We use ι(σ) to denote a sequence of assignment

instructions in σ , and σk to denote the consecutive repetition of

path σ with k times. ι(σk) is k repetition of ι(σ) (i.e., ι(σ); ...; ι(σ)).
For example, if ι(σ) is x++, then ι(σ 2) is x++;x++.

The precondition of the loop is a predicate Pre(G) which con-

strains the possible valuations for the variables before executing

the loop G. We assume that the loop precondition is known. We

use Pre(σ) and Pos(σk) to denote the precondition of the path σ
and the postcondition after k executions of σ , respectively. Pre(σ)
and Pos(σk) are predicates which constrain the possible valuations

for the variables before executing the path σ and after executing

the path σ for k times. Given a path with its precondition Pre(σ),
we can infer its postcondition Pos(σk) as sp(ι(σk), Pre(σ)), which
gives the strongest condition after executing σk w.r.t. Pre(σ).

Example 2.3. Fig. 1(b) gives the CFG of the unnested loop in

Fig. 1(a), where there are six basic blocks named from a to f and

seven edges. The basic block a is the pre-header from which the

program enters the loop. b is the header block and d is the exit

block. There is one predicate on each edge. For example, b
x>n−−−−→ c

is feasible if the predicate x > n holds. T represents true which

means the predicate always holds. There are three paths in the

CFG: σ1 = b
x<n−−−−→ c

z>x−−−−→ e
true−−−−→ b,σ2 = b

x<n−−−−→ c
z<=x−−−−−→

f
true−−−−→ b,σ3 = b

x>=n−−−−−→ d . For the path σ1, its path condition is

θσ1 = x < n ∧ z > x . The loop precondition is true since x ,n, z
can be any value before the loop. Suppose Pre(σ1) = x > 0, then

we can infer Pos(σ1) = sp(x++,x > 0) = x > 1 and Pos(σ12) =
sp(x++;x++,x > 0) = x > 2.

Different from Fig. 1(b), there are two header blocks (b and e) in
Fig. 2(b) since the loops are nested. In Fig. 2(b), there are four paths:

σ1 = b
y>=1−−−−−→ c

true−−−−→ e,σ2 = e
y<z−−−−→ f

true−−−−→ e,σ3 = e
y>=z−−−−−→

д
true−−−−→ b,σ4 = b

y<1−−−−→ d .

Intuitively, one loop execution containsmultiple iterations, which

are the interleaving of the feasible paths in the CFG. To model the

dependencies between different paths in a loop, we propose the

path dependency automaton, as formulated in Definition 2.4.

Definition 2.4. Given a loop with the CFG G = (L,E, lpre ,Lh ,Le),
a path dependency automaton (PDAx) is A = (S, I ,T , F) where:

• S = {σ | σ is a feasible path in G} is a set of states.
• I = {σ ∈ S | ((lpre , true,head(σ) ∈ E)∧Pre(G)∧θσ is satisfiable}

is a set of initial states.

• T = {(σ ,σ ′) ∈ S×S | (tail(σ) = head(σ ′))∧(σ � σ ′)∧(∃i : θσ ∧
(∧1≤k≤i sp(ι(σk),θσ))∧θσ ′ is satisfiable)} is a set of transitions.

• F = {σ ∈ S | ∀σ ′ ∈ S : (σ ,σ ′) � T } is a set of accepting states.

Intuitively, a state in A corresponds to a path in G. A state is an

initial state if its corresponding path can be the first iteration under

the loop precondition. The transition (σ ,σ ′) ∈ T represents that σ ′
can be executed (i.e., θσ ′ is satisfiable) after some (i) repetitions of
σ . A state is an accepting state if it has no successors. A run of the

PDAx , denoted as τ , is a sequence of states τ = (σ1,σ2, . . .) where
σ1 ∈ I and ∀i ≥ 1 : (σi ,σi+1) ∈ T . The sequence can be infinite.

The semantics of τ can be represented by the loop execution which

is the interleaving of the paths. With different loop preconditions,

a PDAx has different runs. We use RA to represent the set of all

runs of A under the loop precondition Pre(G). The construction
of T will be described in Section 3.2.

If tail(σ) is an exit block, then path σ (called exit path) will end

the loop. Hence, if each run of the loop can end with an exit path,

the loop will terminate. If there is any run which is infinite, the loop

is nonterminating (e.g.,while(x < 11)i f (x < 10)x++; else x- -;). Or
if a run is finite but the last path is not an exit path, the loop enters

one stuck state which has no successors and the loop does not

terminate (e.g.,while(x > 1)x++;).

Example 2.5. Fig. 1(c) shows the PDAx of the loop in Fig. 1(a),

where S = {σ1,σ2,σ3}, I = {σ1,σ2,σ3}, F = {σ3} andT = {(σ1,σ2),
(σ2,σ1), (σ1,σ3)}. The states σ1, σ2 and σ3 represent the paths in
the CFG. The precondition of the loop is true . σ1, σ2 and σ3 can
be initial states as they can be firstly executed under the precon-

dition. For example, by Definition 2.4, we check whether σ1 can
be initial state by solving the condition true ∧ x < n ∧ z > x . The
condition is satisfiable, hence σ1 can be an initial state. There is a

transition from σ1 to σ2 because the path condition θσ2 can be satis-

fiable after some execution of σ1. The details about computing the

transition in this example will be described in Example 3.2. There

are four patterns which represent all possible runs of the PDAx :

τ1 = (σ3),τ2 = (σ1,σ3),τ3 = ((σ1,σ2)+,σ1,σ3),τ4 = ((σ2,σ1)+,σ3).
Fig. 2(c) is the PDAx of the nested loop in Fig.2(a).

86

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu and X. Li

3 LOOP TERMINATION ANALYSIS

We propose a static method for loop termination analysis. The

key idea is to adopt the divide-and-conquer strategy: we analyze

the termination of each path in the target loop, and determine the

overall termination of the target loop based on the dependencies

among the paths. Fig. 3 shows the overall flow of our approach.

Given a loop as the input, our approach determines whether the

loop terminates through the following three steps:

Step 1. We use the program slicing technique [38] to remove irrel-

evant statements from the loop program. Based on the sliced loop,

we construct its CFG to extract paths in the loop. The details of

slicing are omitted and can be found in [38].

Step 2. We construct the PDAx w.r.t. the control flow graph gener-

ated in Step 2. We first identify the initial states, then perform the

termination analysis of each path based on monotonicity analysis

or prover (see Section 3.1). At last, the dependency analysis among

paths (see Section 3.2) is performed.

Step 3. With the PDAx constructed, we perform a reachability

analysis on PDAx to determine the overall termination of the target

loop (c.f. Section 3.3). If the information is not sufficient to have

a conclusive result, we perform a refinement step to obtain more

information to determine the overall termination (c.f. Section 3.4).

3.1 Path Termination Analysis

A path is nonterminating if it can be executed infinitely before

executing other paths; otherwise, it is terminating. To determine

whether one path is terminating or not, we adopt a sufficient con-

dition checking, i.e., we compute the sufficient conditions of non-

termination and termination for each path, respectively. For a path

σ , if the sufficient condition of nontermination is true (i.e., it does

not terminate in any case), then we can conclude that it does not

terminate. Similarly, if the sufficient condition of termination is

true, then we can conclude that it terminates. Otherwise, we can-

not conclude anything from the sufficient conditions. Based on the

three cases above, we can identify each path as terminating (T),

nonterminating (NT), or unknown (UN).

Obviously, a path is always terminating if its head and tail nodes

are different. Thus, its sufficient terminating condition is true and

nonterminating condition is false. In the following, we explain

how to compute the nonterminating sufficient condition ϕ and the

terminating sufficient condition ψ for the path whose head node

and tail node are the same basic block. Consider a path σ with path

condition θσ = p
′
1∧p′2∧ · · ·∧p′

k
where p′i is a predicate of the form

fi (x1,x2, . . . ,xn) ∼ bi for 1 ≤ i ≤ k . To simplify the notation, we

use Ei to denote the function fi (x1,x2, . . . ,xn). For each predicate

p′i , we define its sufficient conditions ϕi andψi using the following

monotonicity analysis:

(1) For a predicate of the form Ei > bi or Ei ≥ bi , its nonterminat-

ing sufficient condition ϕi should make Ei increase monotoni-

cally or not change in each iteration; the terminating sufficient

conditionψi should make Ei decrease monotonically in each

iteration.

(2) For the predicate of the form Ei < bi and Ei ≤ bi , its non-
terminating sufficient condition ϕi should make Ei decrease
monotonically or not change in each iteration; the terminating

sufficient conditionψi should make Ei increase monotonically.

in t x = ∗ ;
while (x >0)

x ++ ;

(a) NT

in t x = ∗ , y = ∗ ;
while (x<0 && y >0)

x=x+y ; y ++ ;

(b) T

in t x = ∗ , a = ∗ ;
while (x >0)

x=x+a ;

(c) UN

Figure 4: Path Examples

(3) For the predicate of the form Ei = bi , its nonterminating suffi-

cient condition ϕi should make Ei keep the same value in each

iteration; the terminating sufficient conditionψi should make

Ei change the value in some iterations.

With the sufficient conditions for each predicate pi , the overall
sufficient conditions for the path σ are defined as:

ϕ =
∧

1≤i≤k
ϕi and ψ =

∨

1≤i≤k
ψi

If ϕ is true, we conclude that σ does not terminate. Ifψ is true,
we conclude that σ terminates. Otherwise, we mark σ as unknown.

To compute each ϕi andψi mentioned above, we need to deter-

mine the monotonicity of Ei . The monotonicity of one variable can

be analyzed by the static technique in [39], which supports three

types: basic monotonic statements, dependent monotonic state-

ments, and cyclically monotonic statements. We extend it in two

aspects: 1) check the monotonicity for a basic expression such as

addition and subtraction on multiple variables. For example, when

x is increasing and y is decreasing, then x − y is increasing, y − x
is decreasing and x + y is unknown. 2) a backward reasoning to

compute the sufficient conditions which can make the variable or

expression increase monotonically, decrease monotonically or be

constant (i.e., does not change). For example, in the basic mono-

tonic statement x = x + a, the sufficient condition, which makes

x monotonic increasing, is a > 0, monotonic decreasing is a < 0

and constant is a = 0. In the dependent monotonic statements

x = x +y; y = y+a, the sufficient condition, which makes x strictly

monotonic increasing, is y0 > 0 ∧ a ≥ 0, where y0 is the initial
value for variable y before executing the path.

For those cases in which the monotonicity cannot be detected

by [39] or the sufficient condition cannot be computed by our

extension, we leverage temporal-logic proving techniques [18, 31].

We generate one dummy loop which only contains one path σ
and prove the CTL property AG[θσ] in the loop. If the result is

true, it means that the path condition θσ always holds during the

execution of σ , i.e., the path σ does not terminate. If the result is

false, we check the CTL property AF [¬θσ]. If the result of the

second property is true, it means that the path condition θσ will

not hold eventually, i.e., the path σ terminates. If the results of both

properties are false or the CTL checking is unable to produce a

conclusive result, we mark the path σ as unknown and set both ϕ
and ψ to be false since we cannot compute the nonterminating

and terminating sufficient conditions.

Lemma 1. If an accepting state σ ∈ F is marked as terminating,

then tail(σ) must be an exit block.

Example 3.1. In Fig. 4(a), there is a loop consisting of only one

path, whose path condition is x > 0.We then compute the condition

(as the nonterminating sufficient condition) which can make x
increasing monotonically. Obviously, x is always increasing and

thus ϕ is true. Hence the path is marked as NT. In Fig. 4(b), we

87

Loopster: Static Loop Termination Analysis ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

know x andy are increasing monotonically, wherey can be checked

by basic monotonic statements and x can be checked by dependent

monotonic statements. Thus, ϕ is false andψ is true. Hence, the
path is marked as T. For the loop in Fig. 4(c), our extended strategy

can compute the sufficient nonterminating condition a ≥ 0, under

which x will increase monotonically or does not change, and the

sufficient terminating condition a < 0, under which x will decrease

monotonically. The termination of the path depends on the input

of a. Thus we mark the path as UN.

3.2 Inter-Path Analysis

After analyzing whether each path is terminating, we need to fur-

ther analyze the dependency between each two paths, i.e., whether

a path is able to transit to another. Algorithm 1 shows how to con-

struct the transitions in a PDAx . The input is the CFG G of the loop

and we use
∏

G to represent the set of all feasible paths in G. Note

that σi can only transit to the path σj whose head node is equal

to the tail of σi (i.e., tail(σi) = head(σj) at Line 2). A variable is an

induction variable (IV) when it is changed by a constant value or

assigned by constant values in each iteration of the path. A condi-

tion e ∼ 0 is an IV condition [47] if the expression e (regarded as

a variable) is an IV. If all variables in σi are IVs and all conditions

in θσi and θσj are IV conditions, we introduce ki j to represent the

number of iterations of σi before transiting to σj . With the variable

ki j , we can calculate the effect after some executions of σi for all
the IVs. For example, if x = x + 1 in each iteration of σi , then
we can calculate x = x + k after k executions of σi . We compute

the value of IVs after ki j − 1 and ki j execution of σi , denoted by

Xki j−1 and Xki j , respectively (Line 5–6). θ [X ′/X] represents that
the variables X in θ are substituted with X ′. At Line 7, we compute

the weakest precondition ωi j for triggering the transition (σi ,σj).
head(σi) = tail(σi)?ki j ≥ 1 : ki j = 1 means if the head node and

tail node are the same node, then σi can be executed more than one

time before executing σj . Otherwise, it can only execute one time.

If ωi j is satisfiable, then σj can be executed after ki j iterations of
σi (Line 8) and we add the transition to T (Line 9). Note that the

introduced variable ki j can be bounded in the predicate ωi j .
If there are some non-IVs or non-IV conditions, we cannot com-

pute the transition with ki j . We use the temporal-logic prover to

check whether the transition is feasible (Line 10–13). We create

one dummy loop L which only contains the path σi and check the

CTL property EF [θσj] during the loop execution (Line 12). If the

property is satisfied, σi may transit to σj in some cases. If it is not

satisfied, there is no transition from σi to σj .
Example 3.2. In Fig. 1, all variables are IVs and all the conditions

are IV conditions. For example, x < n is an IV condition because

x −n is changed by a constant. We can use the first step to compute

the transition. To check whether σ1 can transit to σ2, we compute:

Xk12−1 : (x = x + k12 − 1) ∧ (n = n) ∧ (z = z)
Xk12 : (x = x + k12) ∧ (n = n) ∧ (z = z)
ω12 = (x < n) ∧ (z > x) ∧ (x + k12 − 1 < n) ∧ (z > x + k12 − 1)
∧ (x + k12 < n) ∧ (x + k12 ≥ z) ∧ (k12 ≥ 1)

Hence, there is a transition from σ1 to σ2 because ω12 is satisfi-

able. k12 is bounded by k12 ≥ 1 ∧ z > x + k12 − 1 ∧ x + k12 ≥ z.
Let us see how the second step works. In Fig. 4(b), to check

whether there is a transition from the state σ1 (θσ1 is x < 0∧y > 0)

Algorithm 1: ComputeTran(G)
input :G: CFG

1 Let
∏

G be the set of all feasible paths in G;
2 foreach (σi , σj) ∈ {(σm, σn) | σm ∈ ∏

G ∧σn ∈ ∏
G ∧tail (σm) =

head(σn) ∧m � n } do
3 if All variables X in σi are IVs, and all conditions in θσi and θσj

are IV conditions then

4 Let ki j represent the iteration count of σi ;

5 Xki j−1 := F (X , ki j − 1) computes the value after ki j -1

iterations of σi ;

6 Xki j := F (X , ki j) computes the value after ki j iterations of

σi ;

7 ωi j := θσi ∧ θσi [Xki j−1/X] ∧ θσj [Xki j /X] ∧ (head (σi) =
tail (σi)?ki j ≥ 1 : ki j = 1);

8 if ωi j is satisfiable then

9 T := T
⋃{(σi , σj)};

10 else

11 Create loop L which only contains path σi ;

12 if EF[θσj] holds for L then

13 T := T
⋃{(σi , σj)};

to the accepting state σ2 (θσ2 is x ≥ 0 ∨ y ≤ 0), we cannot use the

first step as the value change of x is not constant. In this case, we

check EF [θσ2], and it is true. Thus we know σ1 can transit to σ2.

3.3 Loop Termination Analysis

With the PDAx constructed, we can determine the overall termina-

tion of the target loop. Theorem 1 and Theorem 2 below give the

sufficient conditions on a PDAx for its corresponding target loop

being terminating or nonterminating, respectively. Based on the

two theorems, a depth-first search can be used to check whether

the target loop terminates. If there are some unknown states or

cycles in the PDAx , we will perform a refinement (Section 3.4) or

reduce cycles from the PDAx (Section 3.5).

Theorem 1. If a PDAx satisfies the two conditions below, its cor-

responding loop terminates: 1) it is acyclic, and 2) its states (reachable

from initial states) are all marked as terminating.

Theorem 2. If a PDAx has a reachable state which is marked as

nonterminating, its corresponding loop does not terminate.

3.4 Refinement

So far, our approach is presented in a way such that each path

is analyzed independently, i.e., the effects from other paths are

not considered. For example, a path σ , if analyzed alone, may be

marked as unknown. However, it could be actually terminating or

nonterminating under the precondition Pre(σ).
To be more accurate for determining the termination of each

path, we need to refine the states that are marked as unknown

according to the execution of the loop. Algorithm 2 gives a DFS-

based algorithm to refine the states that are marked as unknown

in an acyclic PDAx . Given a state σ and its precondition Pre(σ),
Algorithm 2 refines the nonterminating or terminating sufficient

conditions of the state σ and visits its successor states in a DFS-style.

issp is a boolean value which denotes whether Pre(σ) is a strongest
postcondition of the previous state.

88

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu and X. Li

Algorithm 2: RefineState(A,σ , Pre(σ), issp)
input :A: PDAx ; σ : a state of A;

Pre(σ): the precondition of σ ;

issp : boolean value;

output :A refined PDAx

1 if Pre(σ) ∧ θσ is satisfiable then

2 if σ is marked as UN then

3 if issp = true ∧ Pre(σ) =⇒ ϕσ then

4 mark σ as NT;

5 return;

6 if Pre(σ) =⇒ ψσ then

7 σ .list.append(T);

8 Let Σ be the set of successors of σ ;

9 foreach σ ′ ∈ Σ do

10 if All variables X in σ are IVs and all conditions in θσ and θσ ′ are
IV conditions then

11 Pre(σ ′) := sp(X := F (X , ki j), Pre(σ) ∧ ω(σ ,σ ′));
12 else

13 Pre(σ ′) := θσ ′ ;
14 issp := f alse ;

15 RefineState(A, σ ′, Pre(σ ′), issp);

Given a state σ and its precondition Pre(σ), we only refine the

termination status of σ in the case where (1) σ is reachable under

its precondition, i.e., Pre(σ) ∧ θσ is satisfiable (Line 1), and (2) σ is

marked as unknown (Line 2). Note that if Pre(σ) is the strongest
postcondition of the traversed path and Pre(σ) ∧ θσ is satisfiable,

then σ must be reachable. The refinement is performed for the

following cases:

• If the condition Pre(σ) =⇒ ϕσ holds, it means that the non-

terminating sufficient condition of σ is satisfiable under the pre-

condition of σ . Then we can conclude that σ does not terminate

(Line 3–5). In this case, we can conclude that the overall loop

does not terminate by Theorem 3.4.

• If the condition Pre(σ) =⇒ ψσ holds, the terminating sufficient

condition of σ is satisfiable under the precondition of σ . In this

case, we append T, which represents that the state σ is refined as

terminating along the current trace, to the list σ .list (Line 6–7).

To continue the refinement on every successor of σ , we compute

the postcondition after some execution of σ , which is also the pre-

condition of σ ′. At Line 11, we infer the strongest postcondition
Pre(σ ′), where Pre(σ) is from input andω(σ ,σ ′) has been computed

at Line 7 of Algorithm 1. X := F (X ,ki j) is a sequence of assign-

ment instructions and is computed at Line 6 of Algorithm 1. If the

conjunction of Pre(σ ′) and θσ ′ is satisfiable (i.e., the next traversal
at Line 1), then there exists a variable ki j that makes σ ′ reachable
because Pre(σ ′) is the strongest postcondition of the previous state

σ . Otherwise, we use a conservative and sound condition, i.e., the

path condition of σ ′, as the postcondition of σ , which also serves as

the precondition of σ ′ (Line 13). θσ ′ is not a strongest postcondition
and issp is assigned f alse (Line 14).

Algorithm 3 refines the whole PDAx by invoking Algorithm 2

for all initial states, and returns a set of refined PDAx based on

different initial states. We assume the precondition of the loop is a

strongest postcondition and issp is assigned true . Algorithm 3 aims

to check whether a state σ originally marked as unknown could

Algorithm 3: RefinePDA(A, Pre(A))
input :A = (S, I, F , T): a PDAx ;

Pre(A): the precondition of A
output :A set of refined PDAx

1 Ω ←− ∅ ;

2 foreach σ ∈ I do

3 A′ = RefineState(A, σ , Pre(A), true) ;
4 foreach state σ in A′ marked as UN do

5 if each element e ∈ σ .list is T then

6 mark σ as T;

7 Ω ←− Ω ∪ {A′};

be refined as terminating (Line 4–6). Notice that we can do so only

when all the markings in the list σ .list are T, which means σ is

terminating in all paths. Note that Algorithm 3 assumes that the

input PDAx is acyclic such that the termination of Algorithm 2 is

guaranteed, and the cyclic PDAx will be described in Section 3.5.

To sum up, given a target loop represented by a PDAx A, if we

cannot directly decide its termination by Theorem 1 and Theorem 2,

we can apply Algorithm 3 onA to refine each state that is originally

marked as unknown. Let Ω be the set of refined PDAx obtained

by invoking RefinePDA(A, Pre(A)). We can further analyze the

target loop based on Ω by Corollaries 3.3 and 3.4. If both of them

do not hold, we mark the loop as unknown.

Corollary 3.3. If A′ satisfies Theorem 1 for all A′ ∈ Ω, then
the target loop terminates.

Corollary 3.4. If A′ satisfies Theorem 2 for some A′ ∈ Ω, then
the target loop does not terminate.

Notice that the refinement can only be used in acyclic PDAx

currently. In cyclic PDAx , the execution count of the cycle might be

unknown. Thus, Algorithm 2 may not terminate for cyclic PDAx ;

and we leave the refinment of cyclic PDAx in the future work.

3.5 Cyclic-PDAx Analysis

Theorem 1 requires the PDAx to be acyclic. Given a cyclic-PDAx ,

even though all of its states are marked as terminating, we cannot

conclude that the loop terminates since it may have an infinite

execution between the states in the cycle. For example, in the loop

while(x<11){if(x<10) x++; else x- -;}. All the three paths are marked

as terminating, however the loop does not terminate since there is

an infinite execution in the cycle. To determine the termination of

a cyclic-PDAx , we need further analysis on cycles.

We firstly detect the strongly connected components (SCCs)

from the PDAx . Notice that we only consider the SCC with more

than one state (i.e., the cycle in the PDAx) here. Our main idea of

termination analysis on cycles is as follows:

(1) Try to prove the termination by reducing the cyclic-PDAx to

acyclic-PDAx (c.f. Section 3.5.1).

(2) Try to prove the nontermination by finding one reachable non-

terminating state in the SCC (c.f. Section 3.5.2).

3.5.1 Proving Termination. A key observation is that some states

will not be executed after some iterations of the SCC, then the SCC

can be reduced to a simple structure. The main idea of proving

termination is to reduce the cyclic-PDAx to an acyclic-PDAx by

89

Loopster: Static Loop Termination Analysis ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

finding the pivot states which will not be executed eventually. For

example, in the cyclic-PDAx Fig. 1(c), the SCC is {σ1,σ2}. To de-

termine whether the SCC can terminate, we find the pivot state σ1
which will not be executed after x increases to be n. Hence, the SCC
is reduced (after σ1 terminates) and becomes acyclic. We formulate

the concept as follows.

Inspired by ranking functions, we check whether each state can

be a pivot state as formulated in Definition 3.5.

Definition 3.5. Let σm ∈ S be a state inA = (S, I , F ,T). The state
σm is a pivot state if we can find a function f (X) such that:

• θσm =⇒ f (X) ≥ c , where c is a constant value.
• f (X) will be monotonic decreasing after some execution of σm .

• f (X) is decreasing or not changed in any other state σ ∈ S .

Intuitively, a pivot state can be executed for a finite number of

iterations. Thus, we can break the SCC by removing the transitions

which end with a pivot state, as formulated in Definition 3.6.

Definition 3.6. Let A = (S, I , F ,T) be a PDAx with all states

marked as terminating. IfA has an SCC, denoted by C, we sayA is

safe to be reduced as Aσm = (S, I , F ,T ′) if we can find a pivot state

σm ∈ C, where the transition T ′ is defined as T ′ = T \ {(σ1,σ2) ∈
T | (σ2 = σm ∧ σ1 ∈ C)}.

Lemma 2. Let A be a cyclic PDAx such that A has one SCC and

all states of A are marked as terminating. If A can be safely reduced

by a pivot state σm and Aσm is acyclic, then A terminates.

Notice that if the reduced PDAx is acyclic, then we can conclude

that the loop terminates. If the reduced PDAx is still cyclic, we

recursively apply Lemma 2 (if possible) on the reduced PDAx until

the reduced PDAx is acyclic. Otherwise, we mark the termination

of the loop as unknown.
Example 3.7. In Fig. 1(c), we can infer that n−x is monotonically

decreasing in σ1, n − x > 0, and n − x does not change in σ2. Hence
σ1 is a pivot state, and it is terminating after removing the transition

(σ2,σ1). In Fig. 2(c), from z > y ≥ 1 and z decreases in σ2, we can
first find one pivot state σ2. After removing (σ1,σ2) from the SCC,

it is a cyclic PDAx and the cycle in the new PDAx is (σ1,σ3). In the

cycle, from x − − ∧ y = y + x , we know y will decrease eventually.

Then we find another pivot state σ3. Finally, the PDAx becomes

acyclic and we prove it can terminate.

3.5.2 Proving Nontermination. To prove the nontermination of

a cyclic-PDAx , which contains the nonterminating or unknown

states, we unroll the SCC for several times to refine the unknown

state and check whether any nonterminating state can be reached.

To make the checking efficient, we only traverse each cycle once

(the number of unrolling can be adjusted). If we cannot find the

reachable nonterminating state after a certain number of iterations

of the cycle, then we conclude the loop is unknown.

4 IMPLEMENTATION AND EVALUATION

We implemented Loopster based on LLVM 3.7 [35] and the SMT

solver Z3 [24]. The input is a loop program in C language, which is

compiled into LLVM IR. We use the slicing technique [42] to reduce

irrelevant paths in the constructed control flow graph.

The goal of our evaluation is to demonstrate (1) the effectiveness

and performance improvement of our static approach by compar-

ing with the state-of-the-art tools on the loops in a benchmark

(Section 4.1 and 4.2) and (2) the effectiveness and scalability of our

static approach on the loops in real-world projects (Section 4.3).

Note that we use wall time in the experimental results.

4.1 Experimental Results on Loop Benchmarks

To evaluate the performance of Loopster, we selected 69 difficult

loop programs from the termination-crafted benchmark and 32 pro-

grams with numeric nested loops from the termination category

in Competition on Software Verification 2016 (SV-COMP 16) [1].

The termination-crafted benchmark consists of 85 non-trivial pro-

grams, and 70 of them contain loops. We used the 70 programs in

the experiments, where 38 programs are known to be termination

and 31 programs are known to be non-termination. One program

Collatz_unknown-termination.c is known to be unknown and we

omit this case for avoiding ambiguity. For the 32 nested loops, 27 of

them are terminating, and 5 of them are nonterminating. All these

programs are designed to be simplified programs which do not need

slicing. Hence, slicing does not affect the fairness of the comparison.

We compared Loopster against three termination analysis tools.

AProVE and UAutomizer respectively won the first and second

prize for the termination category in SV-COMP 16 [1]. T2 is an

advanced verification tool, which has much better performance and

effectiveness than other tools or configurations (e.g., ARMC [44],

Size-change/MCNP [16], and KITTeL [25]), as empirically demon-

strated in [12]. Thus, the selected three tools represent the state

of the art. Specifically, AProve and UAutomizer we used are the

provided versions for SV-COMP 16 and T2 is the version 2016. We

ran all the tools with the timeout being 900 seconds.

Table 1 reports the results of these tools on the benchmarks. The

second column reports the numbers of terminating (T) and nonter-

minating (NT) loop programs in unnested and nested benchmarks;

CR represents the number of programs that can be correctly ana-

lyzed, CT represents the time overhead for the correctly analyzed

programs, and TT represents the time overhead for all the programs

(including those that time out). For Loopster, CTL represents the

number of programs which used the temporal-logic prover.

From Table 1, we can see that Loopster can correctly handle

93 (92.08%) programs (including 61 (92.85%) terminating programs

and 32 (88.89%) nonterminating programs) in 7.76 seconds. For the

other tools, AProVE can correctly handle 84 (83.17%) programs in

11964.95 seconds; UAutomizer can correctly handle 92 (90.10%) pro-

grams in 2246.62 seconds; and T2 can correctly handle 80 (79.21%)

programs in 1620.19 seconds. This indicates that the time overhead

of these three tools is very expensive (some programs may time

out); and the performance improvement of Loopster over these

tools is dramatic. Note that even only considering the time over-

head of the correctly analyzed programs (ignoring the programs

that time out), Loopster is still much more efficient: it took 7.36

seconds for 93 programs; but AProVE took 174.30 seconds for 84

programs, UAutomizer took 315.18 seconds for 92 programs, and

T2 took 249.09 seconds for 80 programs.

For the monotonicity analysis in Loopster, 89 (88.12%) programs

can be handled by our extended static technique; and 12 programs

90

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu and X. Li

Table 1: Experimental Results on the Benchmark

Program
Loopster AProVE UAutomizer T2

CR CT(s) TT (s) CTL CR CT (s) TT (s) CR CT (s) TT (s) CR CT (s) TT (s)

Unnested
T (38) 35 3.74 4.03 4 32 94.06 3739.13 34 137.09 1104.93 25 80.16 1439.76
NT (31) 28 1.48 1.51 4 21 30.20 7274.47 27 56.40 120.00 23 150.28 161.78

Nested
T (27) 26 1.76 1.79 4 26 41.42 942.73 26 105.17 1005.17 27 14.93 14.93
NT (5) 4 0.38 0.43 0 5 8.62 8.62 5 16.52 16.52 5 3.72 3.72

Total (101) 93 7.36 7.76 12 84 174.30 11964.95 92 315.18 2246.62 80 249.09 1620.19

Table 2: Detailed Results of Comparison

Program Loopster AP. UA. T2

93 programs
√

78 85 75

McCarthy91_Iteration_true-termination.c Cycle
√ √ √

NO_03_false-termination.c Cycle
√ √ √

TelAviv-Amir-Minimum_true-termination.c Cycle × √ ×
Piecewise_true-termination.c Cycle

√ √ ×
LogAG_true-termination.c Mon

√ √ √
NonTermination2_false-termination.c Mon

√ √ ×
Division_false-termination.c Mon

√ √ √
LexIndexValue-Pointer_false-valid-deref.c MEM-N × × √

cannot be handled, and thus the prover is used for their path termi-

nation analysis. It indicates that the monotonicity can be success-

fully detected in most programs, and it is a useful property that can

be used for loop termination analysis. The average time used with

prover and monotonicity are similar (<0.1s) in the benchmarks.

Further, we provide a detailed analysis of how often different

analysismethods in our approach are needed to prove (non)termination

for the benchmark. For the 93 handled programs, 36 (39%) programs

can be proved with Theorem 1 and 2 after we construct the PDAx .

27 (29%) programs contain the unknown states in the constructed

PDAx , and we first perform refinement analysis and then conclude

the result with Theorem 1 and 2. 30 (32%) programs contain cycles

in the constructed PDAx , and thus we perform the PDAx reduction

analysis. The results show that the refinement and cycle reduction

are very important and effective to prove loop termination.

In summary, Loopster can handle more programs correctly with

much less time overhead (20×+ performance improvement even

if only considering those correctly analyzed programs), which

shows the effectiveness and performance improvement of Loop-

ster over the state of the art. The biggest advantage of Loopster

owes to our static analysis, while other tools need expensive time

overhead to infer and validate ranking functions on demand.

4.2 Detailed Comparison with State-of-the-Art

To discuss the advantages and disadvantages of Loopster over the

ranking function-based approaches, we give the detailed results of

the programs that can/cannot be handled by Loopster but cannot/-

can be handled by AProVE, UAutomizer and T2 in Table 2.

The first row indicates that, among the 93 programs that Loopster

can handled, AProVE, UAutomizer and T2 can respectively handle

78, 85 and 75. After analyzing the programs that cannot be handle

by other tools, we summarize our advantages as follows.

• Using Monotonicity. Monotonicity [39] is a common and use-

ful property in the loop iteration. By using the monotonicity,

we can often conclude termination or nontermination quickly.

For example, all the other three tools failed to handle the pro-

gram Hanoi_plus_false-termination.c, but Loopster proved its

nontermination in about 0.04 seconds. Specifically, Loopster can

compute a nonterminating sufficient condition after analyzing

the monotonicity of x . In this program, the monotonicity of x ,y
and z belong to cyclic monotonicity, and Loopster computes the

nonterminating sufficient condition as x0 > 0 ∧ y0 > 0 ∧ z0 > 0.

• Considering the Precondition. We can handle programs whose

termination depends on the precondition of the loop while the

other tools may fail. For example, all the other three tools failed

to handle Gothenburg_v2_true-termination.c as its result depends

on the precondition a == b + 1 ∧ x < 0. However, our refine-

ment analysis refines the termination status of each state by

considering the precondition.

• Reducing Complexity. With our divide-and-conquer strategy (i.e.,

the termination analysis in each path, and then the overall termi-

nation of the loop), we can reduce the complexity when proving

the termination of some programs that need complex ranking

functions. For example, proving the termination of Pure3Phase_true-

termination.c needs a 3-phase ranking function, and T2 spent

45 seconds and UAutomizer timed out. Proving the termination

of aaron3_true-termination.c needs a multi-dimensional rank-

ing function, and UAutomizer spent 17 seconds and AProVE

timed out. Instead, Loopster correctly handled them in less than

one second without computing complex ranking function.

On the other hand, there are eight programs that Loopster failed

to handle correctly, as shown in Table 2. The second column reports

the failure reasons, including 1) the cycle cannot be reduced (marked

as Cycle), 2) the monotonicity cannot be detected (marked as Mon),

and 3) the nontermination of the program is caused by a memory

vulnerability which interferes the monotonicity (marked as MEM-

N). Hence, the main disadvantages of our approach are as follows.

• Monotonicity cannot be detected. In such cases, we cannot com-

pute the (non)terminating sufficient condition, and thus the

refinement may fail. For example, for NonTermination2_false-

termination.c, we cannot compute the nonterminating sufficient

condition as the monotonicity of x/oldx cannot be detected.

• The cycle in a cyclic-PDAx may not be reduced. In such cases,

we cannot 1) prove the termination, or 2) detect the nontermi-

nation that is caused by the cycle. For example, all the paths

in NO_03_false-termination.c are terminating, but Loopster re-

turns unknown as we cannot find the pivot state to reduce the

cyclic-PDAx for proving its termination.

In summary, Loopster and the ranking function-based ap-

proaches are complementary to each other. For the loops that

AProVE, UAutomizer and T2 cannot handle, Loopster can be

used by them to reduce the complexity and improve the effi-

ciency for inferring complex ranking functions. For the loops

we cannot handle, we can extend Loopster to provide advanced

monotonicity analysis based on ranking functions.

91

Loopster: Static Loop Termination Analysis ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Table 3: Experimental Results on Real Projects

Project Loops Sliced Handled Time (s) NT

gmp 1545 376 (24%) 1188 (77%) 13.07 13

libxml 3847 2218 (58%) 1081 (28%) 42.73 8

httpd 1428 803 (56%) 386 (27%) 35.57 2

Total 6820 3397 (50%) 2655 (39%) 91.37 23

4.3 Experimental Results on Real Projects

To evaluate the effectiveness and scalability of our static approach,

we ran Loopster on the loops in three open source real-world

projects, including the arithmetic library gmp-6.0.0, the XML C

parser and toolkit libxml2-2.9.3, and the Apache HTTP Server

project httpd-2.4.18. We extracted the loops in these projects by

llvm loop pass [4]. The precondition of each loop is determined by

the initialization of the variables before the loop. If the initial value

depends on the computation before the loop, we assume that it is

nondeterministic, which may cause inaccurate result but does not

affect the soundness of our approach.

Table 3 shows the results of our analysis on these projects.

The column Loops shows the number of extracted loops in each

project. The column Sliced lists the number of loops that can be

sliced by our slicing technique. The columns Handled and Time

give the number of loops we can handle correctly and the time

required for the analysis. The column NT reports the number of

nonterminating loops we identified.

Among the total 6820 loops, 3397 (50%) loops can be sliced to

reduce irrelevant paths and improve the effectiveness and perfor-

mance of our static approach. For example, one program from

httpd-2.4.18 contains more than 10 paths. After slicing, the loop

becomes for(c=0;c<256;++c) and has only one path, making it easy

to analyze its termination. Therefore, slicing is necessary to termi-

nation analysis, especially for complex loops in real-world projects.

On one hand, 2655 (39%) loops can be correctly handled in 91.37

seconds. There are 23 nonterminating loops since we set their pre-

condition to be nondeterministic for simplicity and cause an over-

approximation to their real precondition. For example, in Fig. 5, the

value of chunk_nbits depends on the computation before this loop,

but we set it to be nondeterministic. Thus, the loop is terminating

when chunk_nbits is greater than zero, and nonterminating when

chunk_nbits is less than or equal to zero.

On the other hand, Loopster cannot handle 4165 (61%) loops due

to two main reasons: 1) the loops contain complex data structures

(e.g., arrays, heaps) and function calls, 2) the variables are updated

by complex computation (e.g., bitwise calculator), which makes

the monotonicity calculation difficult. Actually, the two challenges

are orthogonal to our research and the possible solutions will be

discussed in Section 4.4.

In particular, gmp is an arithmetic library, which has many in-

teger or simple pointer calculation related loops. Thus, Loopster

can handle 77% of the loops. libxml and httpd contain many com-

plex data structures (e.g., XML parser in libxml and HTTP protocol

handling in httpd), and thus we can only handle 27% of the loops.

Hence, except for the challenging loops described above, which

are orthogonal to our approach and also non-trivial to be handled

by the state-of-the-art tools, a large part of the loops in real-world

projects can be analyzed by the static approach efficiently.

in t r b i t p o s =__VERIF IER_nonde t_ in t () ;
in t chunk_nb i t s = __VERIF IER_nonde t_ in t () ;
in t n b i t s = __VERIF IER_nonde t_ in t ()
while (r b i t p o s + chunk_nb i t s <= n b i t s)
r b i t p o s += chunk_nb i t s ;

Figure 5: A Simplified Loop from gmp

We also attempted to compare Loopster with the state-of-the-art

tools on the loops from these real-world projects. However, the

state-of-the-art tools cannot directly work on these real loops with-

out modification. Therefore, we manually modified a set of loop

programs based on the loops in these real-world projects by the

following three steps: 1) remove the simple loops that are trivial to

check as well as the loops that are not supported by Loopster and

the state-of-the-art tools (e.g., loops that contain data structures and

function calls that affect the loop termination), 2) randomly select

10 loops for each project from the remaining loops, and 3) adapt

the selected loops by putting the loops in a main function, adding

initialization for the variables in the loops and simplifying complex

statements and function dependencies that are not relevant to loop

termination to make them executable. These modified programs

can be found in [5], as a benchmark for future research on loop ter-

mination analysis. Notice that, we compared Loopster with AProVE

and UAutomizer but not T2 because llvm2KITTeL [3] failed to con-

vert most of the real-world loops into T2’s input format. Instead,

we ran the tool 2LS [2] (verion 0.3.0) since it has been empirically

demonstrated that 2LS can check larger programs with thousands

of lines of code [14]. Here we set the timeout to 300 seconds.

Table 4 shows the comparison results on the modified loop pro-

grams. The column CR lists the number of correctly handled pro-

grams, and the column T reports the time overhead. Among the

total 30 modified loop programs (under the columnModified), Loop-

ster can check all of them correctly in 1.39 seconds, while AProVE

can only check 3 programs in 356 seconds, UAutomizer can check

16 programs in 423 seconds, and 2LS can check 13 programs in

332 seconds. The results show that the three tools can only handle

a small part of the loops but need much time since the loops in

real projects contain some complex statements (e.g., array com-

parison and data structure) that are irrelevant to the termination.

Loopster can handle such loops well since we perform a program

slicing to reduce the irrelevant statements. To ensure a fair com-

parison across these tools, we sliced the loop programs manually

and also ran the state-of-the-art tools on the sliced version (under

the column Sliced). With the sliced programs, all the three tools

can check more programs with much less time. Still, Loopster can

handle much more programs with much less time than other tools.

In summary, Loopster can handle some loops (39%) in real-world

projects efficiently, which indicates the effectiveness and scalabil-

ity of our tool on real-world loops. In addition, the state-of-the-art

tools often have limitations to analyze real-world loops, and slic-

ing is a useful preprocessing step for termination analysis.

4.4 Discussion on the Unsupported Loops

Advanced monotonicity analysis can be developed to support the

loops with data structures. For example, by modeling the contents

of heaps or abstracting pointer operators as arithmetic programs.

Slicing can also help to remove the structures that do not affect the

92

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany X. Xie, B. Chen, L. Zou, S. Lin, Y. Liu and X. Li

Table 4: Experimental Results on the Real-world Loop Programs

Project
Loopster

AProVE UAutomizer 2LS
Modified Sliced Modified Sliced Modified Sliced

CR T (s) CR T (s) CR T (s) CR T (s) CR T (s) CR T (s) CR T (s)

gmp (10) 10 0.51 1 19.19 1 13.42 5 257.47 7 125.39 6 9.32 6 4.88

libxml (10) 10 0.50 0 11.99 2 18.09 6 49.11 6 45.37 4 2.74 4 2.21

httpd (10) 10 0.40 3 320.31 6 18.75 5 114.01 7 89.42 3 319.83 6 5.60

Total (30) 30 1.39 3 356.90 9 118.36 16 423.49 20 270.34 13 332.05 16 13.05

termination. In addition, we also plan to investigate the possibility

to integrate the existing techniques for handling heaps [8] and

bitvectors [14, 19, 23]. For multi-thread loop programs, we can try

to translate such programs into sequential programs [6] and then

apply our approach. On the other hand, if we cannot handle the

cycle in a PDAx , the (non)termination of the loop cannot be decided.

In this case, we can perform more specific analysis on the whole

effect of the cycle, e.g., unrolling the cycle for some times to get

more information or computing ranking functions.

5 RELATEDWORK

In this section, we discuss the related work on termination proving

and non-termination proving.

5.1 Termination Proving

Existing research on termination provingmainly focuses on the syn-

thesis of termination arguments. Michael and Henny [40, 41] first

introduce the automatic synthesis of one-dimensional linear rank-

ing functions over linear loops. Then Podelski and Rybalchenko [43]

propose a complete method to synthesize linear ranking functions.

However, it is only used for single-path linear loops.

For complex programs, multi-dimensional and lexicographic

ranking functions are needed [7, 9, 10, 15]. Christophe et al. [15]

propose a complete approach to compute multi-dimensional rank-

ing functions. Bradley et al. [9] generalize the method in [43] to

multi-path loops and synthesize lexicographic linear ranking func-

tions based on inductive linear invariants. Then, this method is

extended with template trees [10]. Ben-Amram and Genaim [7]

study the complexity of the search for ranking functions and prove

it to be a coNP-complete problem. Rybalchenko [45] proves pro-

gram termination and safety by ranking functions, interpolants,

invariants, resource bounds, and recurrence sets with a series of

illustrating examples. Leike and Heizmann [37] introduce some

linear ranking templates, such as multiphase, nested, piecewise,

parallel and lexicographical ranking templates.

In general, the main difficulties of termination proving based on

ranking functions are two-fold. First, the search for efficient ranking

functions is non-trivial. Lexicographic ranking functions are needed

for complex programs, while linear ranking functions can be only

used in certain types of loops (e.g., [40, 43]). Unfortunately, it is diffi-

cult and expensive to find lexicographic ranking functions [22]. For

some programs such as non-termination loops, the search may even

not terminate. Second, the validity of the ranking functions may be

expensive [22]. The validity of constraint-based ranking functions

often depends on invariants that must be strong enough [12], or an

iterative approach [20]. Thus, such techniques are often expensive,

especially for complex multi-path loops.

To mitigate the difficulty in constraint-based synthesis for lexi-

cographic ranking functions, several techniques [20, 22, 32, 36] are

proposed based on Ramsey’s theorem. The basic idea is to find a set

of simple linear ranking functions rather than finding non-trivial

lexicographic ranking functions [22]. However, the validity of the

termination argument is still difficult.

Compared with the above techniques, our static approach avoids

searching ranking functions. Hence, Loopster is much faster than

ranking function-based techniques, as shown in the evaluation.

The limitation is that Loopster fails when monotonicity cannot be

detected or some SCC cannot be reduced by the static analysis.

Besides, several advances have been made to support division

and modulo arithmetic [11], bitvectors [14, 19, 23] and heaps [8],

which are not yet supported in Loopster.

5.2 Nontermination Proving

The approaches based on ranking function usually cannot decting

nontermination. Several techniques [6, 13, 27, 28, 33, 46] have been

proposed to prove non-termination. Gupta et al. [27] propose to

generate all possible lassos by executing the program until some

control location is re-visited, then check whether each lasso is

feasible by template-based constraint solving. Invel [46] proves

non-termination by the combination of theorem proving and in-

variant generation. TREX [28] and T2 [13] check non-termination

by searching and refining an under-approximation of the loop

that can make the loop never terminate. CppInv [33] proves non-

termination with a MAX-SMT-based invariant generation. Atig et

al. [6] propose to detect non-termination in multi-threaded pro-

grams by a systematic translation to sequential programs.

Compared with the above techniques, Loopster reduces the non-

terminating proving to the reachability problem. The disadvantage

is that we currently consider the nonterminating path, the nonter-

minating SCC is not considered yet, which is our future work.

6 CONCLUSION

In this paper, we have proposed a novel approach for loop ter-

mination analysis based on path termination analysis and path

dependency reasoning. We implemented the approach in Loop-

ster and demonstrated the capability of Loopster on a competition

benchmark and three real-world projects. The results have demon-

strated the effectiveness, performance and scalability of Loopster

over the state-of-the-art tools. In the future, we plan to extend

Loopster by supporting recursive programs and complex structures,

and handling more loops with unsupported SCC.

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation,

Singapore under its National Cybersecurity R&D Program (Award

No. NRF2014NCR-NCR001-30), the project M4081588.020.500000,

and the National Science Foundation of China (No. 61572349 and

61272106).

93

Loopster: Static Loop Termination Analysis ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

REFERENCES
[1] 2016. Competition on Software Verification 2016. http://sv-comp.sosy-lab.org/

2016. (2016).
[2] 2017. 2LS for Program Analysis. http://www.cprover.org/wiki/doku.php?id=2ls_

for_program_analysis. (2017).
[3] 2017. llvm2kittel. (2017). https://github.com/s-falke/llvm2kittel.
[4] 2017. LLVM’s Analysis and Transform Passes. http://llvm.org/docs/Passes.html.

(2017).
[5] 2017. Loopster. https://sites.google.com/site/looptermination. (2017).
[6] Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash Lal. 2012.

Detecting Fair Non-termination in Multithreaded Programs. In CAV. 210–226.
[7] Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions for Linear-

Constraint Loops. J. ACM 61, 4 (2014), 26:1–26:55.
[8] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. 2006. Au-

tomatic Termination Proofs for Programs with Shape-shifting Heaps. In CAV.
386–400.

[9] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear ranking with
reachability. In CAV. 491–504.

[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. The polyranking
principle. In ICALP. 1349–1361.

[11] Aaron R. Bradley, ZoharManna, and Henny B. Sipma. 2005. Termination Analysis
of Integer Linear Loops. In CONCUR 2005 - Concurrency Theory. 488–502.

[12] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. 2013. Better termination
proving through cooperation. In CAV. 413–429.

[13] Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter O’Hearn.
2014. Proving nontermination via safety. In TACAS. 156–171.

[14] Hong-Yi Chen, Daniel Kroening, Peter Schrammel, and Bjoern Wachter. 2015.
Synthesising Interprocedural Bit-Precise Termination Proofs. In ASE. 53–64.

[15] Alias Christophe, Darte Alain, Feautrier Paul, and Gonnord Laure. 2010. Multi-
dimensional Rankings, Program Termination, and Complexity Bounds of Flow-
chart Programs. In SAS. 117–133.

[16] Michael Codish, Igor Gonopolskiy, Amir M. Ben-Amram, Carsten Fuhs, and
Jürgen Giesl. 2011. SAT-Based Termination Analysis Using Monotonicity Con-
straints over the Integers. CoRR (2011).

[17] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and
Moshe Y. Vardi. 2007. Proving That Programs Eventually Do Something Good.
In POPL. 265–276.

[18] Byron Cook, Eric Koskinen, and Moshe Vardi. 2011. Temporal property verifica-
tion as a program analysis task. In CAV. 333–348.

[19] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger.
2010. Ranking Function Synthesis for Bit-vector Relations. In TACAS. 236–250.

[20] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination
Proofs for Systems Code. In PLDI. 415–426.

[21] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Proving program
termination (Review article). In Communications of the ACM. 88–98.

[22] Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. lexicographic
termination proving. In TACAS. 47–61.

[23] Cristina David, Daniel Kroening, and Matt Lewis. 2015. Unrestricted Termination
and Non-termination Arguments for Bit-Vector Programs. In ESOP. 183–204.

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
TACAS. 337–340.

[25] Stephan Falke, Deepak Kapur, and Carsten Sinz. 2011. Termination analysis of C
programs using compiler intermediate languages. Technical Report. 41–50 pages.

[26] Sumit Gulwani and Florian Zuleger. 2010. The Reachability-Bound Problem. In
PLDI. 292–304.

[27] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko,
and Ru-Gang Xu. 2008. Proving Non-termination. In POPL. 147–158.

[28] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. 2010.
Alternation for Termination. In SAS. 304–319.

[29] Matthias Heizmann, Daniel Dietsch, Marius Greitschus, Jan Leike, Betim Musa,
Claus Schatzle, and Andreas Podelski. 2016. Ultimate Automizer with Two-track
Proofs (Competition Contribution). In TACAS.

[30] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM (1969), 576–580.

[31] Eric Koskinen. 2012. Temporal verification of programs. Ph.D. Dissertation.
University of Cambridge.

[32] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph M. Win-
tersteiger. 2010. Termination analysis with compositional transition invariants.
In CAV. 89–103.

[33] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodríguez-Carbonell,
and Albert Rubio. 2014. Proving Non-termination Using Max-SMT. In CAV.
779–796.

[34] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio.
2013. Proving termination of imperative programs using Max-SMT. In FMCAD.
218–225.

[35] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO. 75–88.

[36] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-change
Principle for Program Termination. In POPL. 81–92.

[37] Jan Leike and Matthias Heizmann. 2014. Ranking Templates for Linear Loops.
In TACAS. 172–186.

[38] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. 2009. A
Fast and Precise Static Loop Analysis based on Abstract. In CGO. 136–146.

[39] Spezialetti Madalene and Gupta Rajiv. 1995. Loop Monotonic Statements. IEEE
Trans. Softw. Eng. 21, 6 (1995), 497–505.

[40] Colón Michael and Sipma Henny. 2001. Synthesis of Linear Ranking Functions.
In TACAS. 67–81.

[41] Colón Michael and Sipma Henny. 2002. Practical Methods for Proving Program
Termination. In CAV. 442–454.

[42] Karl J. Ottenstein and Linda M. Ottenstein. 1984. The Program Dependence
Graph in a Software Development Environment. In SDE. 177–184.

[43] Andreas Podelski and Andrey Rybalchenko. 2004. A complete method for the
synthesis of linear ranking functions. In VMCAI. 239–251.

[44] Andreas Podelski and Andrey Rybalchenko. 2007. ARMC: the logical choice for
software model checking with abstraction refinement. In PADL. 245–259.

[45] Andrey Rybalchenko. 2010. Constraint Solving for Program Verification: Theory
and Practice by Example. In CAV. 57–71.

[46] Helga Velroyen and Philipp Rümmer. 2008. Non-termination Checking for
Imperative Programs. In TAP. 154–170.

[47] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus:
Computing Disjunctive Loop Summary via Path Dependency Analysis. In FSE.
61–72.

94

	Loopster: Static loop termination analysis
	Citation
	Author

	Loopster: Static Loop Termination Analysis

