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COMMENTARIES

Avoiding Bias in the Search for Implicit Bias

Wilson Cyrus-Laia, Warren Tierneya, Christilene du Plessisb, My Nguyenb, Michael Schaererb, Elena Giulia
Clementec, and Eric Luis Uhlmanna

aINSEAD, Singapore; bLee Kong Chian School of Business, Singapore Management University, Singapore; cSwedish House of Finance,
Stockholm School of Economics, Stockholm, Sweden

To revitalize the study of unconscious bias, Gawronski,
Ledgerwood, and Eastwick (this issue) propose a paradigm
shift away from implicit measures of intergroup attitudes
and beliefs. Specifically, researchers should capture discrim-
inatory biases and demonstrate that participants are unaware
of the influence of social category cues on their judgments
and actions. Individual differences in scores on implicit
measures will be useful to predict and better understand
implicitly prejudiced behaviors, but the latter should be the
collective focus of researchers interested in unconscious
biases against social groups.

We welcome Gawronski et al.’s (this issue) proposal and
seek to build on their insights. We begin by summarizing
recent empirical challenges to the implicit measurement
approach, which has for the last quarter century focused heav-
ily on capturing individual differences and examining their
potential antecedents and consequences. In our view,
Gawronski et al. (this issue) underestimate the problems the
subfield of implicit bias research is currently facing; the need
for a paradigm shift in focus and approach is truly urgent.

Although we strongly agree with their basic thesis, we also
stress the importance of avoiding various forms of potential
bias in the search for implicit bias. First, research in this area
should leverage open science innovations such as pre-registra-
tion of competing predictions to allow for intellectually and
ideologically dissonant conclusions of equal treatment and
“reverse” discrimination against members of historically privi-
leged groups. Second, in assessing awareness of bias, research-
ers should avoid equating unconsciousness with the null
hypothesis that evidence of awareness will not emerge, and
instead seek positive evidence that the behavioral bias is
implicit in nature. Finally, to avoid underestimating the per-
vasiveness of intergroup bias, scientists should continue to
develop and attempt to validate implicit measures of attitudes
and beliefs, which may tap latent prejudices expressed in only
a small subset of overt actions.

Empirical Challenges to the Implicit
Measurement Paradigm

Implicit and indirect measures such as the Implicit
Association Test (Greenwald, McGhee, & Schwartz, 1998),

evaluative priming (Fazio, Jackson, Dunton, & Williams,
1995), the Affect Misattribution Procedure (Payne, Cheng,
Govorun, & Stewart, 2005), and others aim to assess individ-
ual differences in intergroup prejudice and stereotypes (for
reviews, see Gawronski, De Houwer, & Sherman, 2020; Fazio
& Olson, 2003; Uhlmann et al., 2012). Such attitudes and
beliefs, most often captured as automatic associations, are
posited by many scholars to guide judgments and behaviors
outside of awareness (e.g., Banaji, Lemm, & Carpenter, 2001;
Devine, Forscher, Austin, & Cox, 2012; Greenwald & Krieger,
2006; Kang, 2005; Kihlstrom, 2004; cf. Greenwald & Lai,
2020). However, the relationship between scores on implicit
measures and relevant outcomes should, at least according to
some theories, be moderated by the motivation and ability to
engage in effortful correction (Fazio, 1990; Gawronski &
Bodenhausen, 2006; cf. Greenwald & Banaji, 2017).

In our view, the once thriving research program on
implicit measures of social cognition has lost significant
momentum over the last decade due to a set of empirical
challenges, a number of which are noted by Gawronski et al.
(this issue). Perhaps most prominent is progressively less
impressive evidence of predictive validity, an apparent
decline effect (Schooler, 2011) that could be due to improve-
ments in research practices (Motyl et al., 2017; Nelson,
Simmons, & Simonsohn, 2018) as well as intellectual alle-
giance bias (Berman & Reich, 2010) in some earlier investi-
gations and empirical reviews. Bakker, van Dijk, and
Wicherts (2012) report evidence of publication bias in early
race IAT predictive validity studies. The most up-to-date
meta-analytic results suggest the correlation between indi-
vidual differences in automatic associations with social
groups and relevant judgments and behaviors is positive but
weak (r ¼ .10, or 1% of the variance in behavioral out-
comes; Kurdi et al., 2019; for earlier meta-analyses, see
Cameron, Brown-Iannuzzi, & Payne, 2012; Greenwald,
Poehlman, Uhlmann, & Banaji, 2009; Oswald, Mitchell,
Blanton, Jaccard, & Tetlock, 2013). Further, the theoretically
expected moderators of the controllability of the behaviour
and its likelihood of being driven by unconscious factors do
not appear to moderate association-behaviour correlations.

Even small implicit discriminatory biases, repeated over
many decisions, could accumulate over time causing large
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inequalities in outcomes between social groups (Greenwald,
Banaji, & Nosek, 2015; Hardy et al., 2022). However, this
cumulative implicit bias thesis requires high levels of bias on
implicit measures (e.g., strong preference for White over
Black on the Implicit Association Test) to translate into
behavioral discrimination against the target group (e.g.,
higher probability of selecting White over Black candidates
for jobs). Yet re-analyses of at least some published labora-
tory studies reveal a pattern of pro-Black bias on the out-
come measure, with high IAT scores predicting less
pro-Black behaviors or equal treatment of Whites and
Blacks (Blanton et al., 2009; Schimmack, 2019). This may
reflect social desirability bias on some laboratory behavioral
measures that leave the individual-differences correlation
between the implicit measure and dependent variable intact.
But even if so, this still means simulations of real-world dis-
parities in treatment cannot be readily grounded in aggre-
gated correlational relationships between implicit measures
and behaviors; they must also take into account the presence
or absence of social category cue effects on outcomes.

Further meta-analytic evidence suggests that the auto-
matic associations tapped by some of the most widely used
implicit measures could be causally inert. Forscher et al.
(2019) examined studies that manipulated scores on implicit
measures (e.g., via an intervention designed to reduce impli-
cit prejudice), and also included behavioral outcomes (e.g.,
seating distance from a Black or White research confeder-
ate). Shifts in associations were unrelated to behavioral
change, and did not mediate causal effects of experimental
interventions on behavior. Additional evidence indicates that
a successful habit-breaking intervention that reduces biased
behavior in the field is not driven by changes in automatic
associations (Forscher, Mitamura, Dix, Cox, & Devine,
2017). Thus, even if weakly correlated with behavioral out-
comes (Kurdi et al., 2019; Oswald et al., 2013), automatic
associations could be a mere cognitive residue of past
actions and experiences rather than a direct contributor to
them (Forscher et al., 2019). The field of implicit social cog-
nition has not sufficiently grappled with the results of this
line of research, which questions the long-assumed causal
role of automatic associations in human actions.

An alternative perspective is provided by the theory of the
bias of crowds (Payne, Vuletich, & Lundberg, 2017), which
posits that implicit measures capture cultural level prejudices
and stereotypes that most effectively predict aggregate (not
individual) level outcomes. Scores on implicit measures are
unstable across time within a given individual (Gawronski,
Morrison, Phills, & Galdi, 2017), yet reliable across time
within communities (Hehman, Calanchini, Flake, & Leitner,
2019; Payne et al., 2017). A regional history of slavery predicts
anti-Black bias on the IAT (Payne, Vuletich, & Brown-
Iannuzzi, 2019), and aggregated IAT scores in turn correlate
with the use of lethal force by police against Black Americans
within a given geography (Hehman, Flake, & Calanchini,
2018). Higher reliabilities and macro-level correlations with
variables such as Black vs. White mortality rates, racial dispar-
ities in infant health, racially charged internet searches,
county-level racial disparities in poverty rates, and national

gender gaps in math and science (Hehman et al., 2019;
Leitner, Hehman, Ayduk, & Mendoza-Denton, 2016; Nosek
et al., 2009; Orchard & Price, 2017; Rae, Newheiser, & Olson,
2015) could result in whole or in part from the reduction of
measurement error via aggregation (Connor & Evers, 2020).
They may also be partly due to implicit measures tapping into
broader cultural biases with limited implications for individ-
ual-level judgments and actions (Arkes & Tetlock, 2004;
Mitchell & Tetlock, 2006; Olson & Fazio, 2004; Uhlmann,
Brescoll, & Paluck, 2006; cf. Nosek & Hansen, 2008).

The above suggests that after a quarter century, the
implicit measurement approach to implicit bias has suffered
from significant paradigm degeneration (Lakatos, 1970). To
maintain itself, auxiliary assumptions such as multiple mod-
erators in conjunction lead to respectable predictive validity
correlations (Kurdi et al., 2019), social desirability bias on
laboratory behavioral measures (Tierney et al., 2020), the
cumulative consequences of minute discriminatory biases
(Greenwald et al., 2015; Hardy et al., 2022), mismatched and
suboptimal behavioral outcomes in studies examining caus-
ality (Gawronski et al., this issue), and aggregate-level crowd
biases (Payne et al., 2017) must be invoked. Some or even
all these defenses may hold empirically. And yet this heavily
modified theoretical structure would still represent a major
retreat from earlier models in which pervasive individual-
level implicit prejudices and stereotypes constitute major
causal contributors to societal inequities. Thus, we believe
that Gawronski et al. (this issue) underestimate the serious-
ness of the empirical challenges to the “bias on implicit
measures” (BIM) paradigm, as well as the need for major
reforms including (but not limited to) those they advocate.

Avoiding Bias in Assessing the Prevalence and
Direction of Group-Based Discrimination

In searching for “unconscious biases that people do not
know they have” (Gawronski et al., this issue, p. 143) it
makes sense to first identify biased and discriminatory
behavior, and then probe to see if people are aware of being
influenced by social category cues. At the same time, espe-
cially given criticisms that the implicit bias program is itself
biased toward a left-leaning narrative of pervasive prejudice
(Arkes & Tetlock, 2004; Mitchell & Tetlock, 2006), investiga-
tors should build in methodological safeguards that allow us
to conclude a lack of behavioral bias or even “reverse” dis-
crimination (i.e., bias against members of high status and
positively stereotyped groups).

We can accomplish this by defining our sample space in
advance, constraining our analytic flexibility, and pre-com-
mitting to publish the research regardless of the outcome.
Are we sampling representatively from the domains and
outcomes where disparate treatment might emerge? Or
specifically selecting contexts where discrimination is more
likely, knowingly creating a selection bias? If so, this should
be made transparent from the outset. The recent renaissance
of methodological reforms in psychology and other sciences
(Nelson et al., 2018) offers tools that should limit political
bias and further facilitate robust and generalizable
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conclusions. These include pre-registration of analysis plans
(Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit,
2012), registered reports (Chambers, Dienes, McIntosh,
Rotshtein, & Willmes, 2015; Scheel, Schijen, & Lakens,
2021), direct replications (Simons, 2014), multiverse and
crowd analyses (Steegen, Tuerlinckx, Gelman, & Vanpaemel,
2016; Schweinsberg et al., 2021; Silberzahn et al., 2018;
Simonsohn, Simmons, & Nelson, 2020), open data to facili-
tate reanalyses (Simonsohn, 2013), forecasting tournaments
(Dreber et al., 2015; Tetlock, Mellers, Rohrbaugh, & Chen,
2014), adversarial collaborations (Clark & Tetlock, 2022;
Mellers, Hertwig, & Kahneman, 2001) and crowdsourcing
data collections across many locations (Klein et al., 2014;
Open Science Collaboration, 2015).

Recently Schaerer et al. (2022) carried out a pre-
registered meta-analysis of 87 field audits of gender discrim-
ination conducted in 26 countries over a 44-year time span.
To optimize the methods and avoid researcher bias, we
employed the innovative red team approach (Lakens, 2020).
In parallel to the “blue team” leading the project, an inde-
pendent “red team” of experts on meta-analysis methods
and gender, as well as a librarian, reviewed all aspects of the
research plan and provided critical feedback. The meta-
analytic results, encompassing 373,706 individual job appli-
cations, indicate a statistically significant decline between
1978 and 2021 in discrimination against female applicants
for stereotypically male-typed and neutral-typed jobs (e.g.,
manager, banker, accountant). In contrast, bias in selection
against male applicants for stereotypically female-typed jobs
(e.g., receptionist, nurse, elementary school teacher)
remained stable across the decades. Although no aggregate
selection bias against female applicants occurred over the
last decade in the nations sampled, we observed very high
heterogeneity of effect sizes across different field studies.
Such variability is consistent with pro-male behavioral biases
in some organizations and contexts, and pro-female behav-
ioral biases in others (see also Kline, Rose, & Walters, 2021).
Contemporary pro-male discrimination likely reflects the
persistence of some explicit and implicit sexist stereotypes
and beliefs (Charlesworth & Banaji, 2022; Eagly, Nater,
Miller, Kaufmann, & Sczesny, 2020; Haines, Deaux, &
Lofaro, 2016). In contrast, preferences for female applicants
for traditionally male jobs (e.g., manager, banker) may be
driven by diversity-and-inclusion goals (Chang, Milkman,
Chugh, & Akinola, 2019; Leslie, Manchester, & Dahm, 2017;
Naumovska, Wernicke, & Zajac, 2020) and resentment of
existing power structures and high-status groups (Reynolds,
Zhu, Aquino, & Strejcek, 2021).

Any discrimination observed in rigorous future studies
could therefore not only be unconscious or conscious
(Gawronski et al., this issue), but either consistent with or
directly contrary to (i.e., in reaction against) traditional soci-
etal stereotypes and prejudices. Social cue-based explicit and
implicit behavioral biases could be pro-male, pro-female, anti-
Black, pro-Black, and so forth (Axt, Ebersole, & Nosek, 2016;
Chang et al., 2019; Leslie et al., 2017; Naumovska et al., 2020;
Quillian, Pager, Hexel, & Midtbøen, 2017; Reynolds et al.,
2020, 2021). Given that most people explicitly endorse equal

treatment as a moral ideal (Reynolds et al., 2021), behavioral
biases favoring members of subordinate groups may often
occur automatically (Glaser & Knowles, 2008; Moskowitz,
Gollwitzer, Wasel, & Schaal, 1999; Moskowitz & Li, 2011)
and even unconsciously (Axt et al., 2016).

To address these important questions more systematic-
ally, Schaerer et al. (2022) called for crowdsourced direct
replications of influential group-based discrimination para-
digms. Two such initiatives focused on gender and racial
bias are currently in their initial stages. Notably, older
experiments on social cue-based discrimination may fail to
emerge in contemporary data collections not only because of
advances in research methods (Nelson et al., 2018) but also
because of changes in the broader society (i.e., cultural evo-
lution, Varnum & Grossmann, 2017). Thus, revisiting influ-
ential experimental demonstrations of discriminatory
behavior represents a critical early step in the search for
implicit bias. For example, consistent with their aversive
racism model of subtle and rationalized implicit prejudice,
Dovidio and Gaertner (2000) observed preferences for
White over Black job applicants only when job qualifications
were ambiguous. In another widely cited investigation,
Gawronski, Geschke, and Banse (2003) demonstrated that
ambiguous behavioral descriptions were interpreted signifi-
cantly more negatively for Turkish targets than for German
targets, and that scores on a German-Turkish attitudes IAT
predicted such biased impressions. Would these main effects
of target race and ethnicity replicate in the 2020s? Would
awareness tests suggest the influence of social cues was
unconscious in nature? And would individual differences in
automatic associations still predict the behavioral biases in
studies such as those by Gawronski et al. (2003), and extend
to further experimental designs such as the Dovidio and
Gaertner (2000) aversive racism in hiring paradigm? Large-
scale replication methods are best positioned to answer these
questions, and to prevent researcher bias toward any specific
answer. New data collections should further engage in con-
ceptual replications (Simons, 2014), optimizing designs
based on expert feedback (Vohs et al., 2021) and adding fur-
ther measures and conditions facilitating competitive theory-
testing (Tierney et al., 2020).

Recent efforts to self-replicate previously published dis-
crimination effects from the present last author and his col-
laborators might (and might not) foreshadow the results of
broader initiatives to come. Gawronski et al. (this issue) cite
Uhlmann and Cohen’s (2005, 2007) investigations of con-
structed criteria and illusions of objectivity in selection deci-
sions, highlighting how such processes may contribute to
implicit behavioral bias (see also Hodson, Dovidio, &
Gaertner, 2002; Norton, Vandello, & Darley, 2004, for similar
results). Tierney et al. (2020) recently conducted a large-
sample self-replication that validated these processes but
inverted the direction of the social cue effect. In a mirror
image of the results from Uhlmann and Cohen (2005, 2007),
participants constructed criteria biased against male candi-
dates for the job of police chief and engaged in greater dis-
crimination against men when led to feel objective.
Individuals who strongly rejected sexism and had more
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experience with research studies were especially likely to select
a woman for a stereotypically male-typed role, consistent with
an inclusion motives and shift in public norms account.

We also recently completed a large-scale crowdsourced
initiative reexamining the relationships between workplace
emotion expression, the gender of person who expresses the
emotion, and how social perceivers evaluate that person.
This follows on experimental studies conducted approxi-
mately two decades ago and published some years later
(Brescoll & Uhlmann, 2008), finding backlash effects against
angry women in terms of their perceived competence as
well as the degree of social status and respect they receive.
Prior work points to the implicit roots of such prescriptive
stereotype effects (Rudman & Glick, 2001). Two recent
multi-national replication studies collected over eleven thou-
sand participants from more than 20 nations who were
assigned to 27 different conceptual replication designs
(Tierney, et al., unpublished manuscript). Overall, we find
that expressing anger increases status by boosting perceived
assertiveness and dominance, and at the same time reduces
status by diminishing competence and likability. The down-
stream consequences of expressing anger vs. sadness or neu-
tral emotion were similar for both female and male targets,
across nations, in adult and student samples, and among
female and male social perceivers. We therefore failed to
replicate the original Brescoll and Uhlmann (2008) findings
of bias against angry women, potentially due to shifts in
norms related to gender in the intervening time period
(Schaerer et al., 2022) and perhaps also cultural changes in
the social signals sent by becoming angry in work settings.

Forecasting data indicate such results are highly unex-
pected to academics. When asked to predict the results of
Tierney et al. (2020) based on the materials and methods
alone, independent scientists were remarkably accurate overall
despite the complex design and interaction tests involved.
The glaring exception was the main effect of target gender,
which the crowd of forecasters predicted in precisely the
wrong direction. Scientists expected the original Uhlmann
and Cohen (2005) pattern of bias against female job candi-
dates to emerge again nearly two decades later, yet the large-
sample replication revealed directly contrary results.
Academic forecasters similarly expected that the original
backlash effect against angry women (Brescoll & Uhlmann,
2008) would replicate, that female targets would be conferred
less status than male targets overall, and that recent field
audits would reveal selection biases against female candidates
for stereotypically male-typed and neutral-typed jobs
(Schaerer et al., 2022; Tierney et al., unpublished manuscript).
Such strong priors could create ideological blind spots for
investigators (Arkes & Tetlock, 2004; Mitchell & Tetlock,
2006), which we argue can be counteracted via open science
best practices.

Avoiding Bias in Attributions of Consciousness vs.
Unconsciousness

Once a discriminatory bias (in either direction) is estab-
lished, the next challenge is to determine whether social

perceivers are aware of the causal influence of the social cat-
egory cue. This returns us to a longstanding controversy in
the literature on unconscious cognition, including subliminal
perception (Draine & Greenwald, 1998; Holender, 1986),
unconscious learning (Eriksen, 1960; Shanks, Malejka, &
Vadillo, 2021), and introspection into mental processes
(Ericsson & Simon, 1980; Nisbett & Wilson, 1977).
Specifically, by what criteria do we distinguish consciousness
from unconsciousness?

Methodologically, the standard approach is to include
measures of conscious awareness toward the end of the
experiment, and if participants fail to report any such aware-
ness conclude that the underlying psychological processes
were unconscious (Bargh & Chartrand, 2000). This creates
the “problem of the null” (Uhlmann, 2014), in that uncon-
sciousness becomes the null hypothesis that significant evi-
dence of awareness will not emerge. This sets a lax criterion
for unconsciousness in that forgetfulness, asking the wrong
probe questions, and measurement error are potentially con-
flated with a lack of awareness (Shanks et al., 2021;
Uhlmann, Pizarro, & Bloom, 2008). In the domain of impli-
cit behavioral bias, self-report measures of awareness are
further compromised by social desirability concerns: deci-
sion makers may be reluctant to openly admit to discrimi-
nating based on race, gender, and other morally charged
target characteristics.

Gawronski et al. (this issue) propose to therefore rely on
experimental paradigms in which decision makers are both
(1) motivated to be unbiased and (2) able to consciously
control their responses. If such conditions can be assured,
any behavioral bias that emerges is likely to be unconscious
in nature. Although it is easy to identify tasks where
responses are at least in principle controllable (e.g., hiring
decisions made without time pressure), ensuring that partici-
pants are genuinely motivated to be unbiased again raises
concerns about socially desirable responding. Participants
could falsely report wanting to treat others equally, and yet
engage in covert discrimination on behavioral measures
where bias can be detected in the aggregate but not at the
level of individual decision makers (see Kuklinski, Cobb, &
Gilens, 1997). Incentivizing more accurate and unbiased
responding, for example with financial payoffs (Axt et al.,
2016), risks equating a manipulation failure with uncon-
sciousness, running once again into the problem of the null.

There exists no perfect awareness criterion, only those
with different costs and benefits and that vary in how liberal
and conservative they are in inferring consciousness and the
lack thereof. Is it the investigators’ goal to provide strong
and conclusive evidence, or weak and initial evidence, of the
implicit nature of the bias? If initial evidence, a robust and
replicable discrimination effect and little to no indication of
awareness on funneled debriefing questions at the end of
the experiment (Bargh & Chartrand, 2000) are sufficient.
But to make a strong claim of implicit behavioral bias,
a more conservative test offering positive evidence of
unconsciousness is needed (Uhlmann, 2014; Uhlmann
et al., 2008).
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Drawing on the literature on prime-to-behavior effects
(Bargh & Chartrand, 1999), one potential tactic is to add an
experimental condition further increasing the salience of the
manipulated variable (for examples see Erb, Bioy, & Hilton,
2002; Martin, Seta, & Crelia, 1990; Moskowitz & Roman,
1992; Moskowitz & Skurnick, 1999; Newman & Uleman,
1990; Strack, Schwarz, Bless, K€ubler, & W€anke, 1993). If the
influence of the social category cue (e.g., race) is eliminated
or reversed under conditions that promote greater attention
and awareness, this suggests that the discrimination in the
low-cue-salience condition occurred unconsciously. For
example, Dovidio and Gaertner (2000) manipulated candi-
date race with a relatively subtle cue, specifically member-
ship in either the Black Student Union or a historically
majority-White fraternity. If racial category membership
were to be activated more blatantly and repeatedly, the anti-
Black discrimination effect might vanish or reverse even in
the ambiguous qualifications condition. Contrarily, if deci-
sion makers are consciously biased against a target group,
discrimination should remain constant or even increase
when group membership is made more cognitively access-
ible. A related approach is to manipulate whether targets are
evaluated jointly or separately (Bohnet, van Geen, &
Bazerman, 2016). Behavioral discrimination in a between-
subjects comparison, which is eliminated or reversed in a
within-subjects comparison, suggests the former occurs out-
side of awareness or is at the very least counteracted by
enhanced awareness and detectability (Bohnet et al., 2016;
Kuklinski et al., 1997).

Similar inferences can be drawn from a significant inter-
action between scores on a funneled debriefing (Bargh &
Chartrand, 2000) and the manipulation of target group
membership. If participants who express no suspicion of
being influenced by the experimental manipulation exhibit
the hypothesized effect, but suspicious participants do not,
the causal influence among the non-suspicious was probably
unconscious (Lombardi, Higgins, & Bargh, 1987; Newman &
Uleman, 1990). Such an interaction pattern also validates
the awareness measure, eliminating at least one counter-
explanation for apparent unconsciousness of being influ-
enced. If responses on the awareness probe reliably
moderate the effects of the experimental manipulation, the
probe questions are sufficiently relevant, sensitive, and
immediate to capture awareness.

As Bargh and Hassin (2022) caution, we should not make
conscious awareness the default conclusion either. In most
future experiments on behavioral discrimination, neither a
high standard for inferring consciousness nor unconscious-
ness of the influence of the social category cue will be met.
Another pragmatic concern is that rigorously measuring and
manipulating awareness is much easier in the controlled
environs of the laboratory, and yet behavioral discrimination
against low status and negatively stereotyped groups is far
more common in field settings. Contrast the laboratory
results of Axt et al. (2016) who observe a replicable pro-
Black bias in judgments that meets meaningful criteria for
unconsciousness (Bargh & Chartrand, 2000; Gawronski
et al., this issue), with the Quillian et al. (2017) meta-

analysis of field audits revealing systematic anti-Black bias in
actual selection decisions (see also Kline et al., 2021). The
question then arises what the limited ability to make strong
claims of unconsciousness in field settings, or readily cap-
ture real-world discriminatory tendencies in the laboratory,
means for a science of implicit bias that has shifted its focus
to behavior.

Implicit Measures Could Tap Latent Bias and
Behavioral Measures Expressed Bias

We agree with Gawronski et al. (this issue) that bias on
implicit measures (BIM) is a potential indicator of implicit
behavioral bias (IB) and a tool with which to better under-
stand it. At the same time, considering the results of our
recent open science investigations of discrimination
(Schaerer et al., 2022; Tierney et al., 2020), we believe bias
on implicit measures is important to focus on in-and-of
itself. Human behaviors are multiply determined, such as by
both culturally socialized stereotypes (Banaji et al., 2001;
Charlesworth & Banaji, 2022) and contravening forces such
as diversity and inclusion motives (Crandall & Eshleman,
2003; Leslie et al., 2017; Fazio, 1990; Reynolds et al., 2021).
Because of this, behavioral measures are unlikely to ever
represent process-pure reflections of implicit bias (Conrey,
Sherman, Gawronski, Hugenberg, & Groom, 2005; Jacoby,
1991; Mayerl, Alexandrowicz, & Gula, 2019). It is therefore
valuable to distinguish between a latent bias in the individ-
ual and expressed bias in behavioral outcomes (see Crandall
& Eshleman, 2003). Implicit and indirect measures aim to
tap a latent underlying bias that may manifest itself in only
a small subset of overt actions that are simultaneously
driven by other factors as well.

A key piece of Gawronski et al.’s (this issue) case against
a focus on BIM is that implicit measures do not appropri-
ately capture attitudes that reside entirely outside of con-
scious awareness. Strong within-subject correlations of .50
or even higher between self-perceived automatic preferences
and IAT scores (Hahn, Judd, Hirsh, & Blair, 2014) indicate
the relevant associations are automatic, unintentional, effi-
cient, and effortless, yet not unconscious (see also
Cunningham, Nezlek, & Banaji, 2004; Cunningham,
Preacher, & Banaji et al., 2001; Ranganath, Smith, & Nosek,
2008; Smith & Nosek, 2011). To a substantial degree, people
can sense internal spontaneous reactions, including those
that depart from their deliberatively endorsed evaluations
(Gawronski & Bodenhausen, 2006; Fazio & Olson, 2003).
But if the case for the implicit nature of automatic associa-
tions was overstated, the case against the validity of such
associations as measures of attitudes and beliefs was over-
stated as well. In other words, strong individual-level corres-
pondence between self-perceived automatic preferences and
implicit measures provide evidence that the latter are valid
indicators of such preferences. This is true even absent size-
able correlations with behaviors (Kurdi et al., 2019). It may
be the nature of contemporary prejudice for many well-
intentioned individuals to internally experience biased
thoughts and inferences they are at least partially aware of

COMMENTARIES 207



and must constantly correct for to avoid mistreating others
(Devine, Monteith, Zuwerink, & Elliot, 1991).

Implicit measures are also valuable in assessing general
evaluative and trait associations (e.g., between the categories
“women” and “family,” “men” and “career,” or “African-
American” and “Bad”), in contrast to behavioral measures
which are specific to a situation and outcome (Ajzen, 1985;
Ajzen & Fishbein, 1977). That evaluators in a number of
developed countries no longer appear to engage in system-
atic biases in selection against female job applicants for
many jobs (Schaerer et al., 2022) does not mean they are
not biased and sexist against women in other ways, for
example when it comes to promotions (Goldin, Kerr,
Olivetti, & Barth, 2017), wage allocations (Auspurg, Hinz, &
Sauer, 2017; Bar-Haim, Chauvel, Gornick, & Hartung, 2018;
Joshi, Son, & Roh, 2015), career penalties for parenthood
(Dias, Chance, & Buchanan, 2020), sexual harassment
(Quick & McFadyen, 2017), or even just their spontaneous
thoughts and feelings (Devine et al., 1991). Focusing too
much on specific behavioral outcomes, and not enough on
the general attitudes, beliefs, and associations individuals
hold in their minds, could introduce a different type of bias
by systematically underestimating the pervasiveness of cul-
turally socialized prejudices.

At the same time, the extent to which latent automatic
biases correlate with micro-level judgments and behaviors
remains important and not yet fully resolved empirical ques-
tion. It will be incredibly valuable to conduct pre-registered
replications of key implicit measure behavioral validation
studies—carefully selecting experimental paradigms, con-
texts, and populations where implicit bias should theoretic-
ally emerge and implicit measures ought to exhibit
predictive validity. Facilitating this, Kurdi et al. (2019) iden-
tify studies characterized by much stronger relations
between automatic associations (as measured by the IAT)
and criterion measures. These include studies that used dif-
ference score measures of behavior, measured polarized
attributes, focused primarily on automatic associations and
behavior, and where the predictor and outcome measures
were carefully matched. Drawing on Gawronski et al. (this
issue), we propose adding the replication selection criteria of
overall bias against the minority or underrepresented group
on the behavioral outcome measure (e.g., Gawronski et al.,
2003). There is no need to choose—we can (re)examine
both implicitly biased behavior (IB) and bias on implicit
measures (BIM) together.

A longitudinal approach administering implicit, explicit,
and behavioral measures at multiple time points could shed
fresh light on the causality issue raised by Forscher et al.
(2019). Even if the incremental predictive validity of auto-
matic associations beyond explicit measures is modest
(Greenwald et al., 2009; Kurdi et al., 2019; Oswald et al.,
2013), there could be indirect effects of automatic associa-
tions on behavioral bias via changes in explicit attitudes
(Gawronski & Bodenhausen, 2006; Smith, Ratliff, & Nosek,
2012). For example, cultural associations with Black
Americans conditioned earlier may lay part of the founda-
tion for more complex explicit beliefs and ideologies that

exert both conscious and unconscious influences on discrim-
ination (see Galdi, Arcuri, & Gawronski, 2008, for an analo-
gous result in the domain of political voting). Alternatively,
mental associations could reflect the automatization of expli-
cit attitudes, potentially mediating their unconscious influen-
ces on behavioral biases. If the cognitive residue hypothesis
(Forscher et al., 2019) holds, automatic associations should
reflect past behaviors and explicitly endorsed attitudes and
fail to independently predict future discrimination above-
and-beyond such variables. Longitudinal work could also
reveal a dynamic interplay between automatic and explicit
attitudes and behaviors, such that these all shape one
another through processes of socialization, automatization,
and rationalization.

Summary and Conclusion

The Gawronski et al. (this issue) target article promises to
revitalize the study of implicit bias via a new collective focus
on how social category cues unconsciously influence dis-
criminatory behavior. Both as researchers and as citizens, we
should be primarily concerned with unfair and immoral dis-
parate treatment of social groups in hiring, policing, and
other high-stakes outcomes. Although this paradigm shift
will be most welcome, we highlight the importance of avoid-
ing bias in the search for implicit bias.

In testing for behavioral discrimination, it will be import-
ant to define the sample space in advance. What are the key
domains in which discrimination might occur? In which of
these contexts is latent implicit bias theoretically expected to
express itself in overt behavior? Emerging best practices of
open science such as pre-registering competing predictions
(Tierney et al., 2020; Wagenmakers et al., 2012), registered
reports (Chambers et al., 2015), red teams (Lakens, 2020),
and adversarial collaborations (Clark & Tetlock, 2022) will
allow us to better evaluate not only discriminatory bias but
also non-bias and “reverse” biases (i.e., instances of better
treatment of members of historically disadvantaged groups).
Only once we confirm the existence of a bias and ascertain
its direction can we probe to see if decision makers are
aware of being influenced by social category cues. In doing
so, we should set a priori criteria for unconsciousness and
consciousness that avoid biasing conclusions in either direc-
tion, or are at least transparent about whether a lax or strict
criterion is being applied. In the long-term, we believe
implicit measures will hold continuing value – not only in
helping to explain (small) slices of the variance in behavioral
discrimination, but also by capturing latent biases that may
or may not find expression in a given judgment or action.
To properly test this latent bias thesis, future investigations
should leverage experimental interventions (Forscher et al.,
2019) and longitudinal designs (Galdi et al., 2008) to assess
whether automatic associations make any causal contribu-
tion to implicit behavioral biases.

If our own recent experiences are any guide, combining a
renewed focus on implicit behavioral bias (Gawronski et al.,
this issue) with the ongoing renaissance in research practices
(Nelson et al., 2018) will produce results that deeply
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challenge our intellectual and ideological commitments. We
may not find what we came looking for.
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