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ABSTRACT
On-demand ride-pooling (e.g., UberPool, GrabShare) services focus
on serving multiple different customer requests using each vehicle,
i.e., an empty or partially filled vehicle can be assigned requests
from different passengers with different origins and destinations.
On the other hand, in Taxi on Demand (ToD) services (e.g., UberX),
one vehicle is assigned to only one request at a time. On-demand
ride pooling is not only beneficial to customers (lower cost), dri-
vers (higher revenue per trip) and aggregation companies (higher
revenue), but is also of crucial importance to the environment as it
reduces the number of vehicles required on the roads.

Since each vehicle has to be matched with a combination of
customer requests, the matching problem in ride pooling is signif-
icantly more challenging. Due to this complexity, most existing
solutions to ride-pooling problem are myopic in that they either
ignore future impact of current matches or the impact of other taxis
in the expected revenue earned by a taxi. In this paper, we build
on an approximate dynamic programming framework to consider
impact of other taxis on the value of a taxi (expected revenue earned
until end of horizon) through a novel hierarchical value decom-
position framework. On a real world city scale taxi data set, we
show a significant improvement of up to 10.7% in requests served
compared to existing best method for on-demand ride pooling.

KEYWORDS
Ride Pooling; Neural Approximate Dynamic Programming; Rein-
forcement Learning; Value Decomposition
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1 INTRODUCTION
Taxi/car on Demand (ToD) services (e.g., UberX, Lyft, Grab) are ser-
vicingmore andmore requests everyday inmostmajor cities around
the world. ToD services not only provide a comfortable means of
transport for customers, but also are good for the environment as
it reduces usage of private vehicles and enables sharing of vehicles
over time (while being used to serve one request at any one point
in time). A further improvement of ToD is on-demand ride pooling
(e.g., UberPool, LyftLine, GrabShare etc.), where vehicles are shared
not only over time but also in space (on the taxi/car). On-demand
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ride pooling reduces the number of vehicles required, thereby re-
ducing emissions and traffic congestion compared to Taxi/car on-
Demand (ToD) services (e.g., UberX, Lyft). This is achieved while
providing benefits to all the stakeholders involved: (a) Individual
passengers have reduced costs due to sharing of space; (b) Drivers
make more money per trip as multiple passengers (or passenger
groups) are present; (c) For the aggregation company (like Uber,
Lyft etc.) more customer requests can be satisfied with the same
number of vehicles.

The underlying model employed to represent on-demand ride-
pooling services is the Ride-Pool Matching Problem (RMP) [1, 2, 6].
In the RMP, the goal is to assign groups of customer requests to
vehicles that can serve them, subject to service constraints (e.g., the
detour delay for a customer cannot bemore than 10minutes) in such
a way that a quality metric is maximised (e.g., number of requests
or revenue). The RMP is equivalent to the ToD problem when
the vehicle capacity (maximum number of simultaneous customer
requests that can be served by a vehicle) is restricted to 1. Our focus
is on solving RMP problems at city scale involving thousands of
locations and multi-capacity (capacity > 1) vehicles.

In ToD, vehicles have to be assigned to at most one request and
hence can be represented as a bipartite matching problem. RMP
on the other hand is significantly more challenging as vehicles
have to be assigned to request combinations thereby requiring
matching on a tripartite graph of requests, trips (combinations of
requests) and vehicles. Some of the early approaches to solving
ride pooling problems have focussed on using optimisation and
planning methods [11, 15, 16]. Such approaches are typically offline
and cannot scale to large number of agents and requests. Most
existing research of relevance in solving RMP problems at city scale
has focused on myopic approaches [1, 3, 6, 8, 18] that take the best
matching decisions for the current time step. Unfortunately, such
approaches do not consider the impact of current assignment on
future matches.

Another research thread of relevance is to employ Reinforcement
Learning (RL) for matching problems [4, 5, 19–21]. It scales well and
considers future impact. However, these approaches are focused
on ToD setting and cannot be extended to RMP due to the need for
matching on a tripartite graph (with request combinations) instead
of a bipartite graph. Recently, there have been approaches [7, 17]
that account for future impact of current matches, by maintaining
a future value (expected reward) for each vehicle. Neural Approxi-
mate Dynamic Programming, NeurADP provides the best results
so far on city scale RMPs and it employs Deep Learning representa-
tions with Approximate Dynamic Programming to calculate future
value of each vehicle if a request is assigned to it. However, the



value decomposition framework employed is oblivious to presence
of other agents.

In this paper, our key contribution is a novel HIerarchical ValuE
decompoSition (HIVES) approach that considers the impact of other
agents and their actions while computing the future value of an
individual vehicle. More importantly, HIVES employs a hierarchi-
cal mixing network to compute joint value from individual vehicle
values. Value decomposition [13, 14] has been the leading approach
to solve cooperative Multi-Agent Reinforcement Learning (MARL)
problems. The key distinctions between HIVES and existing value
decomposition approaches for cooperative MARL problems are two
fold: (i) our focus is on centralized training and centralized execu-
tion problems, as opposed to centralized training and decentralized
execution problems in cooperative MARL; (ii) we have to consider
RMP problems with thousands of agents (vehicles), as opposed to
tens of agents in cooperative MARL. So, scalability requirements
are significantly higher in our case.

We then compareHIVES to NeurADP, the current best solver [17]
for RMP on a benchmark real-world dataset [10]. We show that our
approach outperforms NeurADP across different parameter settings
by up to 10.7%. To provide perspective, in real-world settings of
Taxi/car on demand services, even a 0.5% improvement is considered
a significant one [21].

2 RIDE-POOL MATCHING PROBLEM(RMP)
In RMP, we have a set of vehicles R spread out at different locations
on a road network, G. For each time window, Δ, we collect requests,
U and assign them to different vehicles so as to maximise the
objective J . This maximization problem is constrained by the delay
constraints, D.

Formally, RMP can be formulated as the tuple:

⟨G,U,R,D,Δ,O⟩

G : denotes the underlying graph of the road network where inter-
sections, I are the vertices in the graph and roads connecting
the intersections, E are the edges. Without loss of generality, we
assume that pickups typically happen at intersections (as any
pickup can be matched to a nearby intersection).

U : denotes the set of user requests. U𝑡 is the set of all requests
collected in an epoch 𝑡 , withU = ∪𝑡U𝑡 . Each request 𝑢 𝑗

𝑡 inU𝑡

is represented using the tuple
〈
𝑞
𝑗
𝑡 , 𝑒

𝑗
𝑡 , 𝑡

〉
, where 𝑞 𝑗𝑡 denotes the

start location, 𝑒 𝑗𝑡 denotes the destination, 𝑡 denotes the arrival
time of the request.

R : denotes the set of vehicles or resources. Each vehicle 𝑟 𝑖 in R
is represented using the tuple

〈
𝑐𝑖 , 𝑙𝑖 ,L𝑖

〉
, where 𝑐𝑖 denotes the

capacity of the vehicle, i.e., maximum seats in each vehicle, 𝑙𝑖
denotes the current location of the vehicle, L𝑖 denotes the list of
locations to go for the assigned requests to be satisfied. It is null
if no request is assigned to vehicle 𝑖 .

D : considers two delay constraints. One is the maximum allowed
pick-up delay 𝛿 , i.e., the difference between arrival time of request
and pick-up time of vehicle. Another is the maximum allowed de-
tour delay 𝜆, i.e., the difference between the estimated travel time
from origin to destination in single-passenger taxi and sharing
taxi.

Δ : denotes the length of each time window.
J : denotes the objective. We use J 𝑖,𝑓

𝑡 to denote the value vehicle
𝑖 achieves in epoch 𝑡 on serving request combination 𝑓 . The goal
of RMP is to optimize the objective (e.g., served request/waiting
time) in a specific time horizon T .

3 BACKGROUND: NEURADP FOR SOLVING
RMP

In this section, we describe the Neural Approximate Dynamic Pro-
gramming algorithm [17], the leading approach for solving RMP.

Figure1 provides the overall flow. The process starts from a
predefined road network G and randomized request set U and
agent/vehicle set R. In step (A), we initialize the state by approxi-
mating each agent to its nearest road intersection. The blue dotted
line in the figure denotes the path from the pick up location to the
drop off location of the request. Two triangles denotes the existing
pick up/drop off locations of the vehicle while the black/grey dotted
line denotes their current trajectory. In (B), we map the combina-
tion of requests and agents restricted by constraint D and generate
feasible actions for each vehicle using approach in [1]. In (C), we
score all the feasible actions using individual neural networks and
do the assignment using an Integer Linear Program (ILP) in (D)
according to the scores from (C). In (E), we use the best action
chosen by the ILP to update the neural network based individual
value functions. In (F), the agents move to execute the ride pool
assignment.

Approximate Dynamic Program (ADP) is similar to a Markov
Decision Problem (MDP) with the key difference that the transition
uncertainty is extrinsic to the system and not dependent on the
action. The ADP problem for RMP is formulated using the tuple
⟨𝑆,𝐴, 𝜉,𝑇 ,J⟩, where :
𝑆 : The state of the system is represented as 𝑠𝑡 = (𝑟𝑡 , 𝑢𝑡 ) where 𝑟𝑡

is the state of all vehicles and 𝑢𝑡 contains all the requests waiting
to be served. The state is obtained in Step A of Figure 1.

𝐴 : At each time step there are a large number of requests arriving
to the taxi service provider, however for an individual vehicle
only a small number of such requests are reachable. The feasible
set of request combinations for each vehicle 𝑖 at time 𝑡 , F 𝑖

𝑡 is
computed in Step B of Figure 1:

F 𝑖
𝑡 = {𝑓 𝑖 |𝑓 𝑖 ∈ ∪𝑐

𝑖

𝑐′=1 [U]𝑐
′
,PickUpDelay(𝑓 𝑖 , 𝑖) ≤ 𝛿,

DetourDelay(𝑓 𝑖 , 𝑖) ≤ 𝜆} (1)

𝜉 : denotes the exogenous information – the source of randomness
in the system. This would correspond to the user requests or
demand. 𝜉𝑡 denotes the exogenous information at time 𝑡 .

𝑇 : denotes the transitions of system state. In an ADP, the system
evolution happens as

(𝑠0, 𝑎0, 𝑠𝑎0 , 𝜉1, 𝑠1, 𝑎1, 𝑠
𝑎
1 , · · · , 𝑠𝑡 , 𝑎𝑡 , 𝑠

𝑎
𝑡 , · · · ),

where 𝑠𝑡 denotes the pre-decision state at decision epoch 𝑡 and
𝑠𝑎𝑡 denotes the post-decision state [12]. The transition from state
𝑠𝑡 to 𝑠𝑡+1 depends on the action vector 𝑎𝑡 and the exogenous
information 𝜉𝑡+1. Therefore,

𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝜉𝑡+1)

𝑠𝑎𝑡 = 𝑇𝑎 (𝑠𝑡 , 𝑎𝑡 ); 𝑠𝑡+1 = 𝑇 𝜉 (𝑠𝑎𝑡 , 𝜉𝑡+1)



A.Receive Request B.Generate Feasible Actions C.Score Feasible Actions

D.Assignment based on ILP E.Update Value Function F.Simulate Motion

Figure 1: Outline of NeurADP approach for RMP

It should be noted that 𝑇𝑎 (., .) is deterministic as uncertainty is
extrinsic to the system.

J : denotes the reward function and in RMP, this will be the rev-
enue from a trip.

Let 𝑉 (𝑠𝑡 ) denotes the value of being in state 𝑠𝑡 at decision epoch 𝑡 ,
then using Bellman equation:

𝑉 (𝑠𝑡 ) = max
𝑧𝑡 ∈𝐴𝑡

(J (𝑠𝑡 , 𝑧𝑡 ) + 𝛾E[𝑉 (𝑠𝑡+1) |𝑠𝑡 , 𝑎𝑡 , 𝜉𝑡+1]) (2)

where 𝛾 is the discount factor. Using post-decision state, this ex-
pression breaks down nicely:

𝑉 (𝑠𝑡 ) = max
𝑧𝑡 ∈𝐴𝑡

(J (𝑠𝑡 , 𝑧𝑡 ) + 𝛾𝑉𝑎 (𝑠𝑎𝑡 )) (3)

𝑉𝑎 (𝑠𝑎𝑡 ) = E[𝑉 (𝑠𝑡+1) |𝑠𝑎𝑡 , 𝜉𝑡+1] (4)

The advantage of this two-step value estimation is that the maxi-
mization problem in Equation 3 can be solved using a Integer Linear
Program (ILP) with constraints on joint action space. Joint actions,
𝑧𝑡 ∈ A𝑡 across vehicles have to satisfy matching constraints: (i)
each vehicle, 𝑖 can only be assigned at most one request combina-
tion, 𝑓 ; (ii) at most one vehicle, 𝑖 can be assigned to a request 𝑗 ; and
(iii) a vehicle, 𝑖 can be either assigned or not assigned to a request
combination. Let 𝑧𝑖,𝑓𝑡 denote the decision variable that indicates
whether vehicle 𝑖 takes action 𝑓 (a combination of requests) at

decision epoch 𝑡 . ∑
𝑓 ∈F𝑖

𝑡

𝑧
𝑖,𝑓
𝑡 = 1 ::: ∀𝑖 ∈ 𝑅 (5)∑

𝑖∈R

∑
𝑓 ∈F𝑖

𝑡 ;𝑗 ∈𝑓
𝑧
𝑖,𝑓
𝑡 ≤ 1 ::: ∀𝑗 ∈ 𝑈𝑡 (6)

𝑧
𝑖,𝑓
𝑡 ∈ {0, 1} ::: ∀𝑖, 𝑓 (7)

As for the objective of ILP, the goal is to maximize the over-
all expected reward. The future value, 𝑉𝑎 (𝑠𝑎𝑡 ) is non-linear and
non-linear value functions, unlike their linear counterparts, can-
not be directly integrated into the objective of ILP. One way to
incorporate them is to evaluate the value function for all possi-
ble post-decision states and then add these values as constants.
However, the number of post-decision states is exponential in the
number of resources/vehicles.

To that end, Shah et al. [17] introduced a two-step decomposition
of the joint value function, where the joint value function can be
decomposed into individual values functions,

𝑉𝑎 (𝑠𝑎𝑡 ) =
∑
𝑖

𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )

This allows NeurADP to get around the combinatorial explosion of
the post-decision state of all vehicles.



Thus, the overall ILP is given by:

max
∑
𝑖

∑
𝑓 ∈F𝑖

𝑡

[
𝑜
𝑖,𝑓
𝑡 +𝑉 𝑖,𝑎 (𝑇 𝑖,𝑎 (𝑠𝑖𝑡 , 𝑓 ))

]
· 𝑧𝑖,𝑓𝑡 (8)

Subject to constraints in equations 5, 6 and 7

The individual value function𝑉 𝑖,𝑎 (.) is a neural network that is up-
dated by stepping forward through time using sample realizations
of exogenous information (i.e. demand observed in data) and best
action computed by the ILP. In the objective, 𝑉 𝑖,𝑎 values (Step C
of Figure 1) for all possible 𝑠𝑖,𝑎𝑡 (from the individual value neural
network) and then integrate the overall value function into the
ILP as a linear function over these individual values. This reduces
the number of evaluations of the non-linear value function from
exponential to linear in the number of vehicles.

4 HIERARCHICAL VALUE DECOMPOSITION
(HIVES)

The source of the problems with NeurADP is the following assump-
tion on the joint value function:

𝑉𝑎 (𝑠𝑎𝑡 ) =
∑
𝑖

𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )

First, joint value is obtained by taking a sum of individual values.
Second, 𝑉 𝑖,𝑎 (.) depends only on the state and action of agent 𝑖 and
not on other agents. Our approach, HIVES addresses these issues
by making the following major changes.

(1) We employ a hierarchical mixing neural network that com-
bines individual values to get better estimate of the joint
value.

(2) Individual value neural network takes as input not only state
and action of agent 𝑖 but pre-decision state of neighboring
agents, i.e., 𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 ,∪𝑗 ∈𝑁𝑖

𝑠
𝑗
𝑡 )

4.1 Hierarchical Mixing
First, we focus on providing a mechanism for combining the indi-
vidual values of agents, so that they are able to compute joint value
more accurately. QMix [14] has provided a mixing neural network
in case of cooperative MARL problems, for centralized training and
decentralized execution settings. Given we are interested in the less
restrictive centralized execution settings, we can potentially utilize
a similar mixing network dependent on individual values and joint
state for combining individual values. Figure 2 provides the QMix
network adapted for solving RMP.

The mixing network is a feed-forward neural network that takes
the agent values as input and mixes them monotonically, producing
the values of 𝑉𝑎 (.), as shown in Figure 2. The key implication of
monotonicity in our setting is that:

arg max
𝑎𝑡 ∈𝐴𝑡

𝑉𝑎 (𝑇𝑎 (𝑠𝑡 , 𝑎𝑡 )) =

©«

argmax𝑓 1∈F1
𝑡
𝑉 1,𝑎 (𝑇 1,𝑎 (𝑠1𝑡 , 𝑓 1))

argmax𝑓 2∈F2
𝑡
𝑉 2,𝑎 (𝑇 2,𝑎 (𝑠2𝑡 , 𝑓 2))
.
.
.

.

.

.

ª®®®®®®¬

Figure 2: Hierarchical mixing network structure for solving
RMP

Intuitively, this implies that the best joint action for 𝑉𝑎 (.) will
maximize the individual values, 𝑉 𝑖,𝑎 (.) as well. In other words,

𝜕𝑉𝑎 (𝑠𝑎𝑡 )
𝜕𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )

≥ 0,∀𝑖

It also implies that the weights (but not the biases) of the mixing
neural network are restricted to be non-negative. This allows the
mixing network to approximate any monotonic function arbitrarily
closely.

Unfortunately, such an approach is more relevant in the context
of problems with a few agents. This is because the network has to
learn the contribution of each agent value to the joint value in the
context of the state space, and when the number of agents increases
to thousands, the network is unable to learn the contributions of
individual agents effectively. We were able to verify this experi-
mentally as well. QMix was unable to estimate the joint value any
better than basic addition of individual vehicle values.

Thus, to ensure QMix is able to better estimate joint values, the
challenge is to ensure that a mixing network does not combine
values from a few agents. It is feasible to achieve this by consider-
ing a hierarchical mixing network, where the bottom level mixers
combine values of individual agents belonging to a cluster into
cluster values and the top level mixer combines the cluster values
from different clusters into the overall joint value. Figure 3 provides
the hierarchical mixing network we employ.

The key missing component to operationalize hierarchical mix-
ing is the definition of clusters and which agents go into which
clusters. RMP has two characteristics that make it easier to identify
and cluster agents at any point in time:
• Agents that are nearby spatially are more probable to compete
over the same set of requests and hence would have some level
of dependency.



Figure 3: Hierarchical mixing network for solving RMP

• Agents/vehicles do not have identity, i.e., they are all homoge-
nous.

Due to these characteristics, we can cluster the intersections in
the road network (to capture spatial dependencies) and consider
agents at a time step in an intersection cluster as neighboring
agents. However, it should be noted that the agents in a cluster keep
changing at each time step, as agents move between clusters while
serving requests. Given the homogeneity of agents, it only matters
howmany agents are present and not which specific agents. At time
𝑡 , the value of an agent placed at an intersection belonging to cluster
𝑐𝑘 will be mixed with other agents belonging to the cluster. Figure 3
provides the architecture for this hierarchical decomposition.

After considering neighbours in individual value function, we
input them together with the global environment state into HIVES.
Algorithm 1 denotes howHIVES works after that while Algorithm 2
denotes QMIX operation in each QMIX network in HIVES.

Algorithm 1 HIVES()

1: Input: Individual value functions - {𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )}𝑖≤ |𝑅 | ; Global
environment state - 𝑠𝑎𝑡

2: Initialize:(1) Divide global environment state 𝑠𝑎𝑡 to 𝑗 cluster -
𝑠
𝑐 𝑗 ,𝑎

𝑡 . (2) Classify agents to clusters 𝑗 .
3: for each cluster 𝑗 do
4: for agent 𝑘 in cluster 𝑗 do
5: 𝑉 𝑗,𝑎 (𝑠 𝑗,𝑎𝑡 ) = 𝑄𝑀𝐼𝑋 (𝑉𝑘,𝑎 (𝑠𝑘,𝑎𝑡 ), 𝑠 𝑗,𝑎𝑡 )
6: 𝑉𝑎 (𝑠𝑎𝑡 ) = 𝑄𝑀𝐼𝑋 (𝑉 𝑗,𝑎 (𝑠 𝑗,𝑎𝑡 ), 𝑠𝑎𝑡 )
7: return Joint Value Function 𝑉𝑎 (𝑠𝑎𝑡 )

Algorithm 2 QMIX()
1: Input: Number of input values - 𝑛 ; Value functions –

{𝑉 𝑐𝑘 ,𝑎 (𝑠𝑐𝑘 ,𝑎𝑡 )}𝑘≤𝑛 ; Environment state 𝑠𝑐,𝑎𝑡
2: 𝑄 = [𝑉 𝑐1,𝑎 (𝑠𝑐1,𝑎𝑡 ), ...,𝑉 𝑐𝑛,𝑎 (𝑠𝑐𝑛,𝑎𝑡 ), 𝑠𝑐,𝑎𝑡 ]𝑇
3: 𝑄1 = 𝑤1𝑄𝑇 + 𝑏1
4: 𝑄2 = 𝑅𝑒𝐿𝑢 (𝑄1)
5: 𝑄3 = 𝑤2𝑄𝑇

2 + 𝑏2
6: 𝑄4 = 𝑅𝑒𝐿𝑢 (𝑄3)
7: return Joint Value Function 𝑄4

It should be noted that the since we put together multiple QMix
modules together, we have, ∀𝑠𝑎𝑡 , 𝑠

𝑖,𝑎
𝑡 :

𝜕𝑉𝑎 (𝑠𝑎𝑡 )
𝜕𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )

=
𝜕𝑉𝑎 (𝑠𝑎𝑡 )

𝜕𝑉 𝑐 𝑗 ,𝑎 (𝑠𝑐 𝑗 ,𝑎𝑡 )
·
𝜕𝑉 𝑐 𝑗 ,𝑎 (𝑠𝑐 𝑗 ,𝑎𝑡 )
𝜕𝑉 𝑗𝑘 ,𝑎 (𝑠 𝑗𝑘 ,𝑎𝑡 )

Both higher level and bottom level QMix modules have monotonic-

ity property, so 𝜕𝑉 𝑎 (𝑠𝑎𝑡 )
𝜕𝑉

𝑐 𝑗 ,𝑎 (𝑠𝑐 𝑗 ,𝑎𝑡 )
≥ 0 and 𝜕𝑉

𝑐 𝑗 ,𝑎 (𝑠𝑐 𝑗 ,𝑎𝑡 )
𝜕𝑉 𝑗𝑘 ,𝑎 (𝑠 𝑗𝑘 ,𝑎𝑡 )

≥ 0, therefore:

𝜕𝑉𝑎 (𝑠𝑎𝑡 )
𝜕𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 )

≥ 0

Hence, the action maximizing joint value will maximize individual
values as well with HIVES.

4.2 Neighbourhood based Individual Value
In RMP problems, vehicles are competing for the same demand, so
future value of a vehicle will be dependent not only on its actions
but also on the state of other nearby vehicles. As we demonstrate in



Table 1: Performance Improvement Provided byHIVES over
NeurADP

Variants NeurADP HIVES Percentage
Improvement

Capacity
2 163465 181023 10.741
4 239842 255562 6.554
10 252556 265237 5.021

Vehicles

500 187933 196301 4.453
1000 239842 255562 6.554
1500 297281 304615 2.467
2000 324007 327276 1.009

pickup delay

60 144998 150632 3.886
120 179902 190280 5.769
300 239842 255562 6.554
420 240753 260612 8.248

our experimental results, the independence of future value on other
agents that is assumed in NeurADP can have a significant impact
on overall performance. During the order assignment process, if
there are many neighbours close to a single vehicle, its reward
will be affected as the new arrived requests can be assigned to its
neighbours. Thus, the reward of a given vehicle will be affected by
the pre-decision state of neighbours instead of the post-decision
state. That is to say, we consider 𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 ,∪𝑗 ∈𝑁𝑖

𝑠
𝑗
𝑡 ) instead of just

𝑉 𝑖,𝑎 (𝑠𝑖,𝑎𝑡 ).
While it is possible to consider many neighbours, the training of

individual value network can become quite challenging. To balance
the training performance and complexity, we employ the following
mechanisms to restrict the neighbour set:

• As new requests will only be assigned to empty or partly
filled vehicles, we only consider vehicles with capacity left
as neighbours. While there exist some vehicles with full ca-
pacity which will finish its order in next time step, we also
consider them as the ‘potential’ neighbours in our experi-
ment.

• To search for neighbours of each vehicle, we assume all
vehicles in the same cluster as neighbours with each other
so that for each vehicle we search its cluster first. If the
number of neighbours we set is lower than the number of
neighbours of single vehicle, we greedily choose the closest
vehicles as the set of neighbours.

• We do not consider vehicles which are more than a certain
distance away to be neighbours. This will ensure that we
only consider neighbours who add value.

As we will demonstrate in our experimental results, most of the
performance gains are obtained by considering just a couple of
neighbours.

5 EXPERIMENT
The goal of the experiments is to compare the performance of HIVES
with NeurADP [17]. Setup: The experiment is performed with
publicly available New York Yellow Taxi Dataset (NYYellowTaxi
2016). The experiment setup is similar to the original system[17].
We ignore some locations in the graph without outgoing edges

Figure 4: All Day Results

and only consider areas with most requests’ pick-up and drop-
off locations in it. The final network has 4373 locations and 9540
edges. The capacity 𝑐𝑖 was varied from 2 to 10, the total number
of vehicles was varied from 500 to 2000 and the maximum pickup
delay, 𝛿 from 120 seconds to 420 seconds. Themaximum detour time
𝜆 equals to 2𝛿 . The time window is always set as 60 seconds.The
dataset contains about 300,000 requests each day and about 20
thousand requests during peak hour. We initialize the vehicles with
randomized locations and same capacity. NeurADP model is trained
for 8 weekdays (23 March – 1 April) and we use the average number
of requests served during 4 – 8 April as the test result.

The number of agents in each cluster were set to be not more
than 20, similar to the previous QMix experiments in StarCraft𝐼 𝐼 .
The number of neighbours for step 2 was limited to maximum of
3 while evaluating the impact of neighbourhood based Individual
Value network.

The metric we use to compare the performance in experiments
is the number of served requests (averaged over 3 runs of the algo-
rithms).
Overall Results: We first compared NeurADP with the overall
HIVES algorithm that combines hierarchical mixing and neighbor-
hood based individual value. Table 1 provides the overall results
for different settings of capacity, vehicle and pickup delay. Here are
the key observations:

(1) HIVES outperformed NeurADP consistently across all set-
tings. To provide perspective, even a 0.5%-1% is considered a
significant improvement in city scale taxi on demand prob-
lems [21]. Here, our average improvement over all settings
was 5.56%, maximum of 10.741% and minimum of 1.009%.

(2) As capacity increased from 2 to 10 keeping vehicles constant
at 1000 and pickup delay at 300, the percentage improvement
dropped from 10.741% to 5.021%. This is expected, as there
is more supply available to cater to the same amount of
demand.

(3) When number of vehicles was increased keeping capacity
at 4 and pickup delay at 300, the highest improvement in
service rate came at 1000 vehicles. When number of vehicles
was 2000, the improvement was the least at 1.009%.



HIVES (only Neighborhood based Individual Value)
Variants Number of Neighbours Considered

NeurADP 1 2 3

Capacity
2 163465 179725(9.947%) 179643(9.896%) 179675(9.916%)
4 239842 253432(5.666%) 253710(5.782%) 253752(5.800%)
10 252556 259703(2.830%) 263227(4.225%) 263274(4.244%)

Vehicles
1000 239842 253432(5.666%) 253710(5.782%) 253752(5.800%)
1500 297281 302129(1.631%) 302012(1.591%) 302237(1.667%)
2000 324007 324489(0.149%) 324605(0.185%) 324617(0.188%)

pickup delay
120 179902 187932(4.464%) 188827(4.961%) 188831(4.963%)
300 239842 253432(5.666%) 253710(5.782%) 253752(5.800%)
420 240753 258659(7.437%) 258676(7.445%) 258695(7.452%)

Table 2: Impact of Neighborhood

(4) Contrary to our expectation, as pickup delay was increased
from 60 to 420 seconds, the performance improvement in-
creased from 3.886% to 8.248% with capacity at 4 and number
of vehicles at 1000. We expected that NeurADP can make up
for wrong estimates in a joint value, when there is a larger
pickup delay.

Figure 4 provides the all day result for the smallest case of 500
vehicles, where the improvement is not that substantial. At night
HIVES and NeurADP provide roughly the same performance, so
we focus during the day from 7:00 AM to 12:00 midnight. As can
be seen, HIVES provide a consistent improvement at all points and
not just few surges of better performance.

We have two enhancements in HIVES: (i) hierarchical mixing;
and (ii) neighborhood based individual value. Here, we study the
improvement provided by the two individually.

Ablation Analysis 1: Impact of neighborhood based individ-
ual value: Table 2 provides the impact of only the neighborhood
based individual value network. Here are the key observations:

(1) Most of the improvement obtained by HIVES can be attrib-
uted to this aspect of our algorithm, except in case of 2000
vehicles and capacity 4 with pickup delay of 300.

(2) Considering even one neighbour seems to provide a signifi-
cant improvement in almost all the settings.

(3) Only in the case of capacity 10 and 1000 vehicles, a second
neighbor provided a significant improvement. Considering
a third neighbour was not useful in any case.

Ablation Analysis 2: Impact of hierarchical mixing: Table 3
provides the results for evaluating the impact of only hierarchi-
cal mixing. On average, hierarchical mixing provided a constant
improvement over around 0.67% on all settings. This was not a
substantial improvement, but we believe this is because of vehicles
changing clusters quite often. We leave this investigation for future
work.

Ablation Analysis 3: Impact of combining hierarchical mix-
ing andneighborhood based individual value: We observe that
the sum of improvements provided by each of the enhancements
individually is slightly less than the overall performance of the

HIVES algorithm that puts both the enhancements together. This
is a good outcome that indicates that the two enhancements are
combining together well.

6 CONCLUSION
On-demand ride-pooling has been popular in many areas, such
as taxi sharing, food delivery, goods transportation, ambulance
allocation[9]. This is a challenging problem where combinations
of demand requests have to be considered. Due to the challenging
nature of the problem, existing approaches have either employed
myopic heuristics that do not consider future impact of current
matches or ignore the impact of other agents on the future value of
a vehicle. We develop a HIerarchical ValuE decompoSition (HIVES)
approach that addresses these issues with existing work. Heuristic
approaches typically perform quite well in taxi on demand problems
at city scale and hence even 0.5%-1% improvements in performance
are considered to be substantial. Some details can further be im-
proved in our approach, we will try a 3-level hierarchical network
to do more clustering and add more uncertainty to the system, such
as customers are likely to cancel the order due to different elements
in our future work. Our HIVES approach is able to improve on ex-
isting best method by up to 10.7%, a truly significant improvement
in performance.
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