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AVA: Adversarial Vignetting Attack against Visual Recognition

Binyu Tian1 , Felix Juefei-Xu2 , Qing Guo3∗ , Xiaofei Xie3 , Xiaohong Li1∗ , Yang Liu3

1 College of Intelligence and Computing, Tianjin University, China
2 Alibaba Group, USA

3 Nanyang Technological University, Singapore

Abstract
Vignetting is an inherent imaging phenomenon
within almost all optical systems, showing as a ra-
dial intensity darkening toward the corners of an
image. Since it is a common effect for the photog-
raphy and usually appears as a slight intensity vari-
ation, people usually regard it as a part of a photo
and would not even want to post-process it. Due
to this natural advantage, in this work, we study
the vignetting from a new viewpoint, i.e., adver-
sarial vignetting attack (AVA), which aims to em-
bed intentionally misleading information into the
vignetting and produce a natural adversarial ex-
ample without noise patterns. This example can
fool the state-of-the-art deep convolutional neural
networks (CNNs) but is imperceptible to human.
To this end, we first propose the radial-isotropic
adversarial vignetting attack (RI-AVA) based on
the physical model of vignetting, where the phys-
ical parameters (e.g., illumination factor and fo-
cal length) are tuned through the guidance of tar-
get CNN models. To achieve higher transferability
across different CNNs, we further propose radial-
anisotropic adversarial vignetting attack (RA-AVA)
by allowing the effective regions of vignetting to
be radial-anisotropic and shape-free. Moreover, we
propose the geometry-aware level-set optimization
method to solve the adversarial vignetting regions
and physical parameters jointly. We validate the
proposed methods on three popular datasets, i.e.,
DEV, CIFAR10, and Tiny ImageNet, by attack-
ing four CNNs, e.g., ResNet50, EfficientNet-B0,
DenseNet121, and MobileNet-V2, demonstrating
the advantages of our methods over baseline meth-
ods on both transferability and image quality.

1 Introduction
In photography, image vignetting is a common effect as a re-
sult of camera settings or lens limitations. It shows up as a
gradually darkened transparent ring-shape mask towards the
∗Qing Guo and Xiaohong Li are the corresponding authors ( ts-
ingqguo@ieee.org and xiaohongli@tju.edu.cn).

AVA
ResNet50: Bison ResNet50: Hippo

ResNet50: Alp ResNet50: Lakeside

(a) Real-world Vignetting Examples

(b) Adversarial Vignetting Examples
Figure 1: (a) shows three real vignetting images captured by cam-
eras. (b) shows the adversarial examples produced by our adversar-
ial vignetting attack (AVA), fooling the SOTA CNN ResNet50 with
imperceptible property due to the realistic vignetting effects.

image border with continuous reduction of the image bright-
ness or saturation [Gonzalez et al., 2004]. Vignetting often
naturally occurs during the photo taking process. As cate-
gorized by [Ray, 2002], there are the following three main
causes of vignetting for digital imaging: (1) mechanical vi-
gnetting, (2) optical vignetting, and (3) natural vignetting.
Both mechanical vignetting and optical vignetting are some-
how caused by the blockage of light. For example, the me-
chanical vignetting is caused by light emanated from off-axis
scene being partially blocked by external objects such as lens
hoods, and the optical vignetting is usually caused by the mul-
tiple element lens setting where the effective lens opening for
off-axis incident light can be reduced. On the other hand,
naturally vignetting is not due to light blockage, but rather
by the law of illumination falloff where the light falloff is
proportional to the 4-th power of the cosine of the angle at
which the light particles hit the digital sensor. Sometimes, vi-
gnetting can also be applied on the digital image as an artistic
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post-processing step to draw people’s attention to the center
portion of the photograph as depicted in Fig. 1(a).

Therefore, image vignetting can be capitalized to ideally
hide adversarial attack information in a stealthy way for its
ubiquity and naturalness in digital imaging. In this work,
we propose a novel and stealthy attack method called the
adversarial vignetting attack (AVA) that aims at embedding
intentionally misleading information into the vignetting and
producing a natural adversarial example without noise pat-
terns, as depicted in Fig. 1(b). By first mathematically and
physically model the image vignetting effect, we have pro-
posed the radial-isotropic adversarial vignetting attack (RI-
AVA) and the physical parameters such as the illumination
factors and the focal length are tuned through the guidance of
the target CNN models under attack. Next, by further allow-
ing the effective regions of vignetting to be radial-anisotropic
and shape-free, our proposed radial-anisotropic adversarial
vignetting attack (RA-AVA) can achieve much higher trans-
ferability across different CNN models. Moreover, we have
proposed the level-set-based optimization method, that is
geometry-aware, to solve the adversarial vignetting regions
and physical parameters jointly.

Through extensive experiments, we have validated the
effectiveness of the proposed methods on three popular
datasets, i.e., DEV [Google, 2017], CIFAR10 [Krizhevsky
and Hinton, 2009], and Tiny ImageNet [Stanford, 2017],
by attacking four CNNs, e.g., ResNet50 [He et al., 2016],
EfficientNet-B0 [Tan and Le, 2019], DenseNet121 [Huang
et al., 2017], and MobileNet-V2 [Sandler et al., 2018]. We
have successfully demonstrated the advantages of our meth-
ods over strong baseline methods especially on transerferbil-
ity and image quality. To the best of our knowledge, this is the
very first attempt to formulate stealthy adversarial attack by
means of image vignetting and showcase both the feasibility
and the effectiveness through extensive experiments.

2 Related Work

Adversarial noise attacks. Adversarial noise attacks aim
to fool DNNs by adding imperceptible perturbations to the
images. One of the most popular attack methods, i.e., fast
gradient sign method (FGSM) [Goodfellow et al., 2014], in-
volves only one back propagation step in the process of calcu-
lating the gradient of cost function, enabling simple and fast
adversarial example generation. [Kurakin et al., 2016] pro-
poses an improved version of FGSM, known as basic iteration
method (BIM), which heuristically search for examples that
are most likely to fool the classifier. [Dong et al., 2018] pro-
poses a broad class of momentum-based iterative algorithms
to boost adversarial attacks. By integrating the momentum
term into the iterative process for attacks, it can stabilize up-
date directions and escape from poor local maxima during the
iterations. [Dong et al., 2019] further proposes a translation-
invariant attack method to generate more transferable exam-
ples against the defense models. Adversarial noise attack will
generate patterns that do not exist in reality, and our method
is an early method of applying patterns that may be generated
in natural optical systems to attacks.

Other adversarial attacks. In addition to traditional ad-
versarial noise attacks, there are some methods that focus on
sparse or real-life patterns. [Croce and Hein, 2019] proposes
a new attack method to generate adversarial examples aiming
at minimizing the l0-distance to the original image. It allows
pixels to change only in region of high variation and avoiding
changes along axis-aligned edges, resulting in almost non-
perceivable adversarial examples. [Wong et al., 2019] pro-
poses a new threat model for adversarial attacks based on the
Wasserstein distance. It can successfully attack image classi-
fication models, bringing traditional CIFAR10 models down
to 3% accuracy within a Wasserstein ball with radius 0.1.
[Bhattad et al., 2019] introduces “unrestricted” perturbations
that manipulate semantically meaningful image-based visual
descriptors (e.g., color and texture) to generate effective and
photorealistic adversarial examples. [Guo et al., 2020b] pro-
poses an adversarial attack method that can generate visually
natural motion-blurred adversarial examples. Along similar
lines, non-additive noise based adversarial attacks that focus
on producing realistic degradation-like adversarial patterns
have emerged in several recent studies, such as adversarial
rain [Zhai et al., 2020] and haze [Gao et al., 2021], adversar-
ial exposure for medical analysis [Cheng et al., 2020b] and
co-saliency detection problems [Gao et al., 2020], adversar-
ial bias field in medial imaging [Tian et al., 2020], as well as
adversarial denoising [Cheng et al., 2020a] and face morph-
ing [Wang et al., 2020]. These methods apply patterns that
may be produced in reality such as color and texture to at-
tack, but ignore the patterns that are generated naturally in
the optical systems, which are also vitally important.

Vignetting correction methods. Research into vignetting
correction has a long history. The Kang-Weiss model [Kang
and Weiss, 2000] is established to simulate the vignetting ef-
fect. It proves that it is possible to calibrate a camera using
just a flat, textureless Lambertian surface and constant illumi-
nation. [Zheng et al., 2008] proposes a method for robustly
determining the vignetting function in order to remove the
vignetting given only a single image. [Goldman, 2010] fur-
ther proposes a method to remove the vignetting from the im-
ages without resolving ambiguities or the previously known
scale and gamma ambiguities. These works on correcting
the vignetting effect provides a basis for us to model the vi-
gnetting effect. Inspired by these work, we will capitalize the
vignetting effect as a means of an adversarial attack.

3 Adversarial Vignetting Attack (AVA)
Vignetting effect is related to numerous factors, e.g., angle-
variant light across camera sensor, intrinsic lens character-
istics, and physical occlusions. There are several works
studying how to model the vignetting including empirical-
based [Goldman, 2010; Yu, 2004] and physical-based meth-
ods [Asada et al., 1996; Kang and Weiss, 2000]. In partic-
ular, Kang and Weiss [Kang and Weiss, 2000] proposes a
physical-based method that models vignetting via physically
meaningful parameters (e.g., off-axis illumination, light path
obstruction, tilt effects), allowing better understanding of the
influence from real-world environments (e.g., camera setups
or physical occlusion) to the final results. In this section, we
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G

Figure 2: (a) shows the whole process of RA-AVA. (b) shows the 3D
surface of the initialized G. The red line is the curve splitting the
image to 2 parts, i.e., Ωin and Ωout.

start from the physical model of vignetting effects [Kang and
Weiss, 2000] and propose two adversarial vignetting attacks
based on this model with an level-set-based optimization.

3.1 Physical Model of Vignetting
Given a clean image I, we aim to simulate the vignetting im-
age1 via Î = I � V where V is a matrix having the same
size with I and represents the vignetting effects, and � de-
notes the pixel-wise multiplication. We model the vignetting
from three aspects, i.e., off-axis illumination factor A, geo-
metric factor G, and a tilt factor T [Kang and Weiss, 2000].
All three factors are pixel-wise and have the same size with
the original image. Then, the vignetting effects can be also
represented as

V = A�G�T. (1)

Intuitively, A describes the phenomenon of the illumina-
tion in the image that is darkened with distance away from
the image center [Kang and Weiss, 2000], defined as

A =
1(

1 + (R
f )2
)2 , (2)

where f is the effective focal length of the camera, and R is
a fixed matrix and denotes the distance of each pixel to the
principal point, i.e., the image center with the coordinate as
(u, v) = (0, 0) if the lens distortion does not exist.

The matrix G represents the vignetting caused by the off-
axis angle projection from the scene to the image plane [Tsai,
1987], and is approximated by

G = 1− αR, (3)

where α is a scalar deciding the geometry vignetting degree.
The matrix T defines the effects of camera tilting to image

plane and the i-th element is formulated as

T[i] = cos τ
(

1 +
tan τ

f
(ui sinχ− vi cosχ)2

)
, (4)

where χ and τ are tilt-related parameters determining the
camera pose w.r.t. a scene/object. Please find more details
in [Kang and Weiss, 2000].

With this physical model, we aim to study the effects of
vignetting from the viewpoint of adversarial attack, e.g., how
to actively tune the vignetting-related parameters, i.e., f , α,
τ , and χ, to let the simulated vignetting images to fool the
1Throughout the paper, the term ‘vignetting image’ refers to a pho-
tographic image that exhibits the vignetting effect to some degree.

state-of-the-art CNNs easily? To this end, we represent the
vignetting process as a simple function, i.e.,

Î = vig(I,P) = I�V, (5)

where P = {f−1, α, τ, χ}. Then, we propose the radial-
isotropic adversarial vignetting attack (RI-AVA).

3.2 Radial-Isotropic AVA
Given a clean image I and a pre-trained CNN φ, we aim to
tune the P = [f−1, α, τ, χ] under a norm ball constraint for
each parameter.

arg max
P

J(φ(vig(I,P), y) + λf |f |2 − λα|α|2,

subject to ∀ρ ∈ P , |ρ|p ≤ ερ, (6)

where the first term J(·) is the image classification loss un-
der the supervision of the annotation label y, the second and
third terms encourage the focal length to be larger and ge-
ometry coefficient α to be smaller. As a result, the clean
image I would not be changed significantly. Besides, ερ de-
notes the ball bound under Lp for the parameter ρ. Here, we
use the infinite norm. We can optimize the objective function
by gradient descent-based methods, that is, we calculate the
gradient of the loss function with respect to all parameters
in P and update them to realize the gradient-based attacks
like existing adversarial noise attacks [Kurakin et al., 2017;
Guo et al., 2020b].

Since this method equally tunes the pixels on the same ra-
dius to the image center, we name it as radial-isotropic ad-
versarial vignetting attack (RI-AVA). Nevertheless, by tun-
ing only four scalar physical-related parameters to realize
attack, this method can study the robustness of CNN to re-
alistic vignetting effects but it is hard to realize intentional
attacks with high attack success rate and high transferability
across different CNNs. To fill this gap, we further propose the
radial-anisotropic adversarial vignetting attack (RA-AVA) by
extending the geometry vignetting G, allowing the each ele-
ment of G to be independently tuned.

3.3 Radial-Anisotropic AVA
To enable more flexible vignetting effects, we allow G to be
tuned independently in an element-wise way and redefine the
objective function in Eq. (6) to jointly optimize G and P .
Specifically, for the matrix G, we split it into two parts with
a closed curve C centered at the principal point. On the one
hand, we desire the region of G inside C (i.e., Ωin) to be sim-
ilar with the physical function defined by Eq. (3), making the
simulated image look naturally. In contrast, we also want all
elements of G to be flexibly tuned according to the adver-
sarial classification loss, leading to high attack success rate.
In particular, the vignetting effects let pixels in the outside
region darker than the ones in the Ωin. Hence, embedding
adversarial information into this region is less risky to be per-
ceived. Overall, we define a new objective function to tune
G, C, and P jointly

arg max
G,P,C

J(φ(vig(I,P), y)− λg
∑
i∈Ωin

|(G[i]−G0[i])|2

+ λf |f |2 − λα|α|2, subject to ∀ρ ∈ P, |ρ|p ≤ ερ, (7)
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Figure 3: Influences of hyper-parameters. (a) and (b) shows success
rate w.r.t. different upper bounds of f (i.e., εf ) and α (i.e., εα) under
the RI-AVA method. We also show the success rate w.r.t. different
λg and λf in (c) and (d), respectively, under the RA-AVA method.

where G0 = 1 − αR, and the region Ωin is determined by
the curve C. Note that, we tune C along its inward normal
direction to let shape and area of Ωout be changed according
to the adversarial classification loss (i.e., J(·)). For example,
when the Ωout becomes larger and then less pixels (i.e., Ωin)
are constrained by the second term of Eq. (7), we have more
flexibility to tune the pixels in the image to reach high attack
success rate. We can solve Eq. (7) by regarding it as a curve
evolution problem [Kass et al., 1988] since the curve C is an
optimization variable. Nevertheless, this method can hardly
handle topological changes of the moving front, such as split-
ting and merging of C [Kimia et al., 1992]. Inspired by the
works [Guo et al., 2018] for curve optimization, we propose
to regard the G as the level-set function of the curve and solve
Eq. (7) via our geometry-aware level-set optimization.

3.4 Geometry-aware Level-Set Optimization
To optimize Eq. (7), we first initialize the geometry vi-
gnetting, i.e., G = G0 = 1 − αR, which is a distance-
related matrix and we reformulate it as a level-set function
g(ui, vi) = G[i] = 1− α

√
u2
i + v2

i . Intuitively, the function
g(·) takes the coordinates of a position on the image plane as
inputs and outputs a value that decreases as the coordinates
become larger, leading to a 3D surface. With such a func-
tion, we can define the curve C as the z-level-set of g(·), i.e.,
C = {(ui, vi)|z = g(ui, vi)}, that is, C is the cross section
of the 3D surface at level z. Then, we can define the region
inside the curve as Ωin = {(ui, vi)|z < g(ui, vi)}, which
can be reformulated it as the function of g by the Heaviside
function (i.e., H(·)) [Chan and Vese, 2001], that is, we have
Ωin = {(ui, vi)|H(g(ui, vi)) > z} or H(G). Finally, we can
reformulate Eq. (7) as

arg max
G,P

J(φ(vig(I,P), y)− λg‖(G−G0)� H(G)‖22

+ λf |f |2 − λα|α|2, subject to ∀ρ ∈ P , |ρ|p ≤ ερ. (8)
Since the Heaviside function is differentiable we can opti-
mize the objective function via gradient descent. Compared

α=0.5 α=0.7 α=0.9 α=1.0Original
First row:AVA examplesSecond row:Adv. Vignetting

f=1.0 f=0.9 f=0.7 f=0.5Original
First row:AVA examplesSecond row:Adv. Vignetting(a)

(b)
Figure 4: Visualization results of different ball bound for f and α.

with Eq. (7), the proposed new formulation only contains two
terms that should be optimized, i.e., G and P , making the
optimization more easier. In practice, we can calculate the
gradient of G and P w.r.t. to the objective function and use
the signed gradient descent to optimize G and P as is done
in [Kurakin et al., 2017].

3.5 Implementation Details
We show the whole process in Fig. 2(a). Specifically, given a
clean image I and a DNN φ(·), we summarize the workflow
of our attacking algorithm in the following steps: ¶ Initialize
the parameters P = {f−1, α, τ, χ} = {1, 0, 0, 0}, the geom-
etry vignetting matrix G as 1−αR, and the distance matrix R

via R[i] =
√
u2
i + v2

i . · Calculate the illumination-related
matrix A via Eq. (2), and the camera tilting-related matrix T
via Eq (4). ¸ At the t-th iteration, calculate the gradient of
Gt, Pt with respect to the objective function Eq. (8) and ob-
tain ∇Gt and {∇ρt |ρt ∈ Pt}. ¹ Update ∇Gt and Pt with
their own step sizes. º Update t = t + 1 and go to the step
three for further optimization until it reaches the maximum it-
eration or vig(I,P) fools the DNN. In the experimental parts,
we set our hyper-parameters as follows: we set the stepsize of
f, α, τ, χ and ∇Gt

as 0.0125, 0.0125, 0.01, 0.01 and 0.0125,
respectively. We set the number of iterations to be 40 and z
of the level-set method to be 1.0. We set p to be∞, and set
the ε of f−1, α, τ , and χ as 0.5, 0.5, π/6, and π/6. In addi-
tion, we set λf , λg and λα all to be 1. In Section 4, we will
carry out experiments to evaluate the effect of different hyper-
parameters. And we do not choose the hyper-parameters for
the highest success rate when compared with baseline attacks,
but rather set the parameters that can balance the high success
rate and good image quality.

4 Experimental Results
Here, we conduct comprehensive experiments on three pop-
ular datasets to evaluate the effectiveness of our method. We
compare our method with some popular baselines including
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Crafted from ResNet50 EfficientNet DenseNet MobileNet

Succ Rate
& Metrics Succ Rate BRISQUE NIQE Succ Rate BRISQUE NIQE Succ Rate BRISQUE NIQE Succ Rate BRISQUE NIQE

D
E

V

MIFGSM 99.78 20.93 39.42 99.89 19.12 39.38 100.00 21.17 40.19 100.00 22.79 42.19
CW 100.00 17.49 48.36 100.00 17.81 48.36 100.00 17.48 48.53 100.00 17.33 48.51
TIMIFGSM 96.23 18.34 45.86 98.56 18.59 46.15 98.34 18.48 45.60 98.94 18.55 45.99
Wasserstein 14.21 20.91 51.63 32.78 20.44 51.30 16.50 20.67 51.79 13.87 20.02 51.58
cAdv 81.59 18.44 51.48 88.27 18.45 51.38 77.85 18.43 51.46 78.73 18.44 51.36
RI-AVA 9.36 19.78 48.33 14.95 20.06 48.24 13.07 20.10 48.17 20.68 20.32 48.12
RA-AVA 96.77 21.33 46.92 98.34 22.81 47.02 99.22 20.89 46.54 99.18 21.20 46.66

C
IF

A
R

10

MIFGSM 80.78 41.86 42.04 96.67 41.90 42.53 79.03 41.40 41.97 97.87 41.56 42.14
CW 100.00 41.43 41.36 100.00 41.66 41.06 100.00 41.34 41.42 100.00 41.46 41.01
TIMIFGSM 38.80 41.66 40.64 38.64 41.54 40.59 34.82 41.48 40.62 59.77 41.44 40.67
Wasserstein 80.27 45.45 44.47 74.73 44.81 44.09 80.62 43.26 42.05 66.43 43.45 42.87
cAdv 12.78 41.42 40.78 21.24 41.55 40.78 11.88 41.32 40.84 17.28 41.40 40.84
RI-AVA 6.17 40.54 40.28 9.53 39.90 40.34 6.73 40.57 40.28 12.52 39.73 40.36
RA-AVA 35.95 33.56 38.05 74.15 28.29 35.39 45.80 31.48 37.39 84.66 24.82 35.63

Ti
ny

Im
ag

eN
et

MIFGSM 91.16 34.58 55.99 97.09 34.42 56.13 96.65 34.67 56.24 99.64 34.56 56.20
CW 100.00 34.94 56.24 100.00 34.94 56.18 99.98 35.01 56.28 100.00 35.04 56.23
TIMIFGSM 72.83 35.01 56.26 73.96 35.08 56.30 85.73 34.94 56.34 92.09 34.92 56.28
Wasserstein 73.75 32.37 55.65 77.02 33.06 55.81 70.47 32.30 55.62 62.83 33.59 55.88
cAdv 34.18 34.61 56.51 50.65 34.60 56.36 41.94 34.62 56.58 45.30 34.65 56.53
RI-AVA 21.56 34.06 55.53 25.54 34.22 55.76 22.18 33.97 55.60 33.77 33.99 55.87
RA-AVA 69.44 29.33 51.98 90.23 28.96 51.44 76.98 28.95 52.15 96.92 28.87 52.26

Table 1: Comparison results on 3 datasets with 5 attack baselines and our methods. It contains the success rates (%) of whitebox adversarial
attack on four normally trained models: ResNet50, EfficientNet-b0, DenseNet121 and MobileNet-v2. The 1st column displays the whitebox
attack results. The last two columns show the BRISQUE and NIQE score.Original 734

759
RI-AVA (Ours)675

759
RA-AVA (Ours)675

872
C&W 734675

734872
MIFGSM 675

745
TIMIFGSM734675

600
Wasserstein675

872
cAdv 407

680
Figure 5: Adversarial examples generated with different methods. The top right corner shows the predictive label index and the ‘red’ numbers
presents the attack misleads the DNN successfully. RI-AVA, RA-AVA, and cAdv are non-noise-based adversarial attack.

adversarial noise attack methods and other methods. Finally,
we conduct experiments to showcase that our method can ef-
fectively defend against vignetting corrections.

Datasets. We carry out our experiments on three popular
datasets, i.e., DEV [Google, 2017], CIFAR10 [Krizhevsky
and Hinton, 2009], and Tiny ImageNet [Stanford, 2017].

Models. In order to show the effect of our attack method
on different neural network models, we choose four pop-
ular models to attack, i.e., ResNet50 [He et al., 2016],
EfficientNet-B0 [Tan and Le, 2019], DenseNet121 [Huang et
al., 2017], and MobileNet-V2 [Sandler et al., 2018]. We train
these models on the CIFAR10 and Tiny ImageNet dataset.
For DEV dataset, we use the pretrained models.

Metrics. We choose attack success rate and image quality
to evaluate the effectiveness of our method. The image qual-
ity measurement metrics are BRISQUE [Mittal et al., 2012a]

and NIQE [Mittal et al., 2012b]. BRISQUE and NIQE are
two non-reference image quality assessment methods. A high
score for BRISQUE or NIQE indicates poor image quality.
Baseline methods. We compare our method with five
SOTA attack baselines, i.e., momentum iterative fast gradi-
ent sign method (MIFGSM) [Dong et al., 2018], Carlini &
Wagner L2 method (C&WL2) [Carlini and Wagner, 2017],
translation-invariant momentum iterative fast gradient sign
method (TIMIFGSM) [Dong et al., 2019], Wasserstein attack
via projected sinkhorn iterates (Wasserstein) [Wong et al.,
2019] and colorization attack (cAdv) [Bhattad et al., 2019].
Analysis of physical parameters. Focal length and geo-
metric factor are the two important parameters for the vi-
gnetting effect. We evaluate the influence of the two physical
parameters by setting different norm ball constraint for f−1,
α via Eq (6). According to the result in Fig. 3(a) and (b), we
observe that: ¶ Given different ball bound to f and α, the
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success rate of attack will be different. · With the ball bound
of f growing, the success rate decreases. But as ball bound of
α increases, the success rate increases. ¸ From the visualiza-
tion results in Fig. 4, with the value of f decreasing and the
value of α increasing, the vignetting effect becomes more ob-
vious. Therefore, we can conclude that a stronger vignetting
effect can increase the attack success rate.

Analysis of different objective functions. We evaluate the
effect of different energy terms by setting different coefficient
values of energy terms, i.e., λg , λf and λα. From the result
in Fig. 3(c)(d), we can see that: ¶ With the increasing of
λg and λf , the success rate of attack decreases accordingly.
· The restriction on the energy item will reduce the success
rate, indicating that the energy item has certain constraints on
the attack. In addition, we find that the change of λα almost
does not affect the attack success rate, which shows that this
energy item has minimal constraints on the attack.

Comparison with baseline attacks. We evaluate the ef-
fectiveness of our attack with the baseline. Table 1 shows
the quantitative results about the attack success rates and the
image quality. We observe that for every dataset, RA-AVA
reaches higher success rate than RI-AVA, indicating that tun-
able vignetting regions can greatly improve the success rate
of attack. Compared with the noise-based adversarial attack,
we found that our attack achieved lower success rate than
MIFGSM, CW and TIMIFGSM attack. This is in line with
our expectation since the image vignetting has more con-
straints on image perturbation than adding arbitrary noises.
This is also why our method (RA-AVA) could have better im-
age quality than the noise-based attack. We also noticed that
on some models and datasets (e.g., DEV), RA-AVA could still
achieve competitive results in terms of attack success rate
while the image quality is better. Compared with the non-
noise based attack, our method is better than cAdv signifi-
cantly. Furthermore, we also find that our method can achieve
much better transferability, which will be introduced later.

In Fig. 5, we have showcased some examples generated by
baselines and our attack methods. The first column shows the
original images while the following columns list the corre-
sponding adversarial examples. It is clear that our method
could generate high-quality adversarial examples that are
smooth and realistic. However, we could find obvious noises
in the examples generated by the adversarial noise attack
methods, which are difficult to appear in the real world. For
other non-noise attack methods, e.g., cAdv, they allow pat-
terns that may appear in the real world but the change between
the original and the generated image is very perceptible. Our
method does not change the image too much while maintain-
ing the realism in optical system for the vignetting effects.

Comparison on transferability. We then evaluate the
transferability of different attacks. Table 2 shows the quan-
titative transfer attack results of our methods and the baseline
methods. In transfer attack, one attacks the target DNN with
the adversarial examples generated from other models. As
we can see, in most cases, our method achieves much higher
transfer success rate than others while the image quality is
also higher. For example, the attack examples crafted from
ResNet50 on CIFAR10 dataset achieves 18.21%, 19.18%,

Original

Zero-DCE

RA-AVA

Figure 6: The visualization result of examples before attack, after
RA-AVA attack and after Zero-DCE correction.

and 15.33% transfer success rate on EfficientNet, DenseNet,
and MobileNet, with the lowest values of BRISQUE and
NIQE, i.e., 33.56 and 38.05.

AVAs against vignetting corrections. Since our method is
to use the vignetting effect as the attack method, we need to
consider whether the method of light intensity and vignetting
correction can neutralize our attack. For this reason, we use
the Zero-DCE method [Guo et al., 2020a] to adjust the light
intensity. The visualization result is shown in Fig. 6. It can
be seen that the Zero-DCE method has performed a certain
brightness correction on the attacked images. The quantita-
tive results of the accuracy change are shown in Table 3. Af-
ter Zero-DCE correction, the accuracy has a certain improve-
ment, but it is still lower than the original. It shows that the
Zero-DCE method could mitigate the attack on some images
but it is still not effective (e.g., only about 10% improvement),
indicating that our attack method is robust against intensity
and vignetting correction methods.

5 Conclusion
We have successfully embedded stealthy adversarial attack
into the image vignetting effect through a novel adversarial
attack method termed adversarial vignetting attack (AVA).
By first mathematically and physically model the image vi-
gnetting effect, we have proposed the radial-isotropic ad-
versarial vignetting attack (RI-AVA) and tuned the physi-
cal parameters such as the illumination factors and the focal
length through the guidance of the target CNN models un-
der attack. Next, by further allowing the effective regions of
vignetting to be radial-anisotropic and shape-free, our pro-
posed radial-anisotropic adversarial vignetting attack (RA-
AVA) can reach much higher transferability across various
CNN models. Moreover, level-set-based optimization is pro-
posed to jointly solve the adversarial vignetting regions and
physical parameters.

The proposed AVA-enabled adversarial examples can fool
the SOTA CNNs with high success rate while remaining im-
perceptible to human. Through extensive experiments on
three popular datasets and via attacking four SOTA CNNs, we
have demonstrated the effectiveness of the proposed method
over strong baselines. We hope that our study can mark one
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Crafted from ResNet50 EfficientNet DenseNet MobileNet

Attacked model
& Metrics EffNet DenNet MobNet BRISQUE NIQE ResNet DenNet MobNet BRISQUE NIQE ResNet EffNet MobNet BRISQUE NIQE ResNet EffNet DenNet BRISQUE NIQE

D
E

V

MIFGSM 13.29 16.50 12.81 20.93 39.42 13.67 15.95 31.26 19.12 39.38 11.30 9.75 11.40 21.17 40.19 7.97 21.15 10.08 22.79 42.19
CW 0.55 0.78 0.12 17.49 48.36 0.32 1.11 2.00 17.81 48.36 0.11 0.33 0.12 17.48 48.53 0.00 0.33 0.22 17.33 48.51
TIMIFGSM 5.54 9.08 8.81 18.34 45.86 7.64 10.74 15.75 18.59 46.15 5.71 6.53 7.40 18.48 45.60 3.12 9.08 7.42 18.55 45.99
Wasserstein 0.78 1.99 1.53 20.91 51.63 0.65 1.11 1.65 20.44 51.30 0.86 0.66 1.06 20.67 51.79 0.32 0.33 0.44 20.02 51.58
cAdv 28.35 34.33 32.31 18.44 51.48 31.93 36.61 45.77 18.45 51.38 22.39 23.37 27.03 18.43 51.46 25.83 29.24 30.79 18.44 51.36
RI-AVA 3.32 4.10 4.11 19.78 48.33 3.88 5.65 5.76 20.06 48.24 4.41 4.54 5.17 20.10 48.17 5.17 7.31 6.98 20.32 48.12
RA-AVA 20.27 21.59 23.97 21.33 46.92 17.65 20.93 28.91 22.81 47.02 20.02 22.04 23.38 20.89 46.54 16.36 22.48 18.16 21.20 46.66

C
IF

A
R

10

MIFGSM 14.08 13.09 12.46 41.86 42.04 10.26 9.02 17.46 41.90 42.53 13.49 13.40 11.74 41.40 41.97 4.46 9.24 4.23 41.56 42.14
CW 5.01 2.75 5.76 41.43 41.36 1.04 1.11 3.96 41.66 41.06 2.51 4.78 5.19 41.34 41.42 0.54 1.07 0.43 41.46 41.01
TIMIFGSM 5.47 5.63 5.79 41.66 40.64 3.92 3.82 7.13 41.54 40.59 4.61 4.61 4.91 41.48 40.62 2.24 4.05 2.21 41.44 40.67
Wasserstein 8.25 2.65 5.82 45.45 44.47 0.86 0.71 2.55 44.81 44.09 2.34 8.10 5.03 43.26 42.05 0.52 1.25 0.35 43.45 42.87
cAdv 10.92 9.16 13.47 41.42 40.78 11.54 10.98 17.34 41.55 40.78 10.35 10.87 13.27 41.32 40.84 9.28 10.91 8.27 41.40 40.84
RI-AVA 2.61 2.62 2.18 40.54 40.28 2.94 2.93 2.92 39.90 40.34 2.96 2.56 2.26 40.57 40.28 2.73 3.28 2.87 39.73 40.36
RA-AVA 18.21 19.18 15.33 33.56 38.05 25.42 26.55 30.43 28.29 35.39 21.67 21.33 17.96 31.48 37.39 19.26 26.66 19.31 24.82 35.63

Ti
ny

Im
ag

eN
et

MIFGSM 18.71 22.81 17.19 34.58 55.99 13.37 15.48 23.30 34.42 56.13 17.74 18.43 15.73 34.67 56.24 5.10 9.61 5.40 34.56 56.20
CW 5.24 4.90 5.87 34.94 56.24 2.07 2.07 5.83 34.94 56.18 2.48 3.30 3.83 35.01 56.28 0.45 0.90 0.38 35.04 56.23
TIMIFGSM 10.44 15.06 11.76 35.01 56.26 7.66 9.89 14.88 35.08 56.30 10.34 10.22 10.99 34.94 56.34 4.33 6.45 4.97 34.92 56.28
Wasserstein 5.81 4.97 7.75 32.37 55.65 2.13 2.37 5.99 33.06 55.81 2.94 3.84 5.22 32.30 55.62 0.70 0.92 0.63 33.59 55.88
cAdv 28.24 29.53 34.57 34.61 56.51 31.40 32.93 42.37 34.60 56.36 27.04 28.19 34.51 34.62 56.58 25.13 28.12 26.31 34.65 56.53
RI-AVA 7.02 8.10 6.98 34.06 55.53 6.63 6.78 8.87 34.22 55.76 7.87 7.16 6.44 33.97 55.60 6.28 8.44 5.85 33.99 55.87
RA-AVA 30.45 32.42 29.72 29.33 51.98 27.41 28.20 37.61 28.96 51.44 29.49 29.98 29.53 28.95 52.15 19.56 25.68 19.82 28.87 52.26

Table 2: Adversarial comparison results on three datasets with five attack baselines and our methods. It contains the success rates (%)
of transfer adversarial attack on four normally trained models: ResNet50 (ResNet), EfficientNet-b0 (EffNet), DenseNet121 (DenNet), and
MobileNet-v2 (MobNet). The first three columns display the transfer attack results, where we use red, yellow, and blue to mark the first,
second, and third highest success rate. And the last two columns show the BRISQUE score and NIQE score.

ResNet50 EfficientNet DenseNet MobileNet
original 66.06 57.83 65.33 49.40
RA-AVA 19.72 4.47 14.60 0.71
zero-dce 29.40 12.96 24.81 10.24

Table 3: Accuracy of four models on Tiny Imagenet before attack,
after RA-AVA attack and after Zero-DCE correction.

small step towards a fuller understanding of adversarial ro-
bustness of DNNs. In a long run, it can be important to
explore the interplay between the proposed adversarial vi-
gnetting attack and other downstream perception tasks that
are usually mission critical such as robust tracking [Guo et al.,
2020c; Cheng et al., 2021], robust autonomous driving [Li et
al., 2021], and robust DeepFake detection [Qi et al., 2020;
Juefei-Xu et al., 2021], etc.
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