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ABSTRACT
With the widespread adoption of smartphones in our daily life,
mobile games experienced increasing demand over the past years.
Meanwhile, the quality of mobile games has been continuously
drawing more and more attention, which can greatly affect the
player experience. For better quality assurance, general-purpose
testing has been extensively studied for mobile apps. However, due
to the unique characteristic of mobile games, existing mobile testing
techniques may not be directly suitable and applicable. To better
understand the challenges in mobile game testing, in this paper, we
first initiate an early step to conduct an empirical study towards
understanding the challenges and pain points of mobile game test-
ing process at our industrial partner NetEase Games. Specifically,
we first conduct a survey from the mobile test development team at
NetEase Games via both scrum interviews and questionnaires. We
found that accurate and effective GUI widget detection for mobile
games could be the pillar to boost the automation of mobile game
testing and other downstream analysis tasks in practice.

We then continue to perform comparative studies to investigate
the effectiveness of state-of-the-art general-purpose mobile app
GUI widget detection methods in the context of mobile games. To
this end, we also develop a technique to automatically collect GUI
widgets region information of industrial mobile games, which is
equipped with a heuristic-based data cleaning method for quality
refinement of the labeling results. Our evaluation shows that: (1)
Existing GUI widget detection methods for general-purpose mobile
apps cannot perform well on industrial mobile games. (2) Mobile
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game exhibits obvious difference from other general-purpose mo-
bile apps in the perspective GUI widgets. Our further in-depth
analysis reveals high diversity and density characteristics of mobile
game GUI widgets could be the major reasons that post the chal-
lenges for existing methods, which calls for new research methods
and better industry practices. To enable further research along this
line, we construct the very first GUI widget detection benchmark,
specially designed for mobile games, incorporating both our col-
lected dataset and the state-of-the-art widget detection methods for
mobile apps, which could also be the basis for further study of many
downstream quality assurance tasks (e.g., testing and analysis) for
mobile games.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies→ Neural networks.

KEYWORDS
GUI Detection, Game Testing, Deep Learning
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1 INTRODUCTION
Mobile games are continuously gaining popularity with the ad-
vancement of mobile devices over the past decade. According to
medias [11], the global market share of game industry is estimated
to be more than 85 billion dollars annually, a large portion of which
run on mobile devices. Such large potential leads to stiff global
competition among game companies. Being supported with mod-
ern visualization technology and hardware acceleration of mobile
devices, game producers often design mobile games with fabu-
lous and charming visual experiences via graphical user interfaces
(i.e., GUIs), towards attracting more users. Similar to traditional
software, a mobile game can evolve and often be updated even
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more frequently. For example, inside our industrial partner NetEase
Games, one of the largest game companies in the world, a typical
mobile game usually experiences at least 3 version updates per
day for various purposes, e.g. visual/audio feature enhancement,
performance optimization, bug fixing, etc. However, the non-trivial
amount of update changes can inevitably introduce new bugs, that
can greatly affect the player experience upon being uncovered by
users. Thus, quality assurance of mobile games is of great impor-
tance, and systematic testing is often under very tight pressure of
frequent version updates.

Although some techniques have been developed for testing the
mobile applications, ranging from simple random method Monkey,
to more advanced methods such as Stoat [37], Sapienz [26] and
Espresso [15], etc., they can still be limited for automated mobile
game testing due to the unique and highly dynamic characteristics
(e.g., heavy user interactions, difficult task accomplishment). Conse-
quently, industrial mobile games still mainly rely on manual testing
(i.e., playing games) and semi-automatic testing (i.e., manually writ-
ten scripts), which are labor-intensive, inefficient and expensive,
becoming the bottleneck of game testing process for better quality.
To this end, some recent works attempted to apply the machine
learning-based techniques for mobile app testing [17, 42]. Never-
theless, it is still unclear about the challenges and pain points of
industrial mobile game, the understanding of which can be very
helpful for better quality assurance of mobile games.

To bridge this gap, we first conduct a comprehensive survey
inside our industrial partner NetEase Games. In particular, in the
first step, we performed scrum interviews with two testing experts
from the Quality Assurance (QA) department to gain the big picture
to better understand the process of industrial mobile game testing at
NetEase Games. The interview results show that, in NetEase Games,
the mobile game product is usually tested in terms of the usability
and the compatibility, where usability testing aims to detect function
bugs and compatibility testing ensures that the game can be played
smoothly across different devices. Currently, many of these testing
tasks are still mainly completed by human testers. To boost the
efficiency of mobile game testing, developers or testers are also
actively exploring and developing some automated techniques (e.g.,
POCO [19], monkey [18]). Based on our understanding from the
scrum interview, we continue to design a questionnaire to answer
RQ1—What are the challenges and pain points in industrial mobile
game testings? What could be the research opportunities?

Eventually, 50 mobile game testers answered our questionnaire,
based on which we identified two main challenges in mobile game
testing: a) how to precisely detect the clickable GUI widgets of
games especially when the game is deployed on variant end mo-
bile devices, which is of great importance for the following au-
tomated testing and analysis tasks and b) how to achieve high
coverage especially for the large-scale mobile game with complex
logic (e.g., some hard game tasks). As for the second challenge, some
attempts [17, 41, 43] have been made to improve the coverage and
detect bugs. While the detection of GUI widgets (the first challenge)
in mobile games still lacks in-depth investigation, it would be the
focus in the rest of this paper.

It is not until recently themachine learning techniques have been
applied for GUI widgets detection of Android apps. For example,
Liu et al. [24] propose to utilize deep learning models to detect

visual issues in mobile GUIs and locate the regions of them; Chen
et al. [9] propose to combine text-based and non-text-based models
together to improve the overall performance in detecting regions of
GUI widgets. However, these techniques are mainly designed and
evaluated for conventional mobile apps. Due to the highly dynamic
visual effects and interactive nature of game apps, it is still unclear
that to what extent existing techniques can be adapted to be useful
in the context of mobile games.

Therefore, in this paper, we continue to conduct an empirical
study towards understanding the usefulness of existing object de-
tection techniques in detecting GUI widgets of industrial mobile
games. To the best of our knowledge, it still lacks a game GUI
widget detection benchmark of mobile games to enable systematic
study. To further facilitate research along this line, we made large
efforts to construct a mobile game GUI widget detection benchmark.
Specifically, we develop an automatic technique to collect game GUI
dataset (i.e., screenshots and corresponding widget labels). Since
the automatic labelling may introduce inaccurate results, we further
adopt a heuristic-based data cleaning strategy to improve the data
quality. Finally, we create a game GUI dataset that contains a total
of 2,993 GUIs with 38,776 widgets. Then, we integrated state-of-the-
art GUI widget detection methods with our dataset, which together
forming the very first benchmark to enable the research of GUI
widget detection of mobile games.

Based on the constructed benchmark, we performed an empiri-
cal study towards to investigate RQ2: How effective are existing
object detection methods across various mobile applications? Due
to the diversity (i.e., designs) of mobile games, we aim to study how
this difference affects model performance. In other words, can the
detector trained on some game GUIs be generalized on other games
or the general-purpose apps?

Furthermore, we performed in-depth manual analysis to figure
out RQ3: What are the challenges for the detection of GUI widgets
in mobile games?

In summary, the contribution of this paper is as follows:

• We conduct a survey in NetEase Games to investigate the urgent
challenges and pain points for mobile game testing.
• We develop an automated method to collect and label the game
GUI dataset, based on which, we create the GUI widget dataset for
mobile games. We further integrate state-of-the-art mobile GUI
widget detection methods, together forming the first benchmark
specially designed for GUI widget detection research of mobile
games.
• We conduct the empirical study to better understand the cur-
rent status of GUI widget detection of mobile games, to identify
challenges and opportunities. We make our benchmark publicly
available1 to enable reproducible study and facilitate further re-
search on the downstream tasks such as mobile game testings.

2 GUI REGION DETECTION OF MOBILE APPS
In this section, we briefly introduce some recent representative
methods of GUI region detection for mobile apps.

1https://sites.google.com/view/gamedc/
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2.1 GUI Region Detection
Some earlier attempts [27–30, 38] have been made to analyze char-
acteristics (e.g., design style, types of marked tags, usage scenario
classification) of GUIs. In recent works, more attention shifts to
GUI region detection of mobile apps, which could be the basis
for many downstream tasks analysis. For example, Liu et al. [24]
propose to utilize deep learning models to detect visual issues in
GUIs and locate the regions of them; Chen et al. [9] propose to
combine text-based models and non-text-based models together to
improve overall performance in detecting regions of GUI widgets.
However, they are implemented on general-purpose mobile (i.e.,
Android) apps instead of mobile games. It is still unclear to what
extent existing GUI detection methods applied in the context of
mobile games.

2.2 Models for GUI Region Detection
Faster RCNN and YOLOv2 are currently state-of-the-art deep learn-
ing models for GUI widget detection of mobile apps, which are
widely adopted in recent studies [9, 24]. To be specific, Faster RCNN
is a two-stage anchor-box-based deep learning technique for ob-
ject detection. It adopts a novel region proposal network (RPN) to
predict region proposals with a wide range of scales and aspect
ratios. RPN accelerates the generating speed of region proposal
because it shares full-image convolutional features and a common
set of convolutional layers with the detection network. For each
box, RPN then computes a score to determine whether it contains
an object or not and regresses it to fit the actual bounding box of
the contained object.

YOLOv2 is a one-stage anchor-box-based object detection tech-
nique. It treats GUI widget detection as a regression problem and ex-
tracts features from input images as a unified architecture. Different
from the manually defined anchor box of Faster-RCNN, YOLOv2
uses the 𝑘-means method to cluster the ground truth bounding
boxes in the training dataset, and takes the box scale and aspect
ratio of the 𝑘 centroids as the anchor boxes. For each grid of the
feature map, it generates a set of bounding boxes. For each box,
it regresses the box coordinates and classifies the object in the
bounding box.

2.3 Metrics for GUI Region Detection
IoU (Intersection over Union) [1] is an important metric to approxi-
mate the performance of GUI widget detection. An IoU threshold
indicates the requirement of the precision of prediction. The se-
lection of IoU threshold largely affects the performance of deep
learning models. In consideration of the effect on downstream ap-
plications (e.g., widget detection guided GUI testing), a moderately
strict criterion to evaluate the performance of models should be
adopted.

3 INDUSTRY SURVEY AT NETEASE
To identify the challenges in industrial mobile game testing, in this
section, we conduct a two-phase survey on mobile game testing at
NetEase Games, the workflow of which is summarized in Figure 1.
In particular, we first draft an initial set of interviews for gather-
ing the key topics relevant to mobile game testing in industries to
deepen our understanding. Next, based on the gathered concerns

Figure 1: The overview of workflow of our survey.
Table 1: The interviewquestions regardingmobile game test-
ing for two experts at NetEase. Questions that are marked
green and red box consider the usability testing and com-
patibility testing of mobile games, respectively.

ID Question

I1 Mobile testing routines introduction
I2 Team size
I3 How do we allocate works
I4 Do we cooperate with automated techniques
I5 What are the current limitations
I6 How to ensure high coverage rate by using test case
I7 How much slow down do automated techniques introduce
I8 How do the device difference affect our testing
I9 What is the current alleviation regarding the limitations

and questions, we design a structural questionnaire and distribute
it to the game developers and testers at NetEase. The question-
naire is mainly designed to understand the pain points in current
industrial mobile game testing, and further identify the potential
opportunities for mobile game testing.

3.1 Interview of Mobile Game Testing Experts
At the beginning, to gain the big picture of industrial mobile game
testing and understand the testing process in industrial games, we
conduct scrum interviews of 2 industry experts who are in the lead
position of mobile game testing at NetEase, i.e., the director of the
NetEase Testing Center (E1) and the leader of the NetEase Mobile
Testing Lab (E2), respectively.

As a part of the formal procedure of the interview, we have
designed 9 questions that are summarized in Table 1, which intends
to help us better understand the current status of mobile game
testing at NetEase.

When the interview starts, we first invite the interviewee to
give a basic introduction about the mobile game testing teams (I1,
I2). Then, we ask questions about the testing routines of mobile
games (I3) and the current automated techniques adopted in mobile
game testings (I4). We also ask about the limitations captured by
developers (I5). Then, we prepare specific questions (I6 to I9) for
different interviewees, based on themobile testing tasks theymainly
lead. For E1, we focus on usability testing and ask about the current
solutions and limitations (I6, I7). For E2, we prepare questions
about the technical details in compatibility testings (I8, I9). Both
interviews are arranged in 30 minutes. We record the interviews
and also intend to make them publicly available after the internal
approval of NetEase.

Overall, we obtain valuable high-level understanding from inter-
views. For example, in compatibility testing, there are around 10

1429



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen, Yinxing Xue, and Jianjun Zhao

Table 2: The questionnaire questions. Questions in green
box are for usability testing and questions in red box are for
compatibility testing.

ID Question

Q1 Years of testing experience
Q2 Gender
Q3 Job responsibility
Q4 Averaged number of monthly testing scripts
Q5 How much testing scripts are needed in a project?
Q6 Time for writing a testing script
Q7 Whether use automated techniques to aid testing?
Q8 Challenges during testing
Q9 Averaged number of weekly testing projects
Q10 Whether use automated techniques to aid testing?
Q11 Averaged number of devices in one testing
Q12 Time for a particular testing
Q13 Averaged number of groups in compatibility testing
Q14 Dream tools

test developers who are responsible for testing device compatibility.
They often play the same interaction behaviors on multiple devices.
To achieve that goal, the testing developers mainly adopt One-
ToMany [18] techniques. They first record interaction behaviors
on one mobile device, and then replay the sequence of behaviors
on other devices. This technique is somehow efficient but can be
limited to the device differences, especially caused by resolution
difference. That is, when they replay the interaction behaviors, the
action may be replayed at an incorrect location, and thus affect the
testing efficiency. The current solution is to categorize the mobile
devices with similar resolutions into one group to eliminate the
impact of resolution diversity. However, as the number of groups
increases, it is still not efficient and becomes the bottleneck for
continuous testing pressure of frequent updates.

In usability testing, more than 50 test developers concentrate
on testing mobile game usability tasks. Usability testing of mo-
bile games relies on writing scripts to test the runtime status of
games. To ensure the scripts cover most game scenes, the scripts
are usually double-checked by experienced developers. To facilitate
testing, they often utilize POCO [19] to extract GUI information
(e.g., clickable region coordinates) that can help write testing scripts.
However, POCO has following limitations: 1) POCO is limited to
game developing engines (i.e., Unity3D, Cocos2dx), and 2) POCO
often misleads the testing by reporting wrong coordinates due to
ignoring visual effects. For example, some clickable widgets are
overlapped by other widgets. They are actually not clickable for
users but POCO still reports them.

In summary, we gain the big picture of industrial mobile game
testing and better understand the testing process from the scrum
interviews. Currently, many of these testing tasks are mainly com-
pleted by human testers, which may lead to inefficiency. To improve
this and automate the testing process, developers and testers are
also actively exploring and developing automated techniques (e.g.,
POCO [19], monkey [4]).

3.2 Questionnaire
To further reveal the challenges in the way of automated game
testing and understand the potential opportunities, we continue to
design a fine-grained questionnaire for the developers and testers.
The questionnaire is generally based on our interviews, but has
more detailed questions, as shown as Table 2. Questions in white
cells are common questions, questions in green cells are for usability
testing developers and questions in red cells are for compatibility
testing developers. We prepare specific questions for different test-
ing tasks in order to discover the in-depth needs of developers. The
questionnaires are anonymously distributed to forefront developers
in NetEase Testing Center and testers in NetEase Mobile Testing Lab.
At last we recieved 53 questionnaires. 44 of them are about usability
testing, and 9 are about compatibility testing.

The results of questionnaires show that 52% (23 of 44) of the
developers are senior ones who have more than 3 years experience.
Among them, 77% (34 of 44) developers adopt semi-automated tool
(i.e., POCO) in usability testing to assist writing testing scripts. We
also find that 21 of the 34 developers spend about 9 to 35 hours
one week to draft testing scripts. Additionally, we highlight 27 of
the 34 developers complain that 1) POCO often misleads testing
by ignoring visual effects (e.g., overlapping, shadowing) and 2) the
time cost of using POCO is often unacceptable. We also observe
some developers highlight that 1) POCO assisted testing script
is not flexible for maintenance and 2) POCO is not stable that it
often leads to program crashes. Finally, 85% (29 of 34) developers
are convinced that applying widget detection methods in usability
testing can increase at least 35% of testing speed.

The results of questionnaires also indite that 67% (6 of 9) compat-
ibility testing developers adopt OneToMany [18] technique to assist
testing such that the efficiency can be improved. 77% of the devel-
opers have more than 2 years experience in compatibility testing. 6
of them usually work on at least 3 projects in a week and 77% devel-
opers (7 of 9) have to test more than 8 devices in one testing task.
Note that 67% (6 of 9) developers complain that testing procedures
are suffering from large difference in resolutions of devices. 67%
developers alleviate the effect of resolutions by grouping devices
in similar resolutions into more than 3 categories. This alleviation
can reduce the resolution difference in one group. However, the
workload of testing procedures is largely increased since it has
to be replayed among all groups. The resolution difference makes
the compatibility testing inefficiency. In our investigation, 77% of
them agree that applying widget detection methods in testing can
definitely increase the efficiency of testing process by at least 50%.

Answer to RQ1: From our interviews, we know that existing
mobile game testing tasks are mainly completed by human
testers, which is very inefficient. Thus, automated testing is
urgently needed for the industrial games. To this end, devel-
opers and testers are exploring and developing some tools
to assist the testing. However, these techniques have severe
limitations (e.g., inaccurate results, different resolutions). The
response of questionnaires indicates that how to precisely
detect the clickable GUI widgets of mobile games is of great
importance for automating testing tasks.
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Figure 2: The workflow of building game dataset.

4 COLLECTION OF GAME GUIS
To the best of our knowledge, there is no game GUI benchmark
now. To further facilitate mobile game testing, we made large effort
to construct a mobile game GUI dataset. The overview of our work-
flow is shown in Figure 2. Specifically, we develop an automatic
technique to collect game GUI images and label the widgets auto-
matically in Section 4.1. Since the automatic labeling may introduce
inaccurate results, we further adopt a heuristic-based data cleaning
strategy to improve the data quality in Section 4.2.

4.1 Obtaining Game GUI Dataset
We develop a technique that can automatically locate the click
widgets and outputs the region information of them, based onwhich
we manually label the widgets. Specifically, we first instrument the
game software by POCO such that, when a game is started, POCO
can automatically instantiate and watch global members of game
object [20]. After installing the instrumented game on the mobile
devices, we connect the device to the computer and enable Android
ADB to debug mode [3] on mobile devices. The screenshots, as
well as GUI tree, are captured during the game playing. We then
extract GUI widget coordinates based on the GUI tree and label the
widget. However, there are a number of widgets that are irrelevant
(e.g., widgets which are not clickable). We remove these widgets
by filtering their element types (e.g., unclickable widgets are often
with element type “Scene”). At last, we obtain 1135 GUIs with 17,808
elements from four games (i.e., Elysium of Legends, Dream Chaser,
Butterfly Swords andAllStar). Sincemobile games aremostly played
horizontally, the game screenshots are rotated for 90 degrees to
keep the same size as the existing GUI dataset.

To enrich our dataset with games published by other companies,
we spent three weeks to download games, take screenshots and
manually label clickable widgets. We choose five games (i.e., On-
myoji, Arena of Valor, Princess Connect, Naruto and SevenDay)
released by NetEase Games, Tencent Games and Cygames. Note that
while the two games Onmyoji and SevenDay are developed by
NetEase Games, they cannot be instrumented by POCO so we have
to manually label them. After enough screenshots of a game (i.e.,
the screenshots could cover at least 80% play scenes) are collected,
we label the clickable widgets by a third-party labeling tools [10].
From the above games, We obtain 1,849 GUIs and 20,968 widgets in
total. The description of the game dataset is shown in Table 3. To

Table 3: The composition of game GUIs in our dataset.

Game Name #N of GUIs #N of Widgets Released by

Elysium of Legends 503 6,873 NetEase Games
Dream Chaser 224 3,838 NetEase Games

Butterfly Swords 307 5,160 NetEase Games
AllStar 110 1,937 NetEase Games
Onmyoji 693 8,050 NetEase Games

Arena of Valor 183 2,856 Tencent Games
Princess Connect 137 1,268 Cygames

Naruto 383 4,138 Tencent Games
SevenDay 453 4,656 NetEase Games

Total 2,993 38,776

Figure 3: The example of applying contour filtering algo-
rithm in GUI. The red dots denote detected text contours,
the blue boxes denote boxes being filtered out and the green
boxes denote boxes being reserved.

avoid introducing manual mistakes, all labels are cross-checked by
the co-authors.

4.2 Data Cleaning
After collecting the 2,993 GUIs with 38,776 widgets, we observe that
there are some inaccurate labels that may decrease the performance
of models. Generally, the inaccurate labels can be grouped into two
categories: (1) invalid labels and (2) incorrect labels.

The invalid labels include labels with negative coordinates and
labels with coordinates outside the screen. These labels are mainly
due to the limitation of the automatic labeling technique by extract-
ing GUI information with POCO. Specifically, POCO automatically
extracts GUI trees from screens. Without filtering, some illegally
placed widgets (i.e., placed with negative coordinates or placed
outside the screen) are included in labels. These invalid labels cause
errors during training models. Therefore, they need to be cleaned
before training.

The incorrect label denotes labels that are valid for training
but harmful for training models. The incorrect label consists of
two categories: (1) the irregularly large boxes and (2) empty boxes.
Specifically, the irregularly large box denotes that the size of a box
is far larger than regular box, these boxes produced by POCO devel-
opment kit are ineffective for locating a clickable button. The empty
boxes are incorrectly labeled by POCO due to the unawareness of
visual overlaps among widgets. For example, in Figure 3, the two
blue boxes are widgets in previous screens. They are buried under
the current background and cannot be clicked. However, they are
detected by POCO and are labeled incorrectly.
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Algorithm 1: CoarseFiltering(): traversing all bounding
boxes and filter out invalid coordinates.
input :𝑃 , all the screenshots
input :𝐵, all the bounding boxes
output :𝑉𝐵 ← ∅, the set of valid boxes

1 foreach screenshot 𝑝 ∈ 𝑃 do
2 𝑤,ℎ ← 𝑝.𝑔𝑒𝑡𝑃𝑖𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒 ()
3 //get screenshot width and height

4 foreach bounding box 𝑏 ∈ 𝐵 do
5 𝑉𝐵 ← 𝑉𝐵 ∪ {𝑏 }
6 𝑐 ← 𝑏.𝑔𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ()
7 // get values of the rectangle points

8 if ℎ𝑎𝑠𝑁𝑒𝑔𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑐) is True then
9 𝑉𝐵 ← 𝑉𝐵 − {𝑏 }

10 if ℎ𝑎𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑆𝑐𝑟𝑒𝑒𝑛𝐶𝑜𝑜𝑟𝑠 (𝑐, 𝑤,ℎ) is True then
11 𝑉𝐵 ← 𝑉𝐵 − {𝑏 }

12 return𝑉𝐵

To filter out such invalid and incorrect labels, we propose a label
filtering method to remove dirty labels. Our method includes a
coarse filtering and a fine-grained filtering.

Coarse filtering. We design the coarse filtering in Algorithm 1.
The coarse filtering mainly focuses on invalid coordinates (i.e., coor-
dinates with negative values or coordinates out of the screen). The
input of Algorithm 1 includes the image source 𝑃 and corresponding
bounding boxes 𝐵. The output is a set of valid boxes. Algorithm 1
is composed of four steps: (1) obtaining width and height of the
input screenshot at line 2; (2) checking if the coordinates of a box
contain negative values at line 8; (3) checking if the coordinates are
outside the screen at line 10 by comparing the width and height of
the screen with the coordinates; (4) finally outputting a valid set of
boxes of the screenshot. If the input set has 𝑛 screenshots and𝑚
bounding boxes, the time complexity of line 2 is 𝑂 (𝑛𝑚).

Fine-grained filtering. The fine-grained filtering aims at filter-
ing out irregularly large bounding box and empty box.

To remove the irregularly large bounding boxes, we propose
to filter them by comparing the size of boxes with the size of the
screen. That is, given a threshold factor 𝜆, a bounding box whose
size is larger than 𝜆 percent of size of the picture will be dropped.
To find a proper value for 𝜆, we randomly pick 10,134 bounding
boxes from game dataset and collect the size of these boxes. Next,
we compare the size of boxes with size of the screen. We find that
99.6% of bounding boxes has less than 10% of size of the screen,
which means that almost all bounding boxes are small boxes in
games. In fact, as we further investigate the 0.4% large boxes, we
find that they are all unrelated background widgets and are not
clickable. Thus they should be removed. In our implementation of
this algorithm, the factor 𝜆 is set to 10.

To filter empty boxes, we apply the Suzuki’s Contour Tracing
Algorithm [39] that reports points of textures, text and contours
of widgets. We empirically find that most empty boxes contain no
contours. Therefore, we remove boxes that contain no points. For
example, in Figure 3, the reported points from our algorithm are
denoted as red dots. As the blue boxes contain no red dots, these
boxes are deemed as empty boxes and are removed from labels.
Differently, all of the green boxes contain red dots and they are
deemed as valid labels.

Algorithm 2: FinegrainedFiltering(): traversing all bound-
ing boxes and filter out irregularly large boxes and empty
boxes.
input :𝑃 , all the picture source
input :𝐵, all the bounding boxes
input :𝜆, the factor for determining the size of large boxes
output :𝑉𝐵 ← ∅, the set of valid boxes

1 foreach picture 𝑝 ∈ 𝑃 do
2 𝑤,ℎ ← 𝑝.𝑔𝑒𝑡𝑃𝑖𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒 ()
3 𝑆 ← 𝑤 × ℎ
4 // calculate the size of screen

5 𝐶𝑜𝑛 ← 𝑝.𝑓 𝑖𝑛𝑑𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠 ()
6 // find contours by Suzuki’s Contour tracing

algorithm
7 foreach bounding box 𝑏 ∈ 𝐵 do
8 𝑉𝐵 ← 𝑉𝐵 ∪ {𝑏 }
9 𝑆𝑏 ← 𝑏.𝑔𝑒𝑡𝐵𝑜𝑥𝑆𝑖𝑧𝑒 ()

10 // calculate the size of bounding box

11 if 𝑆𝑏 > 𝜆 × 𝑆 is True then
12 𝑉𝐵 ← 𝑉𝐵 − {𝑏 }
13 foreach contour 𝑐 ∈ 𝐶𝑜𝑛 do
14 if 𝑏.𝑐𝑜𝑛𝑡𝑎𝑖𝑛 (𝑐𝑜𝑛𝑡𝑜𝑢𝑟 ) is True then
15 break;
16 𝑉𝐵 ← 𝑉𝐵 − {𝑏 }

17 return𝑉𝐵

Figure 4: The examples of GUIs used in training models.

Algorithm 2 shows the method that is composed of four steps: (1)
getting the size of the input image at line 2; (2) finding all contours
in the picture by using Suzuki’s Contour tracing algorithm at line 5;
(3) calculating the size of bounding box and compare it with image
size at line 9 to line 12; (4) checking if there exists a contour point
within the bounding box at line 13 to line 16. If the input set has
in total 𝑛 images,𝑚 bounding boxes and we find 𝑐 contours in a
picture, the time complexity of Algorithm 2 is 𝑂 (𝑛𝑚𝑐).

5 EVALUATION
5.1 Experiment Preparation
5.1.1 Dataset. To adopt existing methods [9, 24], we follow previ-
ousworks [9] to download and preprocess thewell-knownRICO [12]
dataset. The RICO GUI dataset contains 66,261 GUI screenshots and
199,830 GUI widgets. We remove widgets which are not clickable
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(e.g., text widgets, images), not visible for users (e.g., overlapped
widget, shadowed widget). After this, we obtain 61,906 widgets.
We further filtered out 31,985 GUI widgets with incorrect coor-
dinates (e.g., coordinates outside the screen). Finally, we collect
30,011 widgets. Examples of widgets used in our dataset can be
found in Figure 4. Since the GUI screenshots have different image
size, we resize them into the fixed resolution of 1440*2560. We split
30,011 elements RICO dataset into train/validation/test dataset with
a ratio of 8:1:1 (24K:3K:3K). For game dataset, we use the data that
is automatically labelled as training set and use the data that is
manually labelled as the testing set because the manual labels are
more accurate for the evaluation.

5.1.2 Model Training. We follow the training method in previ-
ous works [9, 24]. For Faster RCNN and YOLOv2, our training is
based on their models which are pre-trained on COCO object de-
tection dataset. We keep the default batch size of 256 and use SGD
optimizer for Faster RCNN. Meanwhile, we use the default batch
size of 64 and use adam optimizer for YOLOv2. Faster RCNN uses
VGG16 [36] as the backbone while YOLOv2 utilized Darknet19 [32]
as the backbone. Both models are trained for 45,000 iterations to
ensure they are sufficiently trained. As the models may predict
duplicated bounding boxes regarding the same object, we use non-
maximum suppression (NMS) to remove redundant boxes and keep
the best one.

5.1.3 Metrics. We adopt the metrics used in previous works [9, 24]
to evaluate the performance of our models. Specifically, we use the
precision, recall and F1 scores to evaluate the performance of mod-
els. The intersection over union (IoU) indicates the intersection of
two regions A and B divided by the of the union region of them. The
IoU threshold affects the precision of prediction. In previous works,
the threshold ranges from 0.3 to 0.9. In order to better evaluate the
model precision (i.e., the IoU threshold is not too low or not too
high), we set the IoU threshold as a comparatively strict value 0.8
in our experiments. A true positive prediction (TP) is the prediction
that satisfies both confidence threshold and IoU threshold, while
a false positive prediction (FP) is the prediction that only satisfies
confidence threshold. The false negative (FN) is the region missed
by models. We calculate the precision rate by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and
the recall rate by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ). We further compute the F1 score
as: 𝐹1 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙).

5.2 Effectiveness of Filtering
5.2.1 The Filtered Dataset. The labels filtered by coarse filtering
and fine-grained filtering are shown in Table 4. In this table, “neg-
ative” and “outimg” denote coordinates that have negative values
and coordinates outside the screenshot. The “large box” represents
the bounding boxes with irregularly large size and the “empty box”
represents the boxes containing no widgets.

We observe that only one game (i.e., Elysium of Legends) has neg-
ative coordinates and four games (i.e., Elysium of Legends, Dream
Chaser, Butterfly Swords, AllStar) have incorrect coordinates out-
side the screen. The reason is that the labels in these four games
are automatically generated by our GUI information extraction
technique (See Section 4.1). Since the extracted widgets are filtered
by rules, some widgets with the out-of-GUI coordinates may be

missed by rules and are included in our dataset. The model training
cannot start when these invalid coordinates exist. Therefore, we
leverage the coarse filtering to eliminate labels with invalid coordi-
nates. After coarse filtering, 639 coordinates with negative values
and 2,234 coordinates out of screen are removed.

The fine-grained filtering filters 336 irregularly large boxes. We
observe that the games that are automatically labeled (i.e., Elysium
of Legends, Dream Chaser, Butterfly Swords and AllStar) tend to
contain more dirty labels (e.g., 189 in Elysium of Legends and 103 in
Dream Chaser). Our method also helps filter out empty boxes, and
the results show that most game labels contain a number of empty
boxes. Recall that the empty boxes are ones that are incorrectly
labeled by POCO due to the unawareness of visual overlaps among
widgets. For example, in Figure 3, the blue boxes are widgets in
previous screens. They are buried under the background and not
clickable in the current screen.

5.2.2 Model Performance on Filtered Dataset. In the evaluation,
we use the games that are automatically labeled (i.e., Elysium of
Legends, Dream Chaser, Butterfly Swords and AllStar) as training
dataset, and the manually labeled games (i.e., Onmyoji, Arena of
Valor, Princess Connect, Naruto, SevenDay) as testing dataset. The
results are shown in Table 5. In this table, the “Before Filtering” de-
notes performance of models on dataset only with coarse filtering,
and the “After Filtering” denotes performance of models on dataset
which has been processed by fine-grained filtering. Note that the
dataset used here is already processed by the coarse filtering be-
cause negative or out-of-GUI coordinates can largely affect the
performance. Hence, we mainly evaluate the model performance
before/after the fine-grained filtering.

We observe that the performance of all models increases after
we apply the fine-grained filtering. Specifically, Faster RCNN with
default settings has the best performance with the highest precision
(17.3%) and recall (16.4%) on the filtered dataset. Compared with
the model with the same settings but on unfiltered dataset, the im-
provement of dataset leads to around 4.6%, 4.6% and 4.7% increase
in precision, recall and F1 score, respectively. Faster RCNN with
customized settings keeps the same unsatisfactory performance
as in the previous empirical study. The performance of this model
slightly increases on the filtered dataset. YOLO with k value 5 ob-
tains the largest improvement on the filtered dataset. The processed
dataset leads to more than 7% improvement on precision and at
least 5% improvement on recall and F1 score. Comparatively, the
performance of YOLO with k value 9 is improved on the filtered
dataset for at least 2%. In summary, the filtered dataset effectively
improves the model performance in terms of precision, recall and
F1.

5.3 Model Performance
In this section, we conduct the experiments to evaluate the model
performance on the RICO and game dataset. For models adopted in
our experiments (i.e., Faster RCNN and YOLOv2), we prepare two
sets of hyper-parameters to evaluate their performance. Specifically,
for Faster RCNN, we change the original three anchor scales (8, 16,
32) to larger scales (16, 32, 64). We make this change in considera-
tion that larger anchor scales may better fit the objects in GUIs. The
Faster RCNN with larger scales is represented by “Faster RCNN
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Table 4: Game GUI labels after filtering. The labels filtered by coarse filtering are in red cells and labels filtered by fine-grained
filtering are in green cells.

Original negative outimg After Coarse Filtering large label empty label After Fine-grained Filtering

Elysium of Legends 6873 639 976 5258 189 112 4957
Dream Chaser 3838 0 1187 2651 103 546 2002

Butterfly Swords 5160 0 37 5123 18 1159 3946
AllStar 1937 0 34 1903 26 391 1486

Total 17808 639 2234 14935 336 2208 12391

Table 5: The performance of models on filtered dataset.

Before After
Setting P R F1 P R F1

FR Default 12.9% 11.7% 12.2% 17.3% 16.4% 16.9%
FR Customized 0.5% 0.1% 0.1% 0.8% 0.2% 0.3%

YOLOv2 k=5 0.3% ≈0% 0.1% 7.6% 5.5% 6.4%
YOLOv2 k=9 4.4% 2.3% 3.0% 6.5% 5.0% 5.7%

Figure 5: The example of applying fine-grained filtering
method to filter out dirty labels in manual labeled dataset.

Customized”. For YOLOv2, we use two sets of k values (i.e., 5 and
9) in consideration that more anchors may improve the model per-
formance. The two values are also adopted in previous works [31]
for evaluations. The dataset for our evaluations includes RICO and
game dataset.

5.3.1 Model Performance on Game Dataset. We compare the per-
formance of deep learning models on both RICO and game dataset.
We train our models with different settings on RICO dataset and
test our models on game dataset. The results are listed in Table 6.
The “P” and “R” in this table denote precision score and recall score,
respectively. The “FR” represents the deep learning model Faster
RCNN and the “FR Customize” means the model with changed an-
chor sizes. We also evaluate YOLOv2 model with different k values
to study the impact of the parameters on model performance.

We observe that the precision and recall of models drop sharply
on game dataset. Faster RCNN has 55.9% F1 score on RICO dataset
but only 7.7% on game dataset. Specifically, the precision of Faster
RCNN drop half on games and the recall drop from 59.1% to 4.6%. A
recall under 5% is rather low for a model and denotes that the model
is ineffectively to cover most GUI widgets. We also observe that the
Faster RCNN with customized settings perform worse than model
with default settings, and perform even worse on game datasets

Table 6: The performance of models (IoU > 0.8)

Trained On RICO Tested on RICO and Game

On RICO On Game
Setting P R F1 P R F1

FR Default 52.9% 59.1% 55.9% 23.4% 4.6% 7.7%
FR Customized 22.9% 10.4% 14.3% 1.1% 0.2% 0.3%

YOLOv2 k=5 50.7% 37.9% 43.4% 9.8% 1.3% 2.3%
YOLOv2 k=9 49.5% 36.5% 42.0% 10.0% 1.2% 2.2%

Trained On Game Tested on RICO and Game

On RICO On Game Dataset
Setting P R F1 P R F1

FR Default 4.1% 3.7% 3.9% 12.9% 11.7% 12.2%
FR Customized 0.1% 0.1% 0.1% 0.5% 0.1% 0.1%

YOLOv2 k=5 ≈0.0% ≈0.0% ≈0.0% 0.3% ≈0.0% 0.1%
YOLOv2 k=9 ≈0.0% ≈0.0% ≈0.0% 4.4% 2.3% 3.0%

with an F1 score of 0.3%. Recall that we attempt to change the anchor
size and expect the model to precisely match bounding boxes labels.
However, the experiment results show that our configuration with
a larger anchor size leads to worse performance.

YOLO models perform close to Faster RCNN regarding the preci-
sion of 50.7%. However, the recall of YOLO is far worse than Faster
RCNN. We observe that the performance of YOLO also sharply
drops when tested on game dataset, with an F1 score decrease from
43.4% to 2.3%. Recall that we change the model setting of YOLO to
a larger value of k (i.e., 9) and expect the YOLO model to gener-
ate more anchors to match bounding box labels. The experiments
show that the configuration of a larger of k results in a worse
performance.

5.3.2 Model Performance Across Various Mobile Applications. We
also train models on game dataset and evaluate their performance
on RICO and game dataset, respectively. The models are with same
settings of models trained on RICO. The results are shown in Ta-
ble 6. We observe that the models perform much worse on test
dataset. Specifically, comparing the models tested on game and
RICO dataset, the performance of them drops sharply. For Faster
RCNN, the precision rate on test dataset drops from 12.9% to 4.1%
and the recall rate decreases from 11.7% to 3.7%. The performance
of RCNN with larger anchor sizes (i.e., customized settings) also
drops from 0.5% to 0.1%. The Faster RCNN with the default set-
ting performs better transferability on different datasets. For YOLO
models, the performance of models with the two settings (k= 5, 9)
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Figure 6: Distribution of the number of elements per GUI on
RICO and game dataset.

Figure 7: A game GUI example of high widget density. The
blue boxes denote labels and red boxes denote model predic-
tions. The overlooked boxes are pointed by green arrows.

drops to less than 1% regarding precision, recall and F1 score. The
YOLO models fail to produce an effective prediction on different
dataset.

5.4 Root Cause Analysis
5.4.1 Game GUI Element Density. We first take a deep look at
the UI density difference between regular application GUIs from
RICO dataset and game GUIs from our collected dataset. The basic
distribution of GUI density is summarized at Figure 6. We observe
that 55% of game GUIs have more than 9 elements, and in contrast,
only 8% of GUIs in regular applications contain have more than
9 widgets. Most regular applications contain no more than three
widgets in one interaction screen. Differently, game applications
intend to offer more interaction options to attract users. As the
game GUI elements are often placed side by side and separated by
only small padding, detecting GUI regions under high density is
challenging for models. For example, Figure 7 is a screenshot of
character selection. There are 50 elements in this GUI and each
element is placed closely to others. Our models predict most regions
of these elements, but missed 5 boxes.

5.4.2 Art Style Diversity in Game. The game GUIs are subject to art
design needs. In fact, in some typical kinds of games (e.g., Massive
Multiplayer Online Role-Playing Game), the mechanics of gameplay
are rather complex. Unlike regular applications aiming at providing
a serious of services, game developers intend to build a virtual world
to attract users to explore it while enjoy gaming. To achieve this
goal, game developers design widgets in different shapes and colors.
For example, after we investigate GUIs in a game Elysium of Legend
and GUIs in a hotel booking application of RICO dataset. We collect
the number of heterogeneous widgets and regular widgets, the

Figure 8: Comparing the number of GUIs categories in a
game and a Android application. Followed by the examples
of heterogeneous GUI elements in this game.

Figure 9: Return widgets in different games. Widgets in dif-
ferent game are separated by solid lines.

data is shown in Figure 8. In this booking application, there are 14
GUI elements in total and only 4 heterogeneous GUIs (e.g., sharing
widget, map widget). In game software, there are more than 60
types of widgets, and 23 of them are heterogeneous widgets. These
irregular widgets are often in various shapes (ancient buildings,
cat’s claws), as shown in Figure 8. Moreover, these widgets are often
placed upon background pictures, making it difficult for models to
separate background textures from widgets. In our experiments, all
models missed the three irregular widgets.

Art style difference also causes huge diversity between games.
We investigate the return widgets in nine games in our dataset,
and results are shown in Figure 9. We surprisingly find that there
exist no two similar return widgets. Some return widgets are even
reshaped in uncommon style (e.g., the return widget in the left
part of the second row), which confuse models to properly identify
them. As the art style gap between games is often large, not to
mention the gap between regular applications and games, and this
also explains the reason why the performance of models trained
on RICO dataset but tested on game dataset sharply drops.

5.5 Summary of Findings
5.5.1 Answers to the Research Questions. Through the analysis of
experiments above, we could find that:
• Answer to RQ2: The models (i.e., Faster RCNN and YOLO) can-
not generalize well across game and RICO dataset. The experi-
mental results show that the performance ofmodels drops sharply
on game dataset. Meanwhile, models trained on game datasets
are not accurate for detecting regular GUI widgets in non-game
applications.
• Answer toRQ3:Themodels achieve unsatisfactory performance
because: (1) widgets are compactly placed in game GUIs, making
the density of GUI widget in game far larger than that in regular
applications, (2) heterogeneous GUI shapes and high diversity of
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GUI styles between games make it difficult for models to detect
widget regions.

5.5.2 Research Direction Highlight. Based on our findings, we pro-
vide insightful suggestions for future research directions.

Enhancing Dataset. In our study, we automatically and manu-
ally labeled 2,993 screenshots of 9 games. Compared with previous
works, RICO dataset includes more than 60K screenshots. Addi-
tionally, in order to assist better game GUI testing in industries,
the dataset only provides coordinates of clickable widgets. This
can be further enhanced by adding support of multiple types of
widgets (e.g., text widgets, picture widgets) for facilitating future
research on game GUIs. Additionally, the dataset can be enhanced
by collecting various types of games (e.g., action games, adventure
games, first-person shooting games).

Game Style Comparison. Recall that themodel performs badly
across different datasets. In fact, some mobile games share similar
art styles with particular games. For example, the art style of the
gameArena of Valor is similar to gameOnmyoji Arena (not included
in our dataset in this paper but also famous on Google Play Store).
If we find a metric to evaluate similarity between the styles, we can
summarize a minimum set of games which covers most game styles.
In further training, models could be trained on this minimum set
to save considerable amount of time.

Applying GUI Detection In Industry. As we have discussed
with testing developers in NetEase Games about applying widget
detection method in industry game testings, the developers agreed
with that GUI widget detection techniques are important for game
designs and game testings. Further, a game GUI dataset detection
technique can help a freshman engineer rapidly become familiar
with developments in new games. Currently, we are engaged in the
implementation of this service and applying it in industry game
testing in near future.

5.6 Threats to Validity
We note that the randomness is an inevitable factor when applying
deep learning models. To alleviate the effect of this factor, we repeat
the experiments mentioned in our study for 5 times and record the
average values. The selection of games could be biased. In our study,
we adopt 6 games released by them. To counteract the bias, we adopt
additional games released by other companies (e.g., Tencent Games,
Cygames). Also, themodels adopted in our can be biased. In previous
works, other fancy models (e.g., CenterNet [44], EAST [45], Grad-
CAM [35]) are adopted in their methods. We choose to select Faster
RCNN and YOLO in our experiments because they are commonly
adopted in most similar studies. On the other hand, the recall rate
which is adopted as our metric may be a potential threat. Generally,
the recall performance of a model is difficult to evaluate due to the
lack of ground truth. In our study, the labels of clickable widgets
are mostly processed by our authors and are prone to introducing
incompleteness. To alleviate this, wemake our best attempt to check
the labels for 3 times. On this basis, despite our labels are unable
to be 100% complete, our dataset however provides a convincing
benchmark for evaluating model performance.

6 RELATEDWORK
In this section, we discuss works that are most relevant to ours.

GUI testing. GUI plays a key role in bridging the gap between
users and applications. Therefore, previous works have proposed
methods to aid GUI development in GUI searching [6–8, 33, 40]
based on image features and GUI testing [5, 17, 42] based on deep
learning models. Specifically, Hu et al. [17] proposed to automati-
cally generate input cases for GUI testing. They feed input to the
application and analysis the running traces to find bugs. Zhao et
al. [42] trained a deep learning model to predict workflow actions
of applications, which provides valuable experience of applying
deep learning to advance the efficiency of GUI testings. However,
the above techniques are all developed for general-purpose applica-
tions (e.g., hotel booking applications, shopping applications). They
do not generalize well for game GUIs.

Object detection deep learningmodels. The object detection
techniques greatly evolve in the past five years. The mainstream
of the proposed methods can be roughly categorized into two-shot
detection [13, 14, 16, 34] methods and single-shot methods [23, 31],
based on their workflows. Object detection models sketch a tight
bounding box around the object and classify what the object is.
However, the above models are trained to identify objects in the
real world. They cannot be directly applied in detecting GUI ele-
ments. Deka et al. [12] have published a dataset with 72K UI screen-
shots including widgets, buttons and scrolls, etc. The downloaded
screenshots are labeled into 27 categories. Liu et al. [22] train con-
volutional neural networks on this dataset to detect UI components,
which offers us valuable experience of applying deep learning mod-
els to detect GUI elements.

Game testing. Games are becoming increasingly popular along
with the rapidly developing Internet. One game should be well
tested to eliminate bugs before being published. However, as sur-
veyed by Lin et al. [21], even the most popular games are not suf-
ficiently tested. The main reasons for this imperfection can be
summarized as the absence of automated testing techniques (i.e.,
manual testing is still dominant in game testing), due to the survey
of Alemm et al. [2]. For mobile games, the current works are still
preliminary. Lovreto et al. [25] develops a method of writing scripts
to test functions on 18 mobile games. The limitations of existing
techniques are also discussed in their study. Zheng et al. [43] first
propose composite game testing technique by enhancing reinforce-
ment learning with multi-objective optimization algorithms and
outperforms other state-of-the-arts.

7 CONCLUSION
In this study, we first conduct a survey in NetEase Games, including
scrum interviews and questionnaires. The survey results show that
applying object detection method to detect game GUI widget can
be the pillar to boost game testing efficiency in practice. To this
end, we develop a method to automatically collect GUI of industrial
games and a method for data-cleaning. The evaluations show that,
1) existing general-purpose GUI methods cannot perform well on
games and 2) the unsatisfactory performance of existing methods
is mainly caused by the compactly placed GUI widgets and the
diverse GUI shapes.
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