
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2022

JSCSP: A novel policy-based XSS defense mechanism for JSCSP: A novel policy-based XSS defense mechanism for

browsers browsers

Guangquan XU

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Shuhan HUANG

Jun ZHANG

Lei PAN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
XU, Guangquan; XIE, Xiaofei; HUANG, Shuhan; ZHANG, Jun; PAN, Lei; LOU, Wei; and LIANG, Kaitai. JSCSP:
A novel policy-based XSS defense mechanism for browsers. (2022). IEEE Transactions on Dependable
and Secure Computing. 19, (2), 862-878.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7083

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Guangquan XU, Xiaofei XIE, Shuhan HUANG, Jun ZHANG, Lei PAN, Wei LOU, and Kaitai LIANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7083

https://ink.library.smu.edu.sg/sis_research/7083

JSCSP: A Novel Policy-Based XSS Defense
Mechanism for Browsers

Guangquan Xu ,Member, IEEE, Xiaofei Xie , Shuhan Huang , Student Member, IEEE,

Jun Zhang , Senior Member, IEEE, Lei Pan ,Member, IEEE,

Wei Lou ,Member, IEEE, and Kaitai Liang ,Member, IEEE

Abstract—To mitigate cross-site scripting attacks (XSS), the W3C group recommends web service providers to employ a computer

security standard called Content Security Policy (CSP). However, less than 3.7 percent of real-world websites are equipped with CSP

according to Google’s survey. The low scalability of CSP is incurred by the difficulty of deployment and non-compatibility for state-of-art

browsers. To explore the scalability of CSP, in this article, we propose JavaScript based CSP (JSCSP), which is able to support most of

real-world browsers but also to generate security policies automatically. Specifically, JSCSP offers a novel self-defined security policy

which enforces essential confinements to related items, including JavaScript functions, DOM elements and data access. Meanwhile,

JSCSP has an efficient algorithm to automatically generate the policy directives and enforce them in a cascading way, which is more

fine-grained and practical than the functionalities provided by CSP. We further implement JSCSP on a Chrome extension, and our

evaluation shows that the extension is compatible with popular JavaScript libraries. Our JSCSP extension can detect and block the

tested attacking vectors extracted from the prevalent web applications. We state that JSCSP delivers better performance compared to

other XSS defense solutions.

Index Terms—Cross-site scripting attacks, content security policy, origin confinement, JavaScript sandbox, cookie protection

Ç

1 INTRODUCTION

DUE to providing compatibility and friendly user interface
for modern cloud applications, web services are widely

used in practical sectors, such as finance, government coun-
cil, and industry. But the security of the services have
attracted considerable attention nowadays, because poten-
tial vulnerability may be exploited by attackers to yield
severe influence to service providers but also subscribers.

1.1 Cross-Site Scripting

XSS is one of the most prevalent types of web vulnerability
and consistently resides on the OWASP top 10 vulnerability
list [1]. If a web page is XXS vulnerable, attackers could
inject malicious JavaScript into it and further lead web users
to trigger the code execution, so that the sensitive informa-
tion of the users, which are stored in cookies, session ID and
credentials, could be compromised.

Although XSS seems not to be as harmful as other web
vulnerabilities, such as SQL injection and code execution,
it is extremely hard to be defended on user side. It is of
great importance to design defense mechanisms against
XSS attacks to protect end users from losing their creden-
tials, but also to reduce the potential harm yield by worms
and malware which are implanted into web page via XSS
vulnerability. In practice, there are three main categories
of XSS:

� Reflected XSS. An attacker injects browser executable
code within URI or HTTP parameters. The injection
is not stored within the application. Instead, it is
non-persistent and only harms users who click the
maliciously crafted link to redirect to the third-party
web page embedded with malicious code.

� Stored XSS. It is also known as persistent XSS. A
malicious script is injected directly into a web appli-
cation with a backend server. The script is stored in
the server so that any user who visits the application
will be harmed.

� DOM based XSS. It is an XSS attack modifying the
DOM (Document Object Model) in user browser
where the original script on user side will be exe-
cuted in the manner different to its original inten-
sion. That is, the web page itself including the
HTTP response does not change, but the code of
the user side contained in the page executes dif-
ferently due to the malicious modifications to the
DOM environment.

In addition, there have been other variants of XSS in the
literature, such as Mutation XSS (mXSS) [2], and Universal
XSS (UXSS) [3].

� Guangquan Xu, Xiaofei Xie, and Shuhan Huang are with the Tianjin Key
Laboratory of Advanced Networking (TANK), the College of Intelligence
and Computing, Tianjin University, Tianjin 300072, China.
E-mail: {losin, xiexiaofei}@tju.edu.cn, 541395961@qq.com.

� Jun Zhang is with the School of Software and Electrical Engineering, the
Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
E-mail: junzhang@swin.edu.au.

� Lei Pan is with the School of Information Technology, Deakin University,
Geelong, VIC 3217, Australia. E-mail: l.pan@deakin.edu.au.

� Wei Lou is with the Department of Computing, The Hong Kong Polytechnic
University, Kowloon, Hong Kong. E-mail: csweilou@comp.polyu.edu.hk.

� Kaitai Liang is with the Delft University of Technology, 2628, CD, Delft,
The Netherlands. E-mail: k.liang-3@tudelft.nl.

Manuscript received 28 June 2018; revised 25 June 2019; accepted 11 July 2020.
Date of publication 20 July 2020; date of current version 14 Mar. 2022.
(Corresponding Authors: Xiaofei Xie and Shuhan Huang.)
Digital Object Identifier no. 10.1109/TDSC.2020.3009472

862 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

1545-5971� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8701-3944
https://orcid.org/0000-0001-8701-3944
https://orcid.org/0000-0001-8701-3944
https://orcid.org/0000-0001-8701-3944
https://orcid.org/0000-0001-8701-3944
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-1288-6502
https://orcid.org/ 0000-0001-8938-4968
https://orcid.org/ 0000-0001-8938-4968
https://orcid.org/ 0000-0001-8938-4968
https://orcid.org/ 0000-0001-8938-4968
https://orcid.org/ 0000-0001-8938-4968
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-9784-5741
https://orcid.org/0000-0002-9784-5741
https://orcid.org/0000-0002-9784-5741
https://orcid.org/0000-0002-9784-5741
https://orcid.org/0000-0002-9784-5741
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-0262-7678
mailto:losin@tju.edu.cn
mailto:xiexiaofei@tju.edu.cn
mailto:541395961@qq.com
mailto:junzhang@swin.edu.au
mailto:l.pan@deakin.edu.au
mailto:csweilou@comp.polyu.edu.hk
mailto:k.liang-3@tudelft.nl

1.2 Content Security Policy

Content Security Policy (CSP) [4] is an added security layer
that helps detect and mitigate certain types of attacks,
including XSS and data injection attacks. It enables server
administrators to reduce and even eliminate the attack vec-
tors by restricting the execution of scripts according to spec-
ified rules on the domains. A CSP compatible browser will
only execute scripts loaded in source files received from the
whitelisted domains, ignoring other scripts such as inline
scripts and event-handling HTML attributes. Listing 1
shows an example of the CSP, defining default-src, script-
src and img-src.

Listing 1. An Example of the CSP

1 Content-Security-Policy: default-src ‘self’;

2 script-src ‘self’ ‘userscripts.example.com’;

3 img-src ‘statics.example.com’;

CSP is one of the most prevalent XSS defense solutions. It
has attracted increasing attention because it has many pol-
icy directives which can be used to defend against XSS
attacks. However, the current CSP mechanism usually suf-
fers from the following limitations:

� Weak compatibility with browsers. Although CSP has it
stable version 2.0 along with a draft improved ver-
sion 3.0 [5], most of the current browsers are only
compatible with CSP 1.0 and 1.1. According to the
investigation given in caniuse [6], Google Chrome is
the only browser with adequate compatibility for
CSP (since its version 49), while all versions of Inter-
net Explorer fail to support CSP 2.0. Besides, the lat-
est version of Firefox only partially supports CSP.

� Easy bypass. CSP could be easily bypassed by many
approaches. For example, script gadgets (legitimate
JavaScript fragments within an application legiti-
mate code base) could be used to execute JavaScript
bypassing CSP. Vulnerabilities of UXSS (e.g., CVE-
2017-8754) are used against to CSP. Besides, several
features of browser, such as DNS prefetching, can
also help attackers bypass CSP.

� Non-scalability. According to Google’s survey in
2017, only 2 percent of top 100 Alexa websites sup-
port CSP, while 94.72 percent of the CSP strategies
could be bypassed [5]. The scalability of CSP is far
away from being satisfied. The two main reasons
behind the fact are that CSP can be only manually
deployed by website administrators and mean-
while, it requires modification to the source code of
web applications.

� Only provide coarse-grained confinements. CSP direc-
tives (e.g., default-src self) are enforced on all DOM
elements. In practice, we may impose confinements
upon a certain element (e.g., div tagswith class=’evil’).
However, CSP is not very helpful in such a case. Even
worse, CSP directives may bring negative influence
on normal functions provided by web applications.
For instance, if we add a directive ”script-src ’self”’ to
the CSP header like Listing 1, all inline scripts in the
web page will be disabled, including the normal
scripts.

1.3 Our Contribution

In this paper, we propose JSCSP, which is based on a novel
self-defined policy that is similar to that of CSP. It can gener-
ate a corresponding security policy based on the page that
the user visits in real time, further enforce this policy and
prevent a website from executing injected malicious code on
user side. For instance, if a user visits the page in Listing 2,
the security policy in Listing 3 will be generated. And when
the user visits the page in Listing 4, the malicious codes will
be cleaned according to the security policy.

Listing 2. A Simple Web Page

<html>
<script

src=‘https://code.jquery.com/jquery.min.js’>
</script>
<div>Hello world</div>
</html>

Listing 3. An Example of the JSCSP Policy

{

“sandbox”:{

“eval”:false

},

“element”:{

“*”: {

“src”: [“https://code.jquery.com”]

}

},

“data”: {

“document.cookie”: {

“read”: false,

“write”: false

}

}

}

Listing 4. A Simple Web Page Injected With Malicious
Codes

<html>
<script src=’https://code.jquery.com/jquery.

min.js’>
</script>
<!–Malicious codes will be cleaned.–>
<script src=’http://evil.com/xss.js’></script>
<div>Hello world</div>
</html>

Comparing to CSP, JSCSP has the following advantages:

� It is compatible with almost all types of browsers support-
ing extensions. Being implemented in JavaScript,
JSCSP is different from CSP which needs to be sup-
ported by browser kernel. It can be deployed in all
types of browsers that are compatible with ECMA-
Script 51 and support extensions. Of course, if web

1. It is an older version of the standard upon which JavaScript is
based, and was standardized in June 2011.

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 863

https://code.jquery.com/jquery.min.js
https://code.jquery.com
https://code.jquery.com/jquery.min.js
https://code.jquery.com/jquery.min.js

user disables JavaScript, neither our JSCSP nor the
injected malicious JavaScript will not work properly.
But this, we state, is not a reasonable solution because
web applications and services need the support of
JavaScript. To demonstrate the compatibility, in this
paper, we implement JSCSP on an extension of Goo-
gle Chrome. Note we have not deployed JSCSP into
other browsers yet.

� It stands still in front of CSP-Bypass attacks. Specific
XSS attacks mentioned previously (e.g., UXSS, Code-
Reuse attacks with script gadgets) can be used to
bypass CSP. In JSCSP, we design specific approaches
to defend against the attacks. For example, we mark
script tags’ positions in the clean pages2 and block
all requests that are not in the whitelist. This makes
the exploit of vulnerability harder.

� Our security policies are generated automatically. Com-
pared with CSP, JSCSP does not need hard-coded
rules. Instead, we design an algorithm for security
policy generation. Users with no technical knowl-
edge can simply click a button so that all policies
will be generated by JSCSP in backend, while experi-
enced users may choose to manually set security pol-
icies with strict definitions.

� It supports fine-grained confinements. JSCSP uses the
CSS syntax to define cascading security policies,
where each type of directives can be developed on
certain elements. For example, we could use a selec-
tor ”div.note” to make confinements on the div ele-
ments with class=”note” so that other DOM elements
remain unchanged.

� Other features. To improve the capability to defend
against XSS attacks, we designs extra functions, such
as JavaScript sandbox, to simulate the execution of
dangerous functions, and data protection to JSCSP.
In addition, JSCSP has a background module block-
ing web requests (e.g., http, https and websockets)
that are sent to non-authentic targets.

Offering a novel solution to defend against XSS attacks,
JSCSP is designed for the case where web applications do not
deploy CSP. It enhances fine-grained user security control by
allowing web users to generate security policies in adminis-
tration panel to prevent their cookies from being compro-
mised. In addition, researchers are allowed to investigate and
further extend our policy scripts, being benefited from our
open-source interface. For example, policy directives can be
enriched to support the ’nonce’ directive3 and the deploy-
mentmodel at user side can be changed to a proxy.

The rest of the paper is organized as follows. Section 2 pre-
sents related work. Section 3 provides an overview of JSCSP.
Section 4 presents the implementation details of a Chrome
extension based on JSCSP. The evaluation is discussed in
Section 5, where we evaluate JSCSP’s security, robustness,
performance and compatibility. Finally, in Section 6, we con-
clude the paper andpropose the futurework.

2 RELATED WORK

In this section, we first introduce works in CSP bypasses
and defenses against XSS attacks and further present works
about automatic enforcement of CSP.

CSP Bypasses. Lekies et al. [7] put forward Code-Reuse
Attacks via Script Gadgets, which could bypass CSP. In this
attack, the attacker abused so called script gadgets (legiti-
mate JavaScript fragments within an application’s legiti-
mate code base) to execute JavaScript. Weichselbaum
et al. [8] found that 75.81 percent of distinct policies use
script whitelists that allowed attackers to bypass CSP. More-
over, Calzavara et al. [9] investigated the use and effective-
ness of CSP as a security mechanism for websites against
XSS attacks. They found that existing policies exhibit a num-
ber of weaknesses and misconfiguration errors, which
might be exploited by attackers to bypass the defense.
Doli�ere et al. [10] found a divergence among browsers
implementations in the enforcement of CSP in srcdoc

sandboxed iframes. Specifically, Gecko-based browsers
were proven to have a problem in CSP implementation,
which might cause security issues.

Client-Side Defenses Against XSS Attacks. There are works
on client-side defenses against XSS attacks. The first policy-
based approach on client-side was JSAgents Library [11]. It
supported the basic features of CSP 1.1, but it could not
enforce confinements to DOM elements generated dynami-
cally or generate security policies automatically. Pan et al.
[12] proposed a DOM-XSS detecting framework using static
analysis and dynamic symbolic execution. Lekies et al. [13]
focused on detecting DOM-based XSS vulnerabilities using a
taint analysis approach. DexterJS [14], [15] was another
DOM-based XSS detecting tool, which leverages source-to-
source rewriting to carry out character-precise taint tracking
when executing in the browser context. In this way, 820 dis-
tinct zero-day DOM-XSS attacks were found in Alexa’s top
1000 sites. The authors proposed a technique to auto-patch
DOM-XSS vulnerabilities by replacing unsafe string interpo-
lation with safe codes. Besides, there are a lot of HTML sani-
tizers such as DOMPurify4 and Google Closure,5 which use
different approaches of sanitization. Browser XSS filters such
as NoScript6 filter on Firefox and similar filters on IE and
Edge can also help defend against XSS attacks.

In addition, there exist similar solutions, such as beep
[16] and soma [17] in the literature. Mitropoulos et al. [18]
analyze most of popular XSS defense solutions and further
identify the corresponding weaknesses.

Server-side Defenses Against XSS Attacks. There were many
server-side solutions to XSS defenses. ModSecurity7 is an
open-source Web Application Firewall, commonly used
with the OWASP Core Rule Set. Thome et al. [19] proposed
a search-driven constraint solving technique and imple-
mented it as an XSS detection tool. WebMTD [20] random-
ized certain attributes of DOM elements before delivering it
to the client. Since it was difficult for the attackers to guess
the random mapping, the client could distinguish between
trusted content and malicious scripts easily. Jin et al. [21]

2. It refers to pages without malicious scripts. we mark script tags’
positions in it and any other scripts outside of these positions will be
removed later.

3. It is similar to the ’nonce’ directives in CSP, which only allow the
execution of scripts with the right ’nonce’ attributes.

4. https://github.com/cure53/DOMPurify
5. https://github.com/google/closure-library
6. https://noscript.net/
7. http://www.modsecurity.org/

864 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

https://github.com/cure53/DOMPurify
https://github.com/google/closure-library
https://noscript.net/
http://www.modsecurity.org/

implemented a prototype called NoInjection as a patch to
PhoneGap in Android to defend against the XSS attacks in
HTML5-based mobile apps. Mohammadi et al. [22] intro-
duced a technique to automatically extract the sanitization
functions and then evaluated their effectiveness against
attacks using automatically generated attack vectors. Cao
et al. [23] proposed PathCutter as a new approach to sever-
ing the self-propagation path of JavaScript worms. In addi-
tion, some solutions are programming language specific.
For example, JIID [24] works specifically for Java, while
Pixy [25] only operates on PHP.

Automatic Generation of CSP. deDacota [26] used a novel
approach to secure legacy web applications by automatically
and statically rewriting an application so that the code and
data were clearly separated in its web pages. The separation
of code and data could be efficiently enforced at run time via
the CSP enforcement mechanism available in modern brows-
ers. CSPAutoGen [27] trained templates for each domain,
generated CSPs based on the templates, rewrote incoming
webpages on the fly to apply those generated CSPs, and then
served those rewrittenwebpages to client browsers. AutoCSP
[28] used dynamic taint analysis in PHP to find trusted ele-
ments of dynamically generated HTML pages and then
inferred a policy to block untrusted elements, while allowing
trusted ones. Liu et al. [29] implement a practical policy tool
named ACSP to help developers automatically design CSP
with the best security and availability or exactly evaluate the
security and availability of the used CSP in one or a number
of web pages.

Although there are many other approaches to defend
against XSS, CSP is the only standard recognized by theW3C
group. Moreover, it could work properly together with
many other solutions such as the XSS filter. However, stan-
dard CSP relies on the kernel support of browsers and has
limited directives. We identify this gap and address it while
designing JSCSP. Thus, JSCSP supports more features such
as a cascaded policy language and DOM protection that are
not in CSP. Moreover, all of its functional logic are imple-
mented in JavaScript, which greatly extends the list of sup-
ported browsers.

3 OVERVIEW OF JSCSP

In this section, we will first introduce the overview of JSCSP
as well as the objectives of the design (Section 3.1). Then we

will describe the fine-grained policy generation (Section 3.2).
Next we will use an example to show the format of the
generated policy (Section 3.3). Finally, we will discuss the
advantage of JSCSP on defending CSP-Bypass attacks
(Section 3.5), and the limitation, usage and security of JSCSP
(Section 3.6).

3.1 Objectives of JSCSP

Fig. 1 shows the overview of the JSCSP, which is designed
for addressing the challenges of CSP (see Section 1.2). In
general, JSCSP consits of three steps: DOM analysis, auto-
matic policy generation and policy enforcement.

In particular, to mitigate the compatibility problem of
CSP, JSCSP is implemented with JavaScript that supports
almost all of browsers. For the scalability problem, we
design JSCSP with the automatic policy generation and
enforcement. Not like CSP that depends on the manual set-
ting on the source code of web applications, JSCSP can
automatically generate the policy based on the analysis of
the content of the web page. The automation improves the
usability of JSCSP significantly. Even if not an expert, the
administrator can generate the policy (against XXS attack)
with JSCSP easily. Due to that CSP is easy to bypass and
only supports coarse-grained confinements, we improve
the defense capability of JSCSP by generating more fine-
grained JSCSP policies including script code policy,
HTML element policy and sensitive data policy, which can
defend more CSP-Bypass attacks. The fine-grained policy
can block more XSS attacks, whereas it may introduce
more false positives. Actually, it is a trade-off between
more strict policy and fewer false positives. More strict
policy may block the correct elements of the web page
while loose policy will be bypassed by the XSS attacks.
Considering the accuracy and flexibility, we design the for-
mat of JSCSP policy generally. Hence, the user can tuning
the generated policy or set a new policy easily.

Next, we will describe the detail for each component.
The input of JSCSP is the clean page.8 Based on the clean
page, a fine-grained JSCSP policy is generated automati-
cally. With the policy, JSCSP performs the policy enforce-
ment on the browser of the user (with the extension of the
browser).

Fig. 1. Overview of the JSCSP architecture.

8. Clean page refers to the webpage that is not embedded with mali-
cious codes

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 865

3.2 Policy Generation

DOM Analysis. Given a clean page, we first use DOM ana-
lyzer to analyze the basic elements of the page (i.e., the Java-
Script code, HTML tags and sensitive data access). Then we
will generate policy to protect the relevant elements from
XSS attacks. The loaded resource from the clean page are
benign data, which provides the baseline for detecting the
web page including malicious injection. The policy is gener-
ated based on the basic resource.

Listing 5. An Example of JSCSP Policy

1 {

2 “request_src”: [“https://code.jquery.com”],

3 “sandbox”: {

4 “eval”: false,

5 “Proxy”: false

6 },

7 “elements”: {

8 “*”: {

9 “src”: [“https://code.jquery.com”,

10 “https://www.google.com”]

11 },

12 “script”: {

13 “position”: [“document,0,1,3”]

14 },

15 “iframe”: {

16 “allow”: false

17 },

18 “#safe-div iframe”: {

19 “allow”: true

20 },

21 “form input”: {

22 “read”: “false”,

23 “write”: “false”

24 },

25 “event-handler-position”: [

26 “document,0,1,1,0,1,0,1,0,1,0”

27],

28 “JavaScript-uri-position”: [

29 “document,0,2”

30]

31 },

32 “data”: {

33 “document.cookie”: {

34 “read”: false

35 }

36 }

37 }

Policy Generation. Based on script code, HTML tags and
the sensitive data access, we further propose different levels
of policy generations, which provide more fine-grained
protection,

1) Sandbox Policies. To defend the XXS attack on the script
code, we check the dangerous functions and objects (e.g.,
eval, Proxy) which are not used in the clean page. The dan-
gerous functions and objects will be disabled. Dangerous
functions and objects refer to those which are used by devel-
opers rarely but exploited by attackers frequently, such as
”eval”. Meanwhile, the important data refers to the Java-
Script objects that stores personal privacy information such
as cookie and localStorage.

2) Element Policies. To defend the XXS attack on the
HTML tags, all elements and the tags are added to the tag’s
whitelist. A whitelist includes the src and href attributes.
Furthermore, JSCSP also provides a more rigorous check for
the inline scripts and elements which are related to event-
handlers, JavaScript URIs or data URIs. Such scripts and ele-
ments are more likely to suffer from XSS attack and cause
severe consequences. Specifically, we mark their positions
in the DOM tree and generate cascading policies to check
these positions. Malicious elements appear in other posi-
tions will be cleared by our filter. However, the benign ele-
ments may also be mis-blocked. It is a trade-off between
achieving higher security and better usability. We will dis-
cuss the application of JSCSP later.

3) Data Policies. In addition, we also provide specific
policy for protecting the important data which stores per-
sonal privacy information, such as form passwords and
cookies. All sensitive data that are not accessed in the
clean page will be protected. These policies can restrict
the access to the important data from potential malicious
JavaScript code.

3.3 Policy Tuning or Setting

As described above, JSCSP provides different types of poli-
cies which have multiple levels of restriction. The policy
should be tuned for achieving higher security and lower
false positives for a specific website. The format of policy is
designed considering the generality and flexibility such that
the policy also can be defined by the users. JSCSP policies
are composed in JSON format and stored in the browsers’
localStorage. The sample code shown in Listing 5 shows the
format and demonstrates the flexibility of the policy setting.

In general, the policies including the following components:

� Sandbox policies (lines 3 to 6). Several JavaScript built-
in functions and objects are used by developers
rarely but exploited by attackers frequently. For
example, an attacker can call the window.eval to exe-
cute any string which can be encoded to bypass con-
ventional client defenses. We set the sandbox policy
to “false” in lines 4 and 5 in Listing 5. The functions
that are marked as “false” will be deleted by JSCSP.

� Element policies (lines 7 to 30). Unlike CSP, JSCSP has a
cascading policy which provides more fine-grained
confinements. For example, the sources of all ele-
ments are required to belong to “https://code.
jquery.com” or “https://www.google.com”. For
iframes, we only allow the iframes that are located in
“#safe-div iframe”. For inline scripts (e.g., <script>
alertð1Þ; <=script>), JavaScript URIs (e.g., Java-
Script:alert(1)), data URIs, and event-handlers (e.g.,
onclick=alert(1)) in other tags), JSCSP maintains sev-
eral whitelists and records the positions of such ele-
ments which are related to event-handlers, JavaScript
URIs or data URIs. Any elements whose positions are
not in these whitelists will be deleted. Moreover, the
value properties of selected input elements can be set
from arbitrary read or write processes. The attempts
to write their values via JavaScript will be blocked,
and read attempts to these values will return an
empty value.

866 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

https://code.jquery.com
https://code.jquery.com
https://www.google.com
https://code.jquery.com
https://code.jquery.com
https://www.google.com

� Data policies (lines 31 to 35). Data policies are
designed for important data that stores personal pri-
vacy information, such as cookie and localStorage.
As set by this policy in Listing 5, all operations that
attempt to read the cookie will return a null value.

In addition, there is a policy directive named ”request-
src” at line 2, which could block evil http/https requests
sent from the current page.

3.4 Policy Enforcement

After the policy is generated, JSCSP will perform the
enforcement on the browser. The basic idea is to reconstruct
the elements of the web page before rendering. We will
delete the potential malicious elements according to the
policy.

Fig 2 illustrates the workflow of JSCSP in the policies
enforcement phase. In this phase, DOM rendering is paused
first to prevent malicious script execution (step 1). Then we
reload the current page and copy html content into a safe
DOM. All elements in the safe DOM are set non-configurable
in case attackers tamper with the existing DOM properties
(step 2). After that, policies are read and sent to three types of
enforcer. The dangerous functions and elements in the black-
list will be deleted (steps 3,4). If there are some data or ele-
ments to be protected, wewill use DOMMutation Observers
(DMO)9 to monitor any access to selected DOM nodes, and
set important data into an immutable state. For the elements
created dynamically, we provide the inline scripts into the
DOM, which hooks all the functions and methods that can
create or append new elements (e.g., document.createElement)
(step 5). Finally, the modified DOM is copied back to the
original page (step 6), and the browser’s renderer can con-
tinue rendering.

3.5 Defenses Against CSP-Bypass Attacks

In this section, we will elaborate the advantages of JSCSP on
defending against CSP-Bypass attacks. In general, the auto-
mation of JSCSP policy generation makes the policy fine-
grained as it considers the script, html elements and sensi-
tive data. Whereas CSP policy is manually set on a whole
page and it is coarse-grained. Hence, some XSS attacks can
bypass the CSP policy but be blocked by the fine-grained
JSCSP policy. There are four types of CSP-Bypass attacks.
JSCSP can effectively defend against or mitigate these four
attacks.

� UXSS. UXSS is a kind of attack that exploits client-side
vulnerabilities in the browser or browser extensions in
order to generate an XSS condition, and execute mali-
cious code. For example, Google Chrome prior to ver-
sion 57.0.2987.98 fails to correctly propagate CSP
restrictions to local scheme pages. Attackers could use
window:openð0000; blank00Þ to write any html codes into
a blank page, and this page will not be “blocked” by
CSP. But JSCSP could defend such attacks in two
ways: a) blocking requests sent by the dangerous
functions (sandbox policy), i.e., window:open; b) enforc-
ing policies to restrict the ”about:blank” page which is
beyond the scope of CSP.

� URL redirection. It refers to the technique of direct-
ing a user to another URL while browsing a web
page. For example, a user will be directed to
“http://evil.com” if a web page in Listing 6 is vis-
ited. CSP can only restrict certain types of web
requests (e.g., ajax, websocket and fetch) by using
directive ”connect-src self”. But redirection functions
such as window:location and window:open can also be
used to send web requests to web servers controlled
by attackers. In contrast, JSCSP can block such web
requests because they are not in the whitelist. JSCSP
uses the extension API webRequest:onBeforeRequest,
which is more effective than the directives of CSP.

Listing 6. An Example of URL Redirection

1 <script>location=“http://evil.com”;</script>

� Code-reuse. Code-reuse is a kind of attack that can
bypass XSS migrations including CSP via legitimate
JavaScript fragments within the legitimate code
base. Specifically, several popular JavaScript librar-
ies (e.g., Jquery, Vue.js) tend to be used and trusted
by many websites. And attackers could use these
libraries to bypass CSP check on malicious codes.
For example, when Jquery Mobile is used in a web-
site and the CSP directives contain “script-src
‘strict-dynamic”’, the attacker can insert a div tag as
shown in Listing 7 and the script code “alert(1)”
will be executed regardless the values of any other
CSP directives. Thus, CSP cannot defend such
attack. However, such attack vectors tend to have
particular features that is easily discernible. For
example, the id attribute of the div element in List-
ing 7 contains a html tag, which should not present
in a normal div element. According to these fea-
tures, JSCSP will generate the policy which can
clean the malicious vectors . For the attack vectors
without such features, JSCSP can mitigate the prob-
lem by blocking malicious requests and hooking
dangerous functions which could create elements
dynamically (e.g., document.createElement) or exe-
cute codes (e.g., eval() function).

Listing 7. An Example of Code-Reuse Attacks

1 <div data-role=“popup” id=“–><script

2 >alert(1)</script>”></div>

Fig. 2. Policy enforcement.

9. https://developer.mozilla.org/en-US/docs/Web/API/
MutationObserver

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 867

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

� DNS-Prefetch. DNS-Prefetch is a feature of most mod-
ern browsers. It will send DNS requests before the
DOM is loaded according to the URL in the DOM ele-
ments’ src and href attributes, which cannot be blocked
by CSP. For example, if an attacker inserts a link tag
into a web page as shown in Listing 8, the attacker will
be able to steal the cookie which is uploaded to the
DNS server throughDNS prefetching. JSCSPmitigates
this risk by removing the link tags with untrusted href
attributes in the policy enforcing phase.

Listing 8. An Example of DNS-Prefetch Attacks

1 <linkrel=“dns-prefetch” href=“//[cookie].atta

2 cker.ceye.io”>

3.6 Limitation, Usage and Security of JSCSP

Limitation. Considering the challenges in terms of compati-
bility, scalability, capability and flexibility, there is still no a
best approach to satisfy all the requirements. As described
above, we systematically design JSCSP addressing such
challenges. However, there are still some limitations for
JSCSP. Specifically, to generate the fine-grained policy, a
challenge is that JSCSP depends on the content of the web
page, which must be a clean page. However, the clean page
can be obtained from the website owner.

Another challenge is that JSCSP constructs the whitelist
according to the content clean page. For the dynamic web-
sites, the generated policy may not be complete as new ele-
ments will be added into the page dynamically. As a result,
the whitelist may block the new generated elements. Actu-
ally, it is a trade-off between achieving higher security and
better usability (i.e., with low false positives) for the target
website. Ideally, if a website requires high security, it has to
sacrifice usability. For example, with CSP, the administrator
must understand the logic of the website and configure the
strict policy manually. Even so, there are some attacks which
can bypass the defense. In addition, the strict policy may
block normal elements and cause the display problem. Con-
versely, if the website cares more about the usability of the
website, it may generate policy with loose restrictions. As a
result, more XSS attacks may bypass the policy. JSCSP con-
siders this challenge and tries to mitigate it as follows: 1)
JSCSP automatically tunes the generatedwhitelist and block-
list based on the development experience. For example, the
commonly used and secure sites (e.g., code.jquery.com, ajax.
googleapis.com) will be added into the source whitelist even
if they are not in the clean page. The dangerous function
(e.g.,“eval”), which are rarely used by developers but usu-
ally exploited by attackers, will be added into the blacklist. 2)
The JSCSP policy format is general. It is feasible to config-
ure/tune the policy by the web administrator. For example,
if thewebsite is dynamic, we can remove (or part of) the posi-
tion checking or update the policy at a certain frequency.

Usage.There are twomainways to apply JSCSP: 1) theweb
administrator provides the policy since they have the clean
pages and can slightly tune the policy according to the char-
acteristics of the website. Then the policy is published toget-
her with the website. Finally, based on the generated policy,
the user can use JSCSP to perform the enforcement in the

client side. 2) If the web administrator does not provide the
policy, JSCSP will generate a policy when the user first
accesses the new page. In this case, the policy may be gener-
ated from a non-clean page (i.e., it has been injected by some
XSS attacks), and JSCSP cannot detect the old XSS attacks that
were injected in the non-clean page.However, it still provides
certain protection against the future XSS attacks (i.e., the new
attacks on the non-clean page). Unfortunately, for CSP, if the
administrator does not provide the policy, the website cannot
be protected any more. In summary, compared with CSP,
JSCSP has improved the usability.

Security. JSCSP possibly suffers from the following two
security threats: 1) the policy generated from the adminis-
trator may be modified by the attackers before the user uses
it. This problem could be addressed by encrypting the pol-
icy file. We will leave it as the future work. 2) the JavaScript
based extension may be attacked by the attackers. However,
such an attack is difficult as it usually needs to control the
computer or obtain the high permission. Compared with
the fact that the computer has been attacked or controlled,
we think the potential XSS attack caused by the failure of
JSCSP is not very important.

4 IMPLEMENTATION

Because Chrome is the most popular browser and it has the
relative perfect extension API, we have implemented a
Chrome extension for JSCSP. Fig. 3 illustrates its structure.

There is a configuration file named manifest.json in the
root directory. It contains the information of our extension,
such as the version, which script files will be inserted into
web pages and which files will run in the background. The
options.html is the option page where an end-user can view
and edit the JSCSP policies for each web page. The popup.
html contains several action buttons such as “Generate Poli-
cy” and “Block Request”. In addition, the folder js contains
JavaScript files of the above two pages and three core files
of JSCSP: gen_policy.js, enf_policy.js and bg.js. The three files
achieve the following capabilities.

4.1 Policy Generation

Before the generation of policy, users should make sure that
the current page has not been injected with malicious codes.
And new online pages meet this condition. Our policies are
generated by analyzing a safe page and enforced in pages
that may have been attacked. But users can also design their
own policies and further store them into the localStorage.

Fig. 3. Structure of JSCSP chrome extension.

868 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

code.jquery.com
ajax.googleapis.com
ajax.googleapis.com

In order to mitigate both script-less attacks and markup
injection attacks, JSCSP generates three types of policies
described in Section 3. Algorithm 1 illustrates the policy
generation process.

Algorithm 1. The Policy Generation Process

1: == Prepare for policy generation
2: for all func such that func 2 function blacklist do
3: addFuncHookðÞ;
4: end for
5: for all data such that data 2 data list do
6: addDataReadHookðÞ;
7: addDataWriteHookðÞ;
8: end for
9: GetScriptPositionsðÞ;
10: GetEventHandlerPositionsðÞ;
11: GetJavaScriptURIPositionsðÞ;
12: GetDataURIPositionsðÞ;
13: == Page loaded
14: setSandboxPolicyðlocalstorage½0sandbox0�Þ;
15: setDataPolicyðlocalstorage½0data0�Þ;
16: elements ¼ document:querySelectorAllð0�0Þ
17: for i ¼ 0; i < elements:length; iþþ do
18: tagname ¼ elements½i�:tagName
19: insertSrcWhitelistðtagname; elements½i�:srcÞ
20: end for
21: for i in dangerous tag do
22: if document:querySelectorAllðdangerous tag½i�Þ then
23: insertTagBlacklistðdangerous tag½i�Þ
24: end if
25: end for

1) Monitor the Dangerous Function Calls. First, we initialize
a blacklist which contains vulnerable functions and objects.
In order to find whether they are used in the clean page, we
add hooks to their get10 method. We embed hooks to the
dangerous functions (include objects’ constructor such as
Proxy()). If such a dangerous function is called, we delete it
from the blacklist. In this way, we can get a sandbox policy
which forbids all dangerous function calls not used in the
clean page. Note that our hook codes must be converted to
a string (Listing 9) before the string is injected into the origi-
nal page, This is so because the code in our extension is in a
different context from the original page.

2) Monitor Important Data’s Reading/Writing. By default,
we use policies to protect important data from malicious
access. JSCSP generates data protection policies in a manner
similar to the previous policy generation process. The only
difference is that we use the ES5 functionality ofObject.defin-
eProperty() instead of function hooks. This method allows a
precise addition to our modification to the property of an
object. Accordingly, we are able to use it to modify impor-
tant data’s get or set property (e.g., document.cookie), and
to tell if it is accessed by the normal functions in the current
page. All data that are sensitive but not accessed will be pro-
tected by making a policy such as “read”: false.

3) Get Script Elements, JavaScript URIs, Data URIs and
Event-Handlers’ Positions. There are four ways for executing
JavaScript codes: script elements, the event-handler, the

JavaScript URI and the data URI. We mark their positions
(Listing 10), and delete such elements outside of these posi-
tions in the policy enforcing phase. In this way, we can
ensure that malicious codes are filtered properly.

Listing 9. An Example of Generating Sandbox Policies

1 this.execute = function (code) {

2 var script = JSCSP.doc.createElement

(’script’);

3 script.setAttribute(“class”,“jscsp-hook”);

4 var code = JSCSP.doc.createTextNode(code);

5 script.appendChild(code);

6 JSCSP.doc.head.insertBefore(script, JSCSP.

doc.head.children[0]);

7 }

8 this.Sandbox_string = function (func_name)

9 {

10 var string = “”;

11 string += “_{0} = {1};”.format

(func_name, func_name);

12 string += “{0} = function(){”

13 .format(func_name, func_name);

14 string += “var args = Array.prototype

15 .slice.call(arguments,0);”;

16 string += “var sandbox = JSON.parse

(localStorage[‘sandbox’]);”;

17 string += “index = sandbox.indexOf(‘{0}’);

18 ”.format(func_name);

19 string += “if(index!=-1)sandbox.splice

(index,1);”;

20 string += “localStorage[‘sandbox’] = JSON.

stringify(sandbox);”;

21 string += “return _{0}.apply(this,args);}”

22 .format(func_name);

23 return string

24 }

25 this.excute(this.Sandbox_string(‘eval’));

Listing 10. Get Positions of Script Tags and Other Tags
With Event-Handlers, JavaScript URIs or Data URIs

1 this.get_position = function (e) {

2 if (!e.parentNode) return “document”;

3 return JSCSP.get_position (e.parentNode) +

“,” + element_index(e);

4 }

4) Generate Whitelists of Sources and Tags. Attackers tend to
launch XSS attacks by using HTML tags and loading exter-
nal resources. In this case, a whitelist is useful for filtering
out attacker’s scripts. In order to create such a whitelist, we
traverse the DOM tree and collect its elements by using the
document:querySelectorAll API. Their tags will be added to
the tag whitelist. In addition, if an element has attributes
such as src and href, their values will be added to the
whitelist.

4.2 Policy Enforcement

There are many types of policies in previous phases. As
shown in Algorithm 2, different methods are used to enforce
these policies.10. It will be called when the objects are used.

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 869

Algorithm 2. The Policy Enforcement Process

1: == Stop window from rendering
2: window:stopðÞ;
3: == Reload html content and seal the new DOM
4: JSCSP:doc ¼ ReloadðcurrentUrlÞ;
5: JSCSP:doc ¼ sealðJSCSP:docÞ;
6: 7: JSCSP:policy ¼ getPolicyðcurrentUrlÞ;
8:
9: == Enforce the given Policies.
10: for all func such that func 2 JSCSP:policy½0sandbox0� do
11: deleteFuncðfuncÞ;
12: end for
13: elementPolicies ¼ JSCSP:policy½0element0�;
14: for all selector such that selector 2 elementPolicies do
15: policy ¼ elementPolicies½selector�;
16: for all element such that element 2 JSCSP:doc:

querySelectorAllðselectorÞ do
17: checkElementðelement; policyÞ;
18: flagElementðelementÞ;
19: end for
20: end for
21: checkCodeReuseVectorsðÞ;
22: checkScriptPositionsðÞ;
23: checkEventHandlerPositionsðÞ;
24: checkJavaScriptURIPositionsðÞ;
25: checkDataURIPositionsðÞ;
26: for all element such that element 2 elementFlagged do
27: if element:allow ¼ false then
28: deleteElementðelementÞ;
29: end if
30: end for
31: == Copy back to origin DOM
32: startDocumentðJSCSP:doc:documentElement:inn�

erHTMLÞ;
33:
34: == Restrict dynamic elements.
35: hookFunctionsðÞ;
36: == Data protection.
37: hookDataðÞ;

1) Stop theWindow andReload the Page.Before JSCSP imposes
confinements on the DOM according to the policies, the win-
dow object should be stopped as early as possible. It is neces-
sary to prevent malicious scripts’ execution and win possible
attacker-caused race-conditions (such as DOM-clobbering
[30]). After that, we reload the page and get its html code by
using XMLHttpRequest (Fig. 4). We now extract the html con-
tents andmap them into a safe DOM.11

2) Seal the Safe DOM. In case of the loss of race-conditions,
we need to make sure that the existing DOM properties and
built-in functions have not been tampered with. Thus JSCSP
iterates over all methods to lock them to prevent from exter-
nal accesses (Listing 11).

3) Enforce the Given Policies. There are three types of
enforcers in JSCSP, which are designed for the correspond-
ing security policies respectively.

� Sandbox policies enforcer. It deletes the methods that
are forbidden from their owner by using the delete
statement. In fact, we cannot delete the methods of

the window object directly. Because our injected
scripts run in the context of each individual web
page, only DOM elements can be modified. Thus
additional scripts are injected into the context of the
original web page using inline scripts.

� Element policies enforcer. We use the document.query.
SelectorAll API to select all items in the DOM tree.
The enforcer requests all elementsmatching the JSCSP
policy selectors and passes them to the corresponding
enforcer methods. These methods will modify the
selected elements according to the specified direc-
tives. The final goal is the removal of either the attrib-
utes or the specific attribute values, the prefixing of
resource URIs or even the removal of entire elements
and their child nodes. However, due to the cascading
policy, different directives may be made to the same
elements. In order to make JSCSP policies work prop-
erly, the enforcer only flags elements for deletion or
manipulation. After the final selector’s rules have
been enforced, the elements are actually removed or
modified (see the next subsection). Moreover, in order
to defend against the code-reuse attacks, we add addi-
tional rules12 to filter DOMelements.

� Data policies enforcer. This enforcer is similar to the
sandbox enforcer. Read or write-access confinements
of important data should be enforced in the original
DOM (compare to the safe DOM). Thus we create
script elements which set important data to an
unreadable/unwritable state, and inject them to the
context of the original web page.

Listing 11: Seal the safe DOM

1 this.seal = function (doc) {

2 for (var item in doc) {

3 if (typeof doc[item] === ‘function’) {

4 Object.defineProperty(

5 doc,item, { value: doc[item],

configurable: false }

6);

7 }

8 }

9 return doc;

10 }

4) Rewrite DOM and copy back. In the previous step, ele-
ments in the DOM tree have been flagged for deletion or

Fig. 4. The way of loading pages when JSCSP is enabled.

11. We create a new DOM use document.implementation.create
HTMLDocument()., which is not hijacked by evil scripts.

12. For example, we check the id attribute of each div elements so as
to filter the vector in Listing 7.

870 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

manipulation (e.g., allow=false).We here need to remove those
elements’ attributes or even themselves if they are flagged as
”allow=false” (Listing 12). For those elements whose attributes
(e.g., value) are flagged as “value-unread=true” or “value-
unwrite=true”, we will set these attributes to an unreadable/
unwritable state like the one in step 3. After the DOM tree has
been revised completely, we copy its content back to the nor-
mal flowusing document.write and the browserwill continue
rendering the pagewith the updatedDOM tree.

Listing 12. Remove Elements That are Flagged as
“allow=false”

1 this.filter = function(){

2 elements = JSCSP.doc.querySelectorAll(“*”);

3 for (var i = 0; i < elements.length; i++) {

4 if(elements[i].getAttribute(“allow”)==

5 “false”){

6 elements[i].parentNode.removeChild(

7 elements[i]);

8 }

9 }

10 }

5) Hook the Essential Functions. Note that the element poli-
cies enforcer in step 3 can only place confinements on static
DOM elements (in source code). Scripts can also create and
append elements to the DOM tree dynamically. So we must
hook several functions such as document.CreateElement
and document.appendChild, then add our own code so as
to enforce confinements on the dynamical elements. For
example, we get the tagName attribute from document.Crea-
teElement’s parameters. If it is not in the whitelist, we return
a plain-text element (<plaintext>). Furthermore, we check
newly-created elements’ attributes by using Object.define-
Property. Attributes’ get method will return null when they
are set unreadable in corresponding policies, and their set
method will filter values that are not in the whitelist.

4.3 Background Module

Background module is mainly used to communicate
between policy generation component and policy enforce-
ment component, because they work in the different con-
texts and require different localStorage allocations [32], [33].
If they need to get or set the common data, they send com-
mands to the background module. In addition, the back-
ground module is also used to filter web requests, so as to
guarantee that sensitive data are not compromised by
attackers.

We build a background module (Fig. 5) for passing mes-
sages between them and blocking untrustworthy requests.
We add several event listeners for commands such as get_
policy, set_policy. When the two policy modules send such
commands, the backgroundmodulewill take actions accord-
ingly and respond results to them. Besides, it monitors the
requestsmade by each tab and blocks those ones in the black-
list. However, it is possible that normal requests are inter-
cepted bymistake. So we set it to be an optional function and
users can choose to disable it if normal websites are affected.
Note that not onlymalicious http/https requests are blocked,
DNS prefetching requests can also be intercepted, because
theymay be exploited to leak sensitive data.

4.4 Request Blocking

In the worst case scenario, if the attacker’s malicious scripts
manage to bypass the JSCSP policies listed above, we take an
extra measure for safeguard. That is, we run several event lis-
teners in the background of our extension, such aswebRequest.
onBeforeRequest. Requests from all tabs are monitored and fil-
tered before being sent to the target servers. Moreover, we
change the value of the response header X-DNS-Prefetch-
Control to “off” if there is such a policy (DNS request will not
be intercepted by CSP, but it can be used to steal data from the
victim’s website). Note that the whitelists of requests’ sources
are generated in the background module. Because we cannot
get all requests from the clean page by iterating over the DOM
tree and extract their href or src attribute (e.g., requests can
also be sent by AJAX). All web requests’ URLs are stored in
localStorage classified by origins they are from. When the
user clicks the “generate policy” button, the URLs of the web
requests are extracted and added to “requests_src” policy.

5 EVALUATION

In order to test JSCSP’s performance in the real-world web
applications, we conducted several evaluations on it accord-
ing to several different metrics. And each evaluation is tested
on the sameMacBook Prowith an Intel i7-6700HQprocessor
(2.7 GHz), four assigned cores and 16 GB RAM. The source
code of the JSCSP is publicly accessible at Github: https://
github.com/zhazhami/JSCSP. In the evaluation, we applied
JSCSP extension on Chrome 63.

5.1 Experiment Setting

According to the objectives in Fig. 1, the evaluation is
designed to demonstrate the capability of JSCSP on defend-
ing XSS attacks (Section 5.2), the scalability of JSCSP on the
performance (Section 5.3) and the usability (Section 5.6), the
accuracy of JSCSP on defending XSS attacks (Section 5.4) and
the compatibility of JSCSP on different browsers (Section 5.5).

For capability, since very few popular web sites have
XSS vulnerabilities, it is hard to evaluate the capability in
terms of XSS mitigation on the real-word websites. Thus
we evaluated the security of JSCSP in three experiments.
First, we collected five popular CMS (Content manage-
ment systems) that contain XSS vulnerabilities, and mea-
sured whether JSCSP could protect these applications from
XSS attacks. Then we chose XSS vectors from “XSS Filter
Evasion Cheat Sheet” (https://www.owasp.org/index.php/
XSS_Filter_Evasion_Cheat_Sheet) maintained by OWASP

Fig. 5. Backgroud module.

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 871

https://github.com/zhazhami/JSCSP
https://github.com/zhazhami/JSCSP
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

and “HTML5 Security Cheatsheet” (https://html5sec.org/),
which are used for hardening of JSCSP. At last we tested
JSCSP’s security against XSS vectors that could bypass CSP
(such as UXSS, Code-Reuse attackswith script gadgets).

For performance and the accuracy (i.e., evaluate the false
positives caused by JSCSP), we selected the Alexa Top 100
websites. Note that, since there are 22 websites which can-
not be accessed in our area, we used the remaining websites
(i.e., the 78 websites). For each website, we selected 11 pages
including 1 home page and 10 sub-pages which are complex
and contain some dynamic information (e.g., the news).
Totally, we selected 858 pages.

For the performance of each page, we analyze: the time of
the policy generation, the time of the policy enforcement
and the original loading time of the page without JSCSP pol-
icy. The loading time is used to compare with the policy
enforcement time such that we can clearly see the perfor-
mance impact caused by JSCSP.

For accuracy, we mainly focus on checking the false posi-
tives of JSCSP, which will cause the display problem because
the correct elements may be blocked by JSCSP. In particu-
larly, for each of the 858 pages, we will first generate the cor-
responding policy. Using the policy, we access the same
page after 2 days and checkwhether there are some disagree-
ments between the page with JSCSP policy enforcement and
the same page without JSCSP policy. Note that we check the
results after 2 days because the pagemay not update dynam-
ically within a short time. Specifically, 10 participants are
asked to carefully check whether all elements can be dis-
playedwell and can be used (e.g., the links) correctly.

For compatibility, since JSCSP operates on the client side,
the main compatibility problems may be caused by the
browsers and by other JS libraries. In order to measure the
compatibility of JSCSP with them, we first built a simple
web application that was deployed with CSP using Type-
cho. Then we compared the compatibility of CSP and JSCSP
with different browsers. Finally, we checked whether JSCSP
worked properly with other JavaScript libraries.

For usability, we compared JSCSP with other solutions
including JSAgents, CSPAutoGen, WebMTD, AutoCSP and
Beep. It is difficult to use other solutions on the new pages
since they are not automatic. We discussed the differences
from the approach level.

5.2 Capability

Real-WorldApplications.Wechose five popular CMSwritten in
different languages and searched XSS payloads from exploit-
db13 used for the test (Table 1). WordPress is reportedly the

most popular blogging system on the web. Drupal and
TYPO3 are two free and open source content-management
frameworkswritten in PHP. PrestaShop is a free development
platform to build e-commercewebsites. Typecho is a personal
blog framework that is popular in China. We first verified
that XSS exploits work on the applications. Then we reset the
browser, deployed JSCSP and initiated the same attacks
again. The evaluation results show that all XSS attacks fail,
which means that JSCSP can protect web applications in the
real-world fromXSS attacks effectively.

XSS Vectors. We have made a comparative experiment
between JSAgents [11] and JSCSP using XSS vectors that we
have collected fromOWASP and html5sec. In the experiment,
we first wrote a demo page which contains typical html ele-
ments (e.g., , < link> , <script>). Then we used
JSCSP to generate security policies for this page. For JSAgents
whose policies could only be generated manually, we chose
the high-security policy14 and modified it to fit the demo
page. Finally, we inserted these XSS vectors (contain DOM-
based and reflect XSS) in turn, and tested whether the two
tools could defend against these attacks. Note that every
attack was divided into two steps. First, we used a Proof of
Concept vector (e.g., <script>alertð1Þ; <=script>) to test
whether JavaScript code could be executed. Then we used an
exploit vector to test whether cookie could be stolen and sent
to attackers’ websites. We found that JSCSP can defend
against more DOM-based XSS than JSAgents, which only
considers static elements. Unlike JSAgents, several rare
HTML5 XSS vectors (e.g., <iframe srcdoc ¼00<svg onload ¼
alertð1Þ> 00 > <=iframe>) can also be defended against by
JSCSP. The detailed result is listed in Table 2, which shows
that though JSCSP is bypassed by much less of POC vectors,
all exploit vectors are prevented from stealing cookie
successfully.

CSP Bypass Attacks. We have tested whether JSCSP can
defend web applications against the four CSP bypass
attacks. As shown in Tables 3, 4 and 5, for UXSS attacks, we
chose 4 UXSS vulnerabilities. Attackers could use them to
bypass CSP confinements. However JSCSP was not affected
and could still defend XSS attacks properly. In addition,
redirection attacks (e.g., window.location=“http://attacker.
com/c=”+document.cookie) were blocked by JSCSP. In
Code-Reuse attacks’ experiments, we found that POC vec-
tors could be inserted when specific Script Gadgets were
used (e.g., Vue.js) because the attack vectors of these gadg-
ets were similar to the normal elements. However, all
exploit vectors that tried to steal cookies through upload to
remote server were blocked by JSCSP. At last, we tested
DNS prefetching attacks and the correlative link tags were
filtered by JSCSP correctly.

mXSS Attack. mXSS is caused by the abnormal mutation
when the browser is parsing the HTML code. A normal
HTML tag may become malicious after the incorrect parsing.
For example, for the tag < img src=”test.jpg” alt =”“onload=xss
()” /> , onload=xss() is a string value of the attribute alt.
Chrome could parse it as < img alt =“onload=xss() src =”test.
jpg”/> , where the value of the attribute alt is an empty string
and onload=xss() becomes a new attribute. However, JSCSP

TABLE 1
Real-World Applications

Application Version Vulnerability Active Sites

Wordpress 4.8.1 CVE-2017-14724 20,580,941
Drupal 8.0.0 CVE-2016-7571 1,194,014
TYPO3 5.0.5 CVE-2017-5962 425,730
PrestaShop 3.1.0 CVE-2015-1175 250,000+
Typecho 1.1 CVE-2017-16230 23,000+

13. It is an offensive security’s exploit database archive. https://
www.exploit-db.com/

14. https://link.springer.com/chapter/10.1007/978-3-319-24174-
6_2#Sec3, Listing1.7

872 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

https://html5sec.org/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://link.springer.com/chapter/10.1007/978-3-319-24174-6_2#Sec3
https://link.springer.com/chapter/10.1007/978-3-319-24174-6_2#Sec3

will not be affected since the JSCSP enforcement is performed
after the parsing. Hence, the policy can still block the mali-
cious tag that is caused after the abnormalmutation.

Case Study. We will discuss how JSCSP could defend the
real CSP-Bypass attacks in Table 3:

CVE-2017-5033.Attackers could use window.open(””,_blank”)
to create a new page and use document.write to write any
malicious codes into a blank page. The malicious codes
are in about:blank page. However, this page will not be
“blocked” by CSP. JSCSP could defend such attack by
blocking requests sent by the dangerous functions
(sandbox policy). For example, window:open is only
allowed to open the safe sources in the whitelist. How-
ever, ”about:blank” is not in the whiltelist.

CVE-2017-5022. Attackers could load unsafe pages with the
tag < link rel=“prefetc” href=“http://hacker.com/test_pre-
fetch.html”> . However, such tag cannot be blocked by
the coarse-grained policy. JSCSP provides fine-grained
policy that can have an effect on the tags. In this case,
“hacker.com” is not in the whitelist and will be blocked
by JSCSP.

CVE-2016-1682. In previous versions of Chrome 50.0.2661.
102, CSP will not check the JavaScript codes in service-
Worker that is registered in the current page. However,
JSCSP is general and will check any code in this page
with the whitelist/blacklist strategy. In this case, JSCSP
still checks the requests and dynamic scripts generated
from serviceWorker as they blong to the current page.

CVE-2017-8723. In the Edge browser (prior to version 1511,
1607 and 1703), attackers could delete the CSP policy by
theXSS Filter function. For example, suppose the current
page adopts the CSP policy: <meta http-equiv=“Content-
Security-Policy” content=“script-src ’self”’> . XSS Filter

could delete the meta tag when attackers send the
request: http://example.com/xss.html?<meta http-equi-
v=“Content-Security-Policy” content=“script-src ’self”’> .
Edge will mistake the meta tag as malicious code, and
remove the tag. As a result, CSP policy is bypassed. In
JSCSP, the design is totally different. Policy enforcement
is performed on the background module and the CVE
will not affect the detection.

5.3 Performance of JSCSP

We have designed two experiments to evaluate the perfor-
mance of JSCSP on two kinds of web pages:

Real-World Websites. For the 858 pages in 78 real-world
websites which belong to the Alexa Top 100 [31]. The
average JSCSP policy generation time is 7.75 ms, the aver-
age JSCSP enforcement time is 31.80 ms and the average
loading time is 6368.73 ms. The results demonstrate that
JSCSP is fast and will almost not affect the user experi-
ence. Specifically, policy is usually generated offline and
only once, it will not affect the user experience. Differ-
ently, JSCSP enforcement will be performed when the
user is accessing the page. However, compared with the
loading time (6368.73ms), we could find that the JSCSP
enforcement time is negligible (31.80ms, it is 5 percent of
the loading time).

Besides, we selected nine of the real-world websites and
counted the average number of HTML elements of their
main pages: Wordpress(404), Twiter(908), Alexa(1005), Red-
dit(1539), Tmall(2000), QQ(2486), Amazon(2635), Sohu(3019)
and YouTube(3971). The results are shown in Fig. 6 and
Table 6. We have found that the execution time becomes
irregular when the number of DOM elements is greater than
2500. The reason is that the policy enforcement time depends
on the number and the type of policy directives, rather than
the number of the element. Since there is a big difference
among the proportions of tags in the pages of the eight web-
sites. The execution time is different when JSCSP deals with
different HTML tags.

TABLE 3
CSP Bypass Attacks(UXSS)

Type CVE-ID POC Bypass Exploit Bypass

UXSS CVE-2017-5033 no no
UXSS CVE-2017-5022 no no
UXSS CVE-2016-1682 no no
UXSS CVE-2017-8723 no no

TABLE 4
CSP Bypass Attacks(Redirection)

Type Function POC Bypass Exploit Bypass

Redirection window.location / no
Redirection window.open / no

TABLE 5
CSP Bypass Attacks(Code-Reuse)

Type JS Library POC Bypass Exploit Bypass

Code-Reuse Vue.js yes no
Code-Reuse RequireJS yes no
Code-Reuse Polymer 1.x yes no
Code-Reuse Aurelia yes no
Code-Reuse Bootstrap no no
Code-Reuse jQuery no no
Code-Reuse jQuery Mobile no no
Code-Reuse jQuery UI no no
Code-Reuse Ractive no no

TABLE 2
XSS Vectors

Type Total Count
JSAgents JSCSP

POC Bypass Exploit Bypass POC Bypass Exploit Bypass

Reflected XSS 100 22% 22% 8% 0%
DOM-based XSS 20 100% 100% 25% 0%

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 873

Random HTML Contents. We wrote a tool to generate uni-
form web pages with random HTML contents. These pages
have different number of DOM elements, but the propor-
tions of each tags are same. We evaluate the performance of
JSCSP on these pages in the similar way to the previous
experiment on real-world websites. Besides, in the policy
enforcing phase, we compared JSCSP with JSAgents, which
requires manual setup of policies and we cannot compare
them on the real-world websites. The evaluation result is
shown in Fig. 7 and Table 7.

For each test case, we used two Web APIs (console.time
and console.Endtime) to calculate the total execution time of
our two main functions. In addition, we used document.quer-
ySelectorAll to count the number of DOM elements in the
original page and the number of policies that were gener-
ated by JSCSP. By comparing the results, we found that the
execution time of policy generation mainly depends on the
number of DOM elements of the original page and the pol-
icy generation takes less time than the policy enforcement.
Moreover, the function hooking is the slowest module
among all parts in both two phases.

5.4 Accuracy of JSCSP

The false positives are evaluated on the 858 real-world
pages. Note that all pages are dynamic websites, i.e., the
contents may be changed dynamically. As discussed in
Section 3.6, the more strict the JSCSP configuration, the
more elements JSCSP will check. As a result, more XSS

attacks will be defended by JSCSP. Meanwhile, it may lead
to potential false positives as some normal elements may be
blocked by the strict configuration. In this experiment, we
evaluated the false positives with the most strict configura-
tion of JSCSP, i.e., all checking (including script policy,
HTML element policy and sensitive data policy) are used in
this configuration.

Table 8 shows the detailed results. For 858 pages, after
using JSCSP policy, there are 190 (22.14 percent) pages which
have display problems. We analyzed the false positives and
classified them into 4 groups: Column Image. shows the num-
ber of pages (40.53 percent) which have image display issues,
e.g., some ad images are blocked by JSCSP. Column Elements.
shows the number of pages (33.16 percent) which have the
elements display issues, e.g., some div elements are blocked.
There are 28 pages (14.72 percent) that have very small dis-
play problems (Column Small.), e.g., the style of the element is
changed a little. Column Pos. shows that there are 22 pages
(11.58 percent) in which the positions of some elements are
changed, i.e., the layout is affected.

The results show that JSCSP may generate false positives
in dynamic websites, the strict configuration will block
some normal elements. For example, some images and ele-
ments cannot be displayed well. The types Image., Small.
and Pos. will not affect the function of the page while the
type Elements. may affect the usage. We also evaluated the
performance after relaxing the configuration. Specifically,
we modified JSCSP such that it will not perform the strict

Fig. 6. Policy generation time of real-world websites.

TABLE 6
Policy Enforcement Time of Real-World Websites

Website Element-Number 1(ms) 2(ms) 3(ms) JSCSP Average(ms)

Wordpress 404 24.34 24.37 25.23 24.65
Twitter 908 40.95 41.29 40.37 40.87
Alexa 1005 68.61 68.19 67.70 68.17
Reddit 1539 74.92 73.66 72.31 73.63
Tmall 2000 82.58 82.96 80.94 82.16
QQ 2486 103.47 101.18 102.64 102.43
Amazon 2635 117.77 117.49 121.64 118.97
Sohu 3019 99.51 99.92 97.68 99.04
YouTube 3971 21.46 18.33 17.86 19.22

Fig. 7. Policy generation time of random HTML contents.

874 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

position checking (see Element policies in Section 3.2). Col-
umn Reduce.Pos shows that 44 false positives are reduced
and finally there are 146 (17.02 percent) false positives.

In addition, we further randomly selected twenty pages
(from the 858 pages) that could be displayed well with
JSCSP. Then we tested whether they could perform well
under CSP. Our results in Table 9 show that CSP 1.1 cannot
ensure the appearances of pages which contain much inline
scripts and event-handlers. The reason is that CSP 1.1 must
contain a directive “script-src: self whitelists” and forbid the
inline scripts to ensure the security. However, most web
pages contain benign inline scripts. Even though a nonce
value is supported in CSP 2.0, a few dynamic scripts without
nonce attributes are forbiddenmistakenly. In contrast, JSCSP
filters inline scripts by their positions, and dynamic scripts
that are generated from the right positions are also allowed.

In summary, the results indicate that false positive prob-
lem is a challenge in XSS defense techniques including CSP
and JSCSP. The false positives of JSCSP can be reduced by
relaxing the configuration. Moreover, the flexible design of
JSCSP makes it can further reduce the false positives by tun-
ing the policy. To reduce the false positives of dynamic web-
sites, another possible way is to update the policy at a
certain frequency. We will leave the automatic reduction of
false positives in our future work.

5.5 Compatibility

1) Browsers. We tested CSP and JSCSP in different versions
of five popular browsers15. The results are shown in Table 9.
The old versions of browsers are not compatible with the
latest CSP’s directives, such as “base-uri” and “nonce-src” in
CSP 2.0. IE 11 does not support any features of CSP2.0. In
contrast, JSCSP supports both legacy and modern browsers
except the IE browsers, because IE does not support exten-
sion written in JavaScript.

Note that although the percentage of older browsers (in
Table 10) are not too much, considering the huge number of
people on the Internet, there are still many users using the

older browsers. Hence, it is still important and necessary for
protecting the security of the older browsers.

2) JavaScript libraries. Four popular JavaScript libraries
have been evaluated. The detailed steps are as follows:

Jquery. It is a JavaScript library which makes things like
HTML document traversal and manipulation, event han-
dling, animation, and Ajax much simpler with an easy-to-
use API. To test its compatibility, we first collected a list of
commonly used functions such as $.ajax() and $(“selector”).
each() from Jquery’s API document [34]. Then we used these
functions in different positions of our application (e.g., login
page, article editing page) and our evaluation shows that
they worked properly.

Bootstrap. It is a popular responsive front-end web frame-
work. We mainly tested whether it could adjust the layout
automatically according to the resolution of the web page.
Note that we created several new pages with Bootstrap
instead of using our web application built with Typecho,
which excludes Bootstrap library. The result shows that
these pages were displayed correctly at different resolutions.

TABLE 8
False Positives of JSCSP

Total False Positives Image. Elements. Small. Pos. Reduce.Pos

858 190 (22.14%) 77 (40.53%) 63(33.16%) 28(14.74%) 22 (11.58%) -44 (17.02%)

TABLE 7
Policy Enforcement Time of Random HTML Contents

Element-Number 1(ms) 2(ms) 3(ms) JSCSP Average(ms) JSAgents(ms)

509 25.97 24.70 26.54 25.74 61.95
1009 62.58 65.67 65.41 64.55 122.81
1509 106.90 108.63 107.08 107.54 183.66
2009 139.98 136.95 134.18 137.04 244.52
2509 195.92 200.20 199.15 198.42 305.37
3009 226.43 228.31 228.51 227.75 366.22
3509 292.52 291.17 291.40 291.70 427.08
4009 377.93 375.12 378.94 377.33 487.94

TABLE 9
Robustness of CSP and JSCSP

Num CSP1.1 CSP2.0 JSCSP

script-src self whiltelist self nonce-123 /
Display Well 12 16 20
Display Bad 8 4 0
Total 20 20 20

TABLE 10
Compatibility in Different Browsers

Browser Usage CSP 1.1 CSP 2.0 JSCSP

Chrome 48 1.30% yes partial yes
Chrome 62 10.53% yes yes yes
Firefox 32 2.28% partial no yes
Firefox 57 3.55% partial partial yes
Edge 14 1.75% partial partial yes
IE 11 3.84% no no no15. We only developed the full version of JSCSP in Google Chrome,

and just implemented the main functions in other browsers.

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 875

AngularJS. It is a JavaScript MVW (Model-View-
Whatever) framework. There is an application named Tour
of Heroes at https://angular.io/tutorial. It is a data-driven
application that covers the fundamentals of AngularJS. We
browsed the list of heroes, edited a selected hero’s detail,
and navigated among different views of heroic data.
The result shows that all these functionalities appeared
normal.

D3.js. It is a JavaScript library for data visualization.
We used the demos at https://github.com/d3/d3/wiki/
Galleryto evaluateD3.js’s compatibility. These demosworked
well with JSCSP.

5.6 Comparison With Other Solutions

In this section, we compare several solutions against XSS
attacks including JSAgents, CSPAutoGen, WebMTD,
AutoCSP, and Beep with JSCSP.

JSAgents is a JavaScript library which has the similar func-
tions as CSP. JSAgents works on the client side. Compared to
JSCSP, it cannot generate security policies automatically.
Unlike JSCSP that does not consider dynamic elements,
JSAgents bears the security issue as these elements can bypass
JSAgents’s checking.

CSPAutoGen is a tool that can generate secure and strict
CSPs according to applications’ source code automatically.
It designs a template mechanism which is used to distin-
guish normal and evil scripts. Comparing with JSCSP,
CSPAutoGen is deployed at the middle-box or at the server
and needs to modify the source codes of web pages. Fur-
thermore, CSPAutoGen relies on CSP, which suffers from
CSP bypass attacks.

WebMTD protects web applications against XSS attacks by
automatically adding a n0ew attribute named “runtimeId” to
its HTML elements. The value of runtimeId is generated ran-
domly and keeps changing over time. In this way, attackers’
injected scripts are not executed since they cannot guess the
real value of runtimeId. However, this method cannot inter-
cept JavaScript code in the event-handlers (e.g., onclick=“evil
code”), and it will be exploited by attackers to bypass
WebMTD.

AutoCSP is another tool that could retrofit CSP to web
applications automatically. Compared with CSPAutoGen, it
solves the issue with inline scripts in a different way.
AutoCSP transforms inline script nodes16 to external script
nodes,17 whose source belongs to the application server.
Then it makes a strict policy which disables inline scripts’
execution.

Beep prevents XSS attacks by setting a whitelist of hash
values and only allowing scripts with the right hash to be
executed. Specifically, Beep first computes the hash values
of all inline scripts in a web page and makes a whitelist
according to them. Then checking code will be embedded in
the web page. A browser that supports Beep will run the
checking code and filter all script codes. This solution needs
to modify both browsers’ kernels and applications’ source
codes, which is not practical.

Table 11 summarizes our results on comparing these solu-
tions with JSCSP. It shows that only JSCSP can work without
code modifications on both server-side and client-side and it
is more practical than other solutions, due to the flexible way
of policy generation and the support of dynamic elements’
restrictions and defenses against CSP bypass attacks.

6 CONCLUSION AND FUTURE WORK

In this paper, wehave proposed JSCSP to protectweb applica-
tions against XSS attacks based on novel self-defined security
policies. It has similar functions as CSP, such as origin con-
finement upon both static and dynamic elements. But more
useful features supported by JSCSP are data protection and
restrictions to dangerous functions. To sum up, there are sev-
eral advantages of JSCSP: (1) It is implemented in JavaScript,
which enables it to work on almost all browsers. (2) JSCSP can
defend against attacks that can bypass CSP (e.g., UXSS and
Code-Reuse attacks via Script Gadgets). (3) Security policies
of JSCSP can be generated automatically by analyzing web
pages. (4) JSCSP is able to apply different policies to DOMele-
ments through a novel cascading enforcement. (5) Advanced
features are supported by JSCSP, such as cookie protection
and JavaScript sandbox which can disable dangerous func-
tions and objects. In our evaluation, it has been verified that
JSCSP is able to deal with most real-world XSS threats and
compatiblewith other popular JavaScript libraries.

Some of our future works are described as follows.
Enhancements of the Way to Generate Policies. JSCSP gener-

ates polices mainly by analyzing the DOM tree and restrict-
ing the position of script codes. It may lead to misreporting
when web applications update frequently. Future revisions
will use better methods such as machine learning to distin-
guish malicious elements from normal codes, which is cur-
rently used in software vulnerability detection [35].

Enhancements of Execution Time. At the begin of JSCSP
policy enforcement, web pages are reloaded to get the purge
DOM tree, which may cost more time than other parts. In
the future, we will release another version that uses proxy
to modify the DOM tree. In this way the overall efficiency
will be greatly improved.

TABLE 11
Comparison With Other Solutions

Name Client Modification Server Modification Policy Generation Dynamic Elements CSP Bypass Defense

JSAgents yes no Manual no partial
CSPAutoGen no yes Automatic yes no
WebMTD no yes Not Applicable no no
AutoCSP no yes Automatic yes no
Beep yes no Manual yes yes
JSCSP no no Manual or Automatic yes yes

16. It refers to script nodes in the form <script> alertð1Þ; <=script> .
17. It refers to script nodes in the form <script src¼00:::00 > <=script> .

876 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

https://angular.io/tutorial
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery

Improvement in Compatibility of JSCSP. Although most of
websites evaluated by us are compatible with JSCSP, a small
part of websites have display problems which may caused
by the way that we stop the window from rendering. We
will try to use proxies instead of browser extensions in the
future and it will have better compatibility with real-world
applications.

ACKNOWLEDGMENTS

This work was sponsored in part by the State key develop-
ment program of China(No. 2018YFB0804402 and 2019YFB
2101700), National Science Foundation of China (U1736115),
andHong Kong Polytechnic University under Grants (BCB6,
YBJU, UAH6 andUAJH).

REFERENCES

[1] The MITRE Corporation. Common Vulnerabilities and Exposures:
The Standard for Information Security Vulnerability Names, 2017.
Accessed: Sep. 29, 2017. [Online]. Available: http://cve.mitre.org

[2] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mXSS attacks: Attacking well-secured web-applications by using
innerhtmlmutations,” inProc. ACMSIGSACConf. Comput. Commun.
Secur., 2013, pp. 777–788.

[3] The Acunetix, universal cross-site scripting (UXSS): The making of
a vulnerability, 2017. Accessed: Oct. 2, 2017. [Online]. Available:
https://www.acunetix.com/blog/articles/universal-cross-site-
scripting-uxss.

[4] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with
content security policy,” in Proc. 19th Int. Conf. World Wide Web,
2010, pp. 921–930.

[5] The W3C working draft. Content Security Policy Level 3, 2017.
Accessed: Sep. 29, 2017, [Online]. Available: https://www.w3.
org/TR/CSP3/

[6] Can I use. Content Security Policy Level 2, 2017. Accessed: Sep. 29,
2017, [Online]. Available: https://caniuse.com/#search=csp

[7] S. Lekies, K. Kotowicz, S. Groß, E. Nava, and M. Johns, “Code-
reuse attacks for the web: Breaking cross-site scripting mitigations
via script gadgets,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 1709–1723.

[8] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP is
dead, long live CSP! On the insecurity of whitelists and the future
of content security policy,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 1376–1387.

[9] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security prob-
lems: Evaluating the effectiveness of content security policy in the
wild,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2016,
pp. 1365–1375.

[10] D. Some, N. Bielova, and T. Rezk, “On the content security policy
violations due to the same-origin policy,” in Proc. 26th Int. Conf.
World Wide Web, 2017, pp. 877–886.

[11] M. Heiderich, M. Niemietz, and J. Schwenk, “Waiting for CSP:
Securing legacy web applications with JSAgents,” in Proc. Eur.
Symp. Res. Comput. Secur., 2015, pp. 23–42.

[12] J. Pan and X. Mao, “Detecting DOM-Sourced cross-site scripting
in browser extensions,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2017, pp. 24–34.

[13] S. Lekies, B. Stock, and M. Johns, “25 million flows later: Large-
scale detection of DOM-based XSS,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2013, pp. 1193–1204.

[14] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, “DexterJS: Robust testing platform for DOM-based XSS
vulnerabilities,” in Proc. 10th Joint Meeting Foundations Softw. Eng.,
2015, pp. 946–949.

[15] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, “Auto-patching DOM-based XSS at scale,” in Proc. 10th
Joint Meeting Foundations Softw. Eng., 2015, pp. 272–283.

[16] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection
attacks with browser-enforced embedded policies,” in Proc. 16th
Int. Conf. World Wide Web, 2007, pp. 601–610.

[17] T. Oda, G. Wurster, P. Oorschot, and A. Somayaji, “SOMA:
Mutual approval for included content in web pages,” in Proc. 15th
ACM Conf. Comput. Commun. Secur., 2008, pp. 89–98.

[18] D.Mitropoulos, P. Louridas,M. Polychronakis, andA.D. Keromytis,
“Defending against web application attacks: Approaches, challenges
and implications,” IEEE Trans. Dependable Secure Comput., vol. 16,
no. 2, pp. 188–203, Apr. 2019.

[19] J. Thome, L. Shar, D. Bianculli, and L. Briand, “Search-driven
string constraint solving for vulnerability detection,” in Proc. 39th
Int. Conf. Softw. Eng., 2017, pp. 198–208.

[20] A. Niakanlahiji and J. Jafarian, “WebMTD: Defeating web code
injection attacks using web element attribute mutation,” in Proc.
Workshop Moving Target Defense, 2017, pp. 17–26.

[21] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injec-
tion attacks on HTML5-based mobile apps: Characterization,
Detection and mitigation,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 66–77.

[22] M. Mohammadi, B. Chu, and H. Lipford, “POSTER: Using unit
testing to detect sanitization flaws,” in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., 2015, pp. 1659–1661.

[23] Y. Cao, V. Yegneswaran, P. Porras, and Y. Chen, “PathCutter: Sev-
ering the self-propagation path of XSS JavaScript worms in social
web networks,” in Proc. 19th Annu. Netw. Distrib. Syst. Secur.
Symp., 2012, pp. 1–14.

[24] A. Shrivastava, S. Choudhary, and A. Kumar, “JIID: Java input
injection detector for pre-deployment vulnerability detection,” in
Proc. IEEE Int. Conf. Res. Comput. Intell. Commun. Netw., 2015,
pp. 444–449.

[25] N. Jovanovic, C. Kruegel and E. Kirda, “Pixy: A static analysis tool
for detecting Web application vulnerabilities,” in Proc. IEEE Symp.
Secur. Privacy, 2006, pp. 258–263.

[26] A. Doup�e, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and
G. Vigna, “deDacota: Toward preventing server-side XSS via
automatic code and data separation,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2013, pp. 1205–1216.

[27] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou,
“CSPAutoGen: Black-box enforcement of content security policy
upon real-world websites,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 653–665.

[28] M. Fazzini, P. Saxena, and A. Orso, “AutoCSP: Automatically ret-
rofitting CSP to web applications,” in Proc. 37th Int. Conf. Softw.
Eng., 2015, pp. 336–346.

[29] S. Liu, X. Yan, Q. Wang, and Q. Xi, “A systematic study of content
security policy in web applications,” Secur. Commun. Netw., vol. 9,
pp. 3570–3584, Sep. 2016.

[30] The Spanner. DOM Clobbering, 2017. Accessed: Oct. 2, 2017,
[Online]. Available: http://www.thespanner.co.uk/2013/05/16/
dom-clobbering/

[31] Alexa. The Top 500 Sites on the Web. [Online]. 2017. Available: Oct.
11, 2017. [Online]. Available: https://www.alexa.com/topsites

[32] X. Chen, J. Li, J. Weng, J. Ma, andW. Lou, “Verifiable computation
over large database with incremental updates,” IEEE Trans. Com-
put., vol. 65, no. 10, pp. 3184–3195, Oct. 2016.

[33] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly verifi-
able databases with efficient updates,” IEEE Trans. Dependable
Secure Comput., vol. 12, no. 5, pp. 546–556, Oct. 2015.

[34] Jquery, Jquery API Document, Accessed: Oct. 12, 2017, 2017.
[Online]. Available: http://api.jquery.com

[35] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. D. Vel, and
P.Montague, “Cross-project transfer representation learning for vul-
nerable function discovery,” IEEE Trans. Ind. Inform., vol. 14, no. 7,
pp. 3289–3297, Jul. 2018.

[36] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 25, no. 9, pp. 2386–2396, Sep. 2014.

[37] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, and K. Kim, “Identity-
based chameleon hashing and signatures without key exposure,”
Inf. Sci., vol. 265, pp. 198–210, 2014.

[38] L. Liu, O. De Vel, Q. Han, J. Zhang, and Y. Xiang, “Detecting and
preventing cyber insider threats: A survey,” IEEE communications
surveys and tutorials, vol. 20, no. 2, pp. 1397–1417, Second Quarter
2018.

[39] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang,
“Data-driven cybersecurity incident prediction: A survey,” IEEE
Commun. Surveys Tuts., vol. 21, no. 2, pp. 1744–1772, Second Quarter
2019.

XU ET AL.: JSCSP: A NOVEL POLICY-BASED XSS DEFENSE MECHANISM FOR BROWSERS 877

http://cve.mitre.org
https://www.acunetix.com/blog/articles/universal-cross-site-scripting-uxss.
https://www.acunetix.com/blog/articles/universal-cross-site-scripting-uxss.
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://caniuse.com/#search=csp
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
https://www.alexa.com/topsites
http://api.jquery.com

GuangquanXu (Member, IEEE) received the PhD
degree from Tianjin University, in 2008. He is a
PhD and full professor with the Tianjin Key Labora-
tory of Advanced Networking (TANK), College of
Intelligence and Computing, Tianjin University,
China. He is an IET fellow,member of the CCF. His
research interests include cyber security and trust
management. He is the director of Network Secu-
rity Joint Lab and the Network Attack & Defense
Joint Lab. He has published more than 100 papers
in reputable international journals and conferences,

including IEEE IoT J, FGCS, IEEE access, PUC, JPDC, IEEE multimedia,
and so on. He served as a TPCmember for IEEE UIC 2018, SPNCE2019,
IEEE UIC2015, IEEE ICECCS 2014, and reviewers for journals such as
IEEE access, ACM TIST, JPDC, IEEE TITS, soft computing, FGCS, and
Computational Intelligence, and so on.

Xiaofei Xie (Member, IEEE) received the bachelor’s
degree in softerware engineering from Tianjin Uni-
versity, in 2011. Currently he is working toward the
PhD degree at Tianjin University. He is currently
working in Software Engineering, foucsing on pro-
gram analysis, loop analysis, and summarization.
He received an ACM SIGSOFT Distinguished
Paper Award at FSE 2016.

Shuhan Huang (Student Member, IEEE) received
the bachelor’s degree from the Tianjin University,
in 2016. He is working toward the master’s degree
with the School of Computer Science and Technol-
ogy, Tianjin University, China. His current research
interests include the web security.

Jun Zhang (Senior Member, IEEE) received the
PhD degree in computer science from the Univer-
sity of Wollongong, Australia. He is the co-founder
and director of the Cybersecurity Lab, Swinburne
University of Technology, Australia. His research
interests include cybersecurity and applied mac-
hine learning. In particular, he is currently leading
his team developing intelligent defence systems
against sophisticated cyber attacks. He is the
chief investigator of several projects in cyberse-
curity, funded by the Australian Research Council

(ARC). He has publishedmore than 100 research papers inmany interna-
tional journals and conferences, such as the IEEE Communications Sur-
veys and Tutorials, IEEE Transactions on Information Forensics and
Security, and ACMConference on Computer andCommunications Secu-
rity. Two of his papers were selected as the featured articles in the July/
August 2014 issue of the IEEE Transactions on Dependable and Secure
Computing and the March/April 2016 issue of IEEE IT Professional. His
research has been widely cited in the area of cybersecurity. He has been
internationally recognised as a research leader in cybersecurity, evi-
denced by his chairing of 15 international conferences, and presenting of
invited keynote addresses in six conferences and an invited lecture in
IEEE SMCVictorian Chapter.

LeiPan (Member, IEEE) received thePhDdegree in
computer forensics from Deakin University, Aus-
tralia, in 2008. He is currently a senior lecturer with
the School of Information Technology, Deakin Uni-
versity. His research interests include cyber security
and privacy. He has authored 60 research papers in
refereed international journals and conferences,
such as the IEEE Transactions on Information For-
ensics and Security, IEEE Transactions on Depend-
able andSecurity Computing, IEEETransactions on
Industrial Informatics and so on.

Wei Lou (Member, IEEE) received the BEng
degree in electrical engineering from Tsinghua
University, China, in 1995, the MEng degree in
telecommunications from the Beijing University of
Posts and Telecommunications, China, in 1998,
and the PhD degree in computer engineering
from Florida Atlantic University, Boca Raton, FL,
in 2004. He is currently an associate professor
with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong, China.
His current research interests include the areas

of wireless networking, mobile ad hoc and sensor networks, peer-to-
peer networks, and mobile cloud computing. He has worked intensively
on designing, analyzing and evaluating practical algorithms with the the-
oretical basis, as well as building prototype systems. His research work
is supported by various Hong Kong grants.

Kaitai Liang (Member, IEEE) received the PhD
degree from the Department of Computer Science,
City University of Hong Kong, in 2014. He is cur-
rently an assistant professor with the Delft univer-
sity of technology, The Netherlands. His research
interests include applied cryptography and informa-
tion security in particular, encryption, blockchain,
post-quantum crypto, privacy enhancing technol-
ogy, and security in cloud computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

878 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

	JSCSP: A novel policy-based XSS defense mechanism for browsers
	Citation
	Author

	JSCSP: A Novel Policy-Based XSS Defense Mechanism for Browsers

